大学物理练习七答案参考

大学物理练习七答案参考
大学物理练习七答案参考

大学物理练习七答案参考

一、 选择题:

1. 在空间有一非均匀电场,其电力线分布如图所示。在电场中作一半径为R 的闭合球面S ,已知通过球面上某一面元S ?的电场强度通量为e ?Φ,则通过该球面其余部分的电场强度通量为[ A ] (A)e ?Φ- (B)e S

S

R ?Φ??-2

4π (C)

e S

R ?Φ?2

4π (D) 0

通过该球面其余部分的电场强度通量=0e ?Φ-

2. 有两个点电荷电量都是+q ,相距为2 a 。今以左边的点电荷所在处

为球心,以a 为半径作一球形高斯面。在球面上取两块相等的小面积S 1和S 2,其位置如图所示。设通过S 1和S 2的电场强度通量分别为1

Φ和2Φ,通过整个球面的电场强度通量为s Φ,则 [ D ]

(A)s ΦΦ>Φ,21=0/εq (B)021/2,εq s =ΦΦ<Φ (C)021/,εq s =ΦΦ=Φ (D)021/,εq s =ΦΦ<Φ

解∶

通过S 1的电场强度通量分别为1Φ,有穿进又有穿出; 但通过S 2的电场强度通量分别为2Φ,只有穿出. 故,21Φ<Φ据高斯定理通过

整个球面的电场强度通量为s Φ只与面内电荷有关。

3.图示为一具有球对称性分布的静电场的E ~ r 关系曲线。请指出该

静电场是由下列哪种带电体产生的? [ D ]

(A) 半径为R 的均匀带电球面。 (B) 半径为R 的均匀带电球体。

(C) 半径为R 、电荷体密度Ar =ρ(A 为常数)的非均匀带电球体。 (D) 半径为R 、电荷体密度r A /=ρ (A 为常数)的非均匀带电球体。

2

04r

q

E i πε∑=

4.在磁感应强度为B

的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n

与B 的夹角为α,则通过半球面S 的磁

通量为 [ D ]

(A) .2B r π (B) 2.2B r π (C) απsin 2B r -. (D) απcos 2B r -.

第6题图 . 第7题图

5 .四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I 。这四

条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶。每条导线中的电流流向亦如图所示,则在图中正方形中心O 点的磁感应强度的大小为 [ C ]

(A) .20I a B πμ=

(B) .220I a B πμ=

(C) B=0. (D) B=.0I a

πμ

二、填空题:

1.一“无限长”均匀带电的空心圆柱体,内半径为a,外半径为b,电荷体密度为ρ。若作一半径为r(a

斯柱面,则其中包含的电量q=

)

(2

2a

r

L-

ρπ。

2. 半径为R的不均匀带电球体,电荷体密度分布为Ar

=

ρ,式中为r 离球心的距离,(R

r≤)、A为一常数,则球体上的总电量

Q= 。

解:

4 0

2

4R

A

Ar

dr

r

Q

R

π

π

?=

?

=

3.有一个球形的橡皮膜气球,电荷q均匀地分布在表面上,在此气球被吹大的过程中,被气球表面掠过的点(该点与球中心距离为r),其电场强度的大小

变为0 。

4.一长直螺线管是由直径d=0.2mm的漆包线密绕而成。当它通以

I=0.5A的电流时,其内部的磁感应强度B=

。(忽略绝缘

层厚度)

5.电流由长直导线1沿半径方向经a点流入一均匀导线构成的等边三角形,再由b点流出,经长导线2返回电源(如

图)。已知直导线上电流强度为I,三角形的边长

为L。则在三角形中、心O点产生的磁感应强度

的大小 ;方向 。

方向垂直纸面向内

6. 如图,在无限长直载流导线的右侧有面积为S 1和S 2

两个矩形回路。

两个回路与长直载流导线在同一平面,且矩形回路的一边与长直载流导线平行,则通过面积为S 1的矩形回路的磁通量与通过面积为S 2的矩形回路的磁通量之比为 1∶1

,

三、 计算题:

1. 一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分

布有电量+Q ,沿其下半部分均匀分布有电量-Q ,如图所示。试求圆

心O 处的电场强度。

解:先看上半部分+Q ,θ

λλRd dl dq

==

21b abca

a B B B B

++=0

=abca B )333(40-=

l

I

B πμ

θ

sin dE dE x = ,θ

cos dE dE y

=

再由于下半部分均匀分布有电量-Q 的x E 与上半部分均匀分布有电量+Q 的x E 正

好抵消。

所以

2.半径为R 的均匀环形导线在b 、c 两点处分别与两

根互相垂直的载流导线相连接,已知环与二导线共面,如图所示。若直导线中的电流强度为I ,求:环心O 处磁感强度的大小和方向。

解:

.O 处的磁感应强度由直线段ab 产生的磁场、cd 产生的磁场和环形导线产生的磁场的叠加。即:

321B B B B

++=0

B 321=+=∴acb

ab c b c b B B B B 方向相反,与

3. 均匀带电刚性细杆AB ,电荷线密度为λ,绕垂直于直线的轴O 以ω角速度匀速转动(O 点在细杆AB 延长线上)。求:

(1) O 点的磁感应强度0B ;(2)磁矩m p ;(3)若a 》b ,求0B 及m p

解∶

(1)在细杆上距O 为r 处取一长为dr 的长度元,所带电量为dr dq λ=,由于转动而形

流在O 处产生的磁感应强度:

则O 点的磁感应强度为:

方向垂直于纸面向里。 (2)圆电流dI 的磁矩:

方向垂直于纸面向里。

(3)若b a >>,则有:a

b

a b a ≈+ln

)31()(3

3

a

b a b a +≈+

同济版大学物理学第七章练习题

第7章 恒定磁场 一、选择题 1. 下列关于磁感应线的描述中正确的是 [ ] (A) 条形磁铁的磁感应线是从N 极到S 极的 (B) 条形磁铁的磁感应线在磁铁内部是从S 极到N 极的 (C) 磁感应线是从N 极出发终止在S 极的曲线 (D) 磁感应线是不封闭的曲线 2. 磁场的高斯定理 ?? =?s S B 0d , 说明 [ ] (A) 穿入闭合曲面的磁感应线的条数必然等于穿出的磁感应线的条数 (B) 穿入闭合曲面的磁感应线的条数不等于穿出的磁感应线的条数 (C) 一根磁感应线可以终止在闭合曲面内 (D) 一根磁感应线不可能完全处于闭合曲面内 3. 磁场中的高斯定理 ?? =?s S B 0d 说明了磁场的性质之一是 [ ] (A) 磁场力是保守力 (B) 磁感应线可能闭合 (C) 磁场是无源场 (D) 磁场是无势场 4. 若某空间存在两无限长直载流导线, 空间的磁场就不存在简单的对称性. 此时该磁场的分布 [ ] (A) 可以直接用安培环路定理来计算 (B) 只能用安培环路定理来计算 (C) 只能用毕奥–萨伐尔定律来计算 (D) 可以用安培环路定理和磁场的叠加原理求出 5. 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管( R =2r ), 两螺线管单位长度上的匝数相等.两螺线管中的磁感应强度大小B R 和B r 应满足关系 [ ] (A) B R =2B r (B) B R =B r (C) 2B R =B r (D) B R =4B r 6. 一电量为q 的带电粒子在均匀磁场中运动, 下列说法中正确的是 [ ] (A) 只要速度大小相同, 粒子所受的洛伦兹力就相同 (B) 在速度不变的前提下, 若电荷q 变为-q , 则粒子受力反向, 数值不变 (C) 粒子进入磁场后, 其动能和动量都不改变 (D) 洛伦兹力与速度方向垂直, 所以其运动轨迹是圆 7. 如图7-1-31所示,一个长直螺线管通有交流电, 把一个带 E

大学物理练习参考答案(供参考)

练习一 1-8 一质点在xOy 平面上运动,运动方程为 x =3t +5, y =2 1t 2+3t -4.式中t 以 s 计,x ,y 以m 计.(1)以时间t 为变量,写出质点位置矢量的表示式;(2)求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算t =0 s 时刻到t =4s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度. 解:(1) j t t i t r )4321()53(2 m (2)将1 t ,2 t 代入上式即有 j i r 5.081 m j j r 4112 m (3)∵ j i r j j r 1617,4540 ∴ 104s m 534201204 j i j i r r t r v (4) 1s m )3(3d d j t i t r v 则 j i v 734 1s m (5)∵ j i v j i v 73,3340 (6) 2s m 1d d j t v a 这说明该点只有y 方向的加速度,且为恒量。 1-10 已知一质点作直线运动,其加速度为 a =4+3t 2s m ,开始运动时,x =5 m , v =0,求该质点在t =10s 时的速度和位置. 解:∵ t t v a 34d d 分离变量,得 t t v d )34(d 积分,得 122 34c t t v 由题知,0 t ,00 v ,∴01 c 故 22 34t t v 又因为 22 34d d t t t x v 分离变量, t t t x d )2 34(d 2 积分得 232212c t t x 由题知 0 t ,50 x ,∴52 c

大学物理习题答案解析第七章

第七章 恒定磁场 7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( ) (A ) (B ) (C ) (D ) 分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比 因而正确答案为(C )。 7 -2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( ) (A ) (B ) (C ) (D ) 分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;.因而正确答案为(D ). 7 -3 下列说法正确的是( ) (A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零 (D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零 分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。因而正确答案为(B ). 7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( ) r R B B 2=r R B B =r R B B =2r R B B 4=2 1==R r n n r R B r 2π2B r 2 παB r cos π22 αB r cos π 2 S B ?=m Φ

大学物理练习题及答案

? -q O A B C D 关于点电荷以下说法正确的是 D (A) 点电荷是电量极小的电荷; (B) 点电荷是体积极小的电荷; (C) 点电荷是体积和电量都极小的电荷; (D) 带电体的线度与其它有关长度相比可忽略不计。 关于点电荷电场强度的计算公式E = q r / (4 0 r 3),以下说法正确的是 B (A) r →0时, E →∞; (B) r →0时, q 不能作为点电荷,公式不适用; (C) r →0时, q 仍是点电荷,但公式无意义; (D) r →0时, q 已成为球形电荷, 应用球对称电荷分布来计算电场. 如果对某一闭合曲面的电通量为 S E d ??S =0,以下说法正确的是 A (A) S 面内电荷的代数和为零; (B) S 面内的电荷必定为零; (C) 空间电荷的代数和为零; (D) S 面上的E 必定为零。 已知一高斯面所包围的空间内电荷代数和 ∑q =0 ,则可肯定: C (A). 高斯面上各点场强均为零. (B). 穿过高斯面上每一面元的电场强度通量均为零. (C). 穿过整个高斯面的电场强度通量为零. (D). 以上说法都不对. 如图,在点电荷+q 的电场中,若取图中P 点处为 电势零点,则M 点的电势为 D (A) q /(4πε0a ) (B) ?q /(4πε0a ) (C) q /(8πε0a ) (D) ?q /(8πε0a ) 对于某一回路l ,积分l B d ?? l 等于零,则可以断定 D (A) 回路l 内一定有电流; (B) 回路l 内一定无电流; (C) 回路l 内可能有电流; (D) 回路l 内可能有电流,但代数和为零。 如图,一电量为 q 的点电荷位于圆心O 处,A 、B 、C 、D 为同一圆周上的 四点,现将一试验电荷从A 点分别移动到B 、C 、D 各点,则 A (A) 从A 到各点,电场力做功相等; (B) 从A 到B ,电场力做功最大; +q ? a a P · · M

习题解答大学物理第7章习题

专业班级_____ 姓名________学号________ 第七章静电场中的导体和电介质 一、选择题: 1,在带电体A旁有一不带电的导体壳B,C为导体壳空腔内的一点,如下图所示。则由静电屏蔽可知:[ B ] (A)带电体A在C点产生的电场强度为零; (B)带电体A与导体壳B的外表面的感应电荷在C点所产生的 合电场强度为零; (C)带电体A与导体壳B的内表面的感应电荷在C点所产生的合电场强度为零; (D)导体壳B的内、外表面的感应电荷在C点产生的合电场强度为零。 解答单一就带电体A来说,它在C点产生的电场强度是不为零的。对于不带电的导体壳B,由于它在带电体A这次,所以有感应电荷且只分布在外表面上(因其内部没有带电体)此感应电荷也是要在C点产生电场强度的。由导体的静电屏蔽现象,导体壳空腔内C点的合电场强度为零,故选(B)。 2,在一孤立导体球壳内,如果在偏离球心处放一点电荷+q,则在球壳内、外表面上将出现感应电荷,其分布情况为 [ B ] (A)球壳内表面分布均匀,外表面也均匀; (B)球壳内表面分布不均匀,外表面均匀; (C)球壳内表面分布均匀,外表面不均匀; (D)球壳的内、外表面分布都不均匀。 解答由于静电感应,球壳内表面感应-q,而外表面感应+q,由于静电屏蔽,球壳内部的点电荷+q和内表面的感应电荷不影响球壳外的电场,外表面的是球面,因此外表面的感

应电荷均匀分布,如图11-7所示。故选(B )。 3. 当一个带电导体达到静电平衡时:[ D ] (A) 表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高。 (C)导体内部的电势比导体表面的电势高。 (D)导体内任一点与其表面上任一点的电势差等于零。 4. 如图示为一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为r 1、r 2的 金属球壳、设无穷远处为电势零点,则在 球壳内半径为r 的P 点处的场强和电势为: [ D ] (A )E=r Q U r Q 0204,4πεπε= (B )E=0,1 04r Q U πε= (C )E=0,r Q U 04πε= (D )E=0,204r Q U πε= 5. 关于高斯定理,下列说法中哪一个是正确的? [ C ] (A )高斯面内不包围自由电荷,则面上各点电位移矢量D 为零。 (B )高斯面上处处D 为零,则面内必不存在自由电荷。 (C )高斯面的D 通量仅与面内自由电荷有关。 (D )以上说法都不正确。 6, 如图所示,一带电量为q 、半径为A r 的金属球外,同心地套上一层内、外半径分别为B r 和C r ,相对介电常数为r ε的均匀电介质球壳。球壳外为真空,则介质点()B C P r r r <<处 的电场强度的大小为 [ A ] 解答 均匀分布在导体球上的自由电荷q 激发的电场具有球对称性,均匀电介质球壳内、 外表面上束缚电荷q ′均匀分布,所激发的电场也是球对称性的,故可用高斯定理求解。 通过p 点以r 为半径,在电介质球壳中作一同心高斯球面S ,应用电介质时的高斯定理, D i s dS qi ?=∑?,高斯面 S 上的电位移通量为2 ()D r π,S 面内包围的自由电荷为i qi q =∑,有 由,D E ε=两者方向相同,则电介质中p 点的电场强度不大小为 r +Q P

工科大学物理练习参考答案

工科大学物理练习一(参考答案) 一、 选择题 1(C ),2(D ),3(C ),4(B ) 二、 填空题 1、v =39m/s ; 2、A ,2s ,23/3; 3、2y 2-16y +32-3x =0; 4、a t =-g/2,ρ=23v 2/3g ; 5、t =2(s ),S=2m ; 6、a n =80m/s 2,a t =2 m/s 2 三、 计算题 1、(1)-6m/s ,(2)、-16 m/s ,(3)、-26 m/s 2 2、 ??=+?=+?=+?===x v vdv dx x vdv dx x dx dv v x dx dv v xt dx dx dv dt dv a 00 222)63()63(63 v =[2(3x +2x 3)]1/2 3、k =4(s -3),v =4m/s ,a t = 8 m/s 2,a n =16 m/s 2,a =17.9 m/s 2 4、自然坐标系中 s =20t +5t 2, 由v =ds/d t =20+10t, 得 a t = d v /d t =10(m/s 2), a n =v 2/R=(20+10t )2 /R(m/s 2); t =2s 时,a t = 10 m/s 2, a n =53.3 m/s 2 5、由质点的动能定理 2 1222 121d mv mv r F b a -=?? ,得 02 1 d 22 /-= ? mv x f A A ,Am k v 2= 6、由牛顿第二定律 ? ?+==-+-v v m t t v m F mg f 0 t 0 F -mg kv -d d , d d , F mg F mg kv F mg F mg kv k m t t m -k --+-=--+--=e ,ln )e 1(t m k k F mg v ---= 7、(1)、 )(2 d A ,/)(2L a L-a L mg μx f -L mg x L μf - ==-=?

大学物理第七章习题及答案word版本

第七章 振动学基础 一、填空 1.简谐振动的运动学方程是 。简谐振动系统的机械能是 。 2.简谐振动的角频率由 决定,而振幅和初相位由 决定。 3.达到稳定时,受迫振动的频率等于 ,发生共振的条件 。 4.质量为10-2㎏的小球与轻质弹簧组成的系统,按20.1cos(8)3 x t ππ=-+的规律做运动,式中t 以s 为单位,x 以m 为单位,则振动周期为 初相位 速度最大值 。 5.物体的简谐运动的方程为s ()x A in t ωα=-+,则其周期为 ,初相位 6.一质点同时参与同方向的简谐振动,它们的振动方程分别为10.1cos()4x t πω=+,20.1cos()4 x t πω=-,其合振动的振幅为 ,初相位为 。 7.一质点同时参与两个同方向的简谐振动,它们的振动方程分别为)4cos(06.01π ω+=t x ,250.05cos()4 x t πω=+,其合振动的振幅为 ,初相位为 。 8.相互垂直的同频率简谐振动,当两分振动相位差为0或π时,质点的轨迹是 当相位差为 2π或32π时,质点轨迹是 。 二、简答 1.简述弹簧振子模型的理想化条件。 2.简述什么是简谐振动,阻尼振动和受迫振动。 3.用矢量图示法表示振动0.02cos(10)6 x t π =+,(各量均采用国际单位).

三、计算题 7.1 质量为10×10-3㎏的小球与轻质弹簧组成的系统,按X=0.1cos (8πt+2π/3)的规律做运动,式中t 以s 为单位,x 以m 为单位,试求: (1)振动的圆频率,周期,初相位及速度与加速度的最大值; (2)最大恢复力,振动能量; (3)t=1s ,2s ,5s ,10s 等时刻的相位是多少? (4)画出振动的旋转矢量图,并在图中指明t=1s ,2s ,5s ,10s 等时刻矢量的位置。 7.2 一个沿着X 轴做简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示,如果在t=0时刻,质点的状态分别为: (1)X 0=-A ; (2)过平衡位置向正向运动; (3)过X=A/2处向负向运动; (4)过X=2A 处向正向运动。 试求出相应的初相位之值,并写出振动方程。 7.3 做简谐振动的小球速度的最大值为0.03m ·s -1,振幅为0.02m ,若令速度具有正最大值的时刻为t=0,试求: (1)振动周期; (2)加速度的最大值; (3)振动的表达式。

大学物理 第一章练习及答案

一、判断题 1. 在自然界中,可以找到实际的质点. ······························································· [×] 2. 同一物体的运动,如果选取的参考系不同,对它的运动描述也不同. ···················· [√] 3. 运动物体在某段时间内的平均速度大小等于该段时间内的平均速率. ···················· [×] 4. 质点作圆周运动时的加速度指向圆心. ···························································· [×] 5. 圆周运动满足条件d 0d r t =,而d 0d r t ≠. ···························································· [√] 6. 只有切向加速度的运动一定是直线运动. ························································· [√] 7. 只有法向加速度的运动一定是圆周运动. ························································· [×] 8. 曲线运动的物体,其法向加速度一定不等于零. ················································ [×] 9. 质点在两个相对作匀速直线运动的参考系中的加速度是相同的. ·························· [√] 10. 牛顿定律只有在惯性系中才成立. ·································································· [√] 二、选择题 11. 一运动质点在某时刻位于矢径(),r x y 的端点处,其速度大小为:( C ) A. d d r t B. d d r t C. d d r t D. 22d d x y +12. 一小球沿斜面向上运动,其运动方程为254SI S t t =+-(),则小球运动到最高点的时刻是: ( B ) A. 4s t = B. 2s t = C. 8s t = D. 5s t = 13. 一质点在平面上运动,已知其位置矢量的表达式为22r at i bt j =+(其中a 、b 为常量)则该质点作:( B ) A. 匀速直线运动 B. 变速直线运动 C. 抛物线运动 D. 一般曲线运动 14. 某物体的运动规律为2d d v kv t t =-,式中的k 为大于0的常数。当0t =时,初速为0v ,则速度v 与时间t 的关系是:( C ) A. 0221v kt v += B. 022 1v kt v +-= C. 021211v kt v += D. 0 21211v kt v +-= 15. 在相对地面静止的坐标系中,A 、B 二船都以2m/s 的速率匀速行驶,A 沿x 轴正方向,B

《大学物理》 第二版课后习题答案 第七章

习题精解 7-1一条无限长直导线在一处弯折成半径为R 的圆弧,如图7.6所示,若已知导线中电流强度为I,试利用比奥—萨伐尔定律求:(1)当圆弧为半圆周时,圆心O 处的磁感应强度;(2)当圆弧为1/4圆周时,圆心O 处的磁感应强度。 解(1)如图7.6所示,圆心O 处的磁感应强度可看作由3段载流导线的磁场叠加而成。因为圆心O 位于直线电流AB 和DE 的延长线上,直线电流上的任一电流元在O 点产生的磁感应强度均为零,所以直线电流AB 和DE 段在O 点不产生磁场。 根据比奥—萨伐尔定律,半圆弧上任一电流元在O 点产生的磁感应强度为 02 4Idl dB R μπ= 方向垂直纸面向内。半圆弧在O 点产生的磁感应强度为 000220 444R I Idl I B R R R R πμμμπππ= == ? 方向垂直纸面向里。 (2)如图7.6(b )所示,同理,圆心O 处的磁感应强度可看作由3段载流导线的磁场叠加而成。因为圆心O 位于电流AB 和DE 的延长线上,直线电流上的任一电流元在O 点产生的磁感应强度均为零,所以直线电流AB 和DE 段在O 点不产生磁场。 根据毕奥—萨伐尔定理,1/4圆弧上任一电流元在O 点产生的磁感应强度为 02 4Idl dB R μπ= 方向垂直纸面向内,1/4圆弧电流在O 点产生的磁感应强度为 0002 220 4428R I Idl I R B R R R πμμμπππ= ==? 方向垂直纸面向里。 7.2 如图7.7所示,有一被折成直角的无限长直导线有20A 电流,P 点在折线的延长线上,设a 为,试求P 点磁感应强度。 解 P 点的磁感应强度可看作由两段载流直导线AB 和BC 所产生的磁场叠加而成。AB 段在P 点所产生的磁感应强度为零,BC 段在P 点所产生的磁感应强度为 0120 (cos cos )4I B r μθθπ= - 式中120,,2 r a π θθπ= == 。所以 500(cos cos ) 4.010()42 I B T a μπ ππ= -=? 方向垂直纸面向里。 7-3 如图7.8所示,用毕奥—萨伐尔定律计算图中O 点的磁感应强度。 解 圆心 O 处的磁感应强度可看作由3段载流导线的磁场叠加而成, AB 段在P 点所产生的磁感应强度为 ()0120 cos cos 4I B r μθθπ= -

大学物理电磁场练习题含答案

大学物理电磁场练习题含答案

前面是答案和后面是题目,大家认真对对. 三、稳恒磁场答案 1-5 CADBC 6-8 CBC 三、稳恒磁场习题 1. 有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二 者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00. (C) 1.11. (D) 1.22. [ ] 2. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为 (A) l I π420μ. (B) l I π220μ. (C) l I π02μ. (D) 以上均不对. [ ] 3. 通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P . [ ]

4. 无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布, 则空间各处的B 的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是 [ ] 5. 电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导 线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0. (D) B ≠ 0,因为虽然021 ≠+B B ,但B 3 ≠ 0. [ ]

大学物理练习册答案

狭义相对论基础(二)第十六页 1.电子的静止质量M0=9.1×10–31kg,经电场加速后具有 0.25兆电子伏特的动能,则电子速率V与真空中光速 C之比是:(C ) [ E k=mC2-m0C2, m=m0/(1-V2/C2)1/2 1兆=106, 1电子伏=1.6×10–19焦耳] (A) 0.1 ( B) 0.5 (C) 0.74(D) 0.85 2.静止质量均为m0的两个粒子,在实验室参照系中以相同大小的速度V=0.6C相向运动(C为真空中光速), 碰撞后粘合为一静止的复合粒子,则复合粒子的静止 质量M0等于:(B ) [ 能量守恒E=M0C2=2mC2 =2m0C2/(1-V2/C2)1/2 ] ( A) 2m0(B) 2.5m0(C) 3.3m0(D) 4m0 3.已知粒子的动能为E K,动量为P,则粒子的静止能量(A )(由 E = E K+E0和E2=E02 + C2P2 )(A)(P2C2-E K2)/(2E K)(B)(P2C2+E K2)/(2E K)(C)(PC-E K )2/(2E K) (D) (PC+E K )2/(2E K) 4.相对论中的质量与能量的关系是:E=mC2;把一个静止质量为M0的粒子从静止加速到V=0.6C时,需作功 A=(1/4)M0C2 A=MC2-M0C2 = γM0C2-M0C2=(γ-1)M0C2 5.某一观察者测得电子的质量为其静止质量的2倍,求

电子相对于观察者运动的速度V =0.87C [ m=m 0/(1-V 2/C 2)1/2, m=2m 0 , 则1-V 2/C 2=1/4 ] 6. 当粒子的速率由0.6C 增加到0.8C 时,末动量与初动 量之比是P 2:P 1=16:9,末动能与初动能之比是 E K2:E K1=8:3 V 1=0.6C,γ1=1/2211C V -=5/4, m 1=γ1m 0=5m 0/4 P 1=m 1V 1=3m 0C/4, V 2=0.8C 时, γ2=1/222/1C V -=5/3 m 2=γ2m 0=5m 0/3,P 2=m 2V 2=4m 0 C/3,∴P 2:P 1=16:9 E K1=m 1C 2-m 0C 2, E K2=m 2C 2-m 0C 2 ∴E K2:E K1=8:3 7. 在惯性系中测得相对论粒子动量的三个分量为:P x=P y = 2.0×10-21kgm/s, P z =1.0×10-21kgm/s ,总能量 E=9.4×106ev ,则该粒子的速度为V=0.6C [E=mC 2 P=mV P=(P x 2+P y 2 +P z 2 )1/2 ] 8. 试证:一粒子的相对论动量可写成 P=(2E 0E K +E 2K )1/2/C 式中E 0(=m 0C 2)和E K 各为粒子的静能量和动能。 证:E=E 0+E k ?E 2=E 20+P 2C 2 ? (E 0+E k )2= E 20+P 2C 2 ? P=(2E 0E K +E 2K )1/2/C 9.在北京正负电子对撞机中,电子可以被加速到动能为E K =2.8×109ev 这种电子的速率比光速差多少米/秒?这样的一个电子的动量多大?(已知电子的静止质量

大学物理课后习题答案第七章 a

第七章 电磁感应 选择题 7-1 在闭合导线回路的电阻不变的情况下,下述正确的是 ( B ) (A) 穿过闭合回路所围面积的磁通量最大时,回路中的感应电流最大; (B) 穿过闭合回路所围面积的磁通量变化越快,回路中的感应电流越大; (C) 穿过闭合回路所围面积的磁通量变化越大,回路中的感应电流越大; (D) 穿过闭合回路所围面积的磁通量为零时,回路中的感应电流一定为零. 7-2 导体细棒ab 与载流长直导线垂直.在如图所示的四种情况中,细棒ab 均以与载流导线平行的速度v 平动,且b 端到长直导线的距离都一样.在(a)、(b)和(c)三种情况中,细棒ab 与光滑金属框保持接触.设四种情况下细棒ab 上的感应电动势分别为a E 、b E 、c E 和d E ,则 ( C ) (A) a b c d ==E E E >E ; (C) a b c d ===E E E E ; (D) a b c d >>>E E E E . 7-3 如图所示,半圆周和直径组成的封闭导线,处在垂直于匀强磁场的平面内.磁场的磁感应强度的大小为B ,直径AB 长为l .如果线圈以速度v 在线圈所在平面内平动, v 与AB 的夹角为θ,则 ( A ) (A) 线圈上的感应电动势为零,AB 间的感应电动势sin AB Bl θ=E v ; (B) 线圈上的感应电动势为零,AB 间的感应电动势cos AB Bl θ=E v ; (C) 线圈上的感应电动势为i 2sin Bl θ=E v ,AB 间感应电动势为sin AB Bl θ=E v ; (D) 线圈上的感应电动势为i 2cos Bl θ=E v ,AB 间感应电动势为cos AB Bl θ=E v . 7-4 一个面积2 10cm S =的圆线圈,其电阻0.10R =Ω,处于垂直于匀强磁场的平面内,若磁感应强度的大小随时间的变化率 1d 10T s d B t -=?,则线圈中的感应电流的大小为

大学物理下册练习及答案

大学物理下册练习及答 案 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

电磁学 磁力 A 点时,具有速率s m /10170?=。 (1) 欲使这电子沿半圆自A 至C 运动,试求所需 的磁场大小和方向; (2) 求电子自A 运动到C 所需的时间。 解:(1)电子所受洛仑兹力提供向心力 R v m B ev 20 0= 得出T eR mv B 3197 310101.105 .0106.11011011.9---?=?????== 磁场方向应该垂直纸面向里。 (2)所需的时间为s v R T t 87 0106.110 105 .0222-?=??===ππ eV 3100.2?的一个正电子,射入磁感应强度B =的匀强磁场中,其速度 B 成89角,路径成螺旋线,其轴在B 的方向。试求这螺旋线运动的周期T 、螺距h 和半径r 。 解:正电子的速率为 731 19 3106.210 11.9106.110222?=?????==--m E v k m/s 做螺旋运动的周期为 1019 31 106.31 .0106.11011.922---?=????==ππeB m T s 螺距为410070106.1106.389cos 106.289cos --?=????==T v h m 半径为319 7310105.1 0106.189sin 106.21011.989sin ---?=??????==eB mv r m d =1.0mm ,放在 知铜片里每立方厘米有2210?个自由电子,每个电子的电荷19106.1-?-=-e C ,当铜片中有I =200A 的电流流通时, (1)求铜片两侧的电势差'aa U ; (2)铜片宽度b 对'aa U 有无影响为什么 解:(1)53 1928'1023.210 0.1)106.1(104.85 .1200---?-=???-???== nqd IB U aa V ,负号表示'a 侧电势高。 v A C

大学物理习题册答案

x O 1 A 2 2 练习 十三 (简谐振动、旋转矢量、简谐振动的合成) 一、选择题 1. 一弹簧振子,水平放置时,它作简谐振动。若把它竖直放置或放在光滑斜面上,试判断下列情况正确的是 (C ) (A )竖直放置作简谐振动,在光滑斜面上不作简谐振动; (B )竖直放置不作简谐振动,在光滑斜面上作简谐振动; (C )两种情况都作简谐振动; (D )两种情况都不作简谐振动。 解:(C) 竖直弹簧振子:kx mg l x k dt x d m )(22(mg kl ),0222 x dt x d 弹簧置于光滑斜面上:kx mg l x k dt x d m sin )(22 (mg kl ),0222 x dt x d 2. 两个简谐振动的振动曲线如图所示,则有 (A ) (A )A 超前 2π; (B )A 落后2π ;(C )A 超前π; (D )A 落后π。 解:(A)t A x A cos ,)2/cos( t A x B 3. 一个质点作简谐振动,周期为T ,当质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的最短时间为: (B ) (A )4T ; (B )12T ; (C )6T ; (D )8T 。 解:(B)振幅矢量转过的角度6/ ,所需时间12 /26/T T t , 4. 分振动表式分别为)π25.0π50cos(31 t x 和)π75.0π50cos(42 t x (SI 制)则它们的合振动表达式为: (C ) (A ))π25.0π50cos(2 t x ; (B ))π50cos(5t x ; (C )π1 5cos(50πarctan )27 x t ; (D )7 x 。 解:(C)作旋转矢量图或根据下面公式计算 )cos(21020 2122 2 1 A A A A A 5)25.075.0cos(432432 2 7 1 2)75.0cos(4)25.0cos(3)75.0sin(4)25.0sin(3cos cos sin sin 112021012021011 0 tg tg A A A A tg 5. 两个质量相同的物体分别挂在两个不同的弹簧下端,弹簧的伸长分别为1l 和2l ,且212l l ,则两弹簧振子的周期之比21:T T 为 (B ) (A )2; (B )2; (C )2/1; (D )2/1。 解:(B) 弹簧振子的周期k m T 2 ,11l mg k , 22l mg k ,22 121 l l T T 6. 一轻弹簧,上端固定,下端挂有质量为m 的重物,其自由振动的周期为T .今已知振子离开平衡位置为x 时,其振动速度为v ,加速度为a .则下列计算该振子劲度系数的公式中,错误的是: (B ) (A) 2 max 2max /x m k v ; (B) x mg k / ; (C) 2 2/4T m k ; (D) x ma k / 。 解:B 7. 两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动表式为x 1 = A cos(t + ).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质 点的振动表式为 (B ) (A) )π21cos(2 t A x ; (B) )π21cos(2 t A x ; (C) )π2 3 cos( 2 t A x ; (D) )cos(2 t A x 。解:(B)作旋转矢量图 x t o A B 1 A 4 / 4 /3 2 A A x O ) 0(A )(t A 3/ 6/

大学物理学第版 修订版北京邮电大学出版社上册第七章习题答案

习 题 7 7.1选择题 (1) 容器中贮有一定量的理想气体,气体分子的质量为m ,当温度为T 时,根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值是: (A) 2x υ= . (B) 2x υ= [ ] (C) 23x kT m υ= . (D) 2x kT m υ= . [答案:D 。2222x y z υυυυ=++, 22 221 3x y z υυυυ===,23kT m υ=。] (2) 一瓶氦气和一瓶氮气的密度相同,分子平均平动动能相同,而且都处于平衡状态,则它们 [ ] (A) 温度相同、压强相同. (B) 温度、压强都不相同. (C) 温度相同,但氦气的压强大于氮气的压强. (D) 温度相同,但氦气的压强小于氮气的压强. [答案:C 。由32 w kT =,w w =氦氮,得T 氦=T 氮 ; 由mol pM RT ρ= ,ρρ=氦氮,T 氦=T 氮 ,而M M 氦氮。]

(3) 在标准状态下,氧气和氦气体积比为V 1 /V 2=1/2,都视为刚性分子理想气体,则其内能之比E 1 / E 2为: [ ] (A) 3 / 10. (B) 1 / 2. (C) 5 / 6. (D) 5 / 3. [答案:C 。由2mol M i E RT M = 2 i pV =,得111112222256E i pV i V E i pV i V ==?=。] (4) 一定质量的理想气体的内能E 随体积V 的变化关系为一直线,其延长线过E ~V 图的原点,题7.1图所示,则此直线表示的过程为: [ ] (A) 等温过程. (B) 等压过程. (C) 等体过程. (D) 绝热过程. [答案:B 。由图得E =kV , 而2i E pV = ,i 不变,2 i k p =为一常数。] (5) 在恒定不变的压强下,气体分子的平均碰撞频率Z 与气体的热力学温度T 的关系为 [ ] (A) Z 与T 无关. (B).Z 与T 成正比 . (C) Z 与T 成反比. (D) Z 与T 成正比.

8大学物理习题及综合练习答案详解

导体 8-1两个同心导体球壳A 和B ,A 球壳带电+Q ,现从远处移来一带+q 的带电体(见图8-1),试问(请阐明 理由):(1)两球壳间的电场分布与无+q 时相比有无变化?(2)两球壳间的电势差是否变化?(3)两球壳的电势是否变化?(4)如将B 球壳接地,上述(1)、(2)、(3)的情况又如何? 解:(1)由于静电屏蔽作用,+q 对两球壳间的电场没有影响。 (2)由? ?=B A AB l E U ??d 可知,由于E ?不变,所以AB U 不变,即两求壳间的电势差不变。 (3)由电势叠加原理,+q 使两球壳的电势升高。 (4)B 球壳接地,由于屏蔽作用,两球壳间的电场分布不变,从而AB U 不变。因B 球壳接地,电势不变,所以A 球壳电势也不变。 8-2半径为R 1的导体球A ,带电q ,其外同心地套一导体球壳B ,内外半径分别为R 2和R 3(见图8-2),且 R 2=2R 1,R 3=3R 1。今在距球心O 为d =4R 1的P 处放一点电荷Q ,并将球壳接地。问(1)球壳B 所带的净电荷Q ’ 为多少?(2)如用导线将导体球A 与球壳B 相连,球壳所带电荷Q ” 为多少? 解:(1)根据静电平衡条件,A 球上电荷q 分布在A 球表面上,B 球壳内表面带电荷-q 。 由高斯定理可得,R r R 21<<:0204r r q E ?? πε= A 球电势 1 0210 2 08)1 1( 4d 4d 2 1 R q R R q r r q l E U R R B A A πεπεπε= -= = ?= ? ? ?? 设B 球壳外表面带电荷q ’,由电势叠加原理,A 球球心处电势 4030201 0044'44R Q R q R q R q U πεπεπεπε++-+ = 1 010********'244R R q R q R q πεπεπεπε+ +-= 1 0101 04434' 8R Q R q R q πεπεπε++ = 108R q U A πε = =, Q q 43 '-=∴ B 球壳所带净电荷 q Q q q Q --=-=4 3 '' (2)用导线将和相连,球上电荷与球壳内表面电荷相消。 Q q Q 4 3'"-==∴ 8-3两带有等量异号电荷的金属板A 和B ,相距5.0mm ,两板面积都是150cm 2,电量大小都是2.66×l0-8C , A 板带正电并接地(电势为零),如图8-3所示。略去边缘故应,求(1)两板间的电场强度E ? ;(2)B 板的电势;(3)两板间离A 板1.0mm 处的电势。 解:建立如图所示的坐标系,左右板的电荷面密度分别为σ+和σ-。 (1)两板间的电场强度 i S Q i i i E E E ? ??????000022εεσεσεσ==+=+=右左 N/C 100.210 5.11085.8106 6.25 2128i i C ???=????=--- 图8-1

(完整版)大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+-r r r 由d /d v r t =r r 则速度: 28v i tj =+r r r 由d /d a v t =r r 则加速度: 8a j =r r 则当t=1s 时,有 24,28,8r i j v i j a j =-=+=r r r r r r r r 当t=2s 时,有 48,216,8r i j v i j a j =+=+=r r r r r r r r 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t v ,d d v t v ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201()(h -)2 r t v t i gt j =+v v v (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3)0d -gt d r v i j t =v v v 而落地所用时间 g h 2t = 所以 0d d r v i j t =v v d d v g j t =-v v 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理测试题及答案

波动光学测试题 一.选择题 1. 如图3.1所示,折射率为n 2 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知 n 1 <n 2 >n 3,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①②示意)的光程差是 (A) 2n 2e . (B) 2n 2e -λ/(2 n 2 ). (C) 2n 2e -λ. (D) 2n 2e -λ/2. 2. 如图 3.2所示,s 1、s 2是两个相干光源,它们到P 点的距离分别为r 1和 r 2,路径s 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径s 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于 (A) (r 2 + n 2 t 2)-(r 1 + n 1 t 1). (B) [r 2 + ( n 2-1) t 2]-[r 1 + (n 1-1)t 1]. (C) (r 2 -n 2 t 2)-(r 1 -n 1 t 1). (D) n 2 t 2-n 1 t 1. 3. 如图3.3所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,λ1 为入射光在折射率为n 1 的媒质中的波长,则两束反射光在相遇点的位相差为 (A) 2 π n 2 e / (n 1 λ1 ). (B) 4 π n 1 e / (n 2 λ1 ) +π. (C) 4 π n 2 e / (n 1 λ1 ) +π. (D) 4π n 2 e / (n 1 λ1 ). 4. 在如图3.4所示的单缝夫琅和费衍射实验装置中,s 为单缝,L 为透镜,C 为放在L 的焦面处的屏幕,当把单缝s 沿垂直于透镜光轴的方向稍微向上平移时,屏幕上的衍射图样 (A) 向上平移.(B) 向下平移.(C) 不动.(D) 条纹间距变大. 5. 在光栅光谱中,假如所有偶数级次的主极大都恰好在每缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为 (A) a = b . (B) a = 2b . (C) a = 3b . (D) b = 2a . 二.填空题 1. 光的干涉和衍射现象反映了光的 性质, 光的偏振现象说明光波是 波. 2. 牛顿环装置中透镜与平板玻璃之间充以某种液体时,观察到第10级暗环的直径由1.42cm 变成1.27cm,由此得该液体的折射率n = . 3. 用白光(4000?~7600?)垂直照射每毫米200条刻痕的光栅,光栅后放一焦距为200cm 的凸透镜,则第一级光谱的宽度为 . 三.计算题 1. 波长为500nm 的单色光垂直照射到由两块光学平玻璃构成的空气劈尖上,在观察反射光的干涉现象中,距劈尖棱边 l = 1.56cm 的A 处是从棱边算起的第四条暗条纹中心. (1) 求此空气劈尖的劈尖角θ . (2) 改用600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹,还是暗条纹? 2. 设光栅平面和透镜都与屏幕平行,在平面透射光栅上每厘米有5000条刻线,用它来观察波长为λ=589 nm 的钠黄光的光谱线. (1) 当光线垂直入射到光栅上时,能看到的光谱线的最高级数k m 是多少? (2) 当光线以30?的入射角(入射线与光栅平面法线的夹角)斜入射到光栅上时,能看到的光谱线的最高级数k m 是多少? 3.在杨氏实验中,两缝相距0.2mm ,屏与缝相距1m ,第3明条纹距中央明条纹7.5mm ,求光波波长? 4.在杨氏实验中,两缝相距0.3mm ,要使波长为600nm 的光通过后在屏上产生间距为1mm 的干涉条纹,问屏距缝应有多远? 5.波长为500nm 的光波垂直入射一层厚度e=1μm 的薄膜。膜的折射率为1.375。问: ⑴光在膜中的波长是多少? ⑵在膜内2e 距离含多少波长? s s 图 3.2 图3.3 图3.4

相关文档
最新文档