电动机无功补偿容量的选择及注意事项

电动机无功补偿容量的选择及注意事项
电动机无功补偿容量的选择及注意事项

电动机无功补偿容量的选择及注意事项

浙江省宁海县供电局高补林

采用低压静电电容器,在对感应电动机进行无功补偿时.准确、合理地选择补偿容量,可以最大限度地减少系统中流过的无功功率,降低电能的损耗,提高电压质量。目前,我们对城关公用低压线路上的感应电动机,普遍推行无功就地补偿,以减少公用线路日益上升的线损,我局已作为技改措施计划落实。

1 容量选择

1.l 单台三相电动机补偿容量,应把电动机空载时的功率因数补偿至1为原则、若以满载时耗用的无功功率作为补偿依据,空载时必为过补偿。因此,补偿容量按下式计算:

(1)

式中U——电动机的额定电压kV

I0——电动机的空载电流 A

Q——无功补偿容量kvar

1.2 补偿容量的校正。当电网的实际运行电压低于电容器的额定电压,则电容器输出容量达不到额定值,应按下式进行校正。校正后为实际应补偿的容量:

Q′=K2Q (2)

式中U eB——电容器的额定电压

U L——电网的代表日均方根电压值

1.3 对电动机组的补偿,应根据其行业的特点,确定需要系数及同期率,然后由(1)、(2)式求得补偿容量。

2 运行时注意事项

2.l 正常巡视电容器的运行情况,如发现有外壳鼓涨、漏油、绝缘放电及温升过高等情况.应及时处理,以防止事故扩大。

2.2在实际运行中,尤其是用电低谷,网络的电压将大大上升,当电网电压超过电容的额定电压的10%时,或电容器电流超过额定电流的1.3倍时,电容器应退出运行。

2.3补偿电容器一定要装设放电装置,放电装置按附图接线,运行时,K1闭合。放电时,K2闭合。放电回路不得装设熔丝。

2.4 低压电容器的保护可采用刀闸开关与低压熔断器或空气开关相配合的办法。

10KV线路变压器及电动机无功补偿

1.怎样进行无功补偿

应采取就地平衡的原则,使电网任一时刻无功总出力(含无功补偿)与无功总负荷(含无功总损耗)保持平衡。某供电局已实现了变电所的集中补偿,本文不再涉及,仅就10KV线路,配变与电动机的补偿加以讨论。

(1)10KV配电线路的无功补偿:

某供电局在每条10KV配电线路上安装1~2处高压无功自动补偿装置,补偿容量按线路配变总容量的10%掌握。某供电局公用配变容量为40500KVA,需补偿无功容量约为4000KVAR,约需资金55万元。经计算,安装一处时,宜将无功自动补偿装置安装在距线路首端的2/3线路长度处。安装两处时,第一处安装在距线路首端的2/5线路长度处,另一处安装在距线路首端的4/5线路长度处,各处容量为线路总补偿容量的一半。具体安装时,还应考虑便于操作、维护和检修工作等。

(2)配电变压器的无功补偿:

农网的大部分配电变压器昼夜负荷变化较大,许多村屯用电多为居民生活用电,白天及后半夜多数变压器处于轻载或空载状态。我们知道变压器的损耗包括有功损耗和无功损耗,无功损耗包括空载励磁损耗及漏磁无功损耗。从配电网线损理论计算可知,配电变压器的无功损耗约占配电网总损耗的60%左右。为有效补偿配电变压器本身的无功功率,避免轻载时功率因数超前,电压升高及节约资金,对容量在200KVA以下的配电变压器按配变容量的5%左右掌握实行静态无功补偿。将补偿装置装设在配变低压出口处,随配变同时投切。对200KVA及以上的配变安装自动跟踪补偿装置。

(3)电动机的无功补偿:

7.5KW及以上投运率高的电动机最好进行无功补偿,为防止出现因过补而产生的谐振过电压,烧毁电动机,应将电动机空载时的功率因数补偿到接近1。因为电动机空载时的无功负荷最小,补偿后满载的电动机功率因数仍为滞后,这样就避免过补偿现象的发生。将低压电容器同设备一起投切,直接补偿设备本身的无功损耗。

①机械负荷惯性较小的电动机(如风机等):

QC≈0.9QO

(1)

式中QC--补偿容量,KVAR

QO--电动机空载无功功率,KVAR

电动机空载电流可由厂家提供,如无,可参照(2)式确定:

IO=2IE(1-COSφ),

(2)

式中IO--电动机空载电流,A

IE--电动机额定电流,A

COSφ--电动机额定负荷时功率因数

②机械负荷惯性较大的电动机(如水泵等):

QC=(1.3~1.5)QO

(3)③车间、工厂集中补偿容量可按(4)式确定:

QC=PM(TGφ1-TGφ2)

(4)式中PM--最高负荷时平均有功功率

TGφ1--补偿前功率因数角的正切值

TGφ2--补偿后功率因数角的正切值

电动机的无功补偿,由于受益方主要是客户本身,因此投资应由客户自己承担。

2.经济效益分析

(1)配电变压器无功补偿经济效益分析:

电网实现无功补偿后,不仅降低配变用电设备的损耗,而且使高低压配电电流减少,导致线损率的降低,同时主变铜损及上一级输电线路的导线损失降低。全部考虑将使计算复杂。为简化计算程序,可以采用无功补偿经济当量来计算无功补偿后的经济效益。它的物理意义是每安装1KVAR的补偿电容器,相当于有功损耗降低多少千瓦。补偿装置于配电变压器低压母线侧,无功经济当量值查有关手册可取0.15。为使计算更具科学性,根据望奎县实际情况,计算时取0.1。望奎县供电区需安装无功补偿容量为2500KVAR,经计算,每年可减少电量损失170

万KW/H,每KW/H购电单价按0.3元计算,每年可有50万元的收益。

(2)10KV配电线路无功补偿经济效益分析:

10KV配电线路共需无功补偿容量约为4000KVAR,无功经济当量查有关手册可取0.06,补偿设备每天投运按6小时左右,经计算,每年可减少电量损失节约50万KW?H,每KW?H按0.3元购电单价计算,每年可有15万元的收益。

(3)无功补偿设备本身的经济效益分析:

安装无功补偿设备后,设备本身损耗的电量可按下式计算:

A=QC?TGφ

(5)式中QC--投运电容器容量,KVAR

TGφ--电容器介质损失角的正切值

T--电容器投运时间

经计算,无功补偿设备年消耗电量为16万KW?H,每年有5万元的负收益。

通过以上分析表明,无功补偿总投资约为100万元,设备投运后每年可有6 0万元的收益,两年即可收回全部投资。

高压无功补偿方案

一:前言

采选厂原先主变为14000KVA和4000KVA各一台分段对全厂进行供电,按照约1/4的补偿原则设计电容器补偿,分别安装了3000KVAR和1200KVAR的电容器各一套.但随着矿山资源接替工程和新老系统的统一供配电,原有变压器不能满足全部负荷的需要,重新增加了一台16000KVA变压器代替4000KVA变压器供电,且供电负荷进行了重新分配,导致现在有的电容器不能满足当前供电负荷的需要.原先电容器安装使用在2003年,至今连续使用已有5年.且在使用的过程中出现过很多问题,已有大部分电容器已经损坏.故现在需要对其另行设计来满足其变更实际负荷分配的应用.

二:无功补偿的必要性

电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理.

用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率。如果电网中的无功功率供不应求,用电设备就没有足够的无功功率来建立正常的电磁场,那么,这些用点设备就不能维持在额定情况下工作,用电设备的端电压就要下降,从而影响用电设备的正常运行。

无功功率对供、用电产生一定的不良影响,主要表现在:

1. 降低发电机有功功率的输出。

2. 降低输、变压设备的供电能力。

3. 造成线路电压损失增大和电能损耗的增加。

4. 造成底功率因数运行和电压下降,使电气设备容量得不到充分发挥。

从发电机和高压电线供给的无功功率,远远满足不了负荷的需要,所以在电网中要设置一些无功补偿装置来补充无功功率,以保证用户对无功功率的需要,这样用电设备才能在额定电压下工作。

三:针对现场分析

表1

月20日共10天当中。

I段平均电流为I=92.34A,平均功率因数为cosΦ=0.788

计算得知:

P=1.732*U*I*cosΦ=1.732*35*92.34*0.788=4412KW

Q=1.732*U*I*sinΦ=1.732*35*92.34*0.616=3448KVAR

若想把功率因数提高到0.95,在有功功率不变的前提下

则视在功率S=P/ cosΦ=4412/0.95=4644KVA

无功功率Q=√S2 - P2 =√46442 - 44122 =1450KVAR

责需要补偿上去的无功功率为3448-1450=1998KVAR

I段现有电容器型号为:BAM6.6/√3-250-1,线路采用三角形接入,共12只容量总为3000KVAR.现在需要补偿1998KVAR,因此选用9只型号为BAM6.6/√3-200-1G(G为高原型)的电容器接入回路,共1800KVAR.

I段平均电流为I=137.34A,平均功率因数为cosΦ=0.826

计算得知:

P=1.732*U*I*cosΦ=1.732*35*137.34*0.826=6877KW

Q=1.732*U*I*sinΦ=1.732*35*137.34*0.566=4712KVAR

若想把功率因数提高到0.95,在有功功率不变的前提下

则视在功率S=P/ cosΦ=6877/0.95=7239KVA

无功功率Q=√S2 - P2 =√72392 - 68772 =2261KVAR

责需要补偿上去的无功功率为4712-2261=2451KVAR

I段现有电容器型号为:BAM6.6/√3-200-1,线路采用三角形接入,共6只容量总为1200KVAR.现在需要补偿2379KVAR,因此选用12只型号为BAM6.6/√3-200-1G(G为高原型)的电容器接入回路,共2400KVAR.

四:电抗器是否兼容

根据采选厂方案现A:将原总容量3000KVAR的补偿柜250KVAR并联电容12台,换为总容量为2400KVAR的补偿柜200KVAR并联电容12台,电抗器不换的情况下能否用?

B: 将原总容量1200KVAR的补偿控制柜200KVAR并联电容6台,换为总容量为1800KVAR的补偿控制柜200KVAR并联电容9台,电抗器不换的情况下能否用?

解答A:原来3000KVAR补偿容量的电抗器为电抗率6%,额定电感值为2.77mH(毫亨),250KVAR电容器电容值为55.4uF,200KVAR电容器电容值为45.2uF

以上参数都根据其现场铭牌得知!

根据公式XL=2πfL

XL------电抗

π- -------3.14

f---------50HZ

L--------电感H亨1H=1000mH毫亨

由以上参数带入公式得知

XL=2*3.14*50*0.00277=0.87

根据公式XC=1/(2πfC)

XC------容抗

π- -------3.14

f---------50HZ

C--------电容值F法1F=1000000uf微法

(而并联电容器的电容值相加)

由以上参数带入公式得知

XC=1/(2*3.14*50*0.0000554*4)=1/0.07

电抗率就是感抗和容抗的百分比值

即K=XL/XL=0.87*0.07=6%

然而当电容器的容量变小后,其电容值也会随之变小如250KVAR变为200KVAR,其电容值由55.4uF变为45.2uF。带入公式可得知

XC=1/(2*3.14*50*0.0000452*4)=1/0.06

即K=XL/XL=0.87*0.06约等于5%

实际值肯定不会像额定值那么准会有点误差,所以如果容量变小的话,其电抗率应该在4.5~5%之间,所以原电抗器也根本起不到滤波效果了,而且还会因为谐振产生发热烧坏的可能。

解答B:其电抗率的算法和A一样就不重复了。

而且B还有一点比较重要,其原电抗器的额定电流为104.97A,原先并联电容器200KVAR额定电流为52.5A,根据并联电抗器电流相加,其电抗器的额定电流能满足电容器的限流作用。即104.97=52.5*2而当总容量由1200KVAR增加到1800KVAR时,其电抗器的额定电流104.97小于52.5*3

按其电抗器可以在1.35倍的额定电流下工作也不能满足其电容器的需求,会发生严重的发热甚至烧坏现象。

经过上述分析,其电容补偿容量不管增大减小,其电抗器都不能很合适的运行。

五:预期效果计算:

I段按补偿1800KVAR,功率因数预计提高为:

cosΦ=P/√P2 – (Q1-QC)2 =4412/√44122 + (3448-1800)2 =0.94

II段按补偿2400KVAR,功率因数预计提高为:

cosΦ=P/√P2 – (Q1-QC)2 =6877/√68772 + (4712-2400)2 =0.95

根据无功补偿经济当量(无功补偿经济当量,就是无功补偿后,当电网输送的无功功率减少1千乏时,使电网有功功率损耗低的千瓦数。)可查知:1000千乏并联电容器装置,在功率因数为0.9时,其无功经济当量为0.062千瓦/千乏

则:I段每小时节电量为1800*0.062=108KWh/小时

每年可节电量为108*8640(365天)=933120KWh

按电费0.53元/KWh计算

每年可节省成本933120*0.53=494553.6元

II段每小时节电量为2400*0.062=148.8KWh/小时

每年可节电量为148.8*8640(365天)=1285632KWh

按电费0.53元/KWh计算

每年可节省成本1285632*0.53=681384.96元

I段和II段一年总共可节省成本494553.6+681384.96=117.59万元

所以一次性改造后,从下表投资成本可以看出,预计2个月时间就可以收回投资成本,以后的时间都是在创造效益。

ABB无功补偿解决方案

(四) ABB无功补偿解决方案 ABB无功功率补偿主要元件清单 CLMD-ABB低压电力电容器 1.CLMD低压电容器是ABB比利时公司进口产品,电压范围是从220V到 1000V,频率是50/60HZ,其能够满足系统电压、电流、频率的性能水平要求。 2.干式设计:CLMD使用干式电介质绝缘材料,避免了污染环境和泄漏的危险。 3.CLMD电容器重量非常轻,便于运输和安装。 4.极低损耗:CLMD介质损耗少于每千乏0.2瓦,总损耗包括放电电阻在内, 少于每千乏0.5瓦。 5.安全性:CLMD电容器备有放电电阻器,每个电容芯都有热均衡器以提供有 效的热耗散。 6.CLMD寿命长,具有自我恢复功能。当如果电介质的绝缘材料出现故障,临 近的金属电极会及时气化,把故障隔离,使电容器正常运行。 7.CLMD电容芯内部有独特的隔离器,能够在每个元件在寿命结束时有选择性 的把电容器从电路中隔离开来。

8.CLMD具有防火性能,所有电容芯元件有蛭石环绕。蛭石是一种无机,惰性, 防火及无毒性的粒状材料,能够吸收箱体内产生的能量,熄灭任何火焰。9.CLMD电容器的引线端子采用坚固的材料,避免了安装时发生损坏,减少了 维修量。 10.CLMD电容器符合国际电工委员会IEC31-1、IEC31-2的要求。 RVC-ABB功率因数控制器 1.ABB公司的RVC功率因数控制器是ABB比利时公司进口产品,其能够满足 系统电压、电流和频率的性能水平要求。 2.ABB公司的RVC功率因数控制器运行方式灵活,有自动运行模式,手动运 行模式,自动设定模式,手动设定模式四种,方便用户使用。 3.RVC调试功能强大,能够设定目标功率因数,控制器灵敏度C/K,相移,切 换延时,输出,电容器切换顺序,而且具有很好的自动初始化功能。 4.RVC采用液晶显示,液晶显示屏对比度用温度自动补偿,用户界面友好,方 便用户手动操作,能够显示功率因素,报警信号,超温信号,电容器需进行切换的指示信号。 5.具有各种报警功能:所有输出回路均被接通后,如果6分钟内功率因素不能 达到目标值则报警,内部温度上升到85摄氏度报警,电源掉电报警并随即切断所有电容器。 6.最大环境温度额定值为70摄氏度,对谐波不敏感。 RVC部分参数

无功补偿容量计算

无功补偿容量计算 Prepared on 22 November 2020

一、无功补偿装置介绍 现在市场上的无功补偿装置主要分为固定电容器组、分组投切电容器组、有载调压式电容器组、SVC和SVG。下面介绍下各种补偿装置的特点。 1)固定电容器组。其特点是价格便宜,运行方式简单,投切间隔时间长。但它对于补偿变化的无功功率效果不好,因为它只能选择全部无功补偿投入或全部无功补偿切出,从而可能造成从补偿不足直接补偿到过补偿,且投切间隔时间长无法满足对电压稳定的要求。而由于光照强度是不停变化的,利用光伏发电的光伏场发出的电能也跟着光伏能力的变化而不断变化,因此固定电容器组不适应光伏场的要求,不建议光伏项目中的无功补偿选用固定电容器组。 2)分组投切电容器组。分组投切电容器组和固定电容器组的区别主要是将电容器组分为几组,在需要时逐组投入或切出电容器。但它仍然存在投切间隔时间长的问题,且分的组数较少,一般为2~3组(分的组数多了,投资和占地太大),仍有过补偿的可能。因此分组投切电容器组适用于电力系统较坚强、对相应速度要求较低的场所。 3)有载调压式电容器组。有载调压式电容器组和固定电容器组的区别主要是在电容器组前加上了一台有载调压主变。根据公式Q=2πfCU2可知,电容器组产生的无功功率和端电压的平方成正比,故调节电容器组端电压可以调节电容器组产生的无功功率。有载调压式电容器组的投切间隔时间大大缩短,由原来的几分钟缩短为几秒钟。且有载调压主变档位较多,一般为8~10档,每档的补偿无功功率不大,过补偿的可能性较小。因此分组投切电容器组适用于电力系统对光伏场要求一般的场所。

浅谈电动机无功功率就地补偿

浅谈电动机无功功率就地补偿论文导读:现代工矿企业中,三相异步电动机是最常用的电气设备之一,在企业的生产设备中占有相当大的比例。由于它们都是电感性负荷,所以在企业内部的生产运行中,功率因数一般都比较低,需要从电源中吸收大量的无功功率,才能正常工作,给企业造成较大的电压损失和电能损耗。4.4应避免电容器和电动机产生自激电压。关键词:电动机,电容器,就地无功补偿,无功功率 0.概述 现代工矿企业中,三相异步电动机是最常用的电气设备之一,在企业的生产设备中占有相当大的比例。由于它们都是电感性负荷,所以在企业内部的生产运行中,功率因数一般都比较低,需要从电源中吸收大量的无功功率,才能正常工作,给企业造成较大的电压损失和电能损耗。无功补偿是指采用另加无功补偿装置的办法,让无功负荷与无功补偿装置之间进行无功功率交换,以提高系统的功率因数,降低能耗,从而大大减少供电线路,改善电网电压质量。 许多企业一般都是在企业内部配电室里低压母线上集中安装一些电容器柜,对变配电系统的无功功率进行补偿,这对于提高企业内部的供电能力,节约变配电损耗都有积极作用。可是,由于企业内部的电动机大都通过低压导线连接,分散在各个生产车间,形成企业内部的输配电网络,由此,大量的无功电流仍然在企业内部的输配电线路中流动,这些无功电流在企业内部所造成的损耗,依然不能解决。 电动机无功功率就地补偿,就是把电动机所需要的无功电流局限在电

动机设备的最终端,实现无功功率就地平衡,使得整个变配电网络的功率因数都比较高,有效地减少输配电线路的无功损耗。 1.三相异步电动机运行功率因数及损耗 三相异步电动机运行时,所消耗的功率包括有功功率和无功功率两个分量。有功功率是用于电动机产生机械转矩并且驱动负载所需的功率,它的电流随负载的增加而增加,而无功功率,则是用于电动机内部的电场与磁场随着电源频率的反复变化,在负载与电源之间不断地进行能量交换时所消耗的功率。无功电流在负载变化的情况下,其变化很微小,在相位上,电流的变化总是滞后于电压90°,所以是纯电感性质的。在实际运行中,电源供给电动机的总电流是有功电流和无功电流的矢量和,当电动机处于满负荷运行时,有功电流大于无功电流,总电流的功率因数较高,而当负载下降时,有功电流减小,无功电流基本不变,所以功率因数降低。 可以这样认为:当电动机的输出功率一定时,功率因数越低,就意味着其所需的无功功率越大,因而造成的损耗也较大。实践证明,无功功率所产生的电能损耗,主要是发生在输配电线路上的,对于那些距离电源较远,线路电阻比较大,电动机运行功率因数低的终端设备,所造成的无功损耗就更加突出了。 2.无功功率就地补偿原理及电容量的选择 2.1因为在电容负载中产生的超前无功电流与在电感负载中产生的滞后无功电流能够相互补偿,所以在电动机电源终端并联一个适当容量的电容器,就可以使电动机所需的无功电流大部分由并联的电容器供

6、电能质量-无功补偿解决方案

电能质量-无功补偿解决方案 1.方案背景 电力系统中阻感负荷的存在,如变压器、异步电动机,都会消耗大量的无功功率,而大量的冲击性无功负载还会导致电压发生快速波动。电力电子变流设备,特别是各种相控整流装置的普及及应用,同样会消耗大量的无功功率。由此引发了电能质量恶化、网损增加、三相不平衡、输变电设备有效利用率降低等各种问题。系统中整流器、变流器等非线性负荷的应用,会产生大量的谐波电流注入电网,造成电网电压畸变,谐波不仅使电力电子设备和线路产生涡流损耗,导致线损增加,甚至还会引发系统谐振,从而产生谐波过电压,造成设备损坏。大量的谐波还可能影响继电保护和自动控制系统的可靠性,令正常的生产活动无法进行。 图1系统示意图 2.应用场景 2.1.场景1:风电场并网 随着风力发电技术的发展,风力发电装机容量在电网中所占的比例越来越高,风力发电的随机性会影响电力系统的有功无功,从而引起电压的波动。此外,电力系统的低电压故障又会影响到风电场的并网。

图2应用场景1-风电场并网 2.2.场景2:冶金 电弧炉是冲击性非线性负荷,工作时产生大量的谐波和负序电流,使得电网电压发生较大的波动和闪变,功率因数极低。 图3应用场景2-冶金 3.方案实现 3.1.概述 PRS-7586系列动态无功补偿装置(SVG)可直接接入35kV电压等级及以下电力系统,为电网或用电系统快速提供动态无功补偿,可有效提高系统电压暂态稳定性、抑制母线电压闪变、补偿不平衡负荷、滤除系统谐波及提高功率因数。

图4方案实现原理图示3.2.设计原则 表1系统主要设计原则

3.3.装置列表 表2装置列表 4. 1)模块化的电路结构 a)SVG的核心是基于IGBT器件的(链式)逆变器,链式逆变器每相由多个功率模块输出串联而成,功率模块采用N+1或N+2冗余运行结构; b)模块控制采用大规模FPGA芯片载波移相多电平空间矢量PWM控制策略,电路简单,抗干扰能力强,可靠性高; c)采用自励起动技术,使得装置投入时冲击电流小; d)模块面板共四个电气端子,2个光纤端子,接线简单,还设有若干状态及故障指示灯,方便维护及检修。 2)控制 a)采用基于DSP及多FPGA的全数字化控制平台,具有集成度高,可靠性高的优点; b)现场可设定控制方式:系统补偿、负荷补偿,同时可设定谐波补偿次数; c)采用瞬时无功电流控制策略,可在系统短路故障时,快速连续的发出无功,为系统提供充足的无功支撑; d)采用进口PLC实现多组固定电容器的综合投切控制; e)控制器采用全封闭防尘设计,无需冷却风扇,大大提高可靠性。

无功补偿常用计算方法

按照不同的补偿对象,无功补偿容量有不同的计算方法。 (1)按照功率因数的提高计算 对需要补偿的负载,补偿前后的电压、负载从电网取用的电流矢量关系图如图3.7所示: I 2r I 1 补偿前功率因数1cos ?,补偿后功率因数2cos ?,补偿前后的平均有功功率为 P ,则需要补偿的无功功率容量 )t a n (t a n 21? ?-=P Q 补偿 (3.1) 由于负载功率因数的增加,会使电网给负载供电的线路上的损耗下降, 线损的下降率 %100)cos (3)cos (3)cos ( 3%21 122 2211?-= ?R I R I R I P a a a ???线损 %100)c o s c o s (1221??? ? ???-=?? (3.2) 式中R 为负载侧等值系统阻抗的电阻值。 (2)按母线运行电压的提高计算 ①高压侧无功补偿 无功补偿装置直接在高压侧母线补偿,系统等值示意图如图3.8所示: 图3.7 电流矢量图

P+jQ 补偿 图中, S U、U分别是系统电压和负载侧电压;jX R+是系统等值阻抗(不 含主变压器高低压绕组阻抗);jQ P+是负载功率, 补偿 jQ是高压侧无功补偿容 量; 1 U、 2 U分别是补偿装置投入前后的母线电压。 无功补偿装置投入前后,系统电压、母线电压的量值存在如下关系: 无功补偿装置投入前 1 1U QX PR U U S + + ≈ 无功补偿装置投入后 2 2 ) ( U X Q Q PR U U S 补偿 - + + ≈ 所以 2 1 2U X Q U U补偿 ≈ -(3.3) 所以母线高压侧无功补偿容量 ) ( 1 2 2U U X U Q- = 补偿 (3.4) ②主变压器低压侧无功补偿 无功补偿装置在主变压器的低压侧进行无功补偿,系统等值示意图如图3.9所示: P+jQ 补偿 图3.8 系统等值示意图

电气设备无功补偿装置的选用和无功补偿装置容量的确定

电气设备无功补偿装置的选用 无功补偿应本着全面规划,合理布局,分级补偿,就地平衡的原则确定最优的补偿容量和分布方式,具体内容如下: (1)总体的无功平衡与局部的无功平衡相结合。既要满足供电网的总无功需求,又要满足分线、分站的变电站及各用户无功平衡。 (2)集中补偿与分散补偿相结合。以分散补偿为主,这就要求在负荷集中的点进行补偿,既要在变电站进行大容量集中补偿,又要在配电线路、配电变压器和用电设备处进行分散补偿,使无功就地平衡,减少变压器和线路的损耗。 (3)高压补偿与低压补偿相结合。以低压补偿为主,电气设备高压无功补偿装置应装设在变压器的主要负荷侧,当不具备条件时,可装设在变压器的第三绕组侧,高压侧无负荷时,不得在高压侧装设补偿装置。 (4)降损与调压相结合。以降损为主,兼顾调压。这是针对供电半径较长,分支较多,负荷比较分散,自然功率因数低的线路。这种线路负荷率低,线路的供电变压器多工作在空载或轻载的工况下,线路损失大,若对此线路进行补偿,可明显提高线路的供电能力。 电气设备无功补偿装置容量的确定 2.1低压集中补偿 配电网的无功补偿以配电变压器低压的集中补偿为主,以高压补偿为辅,电气设备配电变压器无功补偿装置的容量如果无法了解负荷的工作情况及系统参数,可按变压器最大负荷率为75%,负荷功率

因数为0.70考虑,补偿到变压器最大负荷时其高压侧的功率因数不低于0.95,或按变压器容量的20%~40%进行配置。 用户对功率因数有特殊要求时,可选择合适的补偿容量使功率因数达到用户的要求值。 2.2电动机定补 按照电动机的空载电流确定电动机的定补容量,电气设备电动机的空载电流约占额定电流的25%~40%。为了防止电机退出运行时产生自激过电压,电动机的补偿容量一般不应大于电动机的空载无功,通常取QC=(0.95~0.98)UeI0 对于排灌电动机等所带机械负荷轴惯性较大的电机,补偿容量可适当加大,大于电机空载无功负荷,但要小于额定无功负荷。对于排灌用普通电机,可按下式确定补偿容量:QC=(0.5~0.6)Pe(kvar) 2.3随器补偿 电气设备变压器在轻载及空载时的无功负荷主要是变压器的空载励磁无功。 Q0=I0%Se×10-2(kvar) 随器补偿只能补偿配变的空载无功Q0。如果在补偿容量大于变压器的空载无功时,则在配变接近空载时会造成过补偿,易产生铁磁谐振。因此推荐选用的补偿容量为QC=(0.95~0.98)Q0

浅谈10KV线路的无功补偿

浅谈10KV线路的无功补偿 电力网在运行时,电源供给的无功功率是电能转换为其他形式能的前提,它为电能的输送、转换创造了条件,没有它,变压器就不能变压与输送电能,没有它,电动机的旋转磁场就建立不起来,电动机就无法转动,但是,长距离输送无功电力,又会造成有功功率的损耗和电压质量的降低,这不仅影响电力网的安全经济运行,而且也影响产品的质量。因此,如何减少无功电力的长距离输送,已成为电力行业一个关键性的问题。 无功补偿的原则之一:集中补偿与分散补偿相结合,以分散补偿为主。这就要求在负荷集中的地方进行补偿,既要在变电站进行大容量集中补偿,又要在配电线路、配电变压器和用电设备处进行分散补偿,目的是做到无功就地平衡,减少其长距离输送。由于用户端随机、随器、随荷补偿的不完全或未进行补偿,线路上仍有大量的无功负荷在传输。采用在10千伏线路上并联高压电容器实现就近补偿,以降低线路传输电流,降低线路损耗,这就是线路无功补偿。 1.线路补偿容量的确定 线路补偿电容器装置一般安装在室外电线杆上,没有自动投切装置,所以只能进行固定补偿。为此选定的电容器容量必须为线路流动的最小无功负荷,否则会发生无功倒送。所以要进行线路无功补偿就必须实测低谷时期无功负荷,然后确定无功补偿容量。 2. 线路电容器安装地点及补偿容量 2.1无功负荷沿线路均匀分布 根据理论计算,从降低线损的角度看,以下补偿容量和安装位置为最佳值: 2.1.1只安装一组电容器 Q为该线最小负荷时无功功率值,L为线路总长度。 C0=1/3Q 由变电所实施无功补偿。 C1=2/3Q

2.1.2安装两组电容器 C0=1/5Q 由变电所实施无功补偿。C1=C2=2/5Q 2.1.3安装三组电容器

配电变压器低压侧无功补偿容量选择

配电变压器低压侧无功补偿容量选择 为了提高功率因数,减少电能损耗,增强供电能力,在农网改造中,应对100kVA及以上配电变压器在低压侧安装 容量为配变额定容量8%左右的补偿电容器进行无功补偿。但许多人认为按配电变压器容量的8%配置补偿容量太 小,不足以补偿低压侧所有的无功负荷,配变高压侧功率因数提高不大。其实,这是一种误解,因为配变低压侧无 功补偿,作用仅限于减少变压器本身及以上配电网的功率损耗,凡是向负荷输送的无功功率,由于仍然要经过低压 线路的电阻和电抗,配电线路上产生的功率损耗并未减少。所以,配变低压侧无功补偿容量选择过大是无益的。而 只有采取配变低压侧补偿和用户端就地补偿相结合的补偿方式才可以在提高功率因数的同时,减少低压线路损耗, 取得最佳的经济效益。 配变低压侧补偿容量过大不但不经济,而且在变压器空载运行时,或者负荷较轻时,还会造成过补偿,使功率 因数角超前、无功功率向电力系统倒送和电源电压升高。 功率因数角超前的坏处是: (1)电容器与电源仍有无功功率交换,同样减少电源的有功出力。 (2)网络因传输容性无功功率,仍会造成有功损耗。 (3)白白耗费了电容器的设备投资。 另外,如补偿电容过大,当电源缺相时有可能发生铁磁谐振过电压,烧毁电容器和变压器。 所以,配变低压侧补偿容量过大不但不经济,而且还会影响设备的安全运行。 根据以上分析,配变低压侧集中无功补偿根据功率因数的需求选择不科学,补偿容量不应过大。为了防止发生 过补偿现象,配变低压侧无功补偿原则为:其补偿容量不应超过配变的无功功率。 变压器总的无功功率:Qb=Qb0+QbH·(S/Se)2 Qb=[I0%/100+Ud%/100·(S/Se)2]·Se(1) 式中Qb0-变压器空载无功功率,kvar QbH-变压器满载无功功率,kvar I0%-变压器空载电流百分数

无功补偿容量配置方法

1无功补偿作用: 提高变压器利用率,降低损耗、提高功率因数,避免罚款争取奖励。2型号示意 设计时:估算根据变压器容量估算补偿容量:变压器30%左右;计算负载有功功率,估算补偿前功率因数,确定补偿后达到的功率因数,根据无功补偿系数表查询数据,计算出所需补偿(比较准确)。 改造时:断掉现有补偿,记录、监测:有功功率、功率因数(补偿前),取得数据后,确定补偿后功率因数,查询无功补偿系数表,计算达到补偿后功率因数需要的补偿容量。 以上的到的补偿容量均为计算容量,即所需补偿的实际输出容量,而实际电容器输出容量和额定容量不是一致的。额定容量即安装电容器在电容器标注的额定电压下的容量,如450V电容器额定容量30kVar,指电容器在450V下输出30kVar,而实际在400V系统下,此电容器输出容量为30*(400*400/450*450)=23.7,如果实际电容端电压只有380V,输出只有21kVar。 (公式: Qc=2×π×f×C×U×U;当电源频率f=50HZ、π=3.14时,则简化为: Qc=0.314×C×U×U (Qc=千乏,C=μF))

带电抗时考虑电抗影响,实际输出容量(Qc)与安装容量(Qe),计算系数为,带7%电抗(额定电压480V)时,Qc=0.746Qe,带14%电抗(额定电压525V)时,Qc=0.675Qe,为确保容量配置足够,根据此公式计算所需安装电容补偿容量Qe。 附-无功补偿容量补偿表

根据上述计算容量,计算容量为补偿所需输出容量,根据输出容量计算出安装容量,为最后所需配置的补偿容量。一般配置补偿容量要求加一定裕量,1.2倍左右配置最佳。

浅谈无功补偿原理及无功补偿率

浅谈无功补偿原理及无功补偿率 无功补偿原理 电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率。在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,因此可以降低线路和变压器因输送无功功率造成的电能损耗,这就是无功补偿。 简介编辑 无功补偿原理 当电网电压的波形为正弦波,且电压与电流同相位时,电阻性电气设备如白炽灯、电热器等从电网上获得的功率P等于电压U和电流I的乘积,即:P=U×I。 电感性电气设备如电动机和变压器等由于在运行时需要建立磁场,此时所消耗的能量不能转化为有功功率,故被称为无功功率Q。此时电流滞后电压一个角度φ。在选择变配电设备时所根据的是视在功率S,即有功功率和无功功率的矢量和:  无功功率为: 有功功率与视在功率的比值为功率因数: cosf=P/S 无功功率的传输加重了电网负荷,使电网损耗增加,系统电压下降。故需对其进行就近和就地补偿。并联电容器可补偿或平衡电气设备的感性无功功率。当容性无功功率QC等于感性无功功率QL时,电网只传输有功功率P。根据国家有关规定,高压用户的功率因数应达到0.9以上,低压用户的功率因数应达到0.85以上。 如果选择电容器功率为Qc,则功率因数为: cosφ= P/ (P2 + (QL-Qc)2)1/2 在实际工程中首先应根据负荷情况和供电部门的要求确定补偿后所需达到的功率因数值,然后再计算电容器的安装容量: Qc = P(tanf1 - tanf2)=P〔(1/cos2f1-1)1/2-(1/cos2f2-1)1/2〕 式中:

无功补偿方案.讲解学习

济宁聚能光伏石墨材料有限公司35kV动态无功补偿装置(MCR+FC) 技 术 标 书

武汉国瑞电力设备有限公司 二○一二年九月 动态无功补偿装置设备技术规范书 1 设备总机要求 ◆本设备技术协议书适用于济宁聚能光伏石墨材料有限公司35kV动态无 功补偿装置,它提出了该设备的功能设计、结构、性能、安装和试验等方面的技术要求。 ◆本设备技术协议书提出的是最低限度的技术要求,并未对一切技术细节 作出规定,也未充分引述有关标准和规范的条文,供方应提供符合工业标准和本规范书的优质产品。 ◆本设备技术协议书所使用的标准如遇与供方所执行的标准不一致时,按 较高标准执行。 ◆本设备技术协议书经供、需双方确认后作为订货合同的技术附件,与合 同正文具有同等的法律效力。 ◆本设备技术协议书未尽事宜,由供、需双方协商确定。 2 应用技术条件及技术指标 2.1标准和规范 应遵循的主要现行标准,但不仅限于下列标准的要求,所有设备都符合相应的标准、规范或法规的最新版本或其修正本的要求,除非另有特别外,合同期内有效的任何修正和补充都应包括在内。 DL/T672-1999《变电所电压无功调节控制装置订货技术条件》

DL/T597-1996 《低压无功补偿控制器订货技术条件》 GB11920-89 《电站电气部分集中控制装置通用技术条件》 GB 1207-1997《电压互感器》 SD 325-89《电力系统电压和无功电力技术导则》 SD205-1987 《高压并联电容器技术条件》。 DL442-91 《高压并联电容器单台保护用熔断器订货技术条件》。GB50227-95 《高压并联电容器装置设计规范》。 GB311.2~311.6-83 《高电压试验技术》。 GB11 024 《高电压并联电容器耐久性试验》。 GB11025 《并联电容器用内部熔丝和内部过压力隔离器》。 ZBK48003《并联电容器电气试验规范》。 GB50227《并联电容器装置设计规范》 GB3983.2-89《高电压并联电容器》 JB7111-97《高压并联电容器装置》 DL/T604-1996《高压并联电容器装置定货技术条件》 GB3983.2《高压并联电容器》 GB5316《串联电抗器》 GB1985-89《交流高压隔离开关和接地开关》 JB 5346-1998《串联电抗器》 DL/T 462-1992《高压并联电容器用串联电抗器订货技术条件》DL/T653-1998《高压并联电容器用放电线圈订货技术条件》 JB/T 3840-1985《并联电容器单台保护用高压熔断器》 DL/T620 《交流电气装置的过电压保护和绝缘配合》 GB/T 11032-2000《交流无间隙金属氧化物避雷器》 GB/T 11024.1-2001《放电器》 GB2900 《电工名词术语》

无功补偿和变压器的容量选择

无功补偿和变压器的容量选择 摘要合理的无功就地补偿和选择变压器容量可以降低损耗,提高系统运行的经济性,是电力需求侧管理的重要内容。本文将二者有效结合,推导了最经济运行的公式,通过简单迭代来确定无功就地补偿容量和变压器容量的选择。算例证明了其效果。 关键词无功补偿变压器容量最佳负载率无功补偿和变压器的容量选择 Planning of Reactive Compensation and Transformer Capacity Abstract: Rational planning of local reactive compensation and transformer capacity is very important for demand side management to reduce power losses and improve the economical power system operation. The best economical formulas are deduced through connection of the both. The capacity determination of local reactive compensation and the rational transformer capacity can be got through simple iteration. Examples are presented to show the effectiveness. Keywords: reactive compensation transformer capacity optimal load coefficient 1 前言 电力市场的开放使电力需求侧管理越来越受到关注。电力需求侧管理指的是电力公司采取有效的激励和诱导措施以及适宜的运作方式,与用户共同协力提高终端用电效率,改变用电方式,为减少电量消耗和电力需求所进行的管理活动。其主要目标是节约电力,减少装机,提高环境质量;节约电量、减少消耗,提高电力公司的经济效益和市场竞争力。鼓励用户进行无功补偿和合理选择变压器的容量是需求侧管理的重要内容。大用户的无功补偿可有效的降低有功网损同时也可降低对变压器的容量要求:合理选择变压器容量可提高用电效率。本文对用户侧变压器最佳容量选择和最佳无功补偿进行了研究。 2 最佳变压器容量的选择 变压器损耗在系统损耗中占有重要一部分,特别是在配电网中,变压器损耗约占整个线损的50%以上,如何降低变压器损耗是电力公司必须面临的问题,也

电动机无功补偿容量的选择及注意事项

电动机无功补偿容量的选择及注意事项 浙江省宁海县供电局高补林 采用低压静电电容器,在对感应电动机进行无功补偿时.准确、合理地选择补偿容量,可以最大限度地减少系统中流过的无功功率,降低电能的损耗,提高电压质量。目前,我们对城关公用低压线路上的感应电动机,普遍推行无功就地补偿,以减少公用线路日益上升的线损,我局已作为技改措施计划落实。 1 容量选择 1.l 单台三相电动机补偿容量,应把电动机空载时的功率因数补偿至1为原则、若以满载时耗用的无功功率作为补偿依据,空载时必为过补偿。因此,补偿容量按下式计算: (1) 式中U——电动机的额定电压kV I0——电动机的空载电流 A Q——无功补偿容量kvar 1.2 补偿容量的校正。当电网的实际运行电压低于电容器的额定电压,则电容器输出容量达不到额定值,应按下式进行校正。校正后为实际应补偿的容量: Q′=K2Q (2) 式中U eB——电容器的额定电压 U L——电网的代表日均方根电压值 1.3 对电动机组的补偿,应根据其行业的特点,确定需要系数及同期率,然后由(1)、(2)式求得补偿容量。 2 运行时注意事项 2.l 正常巡视电容器的运行情况,如发现有外壳鼓涨、漏油、绝缘放电及温升过高等情况.应及时处理,以防止事故扩大。

2.2在实际运行中,尤其是用电低谷,网络的电压将大大上升,当电网电压超过电容的额定电压的10%时,或电容器电流超过额定电流的1.3倍时,电容器应退出运行。 2.3补偿电容器一定要装设放电装置,放电装置按附图接线,运行时,K1闭合。放电时,K2闭合。放电回路不得装设熔丝。 2.4 低压电容器的保护可采用刀闸开关与低压熔断器或空气开关相配合的办法。 10KV线路变压器及电动机无功补偿 1.怎样进行无功补偿 应采取就地平衡的原则,使电网任一时刻无功总出力(含无功补偿)与无功总负荷(含无功总损耗)保持平衡。某供电局已实现了变电所的集中补偿,本文不再涉及,仅就10KV线路,配变与电动机的补偿加以讨论。 (1)10KV配电线路的无功补偿: 某供电局在每条10KV配电线路上安装1~2处高压无功自动补偿装置,补偿容量按线路配变总容量的10%掌握。某供电局公用配变容量为40500KVA,需补偿无功容量约为4000KVAR,约需资金55万元。经计算,安装一处时,宜将无功自动补偿装置安装在距线路首端的2/3线路长度处。安装两处时,第一处安装在距线路首端的2/5线路长度处,另一处安装在距线路首端的4/5线路长度处,各处容量为线路总补偿容量的一半。具体安装时,还应考虑便于操作、维护和检修工作等。 (2)配电变压器的无功补偿:

浅谈无功补偿技术在电气自动化中的应用

浅谈无功补偿技术在电气自动化中的应用 随着第三次科技革命渐趋尾声,改革开放的不断推进与社会主义市场经济高速发展,与人们的生产生活有着十分紧密的联系电气自动化技术发展非常迅速,技术规模也逐渐走向了成熟。小到一个电灯、电视的开关,大到宇宙飞船的实验、高速铁路的输配电网络,都与之衔接紧密。在电气自动化系统之中,无功补偿技术是不可或缺的重要部分,是确保电力系统得以安全稳定生产的新型技术。文章针对上述现象,对无功补偿技术在应用现状与应用意义等方面做了简略的阐述,希望对相关人员有所帮助。 标签:水务行业;无功补偿技术;电气自动化 前言 在现阶段社会发展中,水资源与电力资源是促进经济发展的关键因素。它的发展规模如何,决定着我国经济的发展快慢。而电气自动化在水务行业的发展与应用也日益广泛。我国电网储存量逐渐增多,相对来说对电网无功要求的标准也在逐年上升。然而,在电气自动化之中存在与负荷有关的非线性变化,随之而来的不可控因素会导致电力系统中负序电流与谐波的增加,也就是电力系统增加了输配电方面的损耗,浪费了资源,无功补偿技术就是针对这种情况而出现的。 1 无功补偿技术概述 1.1 无功补偿技术的定义 无功补偿,也可以称之为无功功率补偿。它在电力供电系统之中可以起到提高电网功率因数的效果,降低电力在供电变压器与输送线路方面的损耗。也因此得以提高供电、改善供电环境,最大限度的减少电网的损耗,为人们营造良好的电网环境[1]。 1.2 无功补偿技术的原理 在我国现今使用的国家电网与南方电网中,电网输出功率包含两类:其一是有功功率,它的内在特色为直接消耗电能,首先将电能转化为热能、声能、化学能或机械能,然后再利用这些能做功,有功功率即是针对这部分而言。而另一大类则是文章所研究的无功功率:它的内在特色则是不消耗电能而是将电能转化为另一种形式的能,在电网之中这种能是可以与电能进行周期性的转化。这一部分功率被称作无功功率。 1.3 无功补偿的方式 在与水务行业相关领域的电网中常用的无功补偿方式有以下几种:一类是分组补偿,即是在用户车间配电屏与配电变压器低压侧安装并联补偿电容器。另一

电力系统的无功补偿和电压调整的解决方案

电力系统的无功补偿和电压调整的解决方案 1.引言 电力系统中,电能质量是评价电力系统运行性能优劣的重要指标,而电压又是衡量电能质量的一个重要指标,因此,电压的稳定性对电力系统运行性能来说显得尤为重要。电压稳定与否主要取决于系统中无功功率的平衡,如果用电负荷的无功需求波动较大,而电网的无功功率来源及其分布不能及时调控,就会导致线路电压超出允许极限;另外,对于负荷一侧,电力系统多由输配电线、变压器、发电机等构成,其内阻抗主要呈感性,使得负载无功功率的变化对电网电压的稳定性带来极为不利的影响。 无功功率补偿是涉及电力电子技术、电力系统、电气自动化技术、理论电工等领域的重大课题。由于电力电子技术装置的应用日益普及生产、生活各个领域,无功补偿问题引起人们越来越多的关注。据有关科学统计,如果全国都通过优化配置计算来安装无功补偿装置,在总投资不变的条件下,估计每年可以节省电量大约3亿千瓦时。因此,电力系统的无功补偿和电压调整是保证电网安全、优质、经济运行的重要措施。目前,由于电力电子技术的飞速进步,无功功率补偿方面也取得了突破性的进展。 2.连续无功补偿装置发展历史、现状和发展前景 工程上应用的无功补偿器主要包括旋转无功补偿器和静止无功补偿

器,其具体分类见图1。 电力系统的无功补偿和电压调整的解决方案 2.1 连续无功补偿装置的发展历史 旋转无功补偿器以同步调相机为代表,同步调相机实际上就是在过励或欠励状态下运行的同步电机,它既能发出容性无功,也能发出感性无功,因而同步调相机能对变化的无功功率进行动态补偿。由于其存在诸多缺点(见表1),70年代以来逐渐被静止无功补偿器取代。 静止无功补偿技术经历了图1所示的3代发展: 第Ⅰ代属于慢速无功补偿装置,在电力系统中应用较早,目前也仍在应用; 第Ⅱ代属无源、快速动态无功补偿装置,出现于 20 世纪 70 年代,国外应用普遍,我国目前有一定应用,主要用于配电系统中,输电网中应用很少,SVC 可以看成是电纳值能调节的无功元件,它依靠电力电子器件开关来实现无功调节。 SVC 作为系统补偿时可以连续调节并与系统进行无功功率交换;

无功补偿柜电容器的容量换算问题

在无功补偿领域,我们经常会问的一句话是:电容器容量是多少? 这里的“容量”又指电容器的额定容量,其实是指电容器的功率,单位用kvar(千乏)来表示。 专业知识普及 从下面这个公式可以看出电容器的功率与电压的关系: Q=2πfCU2 Q表示电容器的功率,单位var f表示系统频率,50Hz/60Hz C为电容器容量,单位uF(微法) U表示系统电压,单位kV(千伏) 由上面表达式可以看出,电容器的功率与施加到电容器两端 的电压平方成正比。 每一只电容器都有一个参数叫做额定电压,对应额定电压则有一个额定功率。 例如:选择电压为450V,额定功率为30kvar的电容器。 问1:当额定电压为450V,额定功率为30kvar的电容器,用在400V 系统中,其输出功率为多少呢? 这就是我们经常碰到的问题,电容器的额定电压都是高于系统的额定电压的。

通过上面的公式,我们可以很快算出来: Q400=Q450×(4002/4502) =30×(4002/4502) ≈23.7 kvar 问2:为什么要选择额定电压高于系统电压的电容器呢? 电容器经受过电压危害时将快速损坏。为了保障电容器的运行安全,需要选择额定电压大于系统电压的电容器。 到这个阶段我们知道了,如果无功补偿支路设计为纯电容器的话,无功补偿支路的输出功率要根据电容器的额定电压和系统电压进行折算。这也就是我们常说的安装功率(安装容量)和输出功率(输出容量)。 安装功率常指电容器的额定功率; 输出功率常指电容器在系统电压下的实际输出功率。 参照上面举例,我们可以知道:将额定电压为450V,30kvar的电容器应用于400V无功补偿系统,则此系统安装容量为30kvar,其输出容量为23.7kvar。 问3:当电容器串联电抗后,电容器与电抗器组成的补偿支路功率是多少呢?

110KV变电站设计中无功补偿容量计算及选型思路构建

【摘要】由于110kv变电站中巨大部分的负荷都产生于异步电动机,所以异步电动机在运行的时候,需要耗费很多无功功率,根据就地补偿原则分析,必须在变电位置中装置无功功率装置。此种变电设计中一般使用断路的顺利运行。在经济发展的带动下,电力行业得到了快速发展,本文主要对变电站设计中无功补偿容量计算和选型思考的构建进行分析,介绍了在不同情况下无功效补偿容量的方法,并针对性的提出一些无功补偿容量方案,希望可以给变电行业的研究提供参考。 【关键词】变电站无功补偿容量配置方案 1 110kv变电站加装无功补偿装置后的重要性 为了保证电力系统在负荷集中区域电压的稳定,除了让电力系统中无功电源产生的无功功率和无功负荷及无功损耗平衡,还应该备用无功功率电源。无功补偿的合理设置,既可以稳定电网功率因素,减少供电变电和输送线路产生的损耗,还可以稳定电网和电源端使用的电压,对供电质量的提升具有很大作用,同时还减少了施工成本。反之,将会出现供电系统电压不稳定、谐波增大等多种伤害。进行无功补偿装置电网设计的时候,必须按照全面规划、分层分区补偿等原则,合理确定补偿容量和分布配置方式。 2 无功补偿容量的计算和检验 无功补偿装置的种类非常多,根据《电力系统电压和无功电力技术原则》,现阶段,变电站无功补偿装置通常使用并联电容组。下面根据不同要求和作用针对性的提出两种对无功补偿容量计算的方法: 2.1 将110kv母线功率因素作为原则计算补偿容量 根据《国家电网公司电力系统无功补偿配置技术原则》和电网配置中的相关要求发现,110kv变电站使用的无功补偿容量必须按照主变容量的20%左右进行配置,而且将变电器高压部分的因数控制在0.95以上了,低谷负荷功率因数不能高于0.95,系统轻负荷发生时,110kv 以下变电站的电缆线路如果非常复杂,可以切除电容组,切除后依然出现系统侧送无功功率,可以在变电站中、低压母线等位置安装并联电容器。 通常情况下,直接供电的公用变电所,最大容性无功量就是母线负荷所补偿的最大容性无功量和主变压器补偿的最大容性之和,表示方式如下所示: q=q1+q2(q表示变电站安装的最大容性无功量;q1表示负荷需要补偿的最大容性无功量;q2表示主变压器需要补偿的最大容性无功量。负荷需要的最大容性无功量如下式所示:(其中p表示母线最大有功负荷;表示补偿前最大功率因素角;表示补偿后最小功率因素角。 主变压器产生的最大容性无功量如下式所示: 其中ud代表进行补偿的变压器一侧电压百分数值;im表示母线完成装设补偿后,使用变压器得到的一侧最大负电流数值;id代表变压器需要进行补偿时,一侧额定电流数值(a);io表示变压器空载电流百分数值;se表示变压器需要补偿时,额定电量(kva)。 2.2 按照变电器输出的恒定电压对无功补偿容量进行选择 使用110kv的用户都必须使用专用的变电站而且都是两绕变压器,如果负荷电压不能满足要求,就必须进行横调压。无功补偿电容中最小容量按小负荷退出,进行最大负荷选择时,可以根据电压比决定,简而言之,在最小负荷时,将变压器电压比k数值确定出来,然后分别得出高侧分接头电压:其中,表示最小负荷对高压侧母线电压的计算;是最小低压绕组额定电压;表示用户需要的母线电压。根据相关分析得出,分接头电压数值选取与分接头比较类似。k=(1+接头值)×u1n/u2n,其中u1n表示高压接头绕组产生的额定电压。补充容量可以表示为: 其中表示最大负荷算到高压侧低压母线电压;x表示电源侧等值电抗;表示需要最大负

浅析如何利用同步电动机实现无功补偿

浅析如何利用同步电动机实现无功补偿 张慧慧 (广东省水利水电第三工程局有限公司,广东东莞523710) 摘要:功率因数在电力系统中有着举足轻重的作用,功率因数无论过大还是过小,都对电网或电气设备不利,为了使其保持在合理区间,在电气设备运行中,往往会采取一定的技术手段进行人为调节,即通过改变无功,从而改变功率因数,也就是无功补偿。无功补偿技术的发展经历了多个阶段,到目前为止已经形成了多种无功补偿的技术。本文将从同步电动机如何进行无功调节的角度进行简要的分析说明。 关键词:功率因数、无功补偿、励磁、同步电动机。 我们都知道在电气设备运行时,功率因数cosψ不能太低,功率因数太低会造成电能浪费,而功率因数也不能太高,功率因数太高尤其当功率因数接近于1时,此时只剩下有功功率p,即感性无功和容性无功几乎相抵消,那么在电路中极有可能会表现为感性阻抗与容性阻抗发生串联或并联谐振,而这对电气设备运行是极其不利的。根据运行经验,电气设备在功率因数取0.9~0.95之间运行最佳。所以当功率因数太低或太高时,我们都需要对进行无功补偿,以保证功率因数在合理区间内。所以无功补偿在电力系统中有着不可忽缺的作用,选择合理的无功补偿方式,不仅可以减少经济投入和电能浪费,还可以提高电能质量,否则就会产生谐波、电压波动等诸多不利因素。无功补偿发展至今,已经形成了多种补偿技术,目前所用到的无功补偿装置主要有电容补偿(较为常用)、同步调相机补偿、静止无功补偿SVC、静止同步补偿SVG等。在上述几种补偿技术中,同步调相机补偿技术本质上就是励磁可调但空载运行的同步电动机,即在其转轴上不带机械负载,而通过调节励磁电流大小改变其发出无功的大小及性质,从而达到无功补偿的效果。同步调相机不进行机械能和电能的转换,只是补偿电力系统所需的无功功率,从而改善功率因数。既然同步调相机无功补偿本质上就是通过改变空载运行的同步电动机所发出的无功功率的大小和性质进行无功补偿,那么当励磁可调的同步电动机带负载后还能不能在保持其有功不变的情况下进行无功调节,下面我们就进行简要的分析: 同步电机由隐极机和凸极机,而隐极机仅为凸极机的特例,为了简便期间,下述分析均以隐极机为例。由等效电路图可得同步电动机电压平衡方程式:

无功补偿怎么计算

没目标数值怎么计算? 若以有功负载1KW,功率因数从0.7提高到0.95时,无功补偿电容量: 功率因数从0.7提高到0.95时: 总功率为1KW,视在功率: S=P/cosφ=1/0.7≈1.4(KVA) cosφ1=0.7 sinφ1=0.71(查函数表得) cosφ2=0.95 sinφ2=0.32(查函数表得) tanφ=0.35(查函数表得) Qc=S(sinφ1-cosφ1×tanφ)=1.4×(0.71-0.7×0.35)≈0.65(千乏) 电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理. 计算示例 例如:某配电的一台1000KVA/400V的变压器,当前变压器满负荷运行时的功率因数cosφ =0.75, 现在需要安装动补装置,要求将功率因数提高到0.95,那么补偿装置的容量值多大?在负荷不变的前提下安装动补装置后的增容量为多少?若电网传输及负载压降按5%计算,其每小时的节电量为多少? 补偿前补偿装置容量= [sin〔1/cos0.75〕-sin〔1/cos0.95〕]×1000=350〔KVAR〕安装动补装置前的视在电流= 1000/〔0.4×√3〕=1443〔A〕 安装动补装置前的有功电流= 1443×0.75=1082〔A〕 安装动补装置后视在电流降低=1443-1082/0.92=304 〔A〕 安装动补装置后的增容量= 304×√3×0.4=211〔KVA〕 增容比= 211/1000×100%=21% 每小时的节电量〔304 ×400 ×5% ×√3 ×1 〕 /1000=11 (度) 每小时的节电量(度)

相关文档
最新文档