专题60 圆系方程及其应用(原卷版)

专题60  圆系方程及其应用(原卷版)
专题60  圆系方程及其应用(原卷版)

专题60 圆系方程

的所有圆都与已知的圆1C 及圆2C 在点A 处内切或外切.

注意:

(1)此圆系不含圆222222:+0C x y D x E y F +++=;

(2)为了避免利用上述圆系方程时讨论圆2C ,可等价转化为过圆1C 和两圆公共弦所在直线交点的圆系方

程:22111121212[()()()]0x y D x E y F D D x E E y F F λ+++++-+-+-=

(3)特别地,当1λ=-时,上述方程()121212()()()0*D D x E E y F F -+-+-=称为根轴方程.

根轴的特点:位于已知两圆外的根轴上的任意一点向圆系的所有圆所作的切线的长都相等.

①当两已知圆1C 与圆2C 于,A B 两点时,方程(*)表示公共弦AB 所在直线的方程; ②当圆1C 与圆2C 内切或外切于A 点时,方程(*)表示过(内或外)公切点A 的公切线方程.

这时,除点A 外,公切线上的所有点均具有根轴的性质.

二.圆系方程在解题中的应用

例1.求经过两圆22320x y x y ++--=和22

33210x y x y ++++=交点和坐标原点的圆的方程.

例2.求与圆2242200x y x y +---=切于点(1,3)A --,且过点(2,0)B 的圆的方程.

例3.求经过直线:240l x y ++=与圆C:22:2410C x y x y ++-+=的交点且面积

圆系方程及其应用.doc

直线系、圆系方程1、过定点直线系方程在解题中的应用 过定点(x,y0 )的直线系方程:A(x x0) B( y y0) 0(A,B 不同时为0). 例 1 求过点P( 1,4) 圆(x 2)2 ( y 3)2 1的切线的方程. 分析:本题是过定点直线方程问题,可用定点直线系法. 解析:设所求直线的方程为A(x 1) B(y 4) 0(其中A,B不全为零), 则整理有Ax By A 4B 0, ∵直线l 与圆相切,∴圆心 C (2,3) 到直线l 的距离等于半径1,故2A 3B A 4B 2 2 A B 1 , 整理,得A(4 A 3B) 0,即A 0 (这时 B 0 ),或 3 A B 0. 4 故所求直线l 的方程为y 4 或3x 4y13 0 . 点评:对求过定点(x,y0 )的直线方程问题,常用过定点直线法,即设直线方程为: A(x x0) B(y y0) 0,0 注意的此方程表示的是过点P(x,y ) 的所有直线(即直线系),应用这种直线方程可以不受直线的斜率、截距等因素 0 0 的限制,在实际解答问题时可以避免分类讨论,有效地防止解题出现漏解或错解的现象. 练习:过点P( 1,4) 作圆 2 2 (x 2) (y 3) 1的切线l ,求切线l 的方程. 解:设所求直线l 的方程为A(x 1) B(y 4) 0 (其中A,B不全为零), 则整理有Ax By A 4B 0, ∵直线l 与圆相切,∴圆心 C (2,3) 到直线l 的距离等于半径1,故2A 3B A 4B 2 2 A B 1, 整理,得A(4 A 3B) 0,即A 0 (这时 B 0 ),或 3 0 A B . 4 故所求直线l 的方程为y 4 或3x 4y13 0 . 2、过两直线交点的直线系方程在解题中的应用 过直线l :A1x B1 y C1 0(A1, B1 不同时为0)与m:A2 x B2 y C2 0(A2, B2 不同时为0)交点的直线 系方程为:A x B y C A x B y C (R ,为参数). 1 1 1 ( 2 2 2 ) 0 例2 求过直线:x 2y 1 0与直线:2x y 1 0 的交点且在两坐标轴上截距相等的直线方程. 分析:本题是过两直线交点的直线系问题,可用过交点直线系求解. 解析:设所求直线方程为:x 2y 1 (2 x y 1) 0 ,

高考数学复习圆的方程专题练习(附答案)

高考数学复习圆的方程专题练习(附答案)圆的标准方程(x-a)+(y-b)=r中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定。以下是圆的方程专题练习,请考生查缺补漏。 一、填空题 1.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0 和x轴都相切,则该圆的标准方程是________. [解析] 设圆心C(a,b)(a0,b0),由题意得b=1. 又圆心C到直线4x-3y=0的距离d==1, 解得a=2或a=-(舍). 所以该圆的标准方程为(x-2)2+(y-1)2=1. [答案] (x-2)2+(y-1)2=1 2.(2019南京质检)已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的圆心坐标为________. [解析] 因为点P关于直线x+y-1=0的对称点也在圆上, 该直线过圆心,即圆心满足方程x+y-1=0, 因此-+1-1=0,解得a=0,所以圆心坐标为(0,1). [答案] (0,1) 3.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________. [解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x

联立可求得圆心为(1,-4). 半径r=2,所求圆的方程为(x-1)2+(y+4)2=8. [答案] (x-1)2+(y+4)2=8 4.(2019江苏常州模拟)已知实数x,y满足 x2+y2-4x+6y+12=0,则|2x-y|的最小值为________. [解析] x2+y2-4x+6y+12=0配方得(x-2)2+(y+3)2=1,令 x=2+cos , y=-3+sin ,则|2x-y|=|4+2cos +3-sin | =|7-sin (-7-(tan =2). [答案] 7- 5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0(a0,b0)对称,则+的最小值是________. [解析] 由圆的对称性可得,直线2ax-by+8=0必过圆心(-2,4),所以a+b=2.所以+=+=++52+5=9,由=,则a2=4b2,又由a+b=2,故当且仅当a=,b=时取等号. [答案] 9 6.(2019南京市、盐城市高三模拟)在平面直角坐标系xOy中,若圆x2+(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为________. [解析] 由题意得圆心与P点连线垂直于AB,所以kOP==1,kAB=-1, 而直线AB过P点,所以直线AB的方程为y-2=-(x-1),即

椭圆的参数方程及其应用

椭圆的参数方程及其应用 大纲对椭圆的参数方程的要求是达到理解的程度,如果适当地引进一点简单的参数方程知识,可以起到拓宽视野,简化平面解析几何的运算的功效。本文主要介绍椭圆的参数方程及其应用,希望能够给读者一些启迪。 一般都是这样定义的: 椭圆1b )y y (a )x x (2 2 0220=-+-的参数方程是???α +=α+=sin b y y cos a x x 00(α是参数,0b 0a >>,)。 特别地,以点(00y x ,)为圆心,半径是r 的椭圆的参数方程是? ??α+=α +=sin r y y cos r x x 00(α是参数,r>0)。 一、求椭圆的内接多边形的周长及面积 y x 2 2(20π <α<), 22b a 4+, 例2 已知点A 在椭圆136y 144x 22=+上运动,点B (0,9)、点M 在线段AB 上,且2 1MB AM =,试求动点M 的轨迹方程。 解:由题意知B (0,9),设A (ααsin 6cos 12,),并且设M (x ,y )。 则,α=+ ?+α=++=cos 82110 21cos 12211x 21x x B A 3sin 42 119 21sin 6211y 21y y B A +α=+ ?+α=++=, 动点M 的轨迹的参数方程是? ??+α=α =3sin 4y cos 8x (α是参数), 消去参数得116 )3y (64x 2 2=-+。 三、求函数的最值

例3 设点P (x ,y )在椭圆19y 16x 2 2=+,试求点P 到直线05y x =-+的距离d 的最大值和最小值。 解:点P (x ,y )在椭圆19 y 16x 2 2=+上,设点P (ααsin 3cos 4,)(α是参数且)20[π∈α,), 则55 53arcsin sin 534|5sin 4cos 3|d 22-??? ? ? +α= +-α+α=。 当5 3 arcsin 2-π=α时,距离d 有最小值0,此时椭圆19y 16x 22=+与直线05y x =-+相切;当5 3arcsin 23-π=α时,距离d 有最大值2。 P , π),A (a ,0)。 解得1cos =α(舍去),或2 22 b a b cos -=α。 因为1cos 1<α<-,所以1b a b 1222<-<-。可转化为1e e 112 2<-<-,解得21e 2 > ,于是1e 22<<。故离心率e 的取值范围是? ?? ? ??122,。 [截距法]解线性规划问题 由于线性规划的目标函数:z ax by b =+≠()0可变形为y a b x z b =- +,则z b 为直线y a b x z b =-+的纵截距,那么我们在用线性规划求最值时便可以得到如下结论: (1)当b >0时,直线y a b x z b =- +所经过可行域上的点使其纵截距最大时,便是z 取得最大值的点;反之,使纵截距取得最小值的点,就是z 取得最小值的点。 (2)当b <0时,与b >0时情形正好相反,直线y a b x z b =- +所经过可行域上的点使其纵截距最大时,是z 取得最小值的点;使纵截距取得最小值的点,便是z 取得最大值的点。

高中数学圆的方程含圆系典型题型归纳总结

高中数学圆的方程典型题型归纳总结 类型一:巧用圆系求圆的过程 在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。常用的圆系方程有如下几种: ⑴以为圆心的同心圆系方程 ⑵过直线与圆的交点的圆系方程 ⑶过两圆和圆的交 点的圆系方程 此圆系方程中不包含圆,直接应用该圆系方程,必须检验圆是否满足题意,谨防漏解。 当时,得到两圆公共弦所在直线方程 例1:已知圆与直线相交于两点,为坐标原点,若,求实数的值。 分析:此题最易想到设出,由得到,利用设而不求的思想,联立方程,由根与系数关系得出关于的方程,最后验证得解。倘若充分挖掘本题的几何关系,不难得出在以为直径的圆上。而刚好为直线与圆的交点,选取过直线与圆交点的圆系方程,可极大地简化运算过程。 解:过直线与圆的交点的圆系方程为: ,即 ………………….① 依题意,在以为直径的圆上,则圆心()显然在直线上,则,解之可得 又满足方程①,则故 例2:求过两圆和的交点且面积最小的圆的方程。 解:圆和的公共弦方程为 ,即 过直线与圆的交点的圆系方程为 ,即 依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径,圆心必在公共弦所在直线上。即,则 代回圆系方程得所求圆方程

例3:求证:m 为任意实数时,直线(m -1)x +(2m -1)y =m -5恒过一定点P ,并求P 点坐标。 分析:不论m 为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。 解:由原方程得 m(x +2y -1)-(x +y -5)=0,① 即???-==?? ?=-+=-+4y 9 x 0 5y x 01y 2x 解得, ∴直线过定点P (9,-4) 注:方程①可看作经过两直线交点的直线系。 例4已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程. 剖析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0. 2x +y -7=0, x =3, x +y -4=0, y =1, 即l 恒过定点A (3,1). ∵圆心C (1,2),|AC |=5<5(半径), ∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点. (2)解:弦长最小时,l ⊥AC ,由k AC =- 2 1 , ∴l 的方程为2x -y -5=0. 评述:若定点A 在圆外,要使直线与圆相交则需要什么条件呢? 思考讨论 类型二:直线与圆的位置关系 例5、若直线m x y +=与曲线2 4x y -=有且只有一个公共点,求实数m 的取值范围. 解:∵曲线24x y -= 表示半圆)0(422≥=+y y x ,∴利用数形结合法,可得实数m 的取值范 围是22<≤-m 或22=m . 变式练习:1.若直线y=x+k 与曲线x= 2 1y -恰有一个公共点,则k 的取值范围是___________. 解析:利用数形结合. 答案:-1<k ≤1或k=-2 例6 圆9)3()3(2 2=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(2 2 =-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设 所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 34332 2 1=+-?+?= d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解: ∵m ∈R ,∴ 得

高中数学圆的方程专题复习

高二数学辅导资料(三) 内容:圆与方程 本章考试要求 考试内容 要求层次A B C 圆与方程 圆的标准方程与一般方程√ 直线与圆的位置关系 √ 两圆的位置关系√ 用直线和圆的方程解决简单的问 题 √空间直角坐标系 空间直角坐标系√ 空间两点间的距离公式√ 一、圆的方程 【知识要点】 圆心为,半径为的圆的标准方程为: 时,圆心在原点的圆的方程为:. 圆的一般方程,圆心为点,半径,其中. 圆系方程:过圆:与圆: 交点的圆系方程是 (不含圆), 当时圆系方程变为两圆公共弦所在直线方程. 【互动探究】 考点一求圆的方程 问题1.求满足下列各条件圆的方程: 以两点,为直径端点的圆的方程是 求经过,两点,圆心在直线上的圆的方程;

过点的圆与直线相切于点,则圆的方程是? 考点二圆的标准方程与一般方程 问题2.方程表示圆,则的取值范围是 考点三轨迹问题 问题3.点与圆上任一点连线的中点轨迹方程是 问题4.设两点,,动点到点的距离与到点的距离的比为,求点的轨迹. 二、直线和圆、圆与圆的位置关系 【知识要点】 直线与圆的位置关系 位置关系相切相交相离 几何特征 代数特征 将直线方程代入圆的方程得到一元二次方程,设它的判别式 为,圆的半径为,圆心到直线的距离为,则直线与 圆的位置关系满足以下关系: 直线截圆所得弦长的计算方法: 利用垂径定理和勾股定理:(其中为圆的半径,直线到圆心的距离). 圆与圆的位置关系:①设两圆的半径分别为和,圆心距为,则两圆的位置关系满足关系: 位置关系外离外切相交内切内含 几何特征 代数特征无实数解一组实数解两组实数解一组实数解无实数解 ②设两圆,,若两圆相交,则两圆的公共弦所在的直线方程 是 相切问题的解法:

圆的参数方程及应用

对于圆的普通方程222()()x a y b R -+-=来说,圆的方程还有另外一种表达 形式cos sin x a R y b R θθ=+??=+?(θ为参数) ,在解决有些问题时,合理的选择圆方程的表达形式,能给解决问题带来方便,本文浅谈圆的参数方程再解题中的应用。 一、求最值 例1 已知点(x ,y )在圆221x y +=上,求2223x xy y ++的最大值和最小值。 【解】圆2 2 1x y +=的参数方程为:cos sin x y θθ=??=? 。 则2223x xy y ++=22cos 2sin cos 3sin θθθθ++ = 1cos 21cos 2sin 2322θθθ+-++? 2sin 2cos 2θθ=+-=22sin(2)4π θ+-,则38k πθπ=+(k ∈Z )时,2223x xy y ++的最大值为:22+;8 k π θπ=-(k ∈Z ) 时,2223x xy y ++的最小值为22-。 【点评】解某些与圆的方程有关的条件制问题,可应用圆的参数方程转化为三角函数问题的方法解决。 二、求轨迹 例2 在圆224x y +=上有定点A (2,0),及两个动点B 、C ,且A 、B 、C 按逆时针方向排列, ∠BAC=3π ,求△ABC 的重心G (x ,y )的轨迹 方程。 【解】由∠BAC= 3 π,得∠BOC=23π,设∠ABO=θ(403π θ<<),则B(2cos θ,2sin θ),C(2cos(θ+23π),2sin(θ+23 π )),由重心坐标公式并化简,得: 22cos()333 2sin()33x y πθπθ? =++??? ?=+?? ,由5333πππθ<+<,知0≤x <1, C x y O A B 图1

人教版高中数学必修二圆与方程题库完整

(数学2必修)第四章 圆与方程 [基础训练A 组] 一、选择题 1.圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( ) A .22(2)5x y -+= B .22(2)5x y +-= C .22(2)(2)5x y +++= D .22(2)5x y ++= 2.若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( ) A. 03=--y x B. 032=-+y x C. 01=-+y x D. 052=--y x 3.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A .2 B .21+ C .2 21+ D .221+ 4.将直线20x y λ-+=,沿x 轴向左平移1个单位,所得直线与 圆22 240x y x y ++-=相切,则实数λ的值为( ) A .37-或 B .2-或8 C .0或10 D .1或11 5.在坐标平面,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条 6.圆0422=-+x y x 在点)3,1(P 处的切线方程为( ) A .023=-+y x B .043=-+y x C .043=+-y x D .023=+-y x 二、填空题 1.若经过点(1,0)P -的直线与圆03242 2=+-++y x y x 相切,则此直线在y 轴上的截距是 __________________. 2.由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0 ,,60A B APB ∠=,则动点P 的轨迹方程为 。 3.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --,则圆C 的方程为 . 4.已知圆()4322 =+-y x 和过原点的直线kx y =的交点为,P Q 则OQ OP ?的值为________________。

人教课标版高中数学必修2基础训练:圆的一般方程

4.1.2 圆的一般方程 1.方程064222=--++y x y x 表示的图形是【 】 A.以)2,1(-为圆心,11为半径的圆 B.以)2,1(为圆心,11为半径的圆 C.以)2,1(--为圆心,11为半径的圆 D.以)2,1(-为圆心,11为半径的圆 2.方程224250x y x y m ++-+=表示圆的条件是【 】 A. 114 m << B. 1m > C. 14m < D. 1m < 3.已知圆的方程为086222=++-+y x y x ,那么通过圆心的一条直线方程是【 】 A.012=--y x B.012=++y x C.012=+-y x D.012=-+y x 4.圆222430x y x y +-++=的圆心到直线1x y -=的距离为【 】 A . 2 B. C. 1 D. 5.与圆0352:22=--+x y x C 同圆心,且面积为其一半的圆的方程是【 】 A.3)1(22=+-y x B.6)1(22=+-y x C.9)1(22=+-y x D.18)1(22=+-y x 6.圆x 2+y 2-4x -5=0的弦AB 的中点为P (3,1),则直线AB 的方程是 . 7.已知方程042422=--++y x y x ,则22y x +的最大值是 . 8.已知圆C :(x -1)2+y 2=1,过坐标原点O 作弦OA ,则OA 中点的轨迹方程是 . 9.求经过三点(1,1)A -,(1,4)B ,(4,2)C -的圆的方程,并求出圆的圆心与半径.

参考答案 1. D 2. D 3. B 4. D 5. D 6. x +y -4=0 7. 14+ 8. 2211()24x y -+=(x ≠0) 9. 设所求圆的方程为220x y Dx Ey F ++++=, ∵ (1,1)A -、(1,4)B 、(4,2)C -三点在圆上,代入圆的方程并化简,得 24174220D E F D E F D E F -+=-??++=-??-+=-?,解得D =-7,E =-3,F =2. ∴ 所求圆的方程为227320x y x y +--+=.

高一数学必修二《圆与方程》知识点整理

《圆与方程》知识点整理 一、标准方程()() 222 x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b和半径r ①待定系数:往往已知圆上三点坐标,例如教材 119 P例2 ②利用平面几何性质 往往涉及到直线与圆的位置关系,特别是:相切和相交 相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理 二、一般方程 () 2222 040 x y Dx Ey F D E F ++++=+-> 1.220 Ax By Cxy Dx Ey F +++++=表示圆方程则 22 22 00 00 40 40 A B A B C C D E AF D E F A A A ? ? =≠=≠ ? ? ?? =?= ?? ??+-> ? ???? ?+-?> ? ? ????? ? 2.求圆的一般方程一般可采用待定系数法: 3.2240 D E F +->常可用来求有关参数的范围 三、圆系方程: 四、参数方程: 五、点与圆的位置关系 1.判断方法:点到圆心的距离d与半径r的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B,圆上一动点P,讨论PB的最值 min PB BN BC r ==- max PB BM BC r ==+ (2)圆内一点A,圆上一动点P,讨论PA的最值 m i n P A A N r A C ==- max PA AM r AC ==+ 思考:过此A点作最短的弦?(此弦垂直AC)

六、直线与圆的位置关系 1.判断方法(d 为圆心到直线的距离) (1)相离?没有公共点?0d r ? (2)相切?只有一个公共点?0d r ?=?= (3)相交?有两个公共点?0d r ?>?< 这一知识点可以出如此题型:告诉你直线与圆相交让你求有关参数的范围. 2.直线与圆相切 (1)知识要点 ①基本图形 ②主要元素:切点坐标、切线方程、切线长等 问题:直线l 与圆C 相切意味着什么? 圆心C 到直线l 的距离恰好等于半径r (2)常见题型——求过定点的切线方程 ①切线条数 点在圆外——两条;点在圆上——一条;点在圆内——无 ②求切线方程的方法及注意点... i )点在圆外 如定点()00,P x y ,圆:()()222x a y b r -+-=,[()()22 200x a y b r -+->] 第一步:设切线l 方程()00y y k x x -=- 第二步:通过d r =k ?,从而得到切线方程 特别注意:以上解题步骤仅对k 存在有效,当k 不存在时,应补上——千万不要漏了! 如:过点()1,1P 作圆22 46120x y x y +--+=的切线,求切线方程. 答案:3410x y -+=和1x = ii )点在圆上 1) 若点()00x y ,在圆222x y r +=上,则切线方程为200x x y y r += 会在选择题及填空题中运用,但一定要看清题目. 2) 若点()00x y ,在圆()()22 2x a y b r -+-=上,则切线方程为 ()()()()200x a x a y b y b r --+--= 碰到一般方程则可先将一般方程标准化,然后运用上述结果. 由上述分析,我们知道:过一定点求某圆的切线方程,非常重要的第一步就是——判断点与圆的位置关系,得出切线的条数. ③求切线长:利用基本图形,222AP CP r AP =-?= 3.直线与圆相交 (1)求弦长及弦长的应用问题 垂径定理....及勾股定理——常用

圆系方程及其应用

圆系方程及其应用 This model paper was revised by the Standardization Office on December 10, 2020

圆系方程及其应用 一、常见的圆系方程有如下几种: 1、以(,)a b 为圆心的同心圆系方程:222()()(0)x a y b λλ-+-=> 与圆22y x ++Dx +Ey +F=0同心的圆系方程为:22y x ++Dx +Ey +λ=0 2、过直线Ax +By +C=0与圆22y x ++Dx +Ey +F=0交点的圆系方程为:22y x ++Dx +Ey +F+λ(Ax +By +C)=0(λ∈R) 3、过两圆1C :22y x ++111F y E x D ++=0,2C :22y x ++222F y E x D ++=0交点的圆系方程为:22y x ++111F y E x D +++λ(22y x ++222F y E x D ++)=0(λ≠-1,此圆系不含2C :22y x ++222F y E x D ++=0) 特别地,当λ=-1时,上述方程为根轴方程.两圆相交时,表示公共弦方程;两圆相切时,表示公切线方程. 注:为了避免利用上述圆系方程时讨论圆2C ,可等价转化为过圆1C 和两圆公共弦所在直线交点的圆系方程:22111121212[()()()]0x y D x E y F D D x E E y F F λ+++++-+-+-= 二、圆系方程在解题中的应用: 1、利用圆系方程求圆的方程: 例1 求经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点,并且圆心在直线x -y -4=0上的圆的方程。

圆的方程练习题

1 圆的方程练习题 1.圆x 2+y 2 -4x=1的圆心及半径分别是 ( ) A .(2,0),5 B . C . D .(2,2),5 2 .方程x 2+y 2 +2x-4y-6 =0表示的图形是 ( ) A .以(1,- 2)为圆心 B .以(1,2)为圆心 为半径的圆 C .以(-1, -2)为圆心 D .以( -1,2)为圆心 3.过点A (6,0),B (1,5),且圆心在直线2x-7y+8=0上的圆的方程为( ) A .(x+3)2+(y+2)2=13 B .(x+3)2+(y-2)2 =13 C .(x-3)2+(y-2)2=13 D .(x-3)2+(y+2)2 =13 4.方程(x-a )2+(y-b )2 =0的图形是 ( ) A .一个圆 B .两条直线 C .两条射线 D .一个点 5.已知点A (2,4),B (8,-2),以AB 为直径的圆的方程 ( ) A .(x-5)2+(y-1)2=18 B .(x-5)2+(y-1)2 =72 C .(x+5)2+(y+1)2=18 D .(x+5)2+(y+1)2 =72 6.与圆x 2+y 2 -2x+4y+3=0的圆心相同,半径是5的圆的方程是( ) A .(x-1)2+(y+2)2=25 B .(x-1)2+(y+2)2 =5 C .(x+1)2+(y-2)2=25 D .(x+1)2+(y-2)2 =5 7.已知圆x 2+y 2 +2x-4y-a=0的半径为3,则 ( ) A .a=8 B .a=4 C .a=2 D .a=14 8.圆心在C (-1,2),半径为 ( ) 11A. B.2213cos 1C. D.23sin 2x x y y x x y y θθ θθ θθ θθ ? ?=+=-+????=-=?????=-+=-+????=+?=+??

(完整版)高中数学必修2圆与方程典型例题(可编辑修改word版)

标准方程(x - a )2 + (y - b )2 = r 2 ,圆心 (a , b ),半径为 r 11 11 11 11 0 0 第二节:圆与圆的方程典型例题 一、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。二、圆的方程 (1) ; 点 M (x , y ) 与圆(x - a )2 + ( y - b )2 = r 2 的位置关系: 当(x - a )2 + ( y - b )2 > r 2 ,点在圆外 当(x - a )2 + ( y - b )2 = r 2 ,点在圆上 当(x - a )2 + ( y - b )2 < r 2 ,点在圆内 (2) 一般方程 x 2 + y 2 + Dx + Ey + F = 0 当 D 2 + E 2 - 4F > 0 时,方程表示圆,此时圆心为?- D E ? ,半径为r = 当 D 2 + E 2 - 4F = 0 时,表示一个点; 当 D 2 + E 2 - 4F < 0 时,方程不表示任何图形。 ,- ? ? 2 2 ? 2 (3) 求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出 a ,b ,r ;若利用一般方程,需要求出 D ,E ,F ; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 例 1 已知方程 x 2 + y 2 - 2(m - 1)x - 2(2m + 3) y + 5m 2 + 10m + 6 = 0 . (1) 此方程表示的图形是否一定是一个圆?请说明理由; (2) 若方程表示的图形是是一个圆,当 m 变化时,它的圆心和半径有什么规律?请说明理由. 答案:(1)方程表示的图形是一个圆;(2)圆心在直线 y =2x +5 上,半径为 2. 练习: 1.方程 x 2 + y 2 + 2x - 4 y - 6 = 0 表示的图形是( ) A.以(1,- 2) 为圆心, 为半径的圆 B.以(1,2) 为圆心, 为半径的圆 C.以(-1,- 2) 为圆心, 为半径的圆 D.以(-1,2) 为圆心, 为半径的圆 2.过点 A (1,-1),B (-1,1)且圆心在直线 x +y -2=0 上的圆的方程是( ). A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .(x -1)2+(y -1)2=4 D .(x +1)2+(y +1)2=4 3.点(1,1) 在圆(x - a )2 + ( y + a )2 = 4 的内部,则 a 的取值范围是( ) A. -1 < a < 1 B. 0 < a < 1 C. a < -1 或 a > 1 D. a = ±1 4.若 x 2 + y 2 + ( -1)x + 2y + = 0 表示圆,则的取值范围是 5. 若圆 C 的圆心坐标为(2,-3),且圆 C 经过点 M (5,-7),则圆 C 的半径为 . 6. 圆心在直线 y =x 上且与 x 轴相切于点(1,0)的圆的方程为 . 7. 以点 C (-2,3)为圆心且与 y 轴相切的圆的方程是 . 1 D 2 + E 2 - 4F

《圆的方程》专题

《圆的方程》专题 2019年( )月( )日 班级 姓名 1.圆的定义及方程 ?标准方程强调圆心坐标为(a ,b ),半径为r . ?(1)当D 2+E 2-4F =0时,方程表示一个点????-D 2,-E 2; (2)当D 2+E 2-4F <0时,方程不表示任何图形. 2.点与圆的位置关系 点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2. 二、常用结论汇总——规律多一点 (1)二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是???? ? A =C ≠0, B =0,D 2+E 2-4AF >0. (2)以A (x 1,y 1),B (x 2,y 2)为直径端点的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.

三、基础小题强化——功底牢一点 (一)判一判(对的打“√”,错的打“×”) (1)确定圆的几何要素是圆心与半径.( ) (2)方程(x -a )2+(y -b )2=t 2(t ∈R )表示圆心为(a ,b ),半径为t 的一个圆.( ) (3)方程x 2+y 2+4mx -2y =0不一定表示圆.( ) (4)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 2 0+Dx 0+Ey 0+F >0.( ) 答案:(1)√ (2)× (3)× (4)√ (二)选一选 1.圆x 2+y 2-4x +6y =0的圆心坐标是( ) A .(2,3) B .(-2,3) C .(-2,-3) D .(2,-3) 解析:选D 因为圆的方程可化为(x -2)2+(y +3)2=13,所以圆心坐标是(2,-3). 2.圆心为(1,1)且过原点的圆的方程是( ) A .(x -1)2+(y -1)2=1 B .(x +1)2+(y +1)2=1 C .(x +1)2+(y +1)2=2 D .(x -1)2+(y -1)2=2 解析:选D 因为圆心为(1,1)且过原点,所以该圆的半径r =12+12=2,则该圆的方程为(x -1)2+(y -1)2=2,选D. 3.若坐标原点在圆(x -m )2+(y +m )2=4的内部,则实数m 的取值范围是( ) A .(-1,1) B .(-3,3) C .(-2,2) D.?? ? ? - 22, 22 解析:选C ∵点(0,0)在(x -m )2+(y +m )2=4的内部,∴(0-m )2+(0+m )2<4,解得-2<m < 2.故选C. (三)填一填 4.(2018·天津高考)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________.

数学必修2圆与方程知识点专题讲义

必修二圆与方程专题讲义 一、标准方程 ()()2 2 2x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b 和半径r 2.特殊位置的圆的标准方程设法(无需记,关键能理解) 二、一般方程 ( )222 2040x y D x E y F D E F ++++=+- > 1.220Ax By Cxy Dx Ey F +++++=表示圆方程,则 2222 0004040 A B A B C C D E AF D E F A A A ? ? =≠=≠????=?=????+->??????+-?> ? ?????? ? 2.求圆的一般方程方法 ①待定系数:往往已知圆上三点坐标

②利用平面几何性质 涉及点与圆的位置关系:圆上两点的中垂线一定过圆心 涉及直线与圆的位置关系:相切时,利用到圆心与切点的连线垂直直线;相交时,利用到点到直线的距离公式及垂径定理 3.2240D E F +->常可用来求有关参数的范围 三、点与圆的位置关系 1.判断方法:点到圆心的距离d 与半径r 的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ (2)圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦?(此弦垂直AC ) 3.以1122(,),(,)A x y B x y 为直径两端点的圆方程为 1212()()()()0x x x x y y y y --+--= 四、直线与圆的位置关系 1.判断方法(d 为圆心到直线的距离) (1)相离?没有公共点?0d r ? (2)相切?只有一个公共点?0d r ?=?= (3)相交?有两个公共点?0d r ?>?<

直线系圆系方程

直线系、圆系方程 1、过定点直线系方程在解题中的应用 过定点(0x ,0y )的直线系方程:00()()0A x x B y y -+-=(A,B 不同时为0). 例1求过点(14)P -,圆22(2)(3)1x y -+-=的切线的方程. 分析:本题是过定点直线方程问题,可用定点直线系法. 解析:设所求直线的方程为(1)(4)0A x B y ++-=(其中A B ,不全为零), 则整理有40Ax By A B ++-=, ∵直线l 与圆相切,∴圆心(23)C ,到直线l 的距离等于半径1, 1=, 整理,得(43)0A A B -=,即0A =(这时0B ≠),或3 04A B =≠. 故所求直线l 的方程为4y =或34130x y +-=. 点评:对求过定点(0x ,0y )的直线方程问题,常用过定点直线法,即设直线方 程为:00()()0A x x B y y -+-=,注意的此方程表示的是过点00()P x y ,的所有直线(即直线系),应用这种直线方程可以不受直线的斜率、截距等因素的限制,在实际解答问题 时可以避免分类讨论,有效地防止解题出现漏解或错解的现象. 练习: 过点(1 4)P -,作圆22(2)(3)1x y -+-=的切线l ,求切线l 的方程. 解:设所求直线l 的方程为(1)(4)0A x B y ++-=(其中A B ,不全为零), 则整理有40Ax By A B ++-=, ∵直线l 与圆相切,∴圆心(23)C ,到直线l 的距离等于半径1, 1=, 整理,得(43)0A A B -=,即0A =(这时0B ≠),或3 04A B =≠. 故所求直线l 的方程为4y =或34130x y +-=. 2、过两直线交点的直线系方程在解题中的应用 过直线l :1110A x B y C ++=(11,A B 不同时为0)与m :2220A x B y C ++=(22,A B 不同时

圆的一般方程练习题

课时作业23 圆的一般方程 (限时:10分钟) 1.若圆x 2+y 2-2x -4y =0的圆心到直线x -y +a =0的距离为2 2,则a 的值为( ) A .-2或2 或32 C .2或0 D .-2或0 解析:圆的标准方程为(x -1)2+(y -2)2=5,圆心为(1,2),圆心到 直线的距离|1-2+a |12+-1 2=22,解得a =0或2. 答案:C 2.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:圆心为? ?? ??a ,-32b ,则有a <0,b >0.直线x +ay +b =0变为y =-1a x -b a .由于斜率-1a >0,在y 轴上截距-b a >0,故直线不经过第四象限. 答案:D 3.直线y =2x +b 恰好平分圆x 2+y 2+2x -4y =0,则b 的值为 ( ) A .0 B .2 C .4 D .1 解析:由题意可知,直线y =2x +b 过圆心(-1,2), ∴2=2×(-1)+b ,b =4. 答案:C 4.M (3,0)是圆x 2+y 2-8x -2y +10=0内一点,过M 点最长的弦所在的直线方程为________,最短的弦所在的直线方程是________. 解析:由圆的几何性质可知,过圆内一点M 的最长的弦是直径,最短的弦是与该点和圆心的连线CM 垂直的弦.易求出圆心为C (4,1), k CM =1-04-3=1,∴最短的弦所在的直线的斜率为-1,由点斜式,分

别得到方程:y=x-3和y=-(x-3),即x-y-3=0和x+y-3=0. 答案:x-y-3=0x+y-3=0 5.求经过两点A(4,7),B(-3,6),且圆心在直线2x+y-5=0上的圆的方程. 解析:设圆的方程为x2+y2+Dx+Ey+F=0,其圆心为? ? ? ? ? - D 2,- E 2, 由题意得 ?? ? ??42+72+4D+7E+F=0, -32+62-3D+6E+F=0, 2· ? ? ? ? ? - D 2+? ? ? ? ? - E 2-5=0. 即 ?? ? ??4D+7E+F=-65, 3D-6E-F=45, 2D+E=-10, 解得 ?? ? ??D=-2, E=-6, F=-15. 所以,所求的圆的方程为x2+y2-2x-6y-15=0. (限时:30分钟) 1.圆x2+y2+4x-6y-3=0的圆心和半径分别为() A.(2,-3);16B.(-2,3);4 C.(4,-6);16 D.(2,-3);4 解析:配方,得(x+2)2+(y-3)2=16,所以,圆心为(-2,3),半径为4. 答案:B 2.方程x2+y2+4x-2y+5m=0表示圆的条件是() 1 C.m< 1 4D.m<1 解析:由42+(-2)2-4×5m>0解得m<1. 答案:D 3.过坐标原点,且在x轴和y轴上的截距分别是2和3的圆的方程为() A.x2+y2-2x-3y=0 B.x2+y2+2x-3y=0 C.x2+y2-2x+3y=0

新课标高中数学必修二第四章圆与方程-经典例题-[含答案]

习题精选精讲圆标准方程 已知圆心),(b a C 和半径r ,即得圆的标准方程222 )()(r b y a x =-+-;已知圆的标准方程222)()(r b y a x =-+-,即得圆 心),(b a C 和半径r ,进而可解得与圆有关的任何问题. 一、求圆的方程 例1 (06卷文) 以点)1,2(-为圆心且与直线0543= +-y x 相切的圆的方程为( ) (A)3)1()2(22=++-y x (B)3)1()2(2 2=-++y x (C)9)1() 2(22 =++-y x (D)9)1()2(22=-++y x 解 已知圆心为)1,2(-,且由题意知线心距等于圆半径,即2 243546+++= d r ==3,∴所求的圆方程为9)1()2(22=++-y x , 故选(C). 点评:一般先求得圆心和半径,再代入圆的标准方程222 )()(r b y a x =-+-即得圆的方程. 二、位置关系问题 例2 (06卷文) 直线1=+y x 与圆0222=-+ay y x )0(>a 没有公共点,则a 的取值围是( ) (A))12,0(- (B))12,12(+- (C))12,12(+-- (D))12,0(+ 解 化为标准方程222 )(a a y x =-+,即得圆心),0(a C 和半径a r =. ∵直线 1=+y x 与已知圆没有公共点,∴线心距a r a d =>-= 2 1,平方去分母得 2 2212a a a >+-,解得 1212-<<--a ,注意到0>a ,∴120-<r d 线圆相离;?=r d 线圆相切;?

相关文档
最新文档