XPS结合能对照表

XPS结合能对照表

1.0Bi6p1 3.9 Pt 5d10.0P 3p 18.0At 6s 24.0Kr 4s 34.0K 3s 44.0Ra 6s 5 2.0Tm 5s 65.7V 3s 1.0Ce4f 4.0 Ir 5d10.0Ti 4s 18.0Ce 5p 24.0Sn 4d 35.0Re 5p3 44.0U 6s 5 2.3Yb 5s 66.0Ni 3p 1.0Co3d 4.0Pm 4f 10.0V 4s 18.0Pr 5p 25.0Th 6p1 35.2Mo 4p 44.4Y 4s 5 2.6Fe 3p 66.0Pt 5p1 1.0Cr3d 4.5Ag 4d10.0Zr 5s 18.1Hf Ntv Ox 26.0Bi 5d3 35.2W Na2WO445.0Ta 5p1 5 3.0Sn loss 67.8Ta 5s 1.0Fe3d 4.8Dy 5d10.5Bi 6s 18.2 C 2s 26.0He 1s 35.3Y loss 45.1As 2O3 53.4Os 4f5 68.0Ra 5d 1.0Ga4p 5.0 B 2p10.7Cd 4d5 18.4Sr 4p 26.0Rn 6s 35.8W O3 45.5As Ntv Ox54.0Os 5p1 68.0Tc 4s 1.0Hf5d 5.0 Br 4p11.0Kr 4p 18.7Ga 3d5 26.1Lu 5p 36.0Ce 5s 45.7Ge loss 54.2Se CdSe68.5Br 3d5 1.0In 5p 5.0Ca 3d11.0Rn 6p 18.8Ga 3d 26.8Ta 2O5 36.0Gd 5s 46.0Re 5p1 54.5Se GeSe68.5Br KBr 1.0Na3s 5.0 Er 4f 11.0Sc 4s 18.9Ga 3d3 26.8Zr 4p 36.6Sr 4s 46.3Ga loss 54.9Se 3d5 68.8Cd 4p 1.0Os5d 5.0Po 6p11.1Cs 5p3 19.0Eu 5p 27.0Br 4s 36.7V 3p 46.8Re 2O7 54.9Li 1s 69.0Br 3d 1.0Pb6p 5.3Se 4p11.6Cd 4d3 19.0Nd 5p 28.2Sc 3p 37.0W 5p3 46.8W 5p1 54.9Li OH 69.5Br 3d3 1.0Sn5p 5.5 Cl 3p1 2.0Cs 5p 19.0Pb 5d5 28.6In loss 37.5Hf 5p1 47.0Mn 3p 54.9Se 3d 70.0Re loss 1.2Yb4f7 5.8Au 5d12.0Po 6s 19.0Ra 6p 28.8Rb 4s 38.0Pm 5s 47.0Rh 4p 55.2Se GeSe271.0Pt 4f7 1.4Pd4d 6.0Ta 5d12.0Te 5s 19.0Sm 5p 29.0Dy 5p1 38.0Pr 5s 47.9Ru 4p 55.3Li CO3 71.8Mg loss 1.4Rh4d 6.0 Y 4d1 2.0Tl 5d5 19.1Ga Sb fract29.0Er 5p 38.3Sn loss 48.0Dy 5s 55.6Nb 4s 72.6Pt 4f 2.0Cd5p 6.2Hg 5d12.6Cs 5p1 19.4Ga AlAs etch29.0Lu 5p 39.0Eu 5s 48.0Rn 5d 55.7Se 3d3 72.7Al 2p3 2.0Mg3s 6.9Eu 4f 1 3.0Tl 5d 19.5N 2s 29.1Ge 3d5 39.0Nd 5s 48.0Sb loss 56.8Au 5p3 72.9Al 2p 2.0Mo4d 7.0 O 2p1 3.2Rb 4p 19.7Ga P fract 29.2 F 2s 39.0Tc 4p 48.5 I 4d 56.8Lu 5s 73.1Tl 5p3 2.0Nb4d 7.0Sm 4f 13.2Rb 4p 19.7Ga As fract29.4Ge 3d 39.5Tm 5p 49.5Ho 5s 57.4Er 5s 73.2Al 2p1 2.0Nd4f 7.0Sn 5s1 4.0Ne 2p 20.0U 6p 29.5Ho 5p1 40.0At 5d 49.5Mg CO3 58.0Ag 4p 73.8Al N 2.0Ni 3d 7.0Xe 5p14.0Sc 3d 20.2Zn loss 29.7Ge 3d3 40.0Ba 5s 49.6Mg(OH)258.0Fr 5d 74.0Au 5p1 2.0Pr 4f 7.1Lu4f714.2Hf 4f7 20.5Gd 5p 30.2Ge Se 40.0In loss 49.6Mg 2p3 58.0Hg 5p3 74.2Cr 3s 2.0Sb5p 7.1Tb 4f 15.0Fr 6p 20.7Ga 2O3 30.3Na 2p 40.0Tb 5s 49.7Mg O 58.1W loss 74.3Al 2O3 2.0Sc4p 7.7Gd 4f 15.0H 1s 21.0Pb 5d3 30.9Nb 4p 40.1Te 4d 49.8Mg 2p 58.2Ti 3s 74.3Al2O3-nH2O 2.0Tc4d 7.8Dy 4f 15.0Hf 4f 21.6Ta 4f7 30.9Pb loss 40.2Re 4f7 49.9Mg 2p1 58.3Te loss 74.4Pt 4f5 2.0Ti 3d 8.0 At 6p15.0Rb 4p1 21.8Tb 5p 31.0Hf 5p3 41.0Ne 2s 50.0Mg CO3 58.6Ag 4p 74.4Al (OH)3 2.0V 3d 8.0 S 3p15.0Tl 5d3 22.0Dy 5p3 31.0Po 5d 41.0Sm 5s 50.0Sr loss 58.9Y loss 74.9Cu 3p 2.0Yb 4f 8.3Ho 4f 15.7Cl 3s 22.0Pm 5p 31.3W 4f7 41.2Re 4f 50.3Zr 4s 59.0Co 3p 74.9Se loss 2.0Zr 4d 8.3Lu 5d15.9Hf 4f5 22.3Ar 3s 31.5Ge Se2 41.4Re Ntv Ox 50.4Mg NtvOx159.2As loss 75.0Cs 4d5 2.5Yb4f58.4Lu2O315.9 I 5s 22.7Ta 4f 31.7Sb 4d 41.5As 3d5 50.7Os 4f7 60.8Ir 4f7 75.1Pt O2-nH2O 2.6Te5p 8.5Tm4f716.0K 3p 2 3.0Cs 5s 32.1Ga loss 41.8As 3d 50.7Pd 4p 61.0Mg loss 75.1W 5s 2.8Cu3d 8.6Lu4f516.0P 3s 2 3.1O 2s 32.3W 4f 42.0As S 50.7Sc 3s 62.0Ir 4f 75.5Al Ntv Ox 2.8Mn3d 8.9 Ar 3p16.0S 3s 23.3Ho 5p3 32.4Ti 3p 42.0Th 6s 50.9Mg reoxid62.0Ir O2 76.0Cs 4d 2.8Re5d 9.0 F 2p16.9In 4d 2 3.3Y 4p 32.6Ta 5p3 42.1Ca 3s 51.0Ir 5p3 62.0Ir 5p1 77.8Ni loss 2.8Si 3p 9.0Ru 4d17.0La 5p 23.4Ta S2 33.0La 5s 42.1Cr 3p 51.0Mg NtvOx262.0Mo 4s 78.3In 4p 2.8W 5d 9.0Sb 5s17.0Th 6p3 2 3.5Ca 3p 33.2Ge O2 42.2As 3d3 51.4Os 4f 62.0Xe 4d 79.0Cs 4d3 3.0Ge4p 9.0 Si 3s17.0Xe 5s 23.5Yb 5p 33.4Lu 5p 42.7Re 4f5 51.5Pt 5p3 62.3Hf 5s 80.0Ru 4s 3.0 I 5p 9.1As 4p17.1Hf O2 23.8Bi 5d 33.5W 4f5 42.7Ta loss 51.5Mg reoxid62.7Ir Ntv Ox80.7Rh 4s 3.0Pb6s 9.7Zn 3d17.7Pb 5d 2 4.0Ta 4f5 33.8Ge Ntv Ox43.0As 2S3 51.7Re loss 63.3Na 2s 81.0Hg 5p1 3.2Bi6p310.0Ba 5p17.9Ga InAs (ar)24.0Bi 5d5 34.0Fr 6s 44.0Os 5p3 51.9Mg NtvOx363.8Ir 4f5 81.8Re 5s

案例解析X射线光电子能谱(XPS)八大应用!

【干货】玩转XPS丨案例解析X射线光电子能谱(XPS)八大应用! 表面分析技术 (Surface Analysis)是对材料外层(the Outer-Most Layers of Materials (<100nm))的研究的技术。 X射线光电子能谱简单介绍 XPS是由瑞典Uppsala大学的K. Siegbahn及其同事历经近20年的潜心研究于60年代中期研制开发出的一种新型表面分析仪器和方法。鉴于K. Siegbahn教授对发展XPS领域做出的重大贡献,他被授予1981年诺贝尔物理学奖。 X射线激发光电子的原理 XPS现象基于爱因斯坦于1905年揭示的光电效应,爱因斯坦由于这方面的工作被授予1921年诺贝尔物理学奖; X射线是由德国物理学家伦琴(Wilhelm Conrad R?ntgen,l845-1923)于1895年发现的,他由此获得了1901年首届诺贝尔物理学奖。

X射线光电子能谱(XPS ,全称为X-ray Photoelectron Spectroscopy)是一种基于光电效应的电子能谱,它是利用X射线光子激发出物质表面原子的内层电子,通过对这些电子进行能量分析而获得的一种能谱。 这种能谱最初是被用来进行化学分析,因此它还有一个名称,即化学分析电子能谱(ESCA,全称为Electron Spectroscopy for Chemical Analysis)。XPS谱图分析中原子能级表示方法 XPS谱图分析中原子能级的表示用两个数字和一个小字母表示。例如:3d5/2(1)第一个数字3代表主量子数(n); (2)小写字母代表角量子数; (3)右下角的分数代表内量子数j

XPS在材料研究中的应用

XPS在材料研究中的应用 摘要 本文总结了X射线光电子能谱(XPS)的分析原理、研究进展,并介绍了几种XPS在材料研究中的应用分析实例。 关键词XPS,材料,分析 1 前言 XPS的起源最早可追溯到人们对光电子的研究。1954年,以瑞典Uppsala大学k.Siegbahn 教授为首的研究中心首次准确测定光电子的动能,不久观测到了元素的化学位移。由于XPS 能够根据元素的化学位移分析出材料的化学状态,曾被命名为化学分析用电子能谱,即ESCA(ElectronSpectroscopy for Chemical Analysis)。20世纪70年代末,XPS开始涉足有机物、高分子材料及木质材料领域,80年代末,XPS 的灵敏度及分辨率有了显著提高,现代XPS 正在向着单色、小面积、成像三方向发展。XPS 以其灵敏度高、破坏性小、制样简单的优点及定性强、能够分析材料表面元素组成及元素化学价态的特点而成为木质材料研究领域中一项重要分析手段。 XPS 基本原理是利用X 射线辐照样品,在样品表面发生光电效应,产生光电子,如图1。通过对出射光电子能量分布分析,得到电子结合能的分布信息,进而实现对表面元素组成及价态分析。XPS采样深度与光电子的能量和材料性质有关,在深度为光电子的平均自由程λ 的3 倍处,达到最佳,对金属约为0.5~2 nm;无机物1~3 nm;有机物1~10 nm。运用XPS 可对木质材料进行定性及定量分析。 图1 X 射线光电子能谱的光电效应原理图

图2 XPS 实验装置示意图(a)和光电子能级图(b) 2 XPS在材料研究中应用实例 X射线光电子能谱XPS (X-ray Photoelectron Spectroscopy)也被称作化学分析用电子能谱ESCA(Electron Spectroscopy for Chemical Analysis),其基本原理在单色(或准单色)X 射线照射下,测量材料表面所发射的光电子能谱来获取表面化学成分、化学态、分子结构等方面的信息。 2.1 XPS 分析Ni、Mn价态 郑光虎等用固相反应法合成了双钙钛矿Pr2NiMnO6 ,利用x射线光电子能谱对Ni、Mn的价态进行分析。结果表明,在Pr2NiMnO6。中,Ni、Mn主要以2价、4价的形式存在。 使用的仪器是ESCALAB 250型光电子能谱仪(美国Thermo Fisher公司)。测试条件:使用单色化的A1 Kot射线(X射线束斑为500μm)作为激发源,分析室的真空度优于10-9Pa,全谱扫描通能为100 eV,扫描步长为1eV;窄谱扫描通能为30 eV,其中Ni2p3/2:扫描步长为0.1eV,Mn 3s扫描步长为0.05 eV。 图3 Pr2NiMnO6的XPS图谱

钝化层与器件可靠性研究

扫描点 图2 有生成物样品表面形貌 扫描点 图1 无生成物样品表面形貌 钝化层与器件可靠性研究1 李雨辰,何友琴,章安辉,马农农 中国电子科技集团第四十六研究所质检中心,天津 (300192) E-mail :liyuchen@https://www.360docs.net/doc/3015041077.html, 摘 要:本文采用了X 光电子能谱仪(XPS )、扫描电镜、二次离子质谱仪(SIMS )等多种分析手段对某半导体器件厂失效器件进行失效原因分析,并与国内外的同类产品进行了对比,通过大量的实验和数据分析,查明器件失效的主要因素是芯片表面的氮化硅钝化层存在缺陷。同时,总结出单一使用XPS 测试手段表征钝化层质量的方法。由于这种手段具有信息全面、方便快捷的优势。它不仅可以分析样品的元素和相对含量,还可以通过分析元素的结合能而得到元素的价态信息,并可以进行深度剖析;对于大多数样品都不需要特殊的处理,对样品导电性也没有要求。因此,可以全面的表征氮化硅钝化层质量。 关键词:XPS ,氮化硅,钝化层,失效分析 1 引言 2006年,某研究所一次整机试验中,发现线路中某器件厂家生产的一只3DK9D 三极管失效。失效现象为集电极电压18V ,正常情况应为28V ,分析认为是三极管C 、E 漏电导致的,漏电流大的原因与器件内部、水汽含量高、存在沾污等缺陷有关,在用户特定的使用条件下暴露出来。但这一结论缺乏有效证据。我们模拟该器件出现失效的实际工作环境,并复现了器件失效的情况。经初步失效分析,结论为器件发生铝腐蚀,电极附近有生成物。进一步分析重点集中在证实器件失效产生的原因,弄清导致失效的铝腐蚀产生机理,以便对器件生产厂家乃至国内整个器件生产行业的工艺改进和可靠性控制起到指导作用。 2 实验与讨论 2.1扫描电镜分析 利用扫描电子显微镜进行了无生成物和有生成物的芯片的对比观察,试验发现无生成物样品的电极边缘(图1所示)和有生成物样品的电极边缘(图2所示)有明显区别。图2所示扫描点所在位置为基极边缘,生成物沿电极台阶的边缘分布,具有典型的水纹状的形貌,由此可以判断生成物应在芯片钝化层的表面有分 1 本课题得到天津市应用基础研究计划面上项目(紫外光激发下砷化镓表面特性研究)的资助。

极易忽略的XPS重要知识点总结

超级推荐丨极易忽略的XPS重要知识点总结! XPS表征的是样品的表面还是体相? XPS是一种典型的表面分析手段,其根本原因在于:尽管X射线可穿透样品很深,但只有样品近表面一薄层发射出的光电子可逃逸出来。 样品的探测深度(d)由电子的逃逸深度(λ,受X射线波长和样品状态等因素影响)决定,通常,取样深度d = 3λ。 对于金属而言λ为0.5-3 nm;无机非金属材料为2-4 nm;有机物和高分子为4-10 nm。 XPS定性分析的用途和基本原理? XPS定性分析元素组成 基本原理——光电效应:当一束光子辐照到样品表面时,光子可以被样品中某一元素的原子轨道上的电子所吸收,使得该电子脱离原子核的束缚,以一定的动能从原子内部发射出来,变成自由的光电子,而原子本身则变成一个激发态的离子。根据爱因斯坦光电发射定律有: E k =hν- E B 式中,E k为出射的光电子动能;hν为X射线源光子的能量;E B为特定原子轨道上的结合能(不同原子轨道具有不同的结合能)。 XPS定性分析元素的化学态与分子结构 基本原理:原子因所处化学环境不同,其内壳层电子结合能会发生变化,这种变化在谱图上表现为谱峰的位移(化学位移)。

这种化学环境的不同可以是与原子相结合的元素种类或者数量不同,也可能是原子具有不同的化学价态。 XPS定性分析的具体方法? A. 化合物中元素种类的分析——全谱分析 对于一个化学成分未知的样品,首先应作全谱扫描,以初步判定表面的化学成分。全谱能量扫描范围一般取0~1200 eV, 因为几乎所有元素的最强峰都在这一范围之内。由于组成元素的光电子线和俄歇线的特征能量值具唯一性,与XPS标准谱图手册和数据库的结合能进行对比,可以用来鉴别某特定元素的存在。 B. 化学态与结构分析——窄区扫描(也叫高分辨谱) 如果测定化学位移,或者进行一些数据处理,如峰拟合、退卷积、深度剖析等,则必须进行窄扫描以得到精确的峰位和好的峰形。扫描宽度应足以使峰的两边完整,通常为10eV~30eV。为获得较好的信噪比,可用计算机收集数据并进行多次扫描。 XPS定性分析鉴定顺序? 1) 鉴别总是存在的元素谱线,如C、O的谱线; 2) 鉴别样品中主要元素的强谱线和有关的次强谱线; 3) 鉴别剩余的弱谱线假设它们是未知元素的最强谱线。 XPS表征手册一般采用:Chastain, Jill, andRoger C. King, eds. Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Eden Prairie, MN: Physical Electronics, 1995. 为什么XPS是一种半定量分析手段?

相关主题
相关文档
最新文档