CSP技术简介

CSP技术简介
CSP技术简介

CSP技术简介

摘要

在电子应用技术智能化,多媒体化,网络化的发展趋势下,CSP技术应运而生。随着各学科领域的协调发展,CSP在90年代得到迅速发展和普及,并成为电子装联技术的主流。它不仅变革了传统电子电路组装的概念,其密度化,高速化,标准化等特点在电路组装技术领域占了绝对的优势。对于推动当代信息产业的发展起了重要的作用,并成为制造现代电子产品必不可少的技术之一。目前,它已经浸透到各个行业,各个领域,应用十分广泛。

目录

一、 CSP技术介绍

1.CSP技术的概念

二、CSP技术的特点及分类

1.CSP技术的特点

2.CSP的基本结构及分类

3.CSP封装技术展望

三、CSP技术的应用

1.CSP技术的障碍

2. 电路板装配评估与试验载体设计

3.CSP封装概况

四、结论

一、CSP技术介绍

1.CSP技术的概念

对于CSP,有多种定义:日本电子工业协会把CSP定义为芯片面积与封装体面积之比大于80%的封装;美国国防部元器件供应中心的J-STK-012标准把CSP定义为LSI封装产品的面积小于或等于LSI芯片面积的120%的封装;松下电子工业公司将之定义为LSI封装产品的边长与封装芯片的边长的差小于Imm的产品等。这些定义虽然有些差别,但都指出了CSP产品的主要特点:封装体尺寸小。

如今人们常见的一种关键技术是CSP(芯片尺寸封装)。CSP技术的魅力在于它具有诸多优点,如减小封装尺寸、增加针数、功能∕性能增强以及封装的可返工性等。CSP的高效优点体现在:用于板级组装时,能够跨出细间距(细至0.075mm)周边封装的界限,进入较大间距(1,0.8,0.75,0.5,0.4mm)区域阵列结构。已有许多CSP器件在消费类电信领域应用多年了,人们普遍认为它们是SRAM与DRAM、中等针数ASIC、快闪存储器和微处理器领域的低成本解决方案。CSP可以有四种基本特征形式:即刚性基、柔性基、引线框架基和晶片级规模。CSP技术可以取代SOIC和QFP器件而成为主流组件技术。CSP组装工艺有一个问题,就是焊接互连的键合盘很小。通常0.5mm间距CSP的键合盘尺寸为0.250~0.275mm。如此小的尺寸,通过面积比为0.6甚至更低的开口印刷焊膏是很困难的。不过,采用精心设计的工艺,可成功地进行印刷。而故障的发生通常是因为模板开口堵塞引起的焊料不足。板级可靠性主要取决于封装类型,而CSP 器件平均能经受-40~125℃的热周期800~1200次,可以无需下填充。然而,如果采用下填充材料,大多数CSP的热可靠性能增加300%。CSP器件故障一般与焊料疲劳开裂有关。

二、CSP技术的特点及分类

1.CSP技术的特点

根据J-STD-012标准的定义,CSP是指封装尺寸不超过裸芯片1.2倍的一种先进的封装形式。CSP 实际上是在原有芯片封装技术尤其是BGA小型化过程中形成的,有人称之为μBGA(微型球栅阵列,现在仅将它划为CSP的一种形式),因此它自然地具有BGA封装技术的许多优点。

(1)封装尺寸小,可满足高密封装 CSP是目前体积最小的VLSI封装之一。

一般地,CSP封装面积不到0.5mm节距QFP的 1/10,只有BGA的1/3~1/10。在各种相同尺寸的芯片封装中,CSP可容纳的引脚数最多,适宜进行多引脚数封装,甚至可以应用在I/O数超过2000 的高性能芯片上。例如,引脚节距为0.5mm,封装尺寸为40×40的QFP,引脚数最多为304根,若要增加引脚数,只能减小引脚节距,但在传统工艺条件下,QFP难以突破0.3mm的技术极限;与 CSP相提并论的是BGA封装,它的引脚数可达600~1000根,但值得重视的是,在引脚数相同的情况下,CSP的组装远比BGA容易。

(2)电学性能优良 CSP的内部布线长度(仅为0.8~1.0mm)比QFP或BGA的布线长度短得多,寄生引线电容(<0.001mΩ)、引线开关噪声只有DIP(双列直插式封装)的1/2。这些主要电学性能指标已经接近裸芯片的水平,在时钟频率已超过双G的高速通信领域,LSI芯片的CSP将是十分理想的选择。

(3)测试、筛选、老化容易MCM技术是当今最高效、最先进的高密度封装之一,其技术核心是采用

裸芯片安装,优点是无内部芯片封装延迟及大幅度提高了组件封装密度,因此未来市场令人乐观。但它的裸芯片测试、筛选、老化问题至今尚未解决,合格裸芯片的获得比较困难,导致成品率相当低,制造成本很高;而CSP则可进行全面老化、筛选、测试,并且操作、修整方便,能获得真正的KGD芯片,在目前情况下用CSP替代裸芯片安装势在必行。

(4)散热性能优良 CSP封装通过焊球与PCB板的接触面积小,使芯片向PCB板散热就相对困难。

测试结果表明,通过传导方式的散热量可占到80%以上。

同时,CSP芯片正面向下安装,可以从背面散热,且散热效果良好,10mm×10mm CSP的热阻为35℃

/W,而TSOP、QFP的热阻则可达40℃/W。若通过散热片强制冷却,CSP的热阻可降低到4.2,而QFP的则为11.8。

(5)封装内无需填料大多数CSP封装中凸点和热塑性粘合剂的弹性很好,不会因晶片与基底热膨胀系数不同而造成应力,因此也就不必在底部填料(underfill),省去了填料时间和填料费用,这在传统的SMT封装中是不可能的。

(6)制造工艺、设备的兼容性好 CSP与现有的SMT工艺和基础设备的兼容性好,而且它的引脚间距完全符合当前使用的SMT标准(0.5~1mm),无需对PCB进行专门设计,而且组装容易,因此完全可以利用现有的半导体工艺设备、组装技术组织生产。

2. CSP的基本结构及分类

CSP的结构主要有4部分:IC芯片,互连层,焊球(或凸点、焊柱),保护层。互连层是通过载带自动焊接(TAB)、引线键合(WB)、倒装芯片(FC)等方法来实现芯片与焊球(或凸点、焊柱)之间内部连接的,是CSP封装的关键组成部分。

目前全球有50多家IC厂商生产各种结构的CSP产品。根据目前各厂商的开发情况,可将CSP封装分为下列5种主要类别:

(1)柔性基板封装(Flex Circuit Interposer)由美国Tessera公司开发的这类CSP封装的基本结构如图2所示。主要由IC芯片、载带(柔性体)、粘接层、凸点(铜/镍)等构成。载带是用聚酰亚胺和铜箔组成。它的主要特点是结构简单,可靠性高,安装方便,可利用原有的TAB (Tape Automated Bonding)设备焊接。

(2)刚性基板封装(Rigid Substrate Interposer)由日本Toshiba公司开发的这类CSP封装,实际上就是一种陶瓷基板薄型封装,其基本结构见图3。它主要由芯片、氧化铝(Al2O 3)基板、铜(Au)凸点和树脂构成。通过倒装焊、树脂填充和打印3个步骤完成。它的封装效率(芯片与基板面积之比)可达到75%,是相同尺寸的 TQFP的2.5倍。

(3)引线框架式CSP封装(Custom Lead Frame)由日本Fujitsu公司开发的此类CSP封装基本结构如图4所示。它分为Tape-LOC和MF-LOC

两种形式,将芯片安装在引线框架上,引线框架作为外引脚,因此不需要制作焊料凸点,可实现芯片与外部的互连。它通常分为Tape-LOC和MF-LOC 两种形式。

(4)圆片级CSP封装(Wafer-Level Package)由ChipScale公司开发的此类封装。它是在圆片前道工序完成后,直接对圆片利用半导体工艺进行后续组件封装,利用划片槽构造周边互连,再切割分离成单个器件。WLP主要包括两项关键技术即再分布技术和凸焊点制作技术。它有以下特点:①相当于裸片大小的小型组件(在最后工序切割分片);②以圆片为单位的加工成本(圆片成本率同步成本);

③加工精度高(由于圆片的平坦性、精度的稳定性)。

(5)微小模塑型CSP (Minute Mold) 由日本三菱电机公司开发的CSP结构如图6所示。它主要由IC芯片、模塑的树脂和凸点等构成。芯片上的焊区通过在芯片上的金属布线与凸点实现互连,整个芯片浇铸在树脂上,只留下外部触点。这种结构可实现很高的引脚数,有利于提高芯片的电学性能、减少封装尺寸、提高可靠性,完全可以满足储存器、高频器件和逻辑器件的高I/O数需求。同时由于它

无引线框架和焊丝等,体积特别小,提高了封装效率。

除以上列举的5类封装结构外,还有许多符合 CSP定义的封装结构形式如μBGA、焊区阵列CSP、叠层型CSP(一种多芯片三维封装)等。

3 .CSP封装技术展望

(1) 有待进一步研究解决的问题

尽管CSP具有众多的优点,但作为一种新型的封装技术,难免还存在着一些不完善之处。

○1标准化每个公司都有自己的发展战略,任何新技术都会存在标准化不够的问题。尤其当各种不同形式的CSP融入成熟产品中时,标准化是一个极大的障碍。例如对于不同尺寸的芯片,目前有多种CSP 形式在开发,因此组装厂商要有不同的管座和载体等各种基础材料来支撑,由于器件品种多,对材料的要求也多种多样,导致技术上的灵活性很差。另外没有统一的可靠性数据也是一个突出的问题。CSP 要获得市场准入,生产厂商必须提供可靠性数据,以尽快制订相应的标准。CSP迫切需要标准化,设计人员都希望封装有统一的规格,而不必进行个体设计。为了实现这一目标,器件必须规范外型尺寸、电特性参数和引脚面积等,只有采用全球通行的封装标准,它的效果才最理想。

○2可靠性可靠性测试已经成为微电子产品设计和制造一个重要环节。CSP常常应用在VLSI芯片的制备中,返修成本比低端的QFP要高,CSP的系统可靠性要比采用传统的SMT封装更敏感,因此可靠性问题至关重要。虽然汽车及工业电子产品对封装要求不高,但要能适应恶劣的环境,例如在高温、高湿下工作,可靠性就是一个主要问题。另外,随着新材料、新工艺的应用,传统的可靠性定义、标准及质量保证体系已不能完全适用于CSP开发与制造,需要有新的、系统的方法来确保CSP 的质量和可靠性,例如采用可靠性设计、过程控制、专用环境加速试验、可信度分析预测等。可以说,可靠性问题的有效解决将是CSP成功的关键所在。

○3成本价格始终是影响产品(尤其是低端产品)市场竞争力的最敏感因素之一。尽管从长远来看,更小更薄、高性价比的CSP封装成本比其他封装每年下降幅度要大,但在短期内攻克成本这个障碍仍是一个较大的挑战。

目前CSP是价格比较高,其高密度光板的可用性、测试隐藏的焊接点所存在的困难(必须借助于X 射线机)、对返修技术的生疏、生产批量大小以及涉及局部修改的问题,都影响了产品系统级的价格比常规的BGA器件或TSOP/TSSOP/SSOP器件成本要高。但是随着技术的发展、设备的改进,价格将会不断下降。目前许多制造商正在积极采取措施降低CSP价格以满足日益增长的市场需求。

随着便携产品小型化、OEM(初始设备制造)厂商组装能力的提高及硅片工艺成本的不断下降,圆片级CSP封装又是在晶圆片上进行的,因而在成本方面具有较强的竞争力,是最具价格优势的CSP封装形式,并将最终成为性能价格比最高的封装。

此外,还存在着如何与CSP配套的一系列问题,如细节距、多引脚的PWB微孔板技术与设备开发、CSP在板上的通用安装技术等,也是目前CSP厂商迫切需要解决的难题。

(2) CSP的未来发展趋势

○1技术走向终端产品的尺寸会影响便携式产品的市场同时也驱动着CSP的市场。要为用户提供性能最高和尺寸最小的产品,CSP是最佳的封装形式。顺应电子产品小型化发展的的潮流,IC制造商正致力于开发0.3mm甚至更小的、尤其是具有尽可能多I/O数的CSP产品。据美国半导体工业协会预测,目前CSP最小节距相当于2010年时的BGA水平(0.50 mm),而2010年的CSP最小节距相当于目前的倒装芯片(0.25 mm)水平。

由于现有封装形式的优点各有千秋,实现各种封装的优势互补及资源有效整合是目前可以采用的快速、低成本的提高IC产品性能的一条途径。例如在同一块PWB上根据需要同时纳入SMT、DCA,BGA,CSP封装形式(如EPOC技术)。目前这种混合技术正在受到重视,国外一些结构正就此开展深入研究。

对高性价比的追求是圆片级CSP被广泛运用的驱动力。近年来WLP封装因其寄生参数小、性能高且尺寸更小(己接近芯片本身尺寸)、成本不断下降的优势,越来越受到业界的重视。WLP从晶圆片开始到做出器件,整个工艺流程一起完成,并可利用现有的标准SMT设备,生产计划和生产的组织可以做到最优化;硅加工工艺和封装测试可以在硅片生产线上进行而不必把晶圆送到别的地方去进行封装测试;测试可以在切割CSP封装产品之前一次完成,因而节省了测试的开支。总之,WLP 成为未来CSP 的主流已是大势所驱[13~15]。

○2应用领域 CSP封装拥有众多TSOP和BGA封装所无法比拟的优点,它代表了微小型封装技术发展的方向。一方面,CSP将继续巩固在显示屏|显示器件等方面将会大有作为,例如受数字化技术驱动,便携产品厂商正在扩大CSP在DSP中的应用,美国TI公司生产的CSP封装DSP产品目前已达到90%以上。

此外,CSP在无源器件的应用也正在受到重视,研究表明,CSP的电阻、电容网络由于减少了焊接连接数,封装尺寸大大减小,且可靠性明显得到改善。

○3市场预测 CSP技术刚形成时产量很小,1998年才进入批量生产,但近两年的发展势头则今非昔比,2002年的销售收入已达10.95亿美元,占到IC市场的5%左右。国外权威机构“Electronic Trend Publications”预测,全球CSP的市场需求量年内将达到64.81亿枚,2004年为88.71亿枚, 2005年将突破百亿枚大关,达103.73亿枚,2006年更可望增加到126.71亿枚。尤其在存储器方面应用更快,预计年增长幅度将高达54.9%。

三、 CSP的应用

集成电路(IC)包装的功能是提供芯片上的接合片与PCB上的通孔或者附着焊盘的空间转化。在通孔(through-hole)包装的时代,外包装引脚的间距通常是 100-mils(2.54mm)。表面贴装技术将周围引脚型包装的引脚间距推到 0.5 mm,现在是 0.4 mm。通过减少引脚间距到 0.3mm 来将包装密度提得更高,已经遇到了严重的阻力。用BGA技术,将周围引脚包装转换成面积排列,它提供豁然放松间距的一个新的替代方法。

在过去二十到三十年里发展的各种包装中,揭示了一个不变的趋势:包装越来越难达到其空间转化的

功能。我们可以进行一个比较,一边是使用双排引脚框,从芯片到板上大量的输出端数;另一边是采用塑料球栅阵列(PBGA)包装,基板上高密度的布线。

CSP的出现带来甚至更大的困难。前面的包装提供从芯片模到外引脚的输出端数。可是,对于一个与芯片模相同尺寸的CSP,不存在包装内输出端的机会;相反,从接合焊盘到外部连接的输入端是必要的。甚至对一个比芯片模尺寸稍大的CSP,输出端可用的空间也十分有限。因此,多数CSP是通过非传统的方法,如柔性电路,构造的,因为引脚框和印刷电路基板是不能达到所要求的高布线密度。虽然包装内部的布线问题可通过构造方法解决,包装外的布线问题还是存在。

1.CSP技术的障碍

(1)PCB技术

CSP的基本问题是硅技术进步比PCB技术更快。所有外部引脚不得不限制在芯片模的外形内或者裸露外面。随着硅处理技术的相继产生,芯片模缩小,外部引脚不可避免地缩小到超出传统的FR-4的布线能力。

图一是为一个45个锡球在0.65mm间距上排列的

CSP的电路板布线,显示它可以用合理的标准FR-4设计

规则在一层上布线。可是,如果该CSP的间距由0.65mm

减少到0.5mm,那么需要更进取的设计规则。在相同的

0.65mm间距上为更高引脚数的包装布线也是昂贵的,因

为有必要使用不只一个布线层、可能用到盲孔(blind via)

因此,今天对CSP的需求多数局限在低引脚数的元件,如

内存,间距范围是0.65mm~0.80mm。四周引脚的CSP可

达到0.5mm的间距,可是,这些本来就局限于低引脚数。

当然,CSP的布线问题不是传统的FR-4的相对粗糙的设计规则所出现的唯一问题。小型化要求更细的线与空隔和更小的通路孔(via),简单地减少电路板“不动产”。因此,PCB工业正投入大量资金在有组合层和微型通路孔(microvia)的先进电路板技术,特别是在日本。随着具有先进电路板技术的产品变得越来越盛行,它们将使更复杂的CSP进入使用。可是,FR-4仍保持现在的

标准,由于其低成本。

(2)成本

图二显示一个世界范围内CSP产量的预告。今天的产量 - 在总

IC量的大约0.05% - 很低。对接受CSP的另一个障碍是成本。CSP的

现时成本非常高,通常比相当的传统包装贵 1.5 ~ 2 倍。随着产量增

加,成本将可能接近传统包装的类似水平。多数CSP具有固有的低成

本结构,应该最终匹敌那些基于引脚框的包装,如TSOP(thin small outline package)。图三显示未来成本的一个预测。

将影响成本降低速度的因素是在研究开发和设备中的初始投资的回报有多快。产量达到形成规模效应的那一点的速度有多快,也将影响成本。

(3)可制造性

第三个主要障碍是板的装配工艺。评估技术成熟性和开发基础设施的一个有效方法是通过一个在“食物链”中涉及关键角色的工作合作伙伴。为了调查研究CSP的准备状态,成立了一个合作小组:AMD公司提供硅与包装、Hadco和Zycon公司(在该工程项目期间是两间分开的公司)提供板、Solectron公司提供板的设计和装配技术、还有Tessera公司提供包装技术(μBGA?)。

到现在为止,传统的BGA已经在工业中得到“临界质量(critical mass)”的接受,由于易于电路板装配而得到加速。其焊接附着的最具戏剧性的方面是在回流期间锡球的自我对中(self-centering)。因为微型BGA也有一个阵列的锡球,它也会分享这个有利的特性。另一方面,锡球较小(0.3mm和大约0.65mm 比较),间距更细小(0.5mm ~ 0.75mm 与1.0mm ~ 1.27mm比较)。合作小组的目标是要建立这些特性的最终结果。

2.电路板装配评估与试验载体设计

今天对CSP的应用都可能是诸如内存这样的低引脚数的元件和诸如微处理器之类的中等引脚数的元件(达到大约200)。因此,合作小组课题的一个目标是评估这些包装的可制造性,特别是一种设计用于闪存的44引脚的微型BGA,和一种188个输入输出的试验包装。内存所采用的两种间距是 0.65mm 和 0.75mm,两种都得到评估。那个188-I/O的试验包装是0.5 mm 间距的。

CSP应用大多数都可能包括各种其它的包装。为了探讨在制造合格率和为制造而设计设计(DFM, design for manufacturing)方面的问题,一个试验载体应该包括各种元件的混合和应该是双面的。表一列出了可选择的元件。

表一、用于试验载体所选择的元件

包装引脚数、间距每板的数量

μBGA 测试包装44, 0.75mm 2

μBGA 闪存44, 0.65mm 2

μBGA 测试包装188, 0.5mm 1

TQFP 100, 0.5mm 2

塑料BGA 208, 1.27mm 1

第二类型TSOP 24, 0.8mm 2

SOIC 16, 50 mil 2

SOIC 8, 50 mil 4

片状电容? 34

PCM CIA 边缘连接器68, 1.27mm 1

电路板是传统的FR-4,与大多数今天便携式产品一致。包括该0.5mm间距的、188引脚的微型BGA包装的基本原因 - 虽然用传统的FR-4很难布线 - 是要评估是否电路板装配工艺可以就这样延伸应用到该包装,因此表示未来发展已经就绪。所有元件都是用串级链式的结构内部接合的,符合电路板上的串级链布局。因此,检查每个焊接点的电气连续性成为可能。板是用两种表面处理制造的:有机焊锡保护层(OSP, organic solder protectant)和镍/金涂层;HASL是不适合于这些密间距(fine pitch)元件的。

3.CSP封装概况

(1)封装形式

CSP封装内存不但体积小,同时也更薄,其金属基板到散热体的最有效散热路径仅有0.2毫米,大大提高了内存芯片在长时间运行后的可靠性,线路阻抗显著减小,芯片速度也随之得到大幅度提高。

CSP封装内存芯片的中心引脚形式有效地缩短了信号的传导距离,其衰减随之减少,芯片的抗干扰、抗噪性能也能得到大幅提升,这也使得CSP的存取时间比BGA改善15%-20%。在CSP的封装方式中,内存颗粒是通过一个个锡球焊接在PCB板上,由于焊点和PCB板的接触面积较大,所以内存芯片在运行中所产生的热量可以很容易地传导到PCB板上并散发出去。CSP封装可以从背面散热,且热效率良好,CSP的热阻为35℃/W,而TSOP热阻40℃/W。

CSP技术是在电子产品的更新换代时提出来的,它的目的是在使用大芯片(芯片功能更多,性能更好,芯片更复杂)替代以前的小芯片时,其封装体占用印刷板的面积保持不变或更小。正是由于CSP产品的封装体小、薄,因此它的手持式移动电子设备中迅速获得了应用。在1996年8月,日本Sharp公司就开始了批量生产CSP产品;在1996年9月,日本索尼公司开始用日本TI和NEC公司提供的CSP产品组装摄像机;在1997年,美国也开始生产CSP产品。世界上有几十家公司可以提供CSP产品,各类CSP产品品种多达一百种以上。

(2)CSP封装产品工艺流程

CSP产品的品种很多,封装类型也很多,因而具体的封装工艺也很多。不同类型的CSP产品有不同的封装工艺,一些典型的CSP产品的封装工艺流程如下:

○1、柔性基片CSP产品的封装工艺流程

柔性基片CSP产品,它的芯片焊盘与基片焊盘问的连接方式可以是倒装片键合、TAB键合、引线键合。采用的连接方式不同,封装工艺也不同。

a.采用倒装片键合的柔性基片CSP的封装工艺流程

圆片→二次布线(焊盘再分布) →(减薄)形成凸点→划片→倒装片键合→模塑包封→(在基片上安装焊球) →测试、筛选→激光打标

b.采用TAB键合的柔性基片CSP产品的封装工艺流程

圆片→(在圆片上制作凸点)减薄、划片→TAB内焊点键合(把引线键合在柔性基片上) →TAB键合线切割成型→TAB外焊点键合→模塑包封→(在基片上安装焊球)

→测试→筛选→激光打标

C.采用引线键合的柔性基片CSP产品的封装工艺流程

圆片→减薄、划片→芯片键合→引线键合→模塑包封→(在基片上安装焊球) →测试、筛选→激光打标

○2、硬质基片CSP产品的封装工艺流程

硬质基片CSP产品封装工艺与柔性基片的封装工艺一样,芯片焊盘与基片焊盘之间的连接也可以是倒装片键合、TAB键合、引线键合。它的工艺流程与柔性基片CSP的完全相同,只是由于采用的基片材料不同,因此,在具体操作时会有较大的差别。

○3、引线框架CSP产品的封装工艺流程

引线框架CSP产品的封装工艺与传统的塑封工艺完全相同,只是使用的引线框架要小一些,也要薄一些。因此,对操作就有一些特别的要求,以免造成框架变形。引线框架CSP产品的封装工艺流程如下:

圆片→减薄、划片→芯片键合→引线键合→模塑包封→电镀→切筛、引线成型→测试→筛选→激光打标

○4、圆片级CSP产品的封装工艺流程

a.在圆片上制作接触器的圆片级CSP的封装工艺流程;

圆片→二次布线→减薄→在圆片上制作接触器→接触器电镀→测试、筛选→划片→激光打标

b.在圆片上制作焊球的圆片级CSP的封装工艺流程

圆片→二次布线→减薄→在圆片上制作焊球→模塑包封或表面涂敷→测试、筛选→划片→激光打标

○5、叠层CSP产品的封装工艺流程

叠层CSP产品使用的基片一般是硬质基片。

a.采用引线键合的叠层CSP的封装工艺流程;

圆片→减薄、划片→芯片键合→引线键合→包封→在基片上安装焊球→测试→筛选→激光打标采用引线键合的CSP产品,下面一层的芯片尺寸最大,上面一层的最小。芯片键合时,多层芯片可以同时固化(导电胶装片),也可以分步固化;引线键合时,先键合下面一层的引线,后键合上面一层的引线。

b.采用倒装片的叠层CSP产品的封装工艺流程

圆片→二次布线→减薄、制作凸点→划片→倒装键合→(下填充)包封→在基片上安装焊球→测试→筛选→激光打标

在叠层CSP中,如果是把倒装片键合和引线键合组合起来使用。在封装时,先要进行芯片键合和倒装片键合,再进行引线键合。

总结

本论文主要介绍的是SMT的最新技术中的CSP技术,介绍了CSP技术在将来的运用中将会遇到的障碍,也介绍了总体的SMT技术在未来运用的领域。论文内容比较丰富,实用性较强,对以后的工作有一定的参考价值。

本次论文是在刘立钧老师的指导和帮助下完成的。他在我完成毕业论文的进程中不断地关心和督导,帮忙解决论文中遇到的许多问题,并告诉我解决的方法,指出了正确的努力方向,使我在毕业论文中少走了许多弯路,让我顺利的完成了毕业论文,在这里非常感谢刘老师的指导和帮助,并以诚挚的谢意。

SDN与NFV技术介绍

ABCD 1、BGP协议的MED属性使用范围是什么?B A.AS内部 B.AS之间 2、如果下一跳地址为 1.1.1.1,下列默认路由配置正确的是(A)。 A.iproute0.0.0.00.0.0.01.1.1.1 B.iproute0.0.0.01.1.1.10.0.0.0 C.iproute1.1.1.10.0.0 .00.0.0.0 D.iproute,1.1.1.10.0.0.01.1.1.1 3、二层交换机的所有接口在一个(),路由器每一个接口是一个(B)。 A.冲突域,广播域 B.广播域,广播域 C.冲突域,冲突域 D.以上都不对 1、EVPN(EthernetVPN)即MP-BGPEVPN,其基本功能()ABCD A.EVPN可以实现VXLAN隧道的自动建立 B.EVPN可以传递租户间的主机MAC信息 C.EVPN可以传递租户间的主机ARP信息 D.利用VXLAN作为数据的转发面实现流量的转发2、OSPF是一个二层体系的路由协议,由骨干区域和分支区域构成,要求分支区域必须与骨干 区域相连,如果不和骨干区域直接相连的网络如何解决网络连接。(CD) A.桥接技术 B.路由技术 C.虚链路技术 D.隧道技术 1、内存软件虚拟化GVA->GPA->HVA->HPA,两两之间前者到后者是由(B)完成的。 A.前两步 Host机的系统页表完成,中间两步由VMM 定义的映射表完成,后面两步则由虚拟机的系统页表完成 B.前两步由虚拟机的系统页表完成,中间两步由VMM 定义的映射表完成,后面两步则由Host机的系统页表完成 C.前两步由 VMM 定义的映射表完成,中间两步由虚拟机的系统页表完成,后面两步则由Host机的系统页表完成 D.前两步由VMM定义的映射表完成,中间两步Host机的系统页表完成,后面两步则由虚拟机的系统 页表完成 2、SRIOV与OVS谁的转发性能高B A.OVS B.SRIOV C.一样 D.分场景,不一定 3、MANO中主要用于虚拟资源管理的是(A) A.VIM B.NFVO C.VNFM D.NFVI 1、针对虚拟化网元的管理,NFVO+将()功能纳入进来AB A.FACAPS管理 B.NFVO C.VIM D.VNF 2、虚拟化的优势有()ABC A.降低运营成本 B.提高应用兼容性 C.动态调度资源 D.资源独立 1、对于RIP协议最大的cost为()跳。B A.10 B.15 C.20 D.25

SDN关键技术_综述

SDN关键技术及趋势 摘要:随着信息通信技术中大量新型业务(如移动互联网、社交网络、云计算和大数据)的出现,未来网正面临着新的挑战,而随时访问性,高带宽,动态管理是至关重要的。然而,基于专有设备手动配置的传统方法是繁琐且易出错的,而且他们不能充分利用网络基础设施的能力。最近,软件定义网络(SDN)已经被称为未来互联网最有前途的解决方案之一。SDN具有两个显著的特点,包括控制平面从数据平面中解耦并且为网络应用程序开发提供了可编程性。因此,SDN被认为能提供更有效的配置,更好的性能和更高的灵活性以适应创新的网络设计。本文总结了SDN活跃研究领域的最新进展。我们首先通过介绍SDN的起源提出一个普遍接受的SDN定义。然后我们简要的介绍了SDN逻辑架构及其技术特征。接着详细介绍了SDN关键技术及其相关领域的研究成果。最后我们描述了我们将来面临的挑战和SDN的发展趋势。 关键词:软件定义网络;OpenFlow;关键技术; Key technologies and Development of SDN Abstract:Emerging mega-trends (e.g., mobile, social, cloud, and big data) in information and communication technologies (ICT) are commanding new challenges to future Internet, for which ubiquitous accessibility, high bandwidth, and dynamic management are crucial. However, traditional approaches based on manual configuration of proprietary devices are cumbersome and error-prone, and they cannot fully utilize the capability of physical network infrastructure. Recently, software-defined networking (SDN) has been touted as one of the most promising solutions for future Internet. SDN is characterized by its two distinguished features, including decoupling the control plane from the data plane and providing programmability for network application development. As a result, SDN is positioned to provide more efficient configuration, better performance, and higher flexibility to accommodate innovative network designs. This paper surveys latest developments in this active research area of SDN. We first present a generally accepted definition for SDN with introducing the origin of SDN. We then briefly present its logical architecture and technical characteristics. We then dwell on its key technologies, and the related research results. Finally, we describe the challenges we face and discuss futureresearch directions of this technology. Key words: Software-defined networking, OpenFlow. Key technologies 引言 随着社交网络、移动互联网、物联网、云计算[1]等业务领域的快速发展,大数据[3][4]正日益成为当前的焦点,其面向的海量数据处理也对网络提出了更高的要求。大数据应用依赖于预先定义好的计 算模式,在集中化的管理架构下运行,存在着大量的数据批量传输及相关的聚合/划分操作。数据的聚合和划分通常发生在一台服务器和一个拥有众多 服务器的服务器组之间,这也是大数据应用中最典型的网络流量模式。例如,在用于大数据处理的MapReduce算法的执行过程[2]中,来自众多mapper 服务器的中间结果需要集中汇总到一台reducer服务器上进行归约(Reduce)操作,而MapReduce 的洗牌(Shuffle)过程更是由mapper和reducer之前的多次数据聚合组合而成。大数据处理过程中的每一次聚合都将导致大量服务器之间的海量数据交换,从而需要极高的网络带宽支持,而如果按照超额认购(oversubscribe)带宽的方式为每台服务器预留网络资源,将导致网络成为瓶颈,同时造成资源浪费。因此,对于大数据业务而言,他更需要对网络进行快速、频繁的实时配置,按需调用网络资源。 但是,传统的网络却难以满足云计算、大数据,以及相关业务提出的灵活的资源需求,这主要是因为它已经过于复杂从而只能处于静态的运作模式。当前,网络中存在着大量各种各样的互不相干的协议,它们被用于在不同间隔距离、不同链路速度、不同拓扑结构的网络主机之间建立网络连接。因为历史原因,这些协议的研发和应用通常是彼此分离的,每个协议通常只是为了解决某个专门的问题而缺少对共性的抽象,这就导致了当前网络的复杂性。

SDN技术试题库

SDN技术试题库 一、填空题 1、SDN的典型架构分为哪三层、、。 2、SDN技术的关键点是与是分离的。 3、SDN本质上具有、和三大特性。 4、网络虚拟化的本质是要能够抽象底层网络的,能够在逻辑上对 进行分片或者整合,从而满足各种应用对于网络的不同需求 二、判断题 1、云计算的发展,是以虚拟化技术为基础的() 2、SDN的意义在于削弱底层基础设施的作用--软件可以实时地对其进行重新配置和编程() 3、现有网络中,对流量的控制和转发都依赖于网络设备实现( ) 4、OpenFlow最突出的优点是减少硬件交换机的成本() 三、选择题 1、SDN构架中的核心组件是() A 控制器 B 服务器 C 存储器 D 运算器 2、从SDN的应用领域角度来看,()是SDN第一阶段商用的重点。 A 电信运营商网络 B OpenFlow C 政企网络 D 数据中心 3、下列说法错的是() A 在新的生态体系中,架构最底层的交换设备只需要提供最基本、最简单的功能 B SDN适合于云计算供应商以及面对大幅扩展工作负载的企业 C SDN转发与控制分离的架构,可使得网络设备通用化、简单化

D SDN技术不能实现灵活的集中控制和云化的应用感知 4、在SDN网络中,网络设备只单纯的负责() A 流量控制 B 数据处理 C 数据转发 D 维护网络拓扑 四、解答题 1、简述SDN技术的优点。 2、简述OpenFlow与SDN的联系与区别。 3、当前SDN技术主要应用于哪些领域。 答案 填空 1、应用层控制层基础设施层 2、控制平面数据平面 3、控制和转发分离设备资源虚拟化通用硬件及软件可编程 4、物理拓扑网络资源 判断题 1 对 2 对 3 对 4 对 选择题 1、A 2、D 3、D 4、C 解答题 1、(1)提供网络结构的统一视图:对整个网络架构实现统一的查看,从而简化配置、管理和优化。

SDN与NFV技术介绍上课讲义

S D N与N F V技术介绍

单选题: 1.BGP协议的Community属性作用是什么? (A) A. 灵活标记路由 B. 记录AS路径信息 2.用户PC访问某域名时,进行域名解析的第一步是( A ) A. 查找本地的host文件和浏览器缓存 B. 向递归服务进行查询 C. 递归服务器会向根服务器发出查询请求 D. 递归服务器继续查询顶级域服务器 3.在OSPF协议中其他分支区域与骨干区域相连的路由器叫( B )。 A.内部路由器 B. 区域边界路由器 C. 自制系统边界路由器 D. 骨干路由器 4.内存软件虚拟化GVA -> GPA -> HVA -> HPA,两两之间前者到后者是由 ( B )完成的。 A.前两步Host 机的系统页表完成,中间两步由 VMM 定义的映射表完成,后 面两步则由虚拟机的系统页表完成 B. 前 两步由虚拟机的系统页表完成,中间两步由 VMM 定义的映射表完成,后面两 步则由 Host 机的系统页表完成 C. 前两步 由 VMM 定义的映射表完成,中间两步由虚拟机的系统页表完成,后面两步则 由 Host 机的系统页表完成 D. 前两步由 VMM 定义的映射表完成,中间两步Host机的系统页表完成,后面两步则由虚 拟机的系统页表完成

5.MANO中主要用于虚拟化网络生命周期及资源调度管理的是( B ) A. VIM B. NFVO C. VNFM D. NFVI 6.以下对于NFVO说法错误的是( D ) A. 全局资源视图,全局资源调度 B. 网络服务、虚链路 C. 网络拓扑 管理 D. NFV管理和调度 7.()需要手工配置路由条目,不能感知网络的情况。( A ) A. 静态路由 B. 动态路 由 C. 默认路由 D. 混合路由 8. 防火墙是在()执行访问控制策略的一组硬件和软件系统。( B ) A. 单个网络内 B. 两个 网络之间 C. 单个VLAN内 D. 都不对 9.()划分VLAN,用户物理位置移动,VLAN不必重新配置。( B ) A. 根据端口 B. 根据 MAC地址 C. 根据网络层 D. IP组播 10.要使端口组到达其他VLAN上的端口组,必须将VLAN ID设置为( B ) A. 80 B. 4095

SDN与NFV技术介绍考试题

BGP协议的local preference属性使用范围是什么? FLOW table 软件定义: 802.1: 以下属于块存储: 关于标准列表: Openstack和VMWare都可以作为VIM,() OpenStack是由控制节点,计算节点,网络节点,存储节点四大部分组成: OpenStack系统的部署架构

网络虚拟化功能最小单元是多少个: 内存软件: 新型电信设备采用( ) 实现软硬件分离,电信网元功能将以软件形式承载在统一资源池上形成电信云。 如果下一-跳地址为1.1.1.1 ,下列默认路由配置正确的是( ) 。 中国移动的SDN混合组网方案,虚拟化部分采用( ) 作为SDN接入,非虚拟化部分采用( ) 作为SDN接入。 SDN数据中心采用( ) 四层架构,实现多租户业务自动化开通、部署能力。

内存软件虚拟化GVA-> GPA-> HVA-> HPA,两两之间前者到后者是由( )完成的。 下列虚拟化技术属于半虚拟化技术的是( ) 要求高性能的应用,如数据库需要高IO , 一般使用( ) 存储技术。 MANO由哪几部分组成 NFV具备的特征有哪些 ( )划分VLAN ,用户物理位置移动,VLAN不必重新配置。 NAT地址转换在出方向.上转换IP报文头中的( )。

以下说法错误的是( ). 以下说法正确的是( )。 路由器的路由的过程有( )。 要使端口组到达其他VLAN上的端口组,必须将VLAN ID设置为() qemu-kvm是QEMU和KVM的结合,指用户态()模拟器+内核态()模块所构成的一套完整的虚拟化平台 hypervisor-种运行在(0的中间层软件可以允许多个操作系统和应用共享一套基础物理硬件 通过vMotion迁移包含几个阶段

SDN技术在通信网络技术中的应用优势

SDN技术在通信网络技术中的应用优势 SDN (Software Defined Network )技术将控制和转发进行分离统一南向与北向接口的制式,使控制平面获得更广泛的应用。SDN技术最大的特点就是将控制面与转发面抽离出来,继而集中控制平面的管理能力,借助软件可编程模式实现网络优化。 、SDN通信网络技术的现状 电力光通信网络主要提供的是电力通信通道的基础服务,目前的 核心技术是SDH/MSTP个别单位已经使用了WDM /OTN技术。组网模式大多以一般的SDG环网模式为主,环间业务的调整则主要利用大节点间设施支路转接。承载业务分型主要有变电站自动化系统、调度系统、会议电视、办公自动化等等。因为当前电力光通信网络设备类型较多,且不同设备其组网的独立性较强,无法进行统一的管理与调度。再加上不同通信网络设施的软硬件集中性较高,使其形成一个 较为密闭的系统。 、SDN通信网络技术优势 1?实现电力核心通信网的统一管控。在宽带网络流量不断扩增的 过程中,扩容成本随之递增,电力通信网络越来越繁杂多变,这使得电力通

信网的运营更加困难。SDN 技术的出现,让光网络与IP 网络之间的资源利用实现了统一管控的目的,使网络容量获得扩充,大大降低了通信成本。另外,在SDN 技术的应用下,资源的调度也更为灵活,流量的管控水平也更高,实现了智能管控的目的。 2.虚拟化软网络的技术应用。网络资源的虚拟化,能让光网络基础设备的优点更有效的展现出来,进而满足更多用户的不同业务需求,在确保服务品质的基础上高效的管控网络资源,使其获得利用的最大化。在网络资源虚拟化的基础上,光网络的“软网络”能力就变得更为强大。 3?通过SDN技术的应用,可以大大提高网络的安全防范能力。SDN 通过controller 的集中控制与管理可以有效地监管整体网络环境下的异常流量和异常路由路径。对于存在问题的网络因素,做到率先发现上报并给出处理措施。防范来自网络外部的DDOS流量泛洪等网络 攻击。 三、SDN技术优势与具体运用 早在SDN发展的初期,OpenRoads就提出将SDN运用到无线网络中。OpenRoads利用OpenFlow和SNMP在异构无线网络中实现了网络虚拟划分和终端移动管理,利用FlowVisor 划分虚拟网络,分割底层流量,简化了网络管控的方法。将SDN 引入到低速率的个人无线局域网,每一个物理设备包含一个微控制系统,支持灵活的数据转发规则。OpenRadio讨论了可编程的无线数据平面问题,提供软件抽象层和模块化的编程接口,可以处理不同

云网络技术与SDN架构设计

云网络技术与SDN架构设计

目录 1网络虚拟化的概念 (2) 2集团云网络建设挑战与目标 (6) 3基于SDN+VXLAN的网络虚拟化方案 (8)

1网络虚拟化的概念 计算虚拟化的思路是将物理服务器在逻辑层面上划分为多台虚拟的服务器,实现物理资源与逻辑资源的解耦。与这一思路一致,网络虚拟化通过将物理网络与逻辑网络解耦,实现网络资源的灵活调配。这里的网络资源,主要指逻辑网络的相关资源及路径,脱离物理网络设备的限制,能够随时被创建、删除、扩展、收缩,实现高度灵活性。在保持高度灵活性的同时,还能保证逻辑网络间的相互独立、隔离和安全。 传统的VLAN就是一种实现数据中心内部实现二层网络虚拟化的技术,它可以在物理网络的基础上划分出多个虚拟的二层网络,并为业务提供网络层的隔离。VLAN工作在OSI参考模型的第2层和第3层。是对一个物理二层网络LAN的虚拟化成多个virtual LAN,因此一个VLAN就是一个独立的广播域。 当前集团的网络架构中,按照VLAN来划分不同的业务,为不同业务之间提供了网络上的二层隔离。在当前的数据中心规模,VLAN是一种适宜的虚拟化网络分割选项,但在服务器的规模发展到一定程度时,该技术会出现以下三点问题: 虚拟机迁移范围受到网络架构限制:虚拟机迁移的网络属性要求,当其从一个物理机上迁移到另一个物理机上,虚拟机需要不间断业务,因 而需要其IP 地址、MAC 地址等参数维持不变,如此则要求业务网络是 一个二层网络,当前集团使用的VLAN+IRF2的网络虚拟化技术,虽然 可以简化拓扑、具备高可靠性,提供二层虚拟网络,但在网络的规模 和灵活性上有所欠缺,只适合小规模网络构建,且一般只适用于数据

SDN与NFC技术介绍-汇总

1、BGP协议的Community屈性作用是什么7 A.灵活的控制大量的路由 B.记录AS路径信息 标准答案:A 2、在OSPF协议中其他分支区域与Area()区域直连 A.2 B.O C.3 D.1 标准答案:B 3、VXLAN技术解决传统VLAN()个的限制 A.4096 B.16M C.32M D.48M 标准答案:A 1、SDN数据中心采用()四层架构,实现多租户业务自动化开通、部署能力。 A.应用层 B.云操作系统层 C.控制管理层 D.转发层

标准答案:ABCD 2、SDN控制器的解耦包括()两部分。 A.北向接口的接口 B.南向接口的解耦 C.控制协议 D.转发协议 准答案:AB 1、内存软件虚拟化GVA->GPA->HVA->HPA,两两之间前者到后者是由()完成的。OA.前两步Host机的系统页表完成,中间两步由VMM定义的映 B.前两步由虚拟机的系统质表完成,中 C.前两步由VMM定义的映射表完成,中间两步由虚拟机的系统 D.前两步由VMM定义的映射表完成 标准答案:B 2、MANO中主要用于虚拟化网元实例生命周期管理的是() O AVIM B.NFVO OCVNFM D.NFVI 杨准答案:C

3、以下存储技术中届于文件存储的是() )A.DAS B./SAN OC.NAS D./SAS 标准答案: C 1、针对虚拟化网元的管理,NFVO+将()功能纳入进来 口AFACAPS管理 B.NFVO 口CIM D.VNF 杨准备案:AB 2、NFV网络架构演进分为三个阶段,其中届于第三阶段的是() 国A.ATCA型 B.软硬解耦型 □C.IAAs D. PAAS 准答案:CD 1、默认路由为网塔和热码()的路由。

SDN控制器基础知识

SDN控制器基础知识 前言 SDN落地,测试先行。足以说明测试在SDN技术发展中起着举足轻重的作用。那么如何测试SDN,测好SDN,这就要求我们对SDN有一个很深的认识,对SDN的功能有一个全面的了解。本文将从SDN发展背景及其核心架构开始,逐步分篇给大家介绍一下SDN 控制器相关技术,以及如何测试与评估SDN控制器。 1 SDN产生的背景 互联网作为人类历史上最重要的发明之一,自发明以来已经深入到了人类生活的各个方面,包括工作、学习和生活方式。到目前为止互联网已经成为世界上规模最大、覆盖范围最广的基础设施。但是,由于互联网的设计初衷并不是为了只是如此大规模的应用,其体系架构在可扩展性、安全性、移动性、服务质量保障等方面问题随着网络规模的增长逐渐凸显。针对当前的网络架构的种种问题,无论是采用渐进式或者颠覆式进行网络架构/协议创新,其最大的问题在于无法进行现网大规模的验证。 软件定义网络(SDN)概念为网络创建带来了新的契机,它最初是由美国斯坦福大学CLeanslate研究组提出的一种新型的网络架构,设计初衷是为了解决无法利用现有网络中的大规模真实流量和丰富应用进行试验,以便研究如何提高网络的速度、可靠性、能效和安全性等问题。其基本思想是把当前IP网络互连节点中决定报文如何转发的复杂控制逻辑从交换机/路由器分离出来,以便通过软件编程实现硬件对数据转发规则的控制,最终达到对流量进行自由操控的目的。 2 SDN的基本架构 SDN是一种新型的网络架构,它的设计理念是将网络的控制平面与数据转发平面进行分离,并实现可编程化控制。SDN网络的架构定义如下:

图 1. SDN网络体系架构图 其中,应用层包括各种不同的业务和应用;控制层主要负责处理数据平面自有的编排,维护网络拓扑,状态信息等;基础设施层(数据转发层)负责基于流表的数据处理、转发和状态收集。 3 SDN控制器 在SDN的架构中,控制器可以说是SDN的核心。它是连接底层交互设备与上层应用桥梁。一方面,控制器通过南向接口协议对底层网络交换设备进行集中管理,状态监测、转发决策以及处理和调度数据平面的流量;另一方面,控制器通过北向接口向上层应用开放多个层次的可编程能力,允许网络用户根据特定的应用场景灵活地制定各种网络策略。其层次化的体系架构如下图所示:

Openflow及SDN技术简介

Openflow及SDN 1.网络虚拟化之SDN和OPENFLOW 云计算的发展,是以虚拟化技术为基础的。云计算服务商以按需分配为原则,为客户提供具有高可用性、高扩展性的计算、存储和网络等IT资源。虚拟化技术将各种物理资源抽象为逻辑上的资源,隐藏了各种物理上的限制,为在更细粒度上对其进行管理和应用提供了可能性。近些年,计算的虚拟化技术(主要指x86平台的虚拟化)取得了长足的发展;相比较而言,尽管存储和网络的虚拟化也得到了诸多发展,但是还有很多问题亟需解决,在云计算环境中尤其如此。OpenFlow和SDN尽管不是专门为网络虚拟化而生,但是它们带来的标准化和灵活性却给网络虚拟化的发展带来无限可能。 OpenFlow起源于斯坦福大学的Clean Slate项目组 [1] 。CleanSlate项目的最终目的是要重新发明英特网,旨在改变设计已略显不合时宜,且难以进化发展的现有网络基础架构。在2006年,斯坦福的学生Martin Casado领导了一个关于网络安全与管理的项目Ethane[2],该项目试图通过一个集中式的控制器,让网络管理员可以方便地定义基于网络流的安全控制策略,并将这些安全策略应用到各种网络设备中,从而实现对整个网络通讯的安全控制。受此项目(及Ethane的前续项目Sane[3])启发,Martin和他的导师Nick McKeown教授(时任Clean Slate项目的Faculty Director)发现,如果将Ethane的设计更一般化,将传统网络设备的数据转发(data plane)和路由控制(control plane)两个功能模块相分离,通过集中式的控制器(Controller)以标准化的接口对各种网络设备进行管理和配置,那么这将为网络资源的设计、管理和使用提供更多的可能性,从而更容易推动网络的革新与发展。于是,他们便提出了OpenFlow的概念,并且Nick McKeown等人于2008年在ACM SIGCOMM 发表了题为OpenFlow: Enabling Innovation in Campus Networks[4]的论文,首次详细地介绍了OpenFlow的概念。该篇论文除了阐述OpenFlow的工作原理外,还列举了OpenFlow 几大应用场景,包括:1)校园网络中对实验性通讯协议的支持(如其标题所示);2) 网络管理和访问控制;3)网络隔离和VLAN;4)基于WiFi的移动网络;5)非IP网络;6)基于网络包的处理。目前关于OpenFlow的研究已经远远超出了这些领域。 基于OpenFlow为网络带来的可编程的特性,Nick和他的团队,进一步提出了SDN(Software Defined Network“软件定义网络”)的概念。

SDN与NFV技术介绍

单选题: 1.BGP协议的Community属性作用是什么?(A) A.灵活标记路由 B.记录AS路径信息 2.用户PC访问某域名时,进行域名解析的第一步 是( A ) A. 查找本地的host文件和浏览器缓存 B. 向递归服务进行查询 C. 递归服务器会向根服务器发出查询请求 D. 递归服务器继续查询顶级域服务器 3.在OSPF协议中其他分支区域与骨干区域相连的路由器叫 ( B )。 A.内部路由器 B.区域边界路由器 C.自制系统边界路由器 D.骨干路由器 4.内存软件虚拟化GVA->GPA->HVA->HPA,两两之间前者到后者是由(B)完成的。 A.前两步Host机的系统页表完成,中间两步由VMM定义的映射表完成,后面两步则由虚拟机的系统页表完成 B.前两步由虚拟机的系统页表完成,中间两步由VMM定义的映射表完成,后面两步则由Host机的系统页表完成 C.前两步由VMM定义的映射表完成,中间两步由虚拟机的系统页表完成,后面两步则由 Host机的系统页表完成 D.前两步由VMM定义的映射表完成,中间两步Host机的系统页表完成,后面两步则由虚拟机的系统页表完成 5.MANO A. B. C. D. 中主要用于虚拟化网络生命周期及资源调度管理的是( VIM NFVO VNFM NFVI B ) 6.以下对于NFVO说法错误的是(D) A. B. C. D. 全局资源视图,全局资源调度网络服务、虚链路 网络拓扑管理 NFV管理和调度 7.()需要手工配置路由条目,不能感知网络的情况。(A) A. 静态路由 B. 动态路由 C. 默认路由 D. 混合路由

8.防火墙是在()执行访问控制策略的一组硬件和软件系统。(B ) A. 单个网络内 B. 两个网络之间 C. 单个VLAN内 D. 都不对 9.()划 分VLAN,用户物理位置移动,VLAN不必重新配置。(B ) A. 根据端口 B. 根据MAC地址 C. 根据网络层 D. IP组播 10.要使端口组到达其他VLAN上的端口组,必须将VLANID设置为( B) A. 80 B. 4095 C. 8080 D. 3306 11.hypervisor一种运行在()的中间层软件,可以允许多个操作系统和应用共享一套基础物理硬件(A) A. B. C. D. 物理服务器和操作系统之间不同服务器之间 不同网络之间 不同操作系统之间 12.虚拟机的CPU数量目前支持最多()个vcpu(C) A. 16 B. 32 C. 64 D. 128 13.OpenStack功能区是整个OpenStack架构中最核心的部分,包括哪些功能(D) A.为OpenStack系统提供构建、部署、生命周期管理等功能 B.为OpenStack的运营运维提供辅助工具,包括系统监控、优化、计费、多区域 管理C.为OpenStack提供开放的API,通过SDN可以对系统进行定制化开发 D.是整个OpenStack架构中最核心的部分,包括计算、存储、网络、公共服务、大数据 服务等功能,提供了云计算的大部分的服务 14.Swift为了保证访问的安全性,首先在()认证访问者的身份和权限,获取获取访问令牌,然后才可以访问数据( A ) A. AuthenticationServer B. AccountServer C. ObjectContainer D. ManagerServer

SDN架构与解析

SDN架构与解析:深度开放与融合 长期以来,网络技术总是以被动方式进行演变,并且大量的技术革新都落地在网络设备本身,如带宽不断提升,从千兆到万兆、再到40G和100G;设备体系架构变化,也是为了性能地不断提升,从交换能力几十Gbps提升到T级别以致100T级别;组网变化,网络设备的N:1集群性质的虚拟化,在一定范围内和一定规模上优化了网络架构,简化了网络设计;大二层网络技术,通过消除环路因素,支持了虚拟化条件下的虚机大范围二层扩散性计算。 新的技术商用,总会引起设备的升级换代,并且随着流量的巨大变化,网络的部署与变更技术上越来越复杂,网络在应对流量变化上很难有良好的预期性,在当前方式下,一旦完成业务部署,服务器通过网线连入网络,应用流量吞吐对网络的影响就难以控制、网络的调整也就变得相当滞后。 软件定义网络——SDN(Software Defined Network)的出现和理念演进,开始改变网络被动性的现状,使网络具备较大灵活程度的“定义”能力;这种可定义性,是网络主动“处理”流量而不仅仅是被动“承载”流量,并使得网络与计算之间的关系不仅仅是“对接”,而是“交互”。 SDN的思想集中体现在控制面与实体数据转发层面之间分离,这对网络交换机的工作方式产生了深远的影响。高端用户原本就不满足于使用网络预先设定好的功能,而是希望在自己的业务功能不断丰富变化的过程中,能够按照自身需求快速进行调整。而在控制层面分离出来后,或者说控制层面可以开放出来,更能实现虚拟化的灵活性,使得用户能够进行程序编制,那么基于应用与流量变化的快速响应,便不需要完全依赖于设备供应商的长周期软硬件升级来完成。 SDN的思想是将更多的控制权交给网络使用者,除了设计部署、配置变更,还可以进行网络软件的重构,使得新的技术验证可以先于商业化。这种网络能够以抽象化的方式解决网络的复杂性问题,解除了用户收支网络功能和特性的紧约束,能够在更高层面研究和满足项业务需求。 1、当前主流SDN的概念探讨 最经典的SDN架构描述是来自ONF(Open Network Foundation)的SDN体系架构图(如图1所示)。

相关文档
最新文档