同步自修2-7 矩阵的秩

同步自修2-7 矩阵的秩
同步自修2-7 矩阵的秩

第3章 矩阵及其运算

第3章 矩阵及其运算 3.1 基本要求、重点难点 基本要求: 1.1.掌握矩阵的定义. 2.2.掌握矩阵的运算法则. 3.3.掌握伴随矩阵的概念及利用伴随矩阵求逆矩阵的方法. 4.4.掌握矩阵秩的概念及求矩阵秩的方法. 5.5. 掌握初等变换和初等矩阵的概念,能够利用初等变换计算矩阵的秩,求可逆矩阵的逆矩阵. 6.6.掌握线形方程组有解得判定定理及其初等变换解线形方程组的方法. 重点难点:重点是矩阵定义,矩阵乘法运算,逆矩阵的求法,矩阵的秩,初等 变换及线性方程组的解. 难点是矩阵乘法,求逆矩阵的伴随矩阵方法. 3.2 基本内容 3.2.1 3.2.1 重要定义 定义3.1 由n m ?个数)2,1;,2,1(n j m i a ij ==组成的m 行n 列的数表成为一个m 行n 列矩阵,记为 ????????????mn m m n n a a a a a a a a a 2122221 11211 简记为A n m ij a ?=)(,或A )(ij a =,n m A ?,mn A 注意行列式与矩阵的区别: (1) (1) 行列式是一个数,而矩阵是一个数表. (2) (2) 行列式的行数、列数一定相同,但矩阵的行数、列数不一定相 同. (3) (3) 一个数乘以行列式,等于这个数乘以行列式的某行(或列)的所有元素,而一个数乘以矩阵等于这个数乘以矩阵的所有元素. (4) (4) 两个行列式相等只要它们表示的数值相等即可,而两个矩阵相等则要求两个矩阵对应元素相等. (5) (5) 当0||≠A 时,||1A 有意义,而A 1 无意义.

n m =的矩阵叫做阶方阵或m 阶方阵.一阶方阵在书写时不写括号,它在 运算中可看做一个数. 对角线以下(上)元素都是0的矩阵叫上(下)三角矩阵,既是上三角阵, 又是下三角的矩阵,也就是除对角线以外的元素全是0的矩阵叫对角矩阵.在对角矩阵中,对角线上元素全一样的矩阵叫数量矩阵;数量矩阵中,对角线元素全是1的n 阶矩阵叫n 阶单位矩阵,常记为n E (或n I ),简记为E (或I ),元素都是0的矩阵叫零矩阵,记为n m 0?,或简记为0. 行和列分别相等的两个矩阵叫做同型矩阵,两个同型矩阵的且对应位置上的 元素分别相等的矩阵叫做相等矩阵. 设有矩阵A =n m ij a ?)(,则A -n m ij a ?-=)(称为A 的负矩阵. 若A 是方阵,则保持相对元素不变而得到的行列式称为方针A 的行列式,记 为||A 或A Det . 将矩阵A 的行列式互换所得到的矩阵为A 的转置矩阵,记为T A 或A '. 若方阵A 满足A A T =,则称A 为对称矩阵,若方阵A 满足A A T -=,则称A 为反对称矩阵. 若矩阵的元素都是实数,则矩阵称为实矩阵.若矩阵的元素含有复数,则称矩 阵为复矩阵,若A =n m ij a ?)(是复矩阵,则称矩阵n m ij a ?)((其中ij a 为ij a 的共轭矩阵,记为A n m ij a ?=)(. 定义3.2 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得E BA AB ==,则 称方阵A 可逆,B 称为A 的逆矩阵,记做1-=A B . 对于方阵A n m ij a ?=)(,设ij a 的代数余子式为ij A ,则矩阵 *A ????????????=nm n n n n A A A A A A A A A 2122212 12111 称为A 的伴随矩阵,要注意伴随矩阵中元素的位置. 定义3.3 设有矩阵A ,如果: (1) (1) 在A 中有一个r 阶子式D 不为零.

矩阵的秩与向量组的秩一致

矩阵的“秩”,是线性代数第一部分的核心概念。 “矩阵的秩与向量组的秩一致。矩阵的秩就是其行(或列)向量组的秩。”怎样证明?就当做习题练一练。 设矩阵A的秩为r ,则A必有一个r 阶子式不为0,而所有 r + 1阶子式全为 0 逻辑1——r 阶子式不为0,则 r个r 维向量线性无关。 分析这是格莱姆法则推论,带来的直接判别方法。 (画外音:r个未知量 r个方程的齐次线性方程组仅有0 解的充分必要条件是其系数行列式不为0) 逻辑思维链——这r 个r 维向量与A 的行(或列)向量组有何关系? 逻辑2——(“线性无关,延长无关。”定理)—— 已知一个n 维向量组线性无关,如果在相同的位置,给组内每个向量都增加一个分量,则所得的n + 1维向量组也线性无关。 分析不妨认为给线性无关的n 维向量组a1,a 2,…,a k 的每个向量都加上第n + 1个分量,形成一个n + 1 维向量组b1,b 2,…,b k

若有一组不全为零的数c1,c2,…,c k ,使得c1b1+ c2b 2+ ---+ c k b k = 0 ,如何证明“这组常数只能全为0”? 每个向量有n + 1 分量,向量“线性组合为0”实际上是n + 1个等式。前n 个等式即 c1 a1+ c2a2+ ---+ c k a k = 0 由已知线性无关即得,这组常数只能全为0,而最后那个(第n + 1个)等式自然成立。 逻辑3 ——将线性无关的 r个r 维向量,逐次延长为矩阵A 的r 个行向量(或列向量),它们线性无关。 (潜台词:简而言之,不为0的r阶子式所在的r个行向量(或列向量)线性无关。) 逻辑思维链(关键问题)——这r 个行向量是行向量组的最大无关组吗? 唯一信息——A的所有r + 1阶子式全为0 分析不妨设不为0 的r 阶子式就由这r 个行的左起前r 个分量排成。(画外音:画个示意图最好。)

矩阵的秩与行列式的几何意义

矩阵的秩与行列式的几何意义 这里首先讨论一个长期以来困惑工科甚至物理系学生的一个数学问题,即,究竟什么是面积,以及面积的高维推广(体积等)? 1 关于面积:一种映射 大家会说,面积,不就是长乘以宽么,其实不然。我们首先明确,这里所讨论的面积,是欧几里得空间几何面积的基本单位:平行四边形的面积。平行四边形面积的定义,几何上说是相邻两边边长乘以他们之间的夹角的正弦。 然而为了应对更一般情形和更高维度的数理问题,我们有必要把面积的定义推广开来。注意到以下事实: 面积是一个标量,它来自于(构成其相邻边)两个矢量。因此,我们可以将面积看成一个映射: 其中V就是一个矢量,V*V代表两个矢量的有序对;f就是面积的值。 下面我们将说明这个映射是一个线性映射。 从最简单的例子出发。如果第一个矢量是(1,0),第二个矢量是(0,1);也就是说,两个矢量分别是X和Y轴上的单位正向量,那么由这两个矢量张成的四边形就是一个正方形,其面积根据定义,就是长乘以宽=1*1=1。 因此有:

如果我们把第一个矢量”缩放“a倍,面积将会相应是原来的a倍;把第二个矢量“缩放”b倍,面积也会成为原来的b倍。如果同时缩放,很显然,面积将会变成原面积的ab倍。这表明,面积映射对于其两个操作数(矢量)的标量积是各自线性的,如下: 最后,我们要说明,面积映射对于其操作数(矢量)的矢量加法也是线性的。因为矢量加法操作的本身是线性的,那么其面积映射理应对此也是一个线性映射。这里我们打算从几个实际的例子出发,说明映射的加法线性性的后果。 显然(两个共线矢量所张成的平行四边形还是一条线,因此面积为0): 假定面积映射是一个关于矢量加法的线性映射,那么我们有: 注意计算过程中用到了上面的结论。这说明:

《矩阵的秩的等式及不等式的证明》

摘要 矩阵的秩是矩阵的一个重要特征,它具有许多的重要性质.本文总结归纳出了有关矩阵的秩的等式和不等式命题,以及证明这些命题常用的证明方法,即从向量组、线性方程组、线性空间同构、矩阵分块、矩阵初等变换等角度给出多种证明方法.本文主要解决以下几个问题:用矩阵已知的秩的理论证明矩阵秩的等式和不等式问题;用线性空间的方法证明矩阵秩的等式和不等式问题;用向量组秩的理论证明矩阵秩的等式和不等式问题;用矩阵分块法证明秩的等式和不等式问题.

目录 第一章绪论 (1) 第二章预备知识 (2) 第三章用矩阵的秩的理论证明秩的等式和不等式 (3) 第四章用线性空间的理论证明秩的等式和不等式 (6) 第五章用向量组秩的理论证明秩的等式和不等式 (10) 第六章用矩阵分块法证明秩的等式和不等式 (15) 第七章小结 (23) 参考文献 (24) 致谢 (25)

第一章绪论 矩阵的秩是矩阵的一个重要特征,是矩阵理论中研究的一个重要内容,它具有许多的重要性质.研究矩阵的秩对于解决矩阵的很多问题具有重要意义.矩阵的秩的等式及不等式的证明对于学习矩阵也是重点和难点,初学者在做这方面的题目往往不知如何下手.笔者归纳了矩阵的秩的常见等式和不等式以及与之相关的一些结论,并从向量组、线性方程组、矩阵分块、矩阵初等变换等角度探索了多种证明方法,它有助于学习者加深对秩的理解和知识的运用,也方便教师教学. 目前对矩阵秩的研究已经比较成熟了,但是由于秩是矩阵论里的一个基本而重要的概念,它仍然有着重要的研究价值,有关它的论文时见报端.很多国内外的有关数学书籍杂志对矩阵的秩都有讲述,如苏育才、姜翠波、张跃辉在《矩阵论》(科学出版社、2006年5月出版)中较完整地给出了矩阵秩的理论.北京大学数学系前代数小组编写的《高等代数》(高等教育出版社,2003年7月出版)也介绍了秩的一些性质.但是对秩的等式及不等式的介绍都比较分散,不全面也没有系统化,不方便初学者全面掌握秩的性质.因此有必要对矩阵的秩的等式和不等式进行一个归总,便于学习和掌握. 本文通过查阅文献资料,总结归纳出有关矩阵的秩的等式和不等式命题,以及证明这些命题常用的证明方法,从向量组、线性方程组、线性空间同构、矩阵分块、矩阵初等变换等角度给出多种证明方法.主要内容有:(1)用矩阵已知的秩的理论证明矩阵秩的等式和不等式问题;(2)用线性空间的方法证明矩阵秩的等式和不等式问题;(3)用向量组秩的理论证明矩阵秩的等式和不等式问题;(4)用矩阵分块法证明秩的等式和不等式问题.

1求下列向量组的秩与一个极大线性无关组

习题4.3 1.求下列向量组的秩与一个极大线性无关组: (1) []12,1,3,1T α=-, []23,1,2,0T α=-, []31,3,4,2T α=-,[]44,3,1,1T α=-. (2) []11,1,1,1T α=, []21,1,1,1T α=--, []31,1,1,1T α=--,[]41,1,1,1T α=---. (3) []11,1,2,4T α=-, []20,3,1,2T α=,[]33,0,7,14T α=, []41,1,2,0T α=-,[]52,1,5,6T α=. 分析 向量组的秩等于该向量组构成的矩阵的秩, 所以求向量组的秩可以转化为求矩阵的秩. 先把向量构成矩阵通过矩阵的初等行变换成阶梯形, 通过阶梯形便可得到矩阵的秩, 它也就是该向量组的秩, 而阶梯形的阶梯头所在的列对应的向量便构成该向量组的一个极大线性无关组. 解 (1) []1 23 423141133113301123241000010210000αααα--???????? ---??? ?=??→????????--???? , 所以该向量组的秩为2, 且1α, 2α为它的一个极大线性无关组. (2) []1 23 41111111111110 1011111001111110001αααα--???? ????---??? ?=??→???? ---???? --???? , 所以该向量组的秩为4, 且1α,2α,3α,4α为它的一个极大线性无关组. (3) []1 234 51031 21 0312130110110121725000104214060 0000ααααα???? ????--? ???=??→???? ??? ? ???? , 所以该向量组的秩为3, 且1α,2α,4α为它的一个极大线性无关组. 2.计算下列向量组的秩,并判断该向量组是否线性相关. (1) []11,1,2,3,4T α=-,[]23,7,8,9,13T α=-,

矩阵的秩的相关不等式的归纳小结

矩阵的秩的相关不等式的归 纳小结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

矩阵的秩的相关不等式的归纳小结 林松 (莆田学院数学系,福建,莆田) 摘要:利用分块矩阵,证明一些矩阵的秩的相关不等式,观察矩阵在运算后秩的变化,归纳出常见的有关矩阵的秩的不等式,由此引出等式成立的条件。 关键词:矩阵的秩,矩阵的初等变换 引言:矩阵的秩是指矩阵中行(或列)向量组的秩,与之等价的说法通常是指矩阵中不为零的子式的最高阶数,是矩阵最重要的数字特征之一。利用分块矩阵,把子式看成元素,可将高阶矩阵的运算化为较低阶矩阵的运算,也为矩阵的秩的一些常见不等式的证明带来了方便。本文将讨论矩阵的秩的一些常见不等式,并由此引出一些秩的不等式等号成立的等价条件。 一基本的定理 1 设A是数域P上n m ?矩阵,于是 ?矩阵,B是数域上m s 秩(AB)≤min [秩(A),秩(B)],即乘积的秩不超过个因子的秩 2设A与B是m n ?矩阵,秩(A±B)≤秩(A)+秩(B) 二常见的秩的不等式 1 设A与B为n阶方阵,证明若AB = 0,则 r(A) + r(B) ≤ n 证:设r(A) = r,r(B )= s,则由AB = 0,知,B的每一列向量都是以A为系数方阵的齐次线性方程组的解向量。 当r = n时,由于该齐次方程组只要零解,故此时 B = 0,即此时r(A) = n,r(B) = 0,结论成立。 当r〈 n 时,该齐次线性方程组的基础解系中含n-r个向量,

从而B 的列向量组的秩≤n-r,即r (B )≤ n-r 所以 r(A) + r(B) ≤ n 2设A 为m n ?矩阵,B 为n s ?矩阵,证明不等式r(AB)≤r(A)+r(B)-n 证:设E 为n 阶单位矩阵, S E 为S 阶单位方阵,则由于 000S E B A AB A E E E B ??????= ? ? ?-?????? 而 0S E B E ?? ?-?? 可逆,故 r(A)+r(B) ≥ 秩 0A E B ?? ? ?? =秩 0A AB E ?? ???=秩 0 0AB E ?? ??? =r(AB)+r(E) =r(AB)+n 从而r(AB) ≥ r(A) + r(B) - n 3设A ,B 都是n 阶方阵,E 是n 阶单位方阵,证明 秩(AB-E )≤秩(A-E )+秩(B-E ) 证:因为0A E B E B E --?? ? -??00B E ?? ???00AB E B E -?? = ?-?? 故秩(AB-E )≤秩00AB E B E -?? ?-??≤秩0A E B E B E --?? ?-?? =秩(A-E )+秩(B-E ) 因此 秩(AB-E )≤秩(A-E )+秩(B-E ) 4 设A ,B ,C 依次为,,m n n s s t ???的矩阵,证明 r(ABC) ≥ r(AB) + r(BC) - r(B)

实验矩阵的秩与向量组的极大无关组

项目五 矩阵运算与方程组求解 实验2 矩阵的秩与向量组的极大无关组 实验目的 学习利用Mathematica 求矩阵的秩,作矩阵的初等行变换; 求向量组的秩与极大无关组. 基本命令 1. 求矩阵M 的所有可能的k 阶子式组成的矩阵的命令:Minors[M,k]. 2. 把矩阵A 化作行最简形的命令:RowReduce[A]. 3. 把数表1,数表2, …,合并成一个数表的命令:Join[list1,list2,…]. 例如输入 Join[{{1,0,-1},{3,2,1}},{{1,5},{4,6}}] 则输出 {{1,0,-1},{3,2,1},{1,5},{4,6}} 实验举例 求矩阵的秩 例2.1 (教材 例2.1) 设,815073*********???? ? ??-------=M 求矩阵M 的秩. 输入 Clear[M]; M={{3,2,-1,-3,-2},{2,-1,3,1,-3},{7,0,5,-1,-8}}; Minors[M,2] 则输出 {{-7,11,9,-5,5,-1,-8,8,9,11},{-14,22,18,-10,10,-2, -16,16,18,22},{7,-11,-9,5,-5,1,8,-8,-9,-11}} 可见矩阵M 有不为0的二阶子式. 再输入 Minors[M,3] 则输出 {{0,0,0,0,0,0,0,0,0,0}} 可见矩阵M 的三阶子式都为0. 所以.2)(=M r

例2.2 已知矩阵???? ? ??----=1t 0713123123M 的秩等于2, 求常数t 的值. 左上角的二阶子式不等于0. 三阶子式应该都等于0. 输入 Clear[M]; M={{3,2,-1,-3},{2,-1,3,1},{7,0,t,-1}}; Minors[M,3] 输出为 {{35-7t,45-9t,-5+t}} 当5=t 时, 所有的三阶子式都等于0. 此时矩阵的秩等于2. 例2.3 (教材 例2.2) 求矩阵???????? ??-----322 4211631095114047116的行最简形及其秩. 输入 A={{6,1,1,7},{4,0,4,1},{1,2,-9,0},{-1,3,-16,-1},{2,-4,22,3}} MatrixForm[A] RowReduce[A]//MatrixForm 则输出矩阵A 的行最简形 ???????? ??-0000000010000510 01 01 根据矩阵的行最简形,便得矩阵的秩为3. 矩阵的初等行变换 命令RowfReduce[A]把矩阵A 化作行最简形. 用初等行变换可以求矩阵的秩与矩阵的逆. 例2.4 设,41311221222832A ???? ? ??--=求矩阵A 的秩. 输入

第3讲矩阵的秩与矩阵的初等变换.

§1.3 矩阵的秩与矩阵的初等变换 主要问题:1. 自由未知数个数的唯一性 2. 相抵标准形的唯一性 3. 矩阵秩的性质 4. 满秩矩阵的性质 一、矩阵的秩 定理矩阵用初等行变换化成的阶梯形矩阵中,主元的个数(即非零行的数目)唯一。 定义矩阵A 用初等行变换化成的阶梯形矩阵 中主元的个数称为矩阵A的秩,记为秩(A)或r(A)例求下述矩阵的秩 2 1 0 3 12 3 1 2 1 01 A 4 1 6 3 58 2 2 2 6 16

2 1 0 3 1 2 3 1 2 1 0 1 A 4 1 6 3 5 8 2 2 2 6 1 6 R4 ( 1)R1 2 1 0 3 1 2 R3 ( 2)R1 R2 ( 1)R1 1 2 2 2 1 1 0 3 6 9 3 4 0 1 2 3 2 8 1 2 2 2 1 1 R2 R1 2 1 0 3 1 2 0 3 6 9 3 4 0 1 2 3 2 8 1 2 2 2 1 1 R2 ( 2)R1 0 5 4 7 3 4 0 3 6 9 3 4 0 1 2 3 2 8 1 2 2 2 1 1 R2 R4 0 1 2 3 2 8 0 3 6 9 3 4 0 5 4 7 3 4

所以秩(A) = 4 o | 性质 (1) 秩(A) = 0当且仅当 A = 0 ⑵秩(A m n ) min{ m , n} (3)初等行变换不改变矩阵的秩。 定义设A 是n 阶方阵。若秩(A) = n ,则称A 是满秩方阵;若 秩(A) < n ,则称A 是降秩方阵。 定理 满秩方阵只用初等行变换即可化为单位 方阵。 R 4 ( 5)R 2 R 3 3R 2 1 2 2 2 1 0 1 2 3 2 0 0 0 0 3 1 8 20 0 0 6 8 13 44 01 0 0 6 8 13 44 0 0 0 0 3 20 R 3

矩阵的秩及其求法

第五节:矩阵的秩及其求法 一、矩阵秩的概念 1. k 阶子式 定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的 阶行列式,称为A 的一个k 阶子式。 例如 共有 个二阶子式,有 个三阶子式 矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而 为 A 的一个三阶子式。显然, 矩阵 A 共有 个 k 阶子式。 2. 矩阵的秩 定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全 为0 , 称r 为矩阵A 的秩,记作R (A )或秩(A )。 规定: 零矩阵的秩为 0 . 注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 . (2) 有行列式的性质, (3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } . (4) 如果 An ×n , 且 则 R ( A ) = n .反之,如 R ( A ) = n ,则 因此,方阵 A 可逆的充分必要条件是 R ( A ) = n . 二、矩阵秩的求法 1、子式判别法(定义)。 例1 设 为阶梯形矩阵,求R (B )。 解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R (B ) = 2. 结论:阶梯形矩阵的秩=台阶数。 例如 一般地,行阶梯形矩阵的秩等于其“台阶数”—— 非零行的行数。 () n m ij a A ?={}),min 1(n m k k ≤≤? ? ??? ??----=1 10145641321A 182423=C C 43334=C C 101 22--= D 1 0156 43213-=D n m ?k n k m c c () n m ij a A ?=0, r D ≠()(). T R A R A =0,A ≠0.A ≠??? ? ? ??=000007204321B 0 2 021≠????? ??=010*********A ????? ??=001021B ???? ? ??=100010011C 125034000D ?? ? = ? ? ??2 123508153000720 000 0E ?? ? ?= ? ??? ()3=A R ()2=B R ()3=C R ()2R D =()3 R E =

向量组的等价及向量组的秩

向量组的等价及向量组的秩 一 基本概念 1 设T 是由若干个n 维向量构成的集合,向量12,,,r T ααα∈L ,若有 (1)12,,,r αααL 线性无关; (2)T 中任一向量都可由12,,,r αααL 线性表示。 那么,则称12,,,r αααL 是T 的一个极大无关组。称r 为T 的秩数,若T 无极大无关组,即T 不含非零向量时,称T 的秩数为0。T 的秩数记为()R T 。 2设有n 维向量组Ⅰ:12,,,s αααL 与n 维向量组Ⅱ:12,,,t βββL 。如果Ⅰ中任一向量都可由Ⅱ中向量线性表示,反之Ⅱ中任一向量都可由Ⅰ中向量线性表示,那么则称向量组Ⅰ与Ⅱ等价。 3 矩阵A 的行向量组的秩数称为A 的行秩数;A 的列向量组的秩数称为A 的列秩数。A 的行秩数记为行秩A ;A 的列秩数记为列秩A 。 二 主要结论 1 简化行阶梯形矩阵的性质 (1)主列构成的向量组线性无关; (2)每一非主列均可由前面的主列线性表示;从而若有非主列,则其列向量组必线性相关。 (3)主列构成的向量组即为列向量组的一个极大无关组;从而列秩数等于主列的个数。 2 对矩阵A 进行行的初等变换不改变A 的列向量组的线性关系。 3 个数大于维数的向量组必线性相关;特别有,n +1个n 维向量必线性相关。 4 设向量组12,,,s αααL 中任一向量都可由向量12,,,t βββL 线性表示。那么,如果s t >,则向量组12,,,s αααL 必线性相关。 等价陈述即其逆否命题为:设向量组12,,,s αααL 中任一向量都可由向量12,,,t βββL 线性表示。那么,如果向量组12,,,s αααL 线性无关,则必有s t ≤。 推论1:向量组T 的极大无关组中所含向量个数被T 所唯一确定。即T 的任意两个极大无关组中所含向量个数相等。 推论2:设向量组(Ⅰ)中任一向量都可由(Ⅱ)中向量线性表示,则R (Ⅰ)≤ R (Ⅱ)。 推论3:等价的向量组的秩数相等。 5 对任意矩阵A 均有,行秩A =列秩A =R (A )。

求向量组的秩与极大无关组(修改整理)-向量组的极大无关组与秩

求向量组的秩与最大无关组 一、对于具体给出的向量组,求秩与最大无关组 1、求向量组的秩(即矩阵的秩)的方法:为阶梯形矩阵 【定理】矩阵的行秩等于其列秩,且等于矩阵的秩.(三秩相等) ①把向量组的向量作为矩阵的列(或行)向量组成矩阵A; ②对矩阵A进行初等行变换化为阶梯形矩阵B; ③阶梯形B中非零行的个数即为所求向量组的秩. 【例1】求下列向量组a1=(1, 2, 3, 4),a2 =( 2, 3, 4, 5),a3 =(3, 4, 5, 6)的秩. 解1:以a1,a2,a3为列向量作成矩阵A,用初等行变换将A化为阶梯形矩阵后可求. 因为阶梯形矩阵的列秩为2,所以向量组的秩为2. 解2:以a1,a2,a3为行向量作成矩阵A,用初等行变换将A化为 阶梯形矩阵后可求. 因为阶梯形矩阵的行秩为2,所以向量组的秩为2. 2、求向量组的最大线性无关组的方法 方法1 逐个选录法 给定一个非零向量组A:α1, α2,…, αn ①设α1≠ 0,则α1线性相关,保留α1 ②加入α2,若α2与α1线性相关,去掉α2;若α2与α1线性无关,保留α1,α2;

③依次进行下去,最后求出的向量组就是所求的最大无关组 【例2】求向量组:()()()1231,2,12,3,14,1,1,,,T T T ααα=-=-=-的最大无关组 解:因为a 1非零,故保留a 1 取a 2,因为a 1与a 2线性无关,故保留a 1,a 2 取a 3,易得a 3=2a 1+a 2,故a 1,a 2 ,a 3线性相关。 所以最大无关组为a 1,a 2 方法2 初等变换法 【定理】 矩阵A 经初等行变换化为B ,则B 的列向量组与A 对应的列向量组有相同的线性相关性. 证明从略,下面通过例子验证结论成立. 向量组:α1=(1,2,3)T , α2=(-1,2,0)T , α3=(1,6,6)T 由上可得,求向量组的最大线性无关组的方法: (1)列向量行变换 ①把向量组的向量作为矩阵的列向量组成矩阵A ; ②对矩阵A 进行初等行变换化为阶梯形矩阵B ; ③A 中的与B 的每阶梯首列对应的向量组,即为最大无关组. 【例3】求向量组 :α1=(2,1,3,-1)T , α2=(3,-1,2,0)T , α3=(1,3,4,-2)T , α4=(4,-3,1,1)T 的秩和一个最大无关组, 并把不属于最大无关组的向量用最大无关组线性表示。 解 以α1,α2,α3,α4为列构造矩阵A , 并实施初等行变换化为行阶梯形矩阵求其秩:

矩阵的秩与行列式的几何意义

矩阵的秩与行列式的几何意义 2016年7月16日16:39:30 1 关于面积:一种映射 大家会说,面积,不就是长乘以宽么,其实不然。我们首先明确,这里所讨论的面积,是欧几里得空间几何面积的基本单位:平行四边形的面积。平行四边形面积的定义,几何上说是相邻两边边长乘以他们之间的夹角的正弦。 然而为了应对更一般情形和更高维度的数理问题,我们有必要把面积的定义推广开来。注意到以下事实: 面积是一个标量,它来自于(构成其相邻边)两个矢量。因此,我们可以将面积看成一个映射: 其中V就是一个矢量,V*V代表两个矢量的有序对;f就是面积的值。 下面我们将说明这个映射是一个线性映射。 从最简单的例子出发。如果第一个矢量是(1,0),第二个矢量是(0,1);也就是说,两个矢量分别是X和Y轴上的单位正向量,那么由这两个矢量张成的四边形就是一个正方形,其面积根据定义,就是长乘以宽=1*1=1。 因此有: 如果我们把第一个矢量”缩放“a倍,面积将会相应是原来的a倍;把第二个矢量“缩放”b倍,面积也会成为原来的b倍。如果同时缩放,很显然,面积将会变成原面积的ab倍。这表明,面积映射对于其两个操作数(矢量)的标量积是各自线性的,如下:

最后,我们要说明,面积映射对于其操作数(矢量)的矢量加法也是线性的。因为矢量加法操作的本身是线性的,那么其面积映射理应对此也是一个线性映射。这里我们打算从几个实际的例子出发,说明映射的加法线性性的后果。 显然(两个共线矢量所张成的平行四边形还是一条线,因此面积为0): 假定面积映射是一个关于矢量加法的线性映射,那么我们有: 注意计算过程中用到了上面的结论。这说明: 也就是说,交换相互垂直操作数矢量的顺序,面积映射取负。孰正孰负取决于认为的定义。一般,我们把X轴单位矢量在前,Y轴单位矢量在后,从X轴到Y 轴张成的一个平行四边形的面积,取做正号。 1.1 右手定则 由此我们引入右手定则。注意右手定则只在三维空间中有效。如果以X正方向为首,Y正方向为尾,右手定则告诉我们,纸面向外是面积的正方向;如果反过来,那么纸面向内就是该面积的正方向,与规定的正方向相反,取负号。那么面积正负号的几何意义就明显了。 由此,我们不难得到平面内任意两个矢量所张成的平行四边形的面积(*): 我们不难看到,所谓面积就是一个2x2矩阵的行列式:

向量组的等价及向量组的秩

向量组的等价及向量组的秩 一 基本概念 1 设T 是由若干个n 维向量构成的集合,向量12,,,r T ααα∈ ,若有 (1)12,,,r ααα 线性无关; (2)T 中任一向量都可由12,,,r ααα 线性表示。 那么,则称12,,,r ααα 是T 的一个极大无关组。称r 为T 的秩数,若T 无极大无关组,即T 不含非零向量时,称T 的秩数为0。T 的秩数记为()R T 。 2设有n 维向量组Ⅰ:12,,,s ααα 与n 维向量组Ⅱ:12,,,t βββ 。如果Ⅰ中任一向量都可由Ⅱ中向量线性表示,反之Ⅱ中任一向量都可由Ⅰ中向量线性表示,那么则称向量组Ⅰ与Ⅱ等价。 3 矩阵A 的行向量组的秩数称为A 的行秩数;A 的列向量组的秩数称为A 的列秩数。A 的行秩数记为行秩A ;A 的列秩数记为列秩A 。 二 主要结论 1 简化行阶梯形矩阵的性质 (1)主列构成的向量组线性无关; (2)每一非主列均可由前面的主列线性表示;从而若有非主列,则其列向量组必线性相关。 (3)主列构成的向量组即为列向量组的一个极大无关组;从而列秩数等于主列的个数。 2 对矩阵A 进行行的初等变换不改变A 的列向量组的线性关系。 3 个数大于维数的向量组必线性相关;特别有,n +1个n 维向量必线性相关。 4 设向量组12,,,s ααα 中任一向量都可由向量12,,,t βββ 线性表示。那么,如果s t >,则向量组12,,,s ααα 必线性相关。 等价陈述即其逆否命题为:设向量组12,,,s ααα 中任一向量都可由向量12,,,t βββ 线性表示。那么,如果向量组12,,,s ααα 线性无关,则必有s t ≤。 推论1:向量组T 的极大无关组中所含向量个数被T 所唯一确定。即T 的任意两个极大无关组中所含向量个数相等。 推论2:设向量组(Ⅰ)中任一向量都可由(Ⅱ)中向量线性表示,则R (Ⅰ)≤ R (Ⅱ)。 推论3:等价的向量组的秩数相等。 5 对任意矩阵A 均有,行秩A =列秩A =R (A )。

矩阵的秩的性质

矩阵的秩的性质和 矩阵秩与矩阵运算之间的关系 要谈矩阵的秩,就得从向量组的秩说起,向量组的秩,简而言之就是其极大无关组里向量的个数。进而扩展到线性方程组,在线性方程组的概念中(课本P90)定理1说:“线性方程组有解的充要条件是,它的系数矩阵和增广矩阵有相同的秩。” 那么不妨把矩阵用向量组的方式来看,则有行秩和列秩,一个矩阵的行秩和列秩相同,而其初等变换又不会改变秩。自然而然,我们就得到了一个判断矩阵秩的方法,就是将它转化为阶梯形矩阵,非零行数目即其秩。矩阵进一步发展就是运算了,包括数乘、加减、乘积等,又涉及到单位矩阵、三角矩阵、可逆矩阵以及矩阵的分块等概念,综合所学,我们得到如下性质: 1、矩阵的初等变换不改变秩,任一矩阵的行秩等于列秩。 2、秩为r 的n 级矩阵(n r ≥),任意r+1阶行列式为0,并且至少有一个r 阶子式不为0. 3、)}(),(min{)(B rank A rank AB rank ≤ )'()(A r a n k A r a n k =,)()()(B rank A rank B A rank ±=± )()(A rank kA rank = 4、设A 是n s ?矩阵,B 为s n ?矩阵,则+)(A rank )}(),(min{)()(B rank A rank AB rank n B rank ≤≤- 5、设A 是n s ?矩阵,P,Q 分别是s,n 阶可逆矩阵,则 )()()(A rank AQ rank PA rank ==

6、设A 是n s ?矩阵,B 为s n ?矩阵,且AB=0,则 n B rank A rank ≤+)()( 7、设A 是n s ?矩阵,则)()'()'(A rank A A rank AA rank == 其中,也涉及到线性方程组解得问题: 8、对于齐次线性方程组,设其系数矩阵为A ,n A rank =)( 则方程组有惟一非零解,n A rank <)(则有无穷多解,换言之,即为克莱姆法则, 非齐次线性方程组有解时,n A rank =)(惟一解,n A rank <)( 有无穷多解。 还有满秩矩阵: 9、可逆?满秩 10、行(列)向量组线性无关,即n 级矩阵化为阶梯形矩阵后非零行数目为n 。 扩展到矩阵的分块后: 11、110(A )(A )0n n A rank rank rank A ?? ?=++ ? ??? 12、()()0A C rank rank A rank B B ??≥+ ???

矩阵的秩与矩阵的运算

《高等代数与解析几何》概念复习 第一章向量代数 (向量(vector)),(向量的长度(模)),(零向量(zero vector)),(负向量),(向量的加法(addition)),(三角形法则),(平行四边形法则),(多边形法则),(减法),(向量的标量乘积(scalar multiplication)),(向量的线性运算),线性组合(linear combination),线性表示,线性相关(linearly dependent),线性无关(linearly independent),(原点(origin)),(位置向量(position vector)),(线性流形(linear manifold)),(线性子空间(linear subspace));基(basis),仿射坐标(affine coordinates),仿射标架(affine frame),仿射坐标系(affine coordinate system),(坐标轴(coordinate axis)),(坐标平面),(卦限(octant)),(右手系),(左手系),(定比分点);(线性方程组(system of linear equations)),(齐次线性方程组(system of homogeneous linear equations)),(行列式(determinant));n维向量,向量的分量(component),向量的相等,和向量,零向量,负向量,标量乘积,n维向量空间(vector space),自然基,(行向量(row vector)),(列向量(column vector));单位向量(unit vector),直角坐标系(rectangular coordinate system),直角坐标(rectangular coordinates),射影(projection),向量在某方向上的分量,(正交分解),(向量的夹角),内积(inner product),标量积(scalar product),(数量积),(方向的方向角),(方向的方向余弦);外积(exterior product),向量积(cross product),(二重外积);混合积(mixed product,scalar triple product) 第二章行列式 (映射(mapping)),(象(image)),(一个原象(preimage)),(定义域(domain)),(值域(range)),(变换(transformation)),(单射(injection)),(象集),(满射(surjection)),(一一映射,双射(bijection)),(原象),(映射的复合,映射的乘积),(恒同映射,恒同变换(identity mapping)),(逆映射(inverse mapping));(置换(permutation)),(n阶对称群(symmetric group)),(对换(transposition)),(逆序对),(逆序数),(置换的符号(sign)),(偶置换(even permutation)),(奇置换(odd permutation));行列式(determinant),矩阵(matrix),矩阵的元(entry),(方阵(square matrix)),(零矩阵(zero matrix)),(对角元),(上三角形矩阵(upper triangular matrix)),(下三角形矩阵(lower triangular matrix)),(对角矩阵(diagonal matrix)),(单位矩阵(identity matrix)),转置矩阵(transpose matrix),初等行变换(elementary row transformation),初等列变换(elementary column transformation);(反称矩阵(skew-symmetric matrix));子矩阵(submatrix),子式(minor),余子式(cofactor),代数余子式(algebraic cofactor),(范德蒙德行列式(Vandermonde determinant));(未知量),(方程的系数(coefficient)),(常数项(constant)),(线性方程组的解(solution)),(系数矩阵),(增广矩阵(augmented matrix)),(零解);子式的余子式,子式的代数余子式

向量组的秩和最大线性无关组

向量组的秩和最大线性无关组 引例:对于方程组 12312312 321221332x x x x x x x -+=-??+-=??-+=-? 容易发现其有效方程的个数为2个,因为第3个方程可由第1个方程减去第2个方程得到(或者第3个方程是第1个方程和第2个方程的线性组合); 由于本章的内容是用向量的关系来研究方程组解的情况,进而从方程组3个方程对应的3个向量来说“有用”(或者也可以说成等价有效)的最少的向量是2个。 因此,对于一个给定的向量组,其中“有用”(或者也可以说成等价有效)的最少的向量应该有多少个呢?在此我们提出最大线性无关组的概念: 最大线性无关组:在s ααα,,,21Λ中,存在ip i i ααα,,,21Λ满足: (1)ip i i ααα,,,21Λ线性无关; (2)在ip i i ααα,,,21Λ中再添加一个向量就线性相关。 则称ip i i ααα,,,21Λ是s ααα,,,21Λ的一个最大线性无关组, 注: Ⅰ、不难看出条件(2)等价的说法还有s ααα,,,21Λ中任一向量均可由ip i i ααα,,,21Λ线性表示;或者亦可以说成s ααα,,,21Λ中任意1p +个向量均线性相关; Ⅱ、从最大线性无关组的定义可以看出最大线性无关组与原先的向量组可以相互线性表示,进而最大线性无关组与原先的向量组是等价的(即

有效的最少的方程构成的方程组与原先的方程组是等价的); Ⅲ、从上面的方程组可以看出同解的有效方程组可以是第1、2两个方程构成,也可以是第2、3两个方程构成(因为第1个方程可以看成第2、3两个方程的和),因此从其对应的向量组来说,向量组的最大线性无关组是不唯一的; Ⅳ、可以发现,虽然同解的有效方程组的形式可以不一样,但是同解的有效方程组中所含的方程的个数是唯一的,即从其对应的向量组来说,最大线性无关组虽然不唯一,但是最大线性无关组中所含向量的个数唯一的。这是从数的角度反映了向量组的性质,在此给出向量组的秩的概念: 向量组的秩:称最大线性无关组中所含向量的个数为向量组的秩,如上面定义中ip i i ααα,,,21Λ是s ααα,,,21Λ的一个最大线性无关组,则称 s ααα,,,21Λ的秩为p ,记为12(,,,)s R p ααα=L 。 例:求向量组123(3,6,4,2,1),(2,4,3,1,0),(1,2,1,2,3),T T T ααα=-=--=-- 4(1,2,1,3,1)T α=-的秩及一个最大线性无关组,并将其余的向量用最大线性无关组表示。 分析:容易发现用定义的形式很难求秩和最大线性无关组,为此我们从方程组和矩阵之间的关系以及方程组和向量组之间的关系可以得到,向量组的秩及其最大线性无关组应该与其对应的矩阵的秩以及矩阵的最高阶非零子式之间有某种关系,为此我们给出: 定理:矩阵的秩等于其行向量组的秩,也等于其列向量组的秩. 略证:设A 的秩为r ,则在A 中存在r 阶子式0r D ≠,从而r D 所在的r 列线性无关,又A 中的所有的1r +阶子式10r D +=,因此A 中的任意1r +个列向量

矩阵的秩及其求法

矩阵的秩及其求法 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第五节:矩阵的秩及其求法 一、矩阵秩的概念 1. k 阶子式 定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的 阶行列式,称为A 的一个k 阶子式。 例如 共有 个二阶子式,有 个三阶子式 矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而 为 A 的一个三阶子式。显然, 矩阵 A 共有 个 k 阶子式。 2. 矩阵的秩 定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全为0 , 称r 为矩阵A 的秩,记作R (A )或秩(A )。 规定: 零矩阵的秩为 0 . 注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶 子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 . (2) 有行列式的性质, (3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } . (4) 如果 An ×n , 且 则 R ( A ) = n .反之,如 R ( A ) = n ,则 因此,方阵 A 可逆的充分必要条件是 R ( A ) = n . () n m ij a A ?= {}) ,m in 1(n m k k ≤≤????? ??----=1101456413 21 A 182423=C C 43334=C C 10122--=D 1015643 213-=D n m ?k n k m c c ()n m ij a A ?=0, r D ≠()().T R A R A =0,A ≠0. A ≠

相关文档
最新文档