基于ANSYS的空气静压轴承有限元分析

基于ANSYS的空气静压轴承有限元分析
基于ANSYS的空气静压轴承有限元分析

基于ANS YS 的空气静压轴承有限元分析

李华川,苏 茜

(广西机电职业技术学院,南宁 530007)

摘要:采用ANSY S 对空气静压轴承的气膜压力分布进行研究,同时推算出轴承的承载能力和静刚度,为空气轴承式板形仪的结构设计和性能分析提供一定的理论依据。关键词:空气静压轴承;AN S Y S ;气膜压力

中图分类号:TH 133.33 文献标志码:B 文章编号:1000-3762(2010)09-0009-03

F i nite E l e m ent Analysis on A erostatic Beari ngs Based on ANS YS

LI H ua-chuan ,S U Q ian

(Guangx iT echno l og ica l Co llege ofM achi nery and E lectr i c ity ,N ann i ng 530007,Ch i na)

Abstrac t :The gas fil m pressure d i str i bu tion o f aerostatic bear i ng is analyzed by AN S Y S ,and the loadi ng capac it y and sta tic stiffness are ca l culated ,w hich prov i des a certa i n theo ries basis for the structure desi gn and character i stics analysis o f aero sta ti c bea ri ng flatness detecto r .

K ey word s :aerostatic bearing ;AN SYS ;g as fil m press ure

板形仪是应用于冷轧生产线上板形控制系统的一个关键部件。空气轴承式板形仪主要由若干个空气静压轴承辊环组成。其通过测量辊环气膜压力来测定带材的张应力分布,以期获得良好的冷轧带材板形质量。研究空气静压轴承辊环气膜压力分布时,传统工程方法往往非常烦琐,而采用有限元法不仅灵活,而且精度也高。

1 有限元模型的建立

1.1 理论假设与简化条件

考虑到空气静压轴承辊环的倾斜,其结构一般采用偶数排供气孔;同时,辊环尽可能窄才能精确测出板带沿宽度方向的张应力分布,所以这里采用等分宽度的双排节流孔(即节流孔到轴承端面的距离为1/4辊环宽度,双排节流孔对称分布)模型来分析。该轴承的结构如图1所示。图1中

收稿日期:2010-02-21;修回日期:2010-04-15基金项目:广西教育厅科研项目(200708M S080)

作者简介:李华川(1978-),女,广西南宁人,讲师,主要研究方向为CAD /C AM 及机械零件设计与制造。E-ma i:l li huachuan1978@https://www.360docs.net/doc/3c16881458.html, 。

轴承直径D =4mm ;节流孔为两排,每排节流孔个数n =8;长径比L /D =1;l/L =1/4;节流孔直径d =0.3mm ;供气压力p s =0.4MPa ;p 0为出口大气压力,p 0=0.1M Pa ;h 0

为气膜平均厚度。

图1 算例结构图与剖面图

该轴承不仅宽度方向左右对称,而且板形辊环两半圆流场也对称,因此,取1/2宽度和1/8圆周的轴承为研究对象。取1,2,3,4四个节流孔附近的气膜分别分析。首先,将气膜按节流孔数目在圆周方向上4等分。每一等份包含一个节流孔,可近似认为每一块气膜厚度不变,即h i =h op (1- cos i )。式中:i 表示节流孔号,i =1,2, ,8;h op 为最佳气膜

ISSN 1000-3762CN 41-1148/TH 轴承 2010年9期

Bear i ng 2010,N o .9

9-11,44

厚度,取h op =0.03mm ; 为偏心率,取 =0.3; i

为节流孔的位置角, i =(i -1)2

8。由于空气静压轴承的平均气膜厚度非常小,与气膜的长度L 、宽度D 相差百倍甚至更大,这使ANSYS 的使用受到了限制。为此作如下假设,以

简化模型[1]

:

(1)两个节流孔之间无气体流动;在宽度方向上每等份内两节流孔间压力相等,其值为该等份节流孔压力p d ;气体无环向流动,仅沿轴向流向端面,其压力由出孔后的p d 降至端面的环境压力p a 。

(2)气体为等温层流流动。

因此,在求解压力分布时,只需研究每个等份中从节流孔到轴端一段即可。

1.2 边界条件[2]

1.2.1 速度边界条件

气体的分子运动论中,气体分子被看成随机碰撞的颗粒,两次碰撞之间所飞行的平均路程称

为平均自由行程 。 =

5 10

-3

P

(c m ),P 为气体真空度(torr ),一个大气压的真空度为760torr 。若以平均自由行程和气膜厚度之比表示Knudsen 数,即K n = /h 。当K n <0.01时可以把气体视为连续介质。本模型进气压力为0.4M Pa ,气膜厚度

h 为0.03mm ,则 =1.645 10-5

(mm ),K n =1.645 10

-5

0.03

=0.00054。因此,可视轴承气膜内

的气体为连续介质。根据连续介质气体动力学可

得,轴承内壁表面边界的地方,气体分子和壁面之间相对速度为零。即,在壁面处气体分子的速度和轴承表面的速度相等。这样在静态设计中,壁面的速度边界条件(包括x,y 分量)为0。1.2.2 压力边界条件

气体润滑问题中,和大气相通的边界处有压力相容条件:

p a =p 0

(1)

式中:p a 为出口边界压力。1.2.3 对称边界条件

对称边界系指压力场沿该边界的两侧是对称的。在对称的边界上,有:

p n

=0(2)式中:n 为边界的法线。轴承的几何对称线是对称边界,压力沿这个对称线方向的梯度为零。1.2.4 ANSYS 模型边界条件加载

根据假设理论可以建立简化的有限元模型以

分析气膜压力分布。由于气体一维地沿轴向流向

出口,可以把气膜沿轴向分为若干流面(图1)进行有限元分析。以第4孔为例的有限元模型如图2所示(其他孔处类似)。其中,CD 边为小孔节流器气体入口,AB,BC,CD,DE,EF 边为轴瓦;HG 边为轴;FG 边为对称边界;A H 为气体出口。整体上看BC DE 为节流器剖面,AFG H 为气膜剖面。在模型上加载的边界条件为:CD 边供气压力为0.4MPa ,AH 处出口压力为0.1M Pa 。其余各边速度的x ,y 方向分量均为0。图2网格的划分使用了映射网格而不是自由网格,可以使网格划分大致体现出速度矢量的流向,

使结果更加精确。

图2 有限元ANSYS 模型

2 有限元计算结果

通过在ANSYS 软件内设定模型气体特性与环境参数,并将模型速度、压力、对称边界条件进行加载,利用ANSYS 的前处理模块和流体动力学分析计算模块可得到每个节点的压力和每个单元的流率分析结果。因篇幅原因,仅列举3号孔和4号孔的有限元分析结果。

(1)图3、图4为节流孔处气膜速度矢量图。由图3、图4可看出气流由节流孔流出,流入平均厚度只有0.03mm 的气膜。由于从大尺寸空间流入小尺寸空间,气流在这一部分的流速增大约百倍;并且由节流孔至左边端面出口,流速逐渐减小,但可看出出口处速度仍然较大。同时,模型右半部分气流流速很小并逐渐至零,符合模型在宽度方向上对称的两节流孔间压力相等,无气体流

动的条件假设和实际情况。

图3 3

号节流孔处气膜速度矢量图

图4 4号节流孔处气膜速度矢量图

(2)由图5可看出,速度矢量表示的流动方式

10 轴承 2010. .9

除由节流孔进入气膜时出现一部分紊流外,其余均与假设理论和流动特性所用的假设(气体为等温层流流动)一致。另外,如果希望节流孔进入气膜部分也较好的符合层流流动,设计时可使节流

孔下端有一定弧度。

图5 4号节流孔处气膜速度矢量图(局部)

(3)在空气静压轴承辊环的设计过程中,气膜压力场的计算是设计成功与否的关键之处。图6、图7为气膜压力分布图。从图中可看出,节流孔处气膜压力最大,离节流孔越远处压力越小。3号节流孔单元气膜压力大于4号节流孔单元,这与实际情况吻合,气膜压力会随气膜厚度减小而增大。根据节流孔处气膜厚度公式推算,3号节流孔单元气膜厚度小于4号节流孔单元的气膜厚度。实际情况也是如此,轴在外载荷作用下产生向下的偏心,故从1号节流孔至4号节流孔,气膜厚度逐渐增大,

气膜压力逐渐减小。

图6 3号节

流孔处气膜压力分布图

图7 4号节流孔处气膜压力分布图

(4)图8、图9为轴颈表面压力分布图。从图中可看出3号节流孔单元和4号节流孔单元的轴颈表面压力分布变化趋势相似,但变化量不同。即沿轴颈各处受力存在差异。这可能使轴承发生对自身有害的自激振,虽然很难避免,但应尽量减

小振动幅度。由于轴颈表面压力主要来源于气膜

压力,故其分布情况与气膜压力分布相似。在每个节流孔单元中,节流孔处轴颈表面受到的压力最大。随着气膜厚度的增加,轴颈表面压力分布

呈减小趋势。

图8 3号节流孔处轴颈表面压力

分布

图9 4号节流孔处轴颈表面压力分布

3 轴承承载能力与刚度计算

根据ANSYS 显示的数值列表,计算轴承的承载能力及其刚度。1号节流孔处轴颈表面压力分布数值(取值21个)为:0.101,0.179,0.251,0.312,0.357,0.373,0.366,0.357,0.376,0.399,0.399,0.400,0.387,0.389,0.448,0.557,0.660,0.721,0.743,0.745和0.744MPa 。求出这些数值的平均值为p 1=0.441M Pa 。同样可求得2~4号节流孔处轴颈表面的平均压力为:p 2=0.387MPa ;p 3=0.322MPa ;p 4=0.313M Pa 。如图1所示,

12宽度18圆周的轴承气膜面积A =1

16 DL = (mm 2

),则轴承部分受力分别为:F 1=A p 1=1.387N ;F 2=1.21N ;F 3=1.012N ;F 4=0.984N 。根据图

1可得轴承12宽度1

2

圆周部分的径向承载力为:

F y =F 1cos

8-F 4cos 8+F 2si n 8-F 3si n

8

=0.4482N ,

由前面的对称条件可求出轴承承载能力W =4F y =1.7928N 。轴承静刚度K s =W

e

,式中e 为偏心量,e = h 0,则K s =

W

h 0

=199.2。(下转第44页)

11 李华川等:基于AN S Y S 的空气静压轴承有限元分析

限于篇幅只对表1中型号为6211的存在钢球缺陷的轴承进行了共振解调分析。6211的球组节圆直径为85mm ,钢球直径为15.081mm,钢球个数为10个,接触角为0 。轴承外圈不转,内圈转速为1800r/m i n 。图6是其分析过程,图6b 是Butter w orth 5阶带通滤波器获取的高频带(10500~13500H z)信号,图6c 是应用H il b ert 变换得到的包络信号,图6d 是经过低通滤波器(低截止频率

为1000H z)之后得到的功率谱图。从图6d 可以清晰地看见1阶(80H z)至6阶的高阶谐波谱峰。通过轴承故障频率的理论计算公式得到外圈故障频率为123.4H z ,内圈故障频率为176.6H z ,钢球故障频率为81.8H z ,而图6d 中6211轴承的1阶频率与钢球理论故障频率大致相等,因此可以判

断轴承故障发生在钢球上。

图6 存在钢球缺陷的6211轴承的共振解调分析过程

5 结束语

在虚拟仪器技术的基础上改进了B VT -1A 型测振仪,利用计算机、USB6009数据采集卡和LabV I E W 设计了一种轴承故障诊断系统。故障诊断系统在时域内通过测量低、中、高3个频带的有效值、峭度、过阈值脉冲数,在频域内通过共振解调法来诊断轴承故障。最后对6203,6011和62113种型号轴承进行了试验验证,结果表明了该系统的可靠性。需要注意的是,滚动轴承的故障诊断是一个复杂的技术问题,轴承载荷、转速、游隙诸因素都会给诊断结果带来误差,本故障诊断系统目前仍处于试验阶段,还需要不断地改进和完善才能应用于实际生产。

参考文献:

[1] 赵联春,张桂才.轴承异常声检测的特征量选择及分

析[J].轴承,2005(11):29-32.[2] 武和雷,朱善安,林瑞仲,等.滚动轴承故障诊断虚拟

仪器系统[J].轴承,2002(12):34-39.[3] 李兴林,陈芳华,沈云同,等.滚动轴承振动、噪声和

异音测试系统技术研究[J].试验技术与试验机,2003(4):39-42.

[4] 王 平,廖明夫.滚动轴承故障诊断的自适应共振解

调技术[J].航空动力学报,2005,20(4):606-612.[5] JB /T 10187 2000,滚动轴承-深沟球轴承振动(速度)技术条件[S].

(编辑:张 旭)

(上接第11页)

根据文献[2]提供的气体静压轴承传统工程设计理论,并用VB 程序开发计算该模型,可计算出

实际值大约为W =1.6815N [3]

,可得文中的AN SYS 计算结果与文献[3]的传统工程设计方法计算结果相差6.6%,基本一致,由此可知采用AN SYS 对空气静压轴承进行有限元分析是可行的。

4 结束语

ANSYS 对空气静压轴承进行分析的结果与轴承实际工作情况基本一致,基于其分析结果所得到的轴承承载能力和静刚度与传统工程理论设计方法计算结果接近。由此说明,此有限元分析方

法具有较好的精度,采用该方法对空气静压轴承进行研究是可行的,可为空气轴承式板形仪的结构设计和性能特性分析提供理论依据。此外,可以考虑使用三维形式建立模型,这样会使有限单元网格划分更加精确,分析结果更加准确。参考文献:

[1] 刘 暾,刘育华,陈世杰.静压气体轴承[M ].哈尔

滨:哈尔滨工业大学出版社,1990.

[2] 王云飞.气体润滑理论与气体轴承设计[M ].北京:机械工业出版社,1997.

[3] 张群生.基于V B 的气体静压轴承设计[J].机电产

品开发与创新,2007(4):117-119.

(编辑:温朝杰)

44 轴承 2010. .9

ansys经典例题步骤

Project1 梁的有限元建模与变形分析 计算分析模型如图1-1 所示, 习题文件名: beam。 NOTE:要求选择不同形状的截面分别进行计算。 梁承受均布载荷:1.0e5 Pa 图1-1梁的计算分析模型 梁截面分别采用以下三种截面(单位:m): 矩形截面:圆截面:工字形截面: B=0.1, H=0.15 R=0.1 w1=0.1,w2=0.1,w3=0.2, t1=0.0114,t2=0.0114,t3=0.007 1.1进入ANSYS 程序→ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: beam→Run 1.2设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK 1.3选择单元类型 ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete… →Add… →select Beam 2 node 188 →OK (back to Element Types window)→Close (the Element Type window) 1.4定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural→Linear→Elastic→Isotropic→input EX:2.1e11, PRXY:0.3→OK 1.5定义截面 ANSYS Main Menu: Preprocessor →Sections →Beam →Common Sectns→分别定义矩形截面、圆截面和工字形截面:矩形截面:ID=1,B=0.1,H=0.15 →Apply →圆截面:ID=2,R=0.1 →Apply →工字形截面:ID=3,w1=0.1,w2=0.1,w3=0.2,t1=0.0114,t2=0.0114,t3=0.007→OK

动压、静压、动静压轴承的工作原理及装配知识

动压、静压、动静压轴承的工作原理及装配知识 一、静动压轴承的工作原理 先启动供油泵,油经滤油器后经节流器进入油腔、此时在主轴颈表面产生一层油膜,支承、润滑和冷却主轴,由于节流器的作用油液托起主轴,油经回油孔通过回油泵回至油箱。然后启动磨头电机,主轴旋转。利用极易产生动压效应的楔形油腔结构,主轴进入高速稳态转动后,形成强刚度的动压油膜,用以平衡在高速运行下的工作负载。 结构形式及特点: 整体套筒式结构,安装方便; 高精度:由于承载油膜的均化作用,使主轴具有很高的旋转精度: 主轴径向跳动、轴向窜动≤2μm;或≤1μm 高刚度:由于该轴系的独特油腔结构,轴承系统在工作时,主轴被一层压力油膜浮起,主轴未经旋转时为纯静压轴承,主轴旋转时由于轴承内孔浅腔的阶梯效应使得轴承内自然形成动压承载油膜,因而形成具有压力场的动压滑动轴承,该结构提高了轴承的刚度;轴向刚度可达到20—50kg /1μm;径向刚度可达到100kg /1μm 高承载能力:由于动压效果靠自然形成,无需附加动力,使得主轴承载能力大大提高。长使用寿命:理论为无限期使用寿命,在正常使用条件下,极少维修. 利用润滑油的粘性和轴颈的高速旋转,把润滑油带进轴承的楔形空间建立起压力油膜隔开。这种轴承称为动压滑动轴承。靠液体润滑剂动压力形成液膜隔开两摩擦表面并承受载荷滑动轴承。液体润滑剂是被两摩擦面相对运动带入两摩擦面之间。产生液体动压力条件是﹕两摩擦面有足够相对运动速度﹔润滑剂有适当黏度﹔两表面间间隙是收敛。 二、动压滑动轴承的安装 动压轴承结构图 1 装配前的准备 (1)准备所需的量具和工具。 (2)按照图纸要求检查轴套和轴承座的表面情况及配合过盈是否符合要求,然后按轴颈

[整理]《ANSYS120宝典》习题.

第1章 习题 1.ANSYS软件程序包括几大功能模块?分别有什么作用? 2.如何启动和退出ANSYS程序? 3.ANSYS程序有哪几种文件类型? 4.ANSYS结构有限元分析的基本过程是什么? 5.两杆平面桁架尺寸及角度如习题图1.1所示,杆件材料的弹性模量为2.1×1011Pa,泊松 比为0.3,截面面积为10cm2,所受集中力载荷F=1000N。试采用二维杆单元LINK1计算集中力位置节点的位移和约束节点的约束反力。 习题图1.1 两杆平面桁架 第2章 习题 1.建立有限元模型有几种方法? 2.ANSYS程序提供了哪几种坐标系供用户选择? 3.ANSYS程序中如何平移和旋转工作平面? 4.试分别采用自底向上的建模方法和自顶向下的建模方法建立如习题图2.1所示的平面图 形,其中没有尺寸标注的图形读者可自行假定,并试着采用布尔运算的拉伸操作将平面图形沿法向拉伸为立体图形。

习题图2.1 平面图形 5.试分别利用布尔运算建立如习题图2.2所示的立体图形,其中没有尺寸标注的图形读者 可自行假定。 习题图2.2 立体图形 6.试对习题图2.3所示的图形进行映射网格划分,并任意控制其网格尺寸,图形尺寸读者 可自行假定。 习题图2.3 映射网格划分

第3章 习题 1.试阐述ANSYS载荷类型及其加载方式。 2.试阐述ANSYS主要求解器类型及其适用范围。 3.如何进行多载荷步的创建,并进行求解? 4.试建立如习题图3.1所示的矩形梁,并按照图形所示施加约束和载荷,矩形梁尺寸及载 荷位置大小读者可自行假定。 习题图3.1 矩形梁约束与载荷 5.试建立如习题图3.2所示的平面图形,并按照图形所示施加约束和载荷,平面图形的尺 寸及载荷大小读者可自行假定。 习题图3.2 平面图形约束与载荷 第4章 习题

空气轴承的工作原理

空气轴承的工作原理 压缩空气进入由空气轴承支撑的动力轴,被分成两个通道,一个通道用以驱动动力轴,另一个通道用于轴承座支撑动力轴。其中的自旋转动力轴和空气轴承座都是经精密的机械加工,两者间保持0.02mm的间隙,(根据载荷与转速设计就有不同的数据)。 产品特性 压缩空气进入自旋轴,采取将其分成两个通道,去驱动与支撑动力轴,使其最高转速达 350,000r/min。(目前我们能做的轴承可以达到20万转/分,在国内已经算是顶尖水平,要在提升技术,要等有钱了,更换一些高档的设备才能做到。国际上能做到35万转/分,但报废率非常高,应用也不广。) 由几个空气轴承支撑着的动力轴,能够安装在车床的卧式刀架上,分别以纵向静态安装和动态驱动刀具两种状态进行加工。 空气轴承结构本身存在着的刚性差和引起的不同心,不但没有影响加工精度,反而由于可使刀具稍微浮动,因而提高了零件的加工精度,而且还具有切削力小,机床消耗功率小等优点。即使对于较低转速(60,000r/min)加工,机床消耗的最大切削功率只为40W。在机床主轴上能安装0.1mm小的钻头。(目前我们自己组装的一台机器能够钻到0.1mm的小孔。) 1.采用空气动静压气浮轴承,运转“平稳”。 2.结构简单,性能稳定可靠。 3.采用防卡技术,提高了防过载和防误操作的能力。空气静压气浮轴承,运转“平稳”。 4.轴承表面特殊处理,提高轴承的使用寿命。 5.优化设计,性能稳定可靠,耗气量小。 6.对于高精加工应用非常好,特别是磨削加工。(目前我们正在研究把他应用到弹簧夹头内 孔研磨上,可以实现0.2um以内的同心度,用国家弹簧夹头检验标准可以实现摆动3um 以内。) 7.可以利用这个工作原理开发一系列的产品出来,主要考虑应用高精密设备。 产品用途 目前我们生产的轴承用于PCB钻孔用的电主轴里面,我们的产品用德国的检测设备检测可以做到同心度1um,内孔圆度0.3um,垂直度2um。与国际加工水平相当。

ansys考试重点整理

ANSYS复习试卷 一、填空题 1.启动ANSYS有命令方式和菜单方式两种方式。 2.典型的ANSYS分析步骤有创建有限元模型(预处理阶段)、施加载荷并求解(求解阶段)、查看结果(后处理阶段)等。 3.APDL语言的参数有变量参数和数组参数,前者有数值型和字符型,后者有数值型、字符型和表。 4.ANSYS中常用的实体建模方式有自下而上建模和自上而下建模两种。 5.ANSYS中的总体坐标系有总体迪卡尔坐标系 [csys,0]、总体柱坐标系(Z)[csys,1]、总体球坐标系[csys,2]和总体柱坐标系(Y)[csys,3]。 6.ANSYS中网格划分的方法有自由网格划分、映射网格划分、扫掠网格划分、过渡网格划分等。 7.ANSYS中载荷既可以加在实体模型上,也可以加在有限元模型上。 8.ANSYS中常用的加载方式有直接加载、表格加载和函数加载。 9.在ANSYS中常用的结果显示方式有图像显示、列表显示、动画显示等。 10.在ANSYS中结果后处理主要在通用后处理器 (POST1) 和时间历程后处理器 (POST26) 里完成。 11.谐响应分析中主要的三种求解方法是完全法、缩减法、模

态叠加法 。 12.模态分析主要用于计算结构的 固有频率 和 振型(模态) 。 13. ANSYS 热分析可分为 稳态传热 、 瞬态传热 和 耦合分析 三类。 14. 用于热辐射中净热量传递的斯蒂芬-波尔兹曼方程的表达式是4411212()q A F T T εσ=-。 15. 热传递的方式有 热传导 、 热对流 、 热辐射 三种。 16. 利用ANSYS 软件进行耦合分析的方法有 直接耦合 、 间接耦合 两种。 二、 简答题 1. 有限元方法计算的思路是什么包含哪几个过程 答:(1)有限元是将一个连续体结构离散成有限个单元体,这些单元体在节点处相互铰结,把荷载简化到节点上,计算在外荷载作用下各节点的位移,进而计算各单元的应力和应变。用离散体的解答近似代替原连续体解答,当单元划分得足够密时,它与真实解是接近的。 (2)物体离散化;单元特性分析;单元组装;求解节点自由度。 2. ANSYS 都有哪几个处理器各自用途是什么 答:(1)有6个,分别是:前处理器;求解器;通用后处理器;时间历程后处理器;拓扑优化器;优化器。 (2)前处理器:创建有限元或实体模型; 求解器:施加荷载并求解; 通用后处理器:查看模型在某一时刻的结果; 时间历程后处理器:查看模型在不同时间段或子步历程上的结果; 拓扑优化器:寻求物体对材料的最佳利用; 优化器:进行传统的优化设计;

空气轴承-什么原因造成主轴损坏10月16日

什么原因造成主轴损坏 数控钻床的主轴是用来钻孔和铣外形的,它的好坏不仅直接影响到最终的产品质量,而且会影响到印制板的制造成本。什么时候主轴不转了,或者噪声很大、老断刀具,我们就说“主轴出故障了”。而在主轴出故障的时候,我们又感觉是“主轴设计或制造的缺陷”。凭心而论,主轴装在机器上就不完全取决于自身的性能和特征了,它会受到其他硬件设备和软件功能的影响,大多数情况还是操作失误造成主轴损坏。 对于滚珠轴承主轴,如果使用的配套设备很合适,轴承最终磨损,声音很大,我们知道这是因为轴承的滚珠和座圈之间机械接触所至。对于空气轴承人们常存在一些误解:认为既然转子和定子之间无机械接触,主轴应该永远不坏。当然,如果这种主轴是工作在很干净的实验室环境下,它的确不会轻易损坏,现实的情况是我们要用它钻铣非常硬的环氧玻璃布纤维板,环境又很脏。这就存在可能使配套设备失灵或出现误动作,主轴因此而出现故障或损坏。这些故障是可以减少的,那就是正确的机器维护和保养。 前面我们已讨论了造成主轴损坏的一些原因,现在再让我们看一看空气轴承主轴内部结构。图一:空气轴承主轴内部结构图 到转子并使之稳定。空气的轴向射流从转子推力板的底部托起转子使之可以自由转动。同时,这个托起的力还能承受主轴缩回时的冲击。空气轴向射流同时也作用于转子推力板的顶部,为主轴钻冲程提供推力负荷。显而易见,空气轴承主轴的寿命取决于压缩空气的质量和合适的压力。 现在让我们看看造成主轴损坏的一些原因: 一、在数控钻铣床上自动换刀(ATC)阀门泄漏 ATC阀门泄漏造成主轴损坏是最常见的。特别是一些老机器,尤其是一些老机器由滚珠轴承主轴翻新为空气轴承主轴更是如此。随着使用年限的增加,阀门由于磨损趋向泄漏是很自然的,关键是你要知道多长时间必须更换这些要泄漏的阀门,使由于空气阀门泄漏造成主轴损坏这个因素减到最低。当偶然发生ATC

液体静压轴承原理

液体静压轴承 靠外部供给压力油、在轴承内建立静压承载油膜以实现液体润滑的滑动轴承。液体静压轴承从起动到停止始终在液体润滑下工作,所以没有磨损,使用寿命长,起动功率小,在极低(甚至为零)的速度下也能应用。此外,这种轴承还具有旋转精度高、油膜刚度大、能抑制油膜振荡等优点,但需要专用油箱供给压力油,高速时功耗较大。 简史 1862年,法国的L.D.吉拉尔发明液体静压轴承,指出摩擦系数可小至1/500。1917年,英国科学家瑞利发表求解液体静压推力轴承的承载能力、流量和摩擦力矩方程。1938年,美国在大型天文望远镜上应用液体静压轴承,承载总重量500吨,每昼夜转动一周,驱动功率仅1/12马力。1948年法国开始把液体静压轴承用于磨床上。现代液体静压轴承已成功地用于重型、精密、高效率的机器和设备上。 分类液体静压轴承分径向轴承、推力轴承和径向推力轴承(图1[液体静压轴承的类型] )。它有供油压力恒定和供油流量恒定两种系统。供油压力恒定系统较为常用。

作用原理图2 [供油压力恒定系统的液体静压轴承]为供油压力恒定系 统的液体静压轴承和轴瓦的构造。外部供给的压力油通过补偿元件后从供油压力降至油腔压力,再通过封油面与轴颈间的间隙从油腔压力降至环境压力。多数轴承在轴不受外力时,轴颈与轴承孔同心,各油腔的间隙、流量、压力均相等,这称为设计状态。当轴受外力时轴颈位移,各油腔的平均间隙、流量、压力均发生变化,这时轴承外力与各油腔油膜力的向量和相平衡。补偿元件起自动调节油腔压力和补偿流量的作用,其补偿性能会影响轴承的承载能力、油膜刚度等。供油压力恒定系统中的补偿元件称为节流器,常见的有毛细管节流器小孔节流器滑阀节流器、薄膜节流器等多种。供油流量恒定系统中的补偿元件有定量泵和定量阀补偿元件不同,轴承载荷-位移性能也不同(图3[不同补偿元件液体静压径向轴承的载荷-位移性能比较] )由于轴的旋转,在轴承封油面上有液体动压力产生,有利于提高轴承的承

高速空气静压主轴承性能分析

高速空气静压主轴性能分析 高速空气静压主轴承性能分析 Cheng-Ying Lo ,Cheng-Chi W ang ,Yu-Han Lee 摘要: 气动轴承设计的问题的解决方法是先压力分布和轴承轮转方向的精确度。目前,本文研究出了一个详细的理论分析轴承性能的方法,其中气动轴承最初是由无量纲简化的纳维——斯托克斯方程的形式来表达。利用轴承之间的间隙和孔口中的质量连续流动的假设,可以推导出非线性无量纲雷诺方程,然后利用牛顿方法进行离散。最后,修改后的雷诺方程可以利用循环迭代的方法来解决。目前的数值模型可以有效的油膜压力分布,摩擦力影响,承载能力,刚度,润滑气体流量,和静止状态偏心率和动态气动轴承压力包括高偏心率部分,高速非圆形线部分,推力轴承,滑块轴承等内容的分析。这个被使用的分析模型提供了宝贵的分析方式来研究高精度的静态和动态旋转的气体轴承的性能,并使其成为可以得到的最优化设计。 1.简介 气体轴承的特点是旋转时低噪音和低摩擦损失。因此,它们经常被应用于各种精密仪器中,在空负荷高速电动马达驱动的情况下,它们产生摩擦量为零。相比于传统的油轴承,气体轴承具有产生的热量低,少污染,和较高的精度的优点。然而,它们的主要缺点是,它们的运行往往相当不稳定,这往往限制其允许使用的范围。 1961年,格罗斯和扎克[1]首先开发,并应用了微扰的方法来解决:稳定,自行形成,可认为无限长的平面楔形油膜问题。使用的这种微扰的方法可以有效的分析所有的几何参数范围,并得到高度精确的结果。1975年,马宗达[2]提出一种理论方法,考虑到三维流多孔材料对轴承的影响,推导出稳态固定和旋转性能特点。我们知道气动轴承的主要承载能力受气膜的空气动力学影响,其中气膜的刚度,阻尼系数,和稳定的范围值是主要的影响参数。多数的轴承设计都是为了运转稳定,因此需要掌握最基本的有关稳定性的知识。所以,马宗达[3]构建了一个多孔矩形的推力轴承,在外部施压,利用可压缩润滑液的条件下的理论模型。1985年,金价和特尔[4] 利用有限元方法和有限差分法评价的相对精密的问题中近似研究了一个稳定,等粘度的,不可压润滑剂的模型。在他们的研究中,提出了一个复杂的耦合的问题的解法可以转化成一系列有顺序的简单,非耦合的稳定的问题的解法。轴承的二维计算表明,有限差分方法计算结果的相对误差比用有限元方法得到的结果略小。此外,结果表明,用有限差分的方法进行近似计算比有限元的方法要快,在相同的电脑处理器下,用有限差分法用0.15s而有限元需要0.17s。 1992年,斯洛克姆[5]进行的实验研究而为小孔节流的气动轴承制定全面的设计程序。最近,表面粗糙度对轴承的性能影响已被调查[6][7]。结果显示:普遍持有表面粗糙度在层流流动时,对气动轴承的影

空气静压轴承工作原理

空气静压气浮轴承工作原理气体静压轴承是滑动轴承形式当中的一种,其结构和工作原理与液体滑动轴承类似,不同的是采用气体(多为空气)作为润滑介质。当外部压缩气体通过节流器进入轴承间隙,就会在间隙中形成一层具有一定承载和刚度的润滑气膜,依靠该气膜的润滑支承作用将轴浮起在轴承中。对于气体静压轴承,采用外压供气是其基本工作方式,节流器是其结构的关键,而主轴工作时因自重和载荷出现的偏心则建立起轴承相应的承载和刚度加工中心机制。以径向供气的静压气浮轴承为例,径向孔式静压气体轴的气流通道主要由节流孔和轴承径向间隙两部分组成,节流孔是使外部加压气体进入轴承间隙前,产生节流效果、并使之形成具有一定承载能力及刚度的稳定润滑气膜的一种装置。而轴承径向间隙则是通过改变径向间隙,调整对气流的阻抗以达到改变空气流量,进而影响上游来流条件,改变节流孔出口压力Pr,在轴承腔内建立起新的平衡。两者的宏观表现均是对流体产生阻抗,使来流压力不断降低,因此,有类似电学欧姆定律的规律。将图4-1的气浮轴承模型类比图4-2的电阻模型。 压缩空气以供气压力只:由供气通道经节流小孔进入气腔,通过气膜流出,当通道横截面积减小时,气流速度加快,剪切速率会增加,由于气体的粘性,气体的内摩擦会消耗其动能,经过节流小孔后气体压力值减小,即气腔中压力Pr,小于供气压力凡。同理由于气膜厚度很小,空气在气膜中流动时的剪切速率很大,所以气体由气腔流经气膜时,压力会有再次损失,即环境压力Po低于气腔压力Pr。我们将节流小孔和气膜这些小截面通道对气流的阻碍作用称为阻抗,将节流小孔的阻抗记为Rg,记气膜的阻抗为Rh。那么,空气流动的过程与电流流经两个串联的电阻非常相似,其中,气流对应于电流,阻抗对应于电阻,气体压力对应于电压。未通压缩空气前,由于滑动件的自重与载荷的作用:支承件与滑动件相互贴合:气膜厚度h为零。此时气膜的阻抗Rh趋于无穷大,气腔压力只,趋近于供气压力Ps;当供气压力与气腔面积之乘积值超过载荷F时,滑动件浮起,气膜形成,气腔压力只,低于供气压力凡滑动件在气膜压力的支承下达到平衡。当外载荷F增大时,气膜厚度减小,气膜阻抗值R蹭大。根据图4-2,气膜上的压帜,会因此增加,支承力增加,以平衡增大的外载荷。反之,「减小,h增大,R*减小,只减小,从而支承力减小,这样可以和减小的外载荷平衡。以上就是静压润滑的基本原理。其原理图如图4-3,如果把多个图4-1这样的结构均布在环形圆周上,支承件换成轴,就形成了空气静压轴承结构,其示意图如4-4所示。

有限元分析大作业试题

有限元分析习题及大作业试题 要求:1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交; 2)以小组为单位完成有限元分析计算; 3)以小组为单位编写计算分析报告; 4)计算分析报告应包括以下部分: A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方 案、载荷及边界条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分 析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单 元改变对精度的影响分析、不同网格划分方案对结果的 影响分析等) E、建议与体会 4)11月1日前必须完成,并递交计算分析报告(报告要求打印)。

习题及上机指南:(试题见上机指南) 例题1 坝体的有限元建模与受力分析 例题2 平板的有限元建模与变形分析 例题1:平板的有限元建模与变形分析 计算分析模型如图1-1 所示, 习题文件名: plane 0.5 m 0.5 m 0.5 m 0.5 m 板承受均布载荷:1.0e 5 P a 图1-1 受均布载荷作用的平板计算分析模型 1.1 进入ANSYS 程序 →ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: plane →Run 1.2设置计算类型 ANSYS Main Menu : Preferences →select Structural → OK 1.3选择单元类型 ANSYS Main Menu : Preprocessor →Element T ype →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element T ypes window) → Options… →select K3: Plane stress w/thk →OK →Close (the Element T ype window) 1.4定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY :0.3 → OK 1.5定义实常数 ANSYS Main Menu: Preprocessor →Real Constant s… →Add … →select T ype 1→ OK →input THK:1 →OK →Close (the Real Constants Window)

几个ansys经典实例(长见识)

平面问题斜支座的处理 如图5-7所示,为一个带斜支座的平面应力结构,其中位置2及3处为固定约束,位置4处为一个45o的斜支座,试用一个4节点矩形单元分析该结构的位移场。 (a)平面结构(b)有限元分析模型 图5-7 带斜支座的平面结构 基于ANSYS平台,分别采用约束方程以及局部坐标系的斜支座约束这两种方式来进行处理。 (7) 模型加约束 左边施加X,Y方向的位移约束 ANSYS Main Menu: Solution →Define Loads →Apply →-Structural→Displacement On Nodes →选取2,3号节点→OK →Lab2: All DOF(施加X,Y方向的位移约束) →OK 以下提供两种方法处理斜支座问题,使用时选择一种方法。 ?采用约束方程来处理斜支座 ANSYS Main Menu:Preprocessor →Coupling/ Ceqn →Constraint Eqn :Const :0, NODE1:4, Lab1: UX,C1:1,NODE2:4,Lab2:UY,C2:1→OK 或者?采用斜支座的局部坐标来施加位移约束 ANSYS Utility Menu:WorkPlane →Local Coordinate System →Create local system →At specified LOC + →单击图形中的任意一点→OK →XC、YC、ZC分别设定为2,0,0,THXY:45 →OK ANSYS Main Menu:Preprocessor →modeling →Move / Modify →Rotate Node CS →To active CS → 选择4号节点 ANSYS Main Menu:Solution →Define Loads →Apply →Structural →Displacement On Nodes →选取4号节点→OK →选择Lab2:UY(施加Y方向的位移约束) →OK 命令流; !---方法1 begin----以下的一条命令为采用约束方程的方式对斜支座进行处理 CE,1,0,4,UX,1,4,UY,-1 !建立约束方程(No.1): 0=node4_UX*1+node_UY*(-1) !---方法1 end --- !--- 方法2 begin --以下三条命令为定义局部坐标系,进行旋转,施加位移约束 !local,11,0,2,0,0,45 !在4号节点建立局部坐标系 !nrotat, 4 !将4号节点坐标系旋转为与局部坐标系相同 !D,4,UY !在局部坐标下添加位移约束 !--- 方法2 end

ansys有限元分析大作业

ansys有限元分析大作业

有限元大作业 设计题目: 单车的设计及ansys有限元分析 专业班级: 姓名: 学号: 指导老师: 完成日期: 2016.11.23

单车的设计及ansys模拟分析 一、单车实体设计与建模 1、总体设计 单车的总体设计三维图如下,采用pro-e进行实体建模。 在建模时修改proe默认单位为国际主单位(米千克秒 mks) Proe》文件》属性》修改

2、车架 车架是构成单车的基体,联接着单车的其余各个部件并承受骑者的体重及单车在行驶时经受各种震动和冲击力量,因此除了强度以外还应有足够的刚度,这是为了在各种行驶条件下,使固定在车架上的各机构的相对位置应保持不变,充分发挥各部位的功能。车架分为前部和后部,前部为转向部分,后部为驱动部分,由于受力较大,所有要对后半部分进行加固。

二、单车有限元模型 1、材料的选择 单车的车身选用铝合金(6061-T6)T6标志表示经过热处理、时效。 其属性如下: 弹性模量:) .6+ 90E (2 N/m 10 泊松比:0.33 质量密度:) 3 2.70E+ N/m (2 抗剪模量:) 60E .2+ N/m (2 10 屈服强度:) .2+ (2 75E 8 N/m 2、单车模型的简化 为了方便单车的模拟分析,提高电脑的运算

效率,可对单车进行初步的简化;单车受到的力的主要由车架承受,因此必须保证车架能够有足够的强度、刚度,抗振的能力,故分析的时候主要对车架进行分析。简化后的车架如下图所示。 3、单元体的选择 单车车架为实体故定义车架的单元类型为实体单元(solid)。查资料可以知道3D实体常用结构实体单元有下表。 单元名称说明 Solid45 三维结构实体单元,单元由8个节点定义,具有塑性、蠕变、应力刚化、 大变形、大应变功能,其高阶单元是 solid95

动静压轴承工作原理和设计

几种典型液体动静压轴承结构特点与应用 2007-1-23 来源: 本文介绍了几种典型的、使用场合较多的液体动静压轴承的结构及特点,并举了各种动静压轴承在机床上应用的实例及效果。 液体动静压轴承精度高、刚度大、寿命长、吸振抗震性能好,主要用于精密加工机械及高速、高精度设备的主轴。既可用于旧机床改造,也可用于新机床配套。采用动静压轴承可以完全恢复机床因主轴轴承问题而丧失的加工精度和表面粗糙度;提高机床主轴精度和切削效率;并可多年连续使用而不需维修。多年来我国一些企业采用动静压轴承为新机床配套和进行国产和进口旧机床设备改造,均获得了满意的使用效果和显著的经济效益。 液体动静压轴承综合了静压轴承的优点,消除了这两种轴承的不足。其特点是采用整体式轴承与表面深浅腔结构油腔轴承系统工作时主轴被一层压力油膜浮起,主轴为经电机驱动已悬浮在轴承之间发生机械摩擦与磨损,从而提高轴承寿命且有良好的精度保持性。当电机驱动主轴旋转时,轴承油腔内由于阶梯效应自然形成动静压承载油膜,轴承成为具有静压压力场的东压滑动轴承。与三块、五块瓦相比,动静压轴承为整体式使结构,轴承与箱体孔接触面积大,为刚性连接,是油膜刚度得到充分的发挥利用。主轴工作时,油膜刚度是轴承静态刚度与动态刚度的叠加,有很强的承载能力。压力油膜的“均化”作用可使主轴回转精度高于轴颈和轴承的加工精度。 一、静压轴承的几种典型结构及特点 液体动静压轴承所采用油腔结构、节流器与静压轴承相比均不相同。静压轴承采用的固定节流器有“小孔”、“毛细管”等,可变节流器大多设置在轴承外部的静止部位,结构复杂,使用时常因节流器出面截流面太小,油液杂质易堆积而发生堵赛。 早期设计的动静压轴承为浅腔结构,分有节流器和无节流器两种。图1为节流器的动静压轴承,深腔与浅腔形成静压腔,浅腔兼备节流功能。压力油ps 进入中间环槽后,流入深腔和浅腔,经两端的轴向封油面排出,当主轴在轴承中高速旋转时,由于浅腔同轴向封油面台阶及主轴中心的轴承中微小偏心,自然形成楔形油膜而产生动压承载油膜。主轴只能按图1所示W方向旋转。

ansys有限元分析作业经典案例

有 限 元 分 析 作 业 作业名称 输气管道有限元建模分析 姓 名 陈腾飞 学 号 3070611062 班 级 07机制(2)班 宁波理工学院

题目描述: 输气管道的有限元建模与分析 计算分析模型如图1所示 承受内压:1.0e8 Pa R1=0.3 R2=0.5 管道材料参数:弹性模量E=200Gpa;泊松比v=0.26。 图1受均匀内压的输气管道计算分析模型(截面图) 题目分析: 由于管道沿长度方向的尺寸远远大于管道的直径,在计算过程中忽略管道的断面效应,认为在其方向上无应变产生。然后根据结构的对称性,只要分析其中1/4即可。此外,需注意分析过程中的单位统一。 操作步骤 1.定义工作文件名和工作标题 1.定义工作文件名。执行Utility Menu-File→Chang Jobname-3070611062,单击OK按钮。 2.定义工作标题。执行Utility Menu-File→Change Tile-chentengfei3070611062,单击OK按钮。 3.更改目录。执行Utility Menu-File→change the working directory –D/chen 2.定义单元类型和材料属性 1.设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK

2.选择单元类型。执行ANSYS Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 8node 82 →apply Add/Edit/Delete →Add →select Solid Brick 8node 185 →OK Options…→select K3: Plane strain →OK→Close如图2所示,选择OK接受单元类型并关闭对话框。 图2 3.设置材料属性。执行Main Menu→Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic,在EX框中输入2e11,在PRXY框中输入0.26,如图3所示,选择OK并关闭对话框。 图3 3.创建几何模型 1. 选择ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input:1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3) →OK

空气轴承

空气轴承 空气轴承(又称为气浮轴承)指的是用气体(通常是空气,但也有可能是其它气体)作为润滑剂的滑动轴承。空气比油粘滞性小,耐高温,无污染,因而可用于高速机器、仪器及放射性装置中,但其负荷能力比油低。空气轴承分为三大类:空气静压轴承、空气动压轴承和挤压膜轴承。在一般工业中,空气静压轴承用得较广泛。 1 结构 由轴承内圈和外圈,外圈上有空气的进出口空,内圈上有喷嘴。具体见附图: 2 工作原理 空气轴承是利用空气弹性势来起支承作用的一种新型轴承。 3 优点 3.1.更高精度 空气轴承提供极高的径向和轴向旋转精度。由于没有机械接触,磨损程度降到了最低,从而确保精度始终保持稳定。

由于制造结构的不同,空气主轴旋转时的精确性是天生具备的。特殊的制造技术提高了这一精确性,能够提供极高的旋转和轴向精度。空气主轴的设计是,能够在轴向和径向同时获得小于0.1微米TIR的旋转精确性。由于旋转的转子和静态支撑部分之间没有机械接触,所以没有磨损产生,从而确保精度始终保持稳定——制造商使用统计学加工控制的一个重要特性。 典型的同步径向偏摆值:<10微米(PCB钻孔主轴,高速) 典型的非同步径向偏摆值:<0.025微米(磁盘测试主轴,低速) D1787高端PCB主轴的动态偏摆与转子速度之间的关系 D1640-05磁盘测试主轴的非同步径向偏摆与转子速度之间的关系 3.2. 高速 空气轴承内部的低剪切力,能够在提供极高转速的同时,将动力损失降到最低,并使产生的热量非常小。转速可以超过300,000转/分钟。 空气轴承阻力较低,允许较高的速度,并能同时保持较低的振动水平。摩擦对空气轴承旋转的阻碍非常小,并且,因此使得动力损失和热量产生也非常小。这使得转子能够以极高的表面速度运行。有些主轴中,较高的旋转速度会导致轴承硬度的增加——由空气动力学和回转加劲的特点导致的。 各个市场领域中目前最高速西风空气主轴的图示 3.3.增加刀具寿命 使用空气轴承意味着能够大大延长刀具的寿命。 较低的振动和较高的旋转精度,意味着钻头、刀具、砂轮、和钻探工具都会有更长的寿命——降低了保养和运行成本。特别地,在PCB钻孔行业中,目前使用的钻针直径更小至50微米,只有空气主轴才能以所需的速度运行,以确保刀具的寿命达到要求 砂轮寿命的典型增长:1.5倍~4倍,取决于应用领域和砂轮类型 直径0.01的PCB钻孔工具寿命与旋转速度之间的关系 3.4.提高表面光度 空气主轴精确的、可重复的运动,使得表明光度达到了非常出色的程度。 空气主轴的应用(如:半导体加工)提供了流畅的、精确的、可重复的运动——使得表面光度更佳。与滚珠轴承主轴不同,空气轴承提供了稳定的轴承硬度,能够确保所加工的硬质材料表面以下部分的破损程度最小。由于硬度是由贯穿轴承的、始终如一的空气流提供的,转子所经受的、来

静压导轨工作原理

静压导轨工作原理 静压导轨的工作原理与静压轴承相同。将具有一定压力的润滑油,经节流器输入到导轨面上的油腔,即可形成承载油膜,使导轨面之间处于纯液体摩擦状态。 优点:导轨运动速度的变化对油膜厚度的影响很小;载荷的变化对油膜厚度的影响很小;液体摩檫,摩檫系数仅为0.005左右,油膜抗振性好。 缺点:导轨自身结构比较复杂;需要增加一套供油系统;对润滑油的 清洁程度要求很高。 主要应用:精密机床的进给运动和低速运动导轨 静压导轨分类 按结构形式分:开式、闭式 开式静压导轨:压力油经节流器进入导轨的各个油腔,使运动部件浮起,导轨面被油膜隔开,油腔中的油不断地通过封油边而流回油箱。当动 导轨受到外载荷作用向下产生一个位移时,导轨间隙变小,增加了回油阻力,使油腔中的油压升高,以平衡外载荷。 闭式导轨:在上、下导轨面上都开有油腔,可以承受双向外载荷,保 证运动部件工作平稳。 按供油情况可分为定量式静压导轨和定压式静压导轨。 定压式静压导轨: 是指节流器进口处的油压压强ps是一定的,这是目前应用较多的静 压导轨。 定量式静压导轨

指流经油腔的润滑油流量是一个定值,这种静压导轨不用节流器,而是对每个油腔均有一个定量油泵供油。由于流量不变,当导轨间隙随外载荷的增大而变小时,则油压上升,载荷得到平衡。载荷的变化,只会引起 很小的导轨间隙变化,因而油膜刚度较高,但这种静压导轨结构复杂。 φ1.6米圆台立式磨床采用恒流静压导轨的研制 来源:机电在线发布时间:2009-4-16 8:59:44 1 引言 对于精密圆台立式磨床来说,要保证磨削工件的大平面粗糙度低、精度高,除了要求磨头好以外,还要求工作台的工作性能要好。目前国内外生产 的φ1.6米精密圆台立式磨床中,工作台导轨基本上采用滚动导轨,经调查,滚动体磨损后高精度易于丧失,抗振能力不强,在磨削高精度的大平面时, 粗糙度值也不理想。而静压导轨与它比较,具有更小的摩擦阻力,使用寿命长,动态特性好,运动刚度好,有一定的吸振能力,运动精度高。滚动导轨 难于与静压导轨媲美,且国产静压系统与进口大型特级平面滚动轴承在价格 上也相差不大。因此,我们在研制φ 1.6米精密圆台立磨(该项目为原机械 工业部1997年机械工业科学技术发展计划项目)中采用了静压导轨,效果好。下面对本课题中静压导轨的设计作一介绍。 2 静压导轨供油方式的确定 就供油方式而言,液体静压导轨目前分为恒压和恒流供油两大类。近年来德国、日本、美国等工业发达国家生产的机床,对液体静压导轨的供油方式,不是千篇一律采用某种方式,有采用恒流供油方式,也有采用恒压供油

一个经典的ansys热分析实例(流程序)

/PREP7 /TITLE,Steady-state thermal analysis of pipe junction /UNITS,BIN ! 英制单位;Use U. S. Customary system of units (inches) ! /SHOW, ! Specify graphics driver for interactive run ET,1,90 ! Define 20-node, 3-D thermal solid element MP,DENS,1,.285 ! Density = .285 lbf/in^3 MPTEMP,,70,200,300,400,500 ! Create temperature table MPDATA,KXX,1,,8.35/12,8.90/12,9.35/12,9.80/12,10.23/12 ! 指定与温度相对应的数据材料属性;导热系数;Define conductivity values MPDATA,C,1,,.113,.117,.119,.122,.125 ! Define specific heat values(比热) MPDATA,HF,2,,426/144,405/144,352/144,275/144,221/144 ! Define film coefficient;除144是单位问题,上面的除12也是单元问题 ! Define parameters for model generation RI1=1.3 ! Inside radius of cylindrical tank RO1=1.5 ! Outside radius Z1=2 ! Length RI2=.4 ! Inside radius of pipe RO2=.5 ! Outside pipe radius Z2=2 ! Pipe length CYLIND,RI1,RO1,,Z1,,90 ! 90 degree cylindrical volume for tank WPROTA,0,-90 ! 旋转当前工作的平面;从Y到Z旋转-90度;;Rotate working plane to pipe axis CYLIND,RI2,RO2,,Z2,-90 ! 角度选择在了第四象限;90 degree cylindrical volume for pipe WPSTYL,DEFA ! 重新安排工作平面的设置;另外WPSTYL,STAT to list the status of the working plane;;Return working plane to default setting BOPT,NUMB,OFF ! 关掉布尔操作的数字警告信息;Turn off Boolean numbering warning VOVLAP,1,2 ! 交迭体;Overlap the two cylinders /PNUM,VOLU,1 ! 体编号打开;Turn volume numbers on /VIEW,,-3,-1,1

ansys有限元分析作业

有限元分析作业 作业名称输气管道有限元建模分析 姓名邓伟 学号 p1202100706 班级:浦机械1007 题目描述: 输气管道的有限元建模与分析 计算分析模型如图1所示 承受内压:1.0e8 Pa R1=0.3 R2=0.5

管道材料参数:弹性模量E=200Gpa;泊松比v=0.26。 图1受均匀内压的输气管道计算分析模型(截面图) 题目分析: 由于管道沿长度方向的尺寸远远大于管道的直径,在计算过程中忽略管道的断面效应,认为在其方向上无应变产生。然后根据结构的对称性,只要分析其中1/4即可。此外,需注意分析过程中的单位统一。 操作步骤 1.定义工作文件名和工作标题 1.定义工作文件名。执行Utility Menu-File→Chang Jobname-3070611062,单击OK按钮。 2.定义工作标题。执行Utility Menu-File→Change Tile-chentengfei3070611062,单击OK按钮。 3.更改目录。执行Utility Menu-File→change the working directory –D/chen 2.定义单元类型和材料属性 1.设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK 2.选择单元类型。执行ANSYS Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 8node 82 →apply Add/Edit/Delete →Add →select Solid Brick 8node 185 →OK Options…→select K3: Plane strain →OK→Close如图2所示,选择OK接受单元类型并关闭对话框。

ansys有限元分析报告大作业

有限元大作业 设计题目: 单车的设计及ansys有限元分析 专业班级: 姓名: 学号: 指导老师: 完成日期: 2016.11.23

单车的设计及ansys模拟分析 一、单车实体设计与建模 1、总体设计 单车的总体设计三维图如下,采用pro-e进行实体建模。 在建模时修改proe默认单位为国际主单位(米千克秒 mks) Proe》文件》属性》修改

2、车架 车架是构成单车的基体,联接着单车的其余各个部件并承受骑者的体重及单车在行驶时经受各种震动和冲击力量,因此除了强度以外还应有足够的刚度,这是为了在各种行驶条件下,使固定在车架上的各机构的相对位置应保持不变,充分发挥各部位的功能。车架分为前部和后部,前部为转向部分,后部为驱动部分,由于受力较大,所有要对后半部分进行加固。 二、单车有限元模型 1、材料的选择 单车的车身选用铝合金(6061-T6)T6标志表示经过热处理、时效。 其属性如下: 弹性模量:)(2 N/m 1090E .6

泊松比:0.33 质量密度:)(2 N/m 32.70E + 抗剪模量:)(2N/m 1060E .2+ 屈服强度:) (2N/m 875E .2+ 2、单车模型的简化 为了方便单车的模拟分析,提高电脑的运算效率,可对单车进行初步的简化;单车受到的力的主要由车架承受,因此必须保证车架能够有足够的强度、刚度,抗振的能力,故分析的时候主要对车架进行分析。简化后的车架如下图所示。 3、单元体的选择 单车车架为实体故定义车架的单元类型为实体单元(solid )。查资料可以知道3D 实体常用结构实体单元有下表。

相关文档
最新文档