频率响应及信号的频谱

频率响应及信号的频谱
频率响应及信号的频谱

第十二章 频率响应及信号的频谱

◆ 重点:

1. 串联谐振及并联谐振的特点及分析 2. 正弦交流电路的幅频特性与相频特性

3. 非正弦周期电路的分析——平均值、有效值及平均功率

◆ 难点:

1. 频率特性的分析 2. 非正弦周期函数的分解 3. 信号频谱的理解

12.1 谐振

有关“谐振”的物理性质可以用运动学中的“共振”来对应理解。

谐振的定义:如果在某一特定频率下工作的含有动态元件的无源单口网络的阻抗角为零,认为该单口网络在此频率情况下发生谐振。

谐振电路是一种具有频率选择性的电路,它可以根据频率去选择某些需要的信号,而排除其他频率的干扰信号。

12.1.1串联谐振

1.串联谐振的条件

我们来看下面这个RLC 串联的电路:

前面我们分析过RLC 串联电路的复阻抗情况,?∠=||Z Z ,其中

2

222)1()(||C L R X X R Z C L ω-

ω+=-+=,R

C L arctg R X X arctg C L ω-

ω=-=?1

按照谐振的定义:当C j L j ω=

ω1

,即:LC

1=ω时,01

=ω-

ω=-=?R

C L arctg R X X arctg

C

L 。

此时R X X R Z C L =-+=2

2)(||。这里,我们称LC 1

0=ω(或LC

f π=21

0)为谐振频率。

谐振时的电压相量图为12-2。

2.串联谐振发生时的电路特性 1)电路阻抗最小——U 不变时,I 最大

j ωL

0图12-3(a )

0图12-3(b )

2)电路呈阻性——电源供给电路的能量全部消耗在电阻R 上,而动态元件的储能与放能过程完全在电容与电感之间完成;即储能元件并不与电源之间交换能量。 3)串联谐振为电压谐振——

U R X IX U C C C ?=

=, U R

X

IX U L L L ?== 当R X >>时,U U X >>。 电力系统中,常常尽量避免谐振,以免击穿电路设备(L 、C 等);而电子线路中,常用此方法获得高压。

4)选频特性与品质因数Q

电容或电感上的电压有效值与电源电压有效值之间的倍数。Q 越大,网络选频的选择性越强。

C

L R R C R L U U

U U Q L C 11

00=

ω=ω=== 12.1.2并联谐振

情况1

L

图12-4 RLC 并联谐振电路一

该RLC 并联电路的复阻抗Y Z 1||=

?∠=Z ,而C j L j R ω+ω+

=11Y ,

当R

1

=Y 时,电路发生谐振。此时电路呈现阻性,阻抗为R ==

Y

Z 1

。 可见发生并联谐振的条件仍然为:电源频率等于谐振频率LC

10=

ω(或LC

f π=

210)。

谐振时的电流相量图为12-5: 2.并联谐振发生时的电路特性

1)电路阻抗最大——I 不变时,U 最大见图12-6

2)电路呈阻性——电源供给电路的能量全部消耗在电阻R 上,而动态元件

f

f

图12-6

的储能与放能过程完全在电容与电感之间完成;即储能元件并不与电源之间交换能量。 3)串联谐振为电流谐振——

I X R I C C ?=

, I X R I L

L ?= 当X R >>时,I I X >>。 4)选频特性与品质因数Q

定义为电容或电感上的电流有效值与干路电流有效值之间的倍数。Q 越大,网络选频的选择性越强。

L

C

R

CR L R I I I I Q L C =ω=ω===

00 情况2

实际上的并联电路往往是以下这种模型 该RLC 并联电路的复阻抗Y

Z 1

||=

?∠=Z , 即 LC

RC j L

j R C

j L j R C j L j R 211)(1)(ω-ω+ω+=

ω+

ω+ω?

ω+=Z 当L R ω<<时 )1(1

12L

C j L RC

LC RC j L j ω-ω+=

ω-ω+ω≈

Z 电路发生谐振时,电路呈现阻性,阻抗为RC

L

=Z 。

可见发生并联谐振的条件仍然为:电源频率等于谐振频率LC

10=

ω(或LC

f π=

210)。

谐振时的电流相量图为12-8,这种情况下并联谐振发生时的电路特性与前面的并联谐振情况相同。

12.2 频率特性

在前面的内容中,我们着重讨论固定频率(同一频率)情况下正弦交流电路的稳态响应。这一节中,我们开始研究在电路其他参数不变的前提下,仅改变电路(电源)的频率时的电路响应的情况。

所谓频率特性,正是用来分析电路的响应随着频率变化的规律。

在前面的内容中,我们曾经提到过电容元件通高频阻低频、电感元件通低频阻高频的性质,其实这正是两种元件在不同的频率情况下响应不同的体现。

12.2.1幅频特性与幅频特性曲线

以网络函数中的策动点阻抗为例。前面我们谈到过单口网络的阻抗的意义:

)(|)(|ω?∠ω==j Z I U

Z ,其中|)(|ωj Z 为端口电压与端口电流的幅值比随着频率变化的关系,即表征了

在相同电流源大小的情况下,在单口网络与电流源同一端口产生的电压大小与电源频率之间的关系。

m

m

I U I U j Z ==

ω|)(|

I

周期信号频谱的特点

周期信号频谱的特点 在结构施工测量中,按装修工程要求将装饰施工所需要的控制点、线及时弹在墙、板上,作为装饰工程施工的控制依据。 1.地面面层测量 在四周墙身与柱身上投测出100cm水平线,作为地面面层施工标高控制线。 根据每层结构施工轴线放出各分隔墙线及门窗洞口的位置线。 2.吊顶和屋面施工测量 以1000m线为依据,用钢尺量至吊顶设计标高,并在四周墙上弹出水平控制线。对于装饰物比较复杂的吊顶,应在顶板上弹出十字分格线,十字线应将顶板均匀分格,以此为依据向四周扩展等距方格网来控制装饰物的位置。 屋面测量首先要检查各方向流水实际坡度是否符合设计要求,并实测偏差,在屋面四周弹出水平控制线及各方向流水坡度控制线。 3.墙面装饰施工测量 内墙面装饰控制线,竖直线的精度不应低于1/3000,水平线精度每3m两端高差小于±1mm,同一条水平线的标高允许误差为±3mm。外墙面装饰用铅直线法在建筑物四周吊出铅直线以控制墙面竖直度、平整度及板块出墙面的位置。 4.电梯安装测量 在结构施工中,从电梯井底层开始,以结构施工控制线为准,及时测量电梯井净空尺寸,并测定电梯井中心控制线。 测设轨道中心位置,并确定铅垂线,并分别丈量铅垂线间距,其相互偏差(全高)不应超过1mm。 每层门套两边弹竖直线,并保证电梯门坎与门前地面水平度一致。 5. 玻璃幕墙的安装测量 结构完工后,安装玻璃幕墙时,用铅垂钢丝的测法来控制竖直龙骨的竖直度,幕墙分格轴线的测量放线应以主体结构的测量放线相配合,对其误差应在分段分块内控制、分配、消化,不使其积累。幕墙与主体连接的预埋件,应按设计要求埋设,其测量放线偏差高差不大于±3mm,埋件轴线左右与前后偏差不大于10mm。 精度要求 轴线竖向投测精度不低于1/10000。平面放线量距精度不低于1/8000,标高传递精度主楼、裙房分别不超过±15mm、±10mm。 仪器选用 该工程测量选用TOPCON电子全站仪一台,2"级经纬仪两台,DS3水准仪两台,50m钢卷尺两把。激光铅直仪一台。 每次放线前,均应仔细看图,弄清楚各个轴线之见的关系。放线时要有工长配合并检查工作。放线后,质检人员要及时对所放的轴线进行检查。重要部位要报请监理进行验线,合格后方可施工。 所有验线工作均要有检查记录。 对验线成果与放线成果之间的误差处理应符合《建筑工程施工测量规程》的规定: 1. 当验线成果与放线成果之差小于1/√2 倍的限差时,放线成果可评为优良; 2. 当验线成果与放线成果之差略小于或等于√2 限差时,对放线工作评为合格(可不必改正放线成果或取两者的平均值); 3. 当验线成果与放线成果之差超过√2 限差时,原则上不予验收,尤其是重要部位,

周期矩形信号的频谱分析

1.周期信号的频谱 周期信号在满足一定条件时,可以分解为无数三角信号或指数之和。这就是周期信号的傅里叶级数展开。在三角形式傅里叶级数中,各谐波分量的形式为()1cos n n A n t ω?+;在指数形式傅里叶级数中,分量的形式必定为1j n t n F e ω 与1-j -n t n F e ω 成对出现。为了把周期信号所具有的各 次谐波分量以及各谐波分量的特征(如模、相角等)形象地表示出来,通常直接画出各次谐波的组成情况,因而它属于信号的频域描述。 以周期矩形脉冲信号为lifenxi 周期信号频谱的特点。周期矩形信号在一个周期(-T/2,T/2)内的时域表达式为 ,2 0,>2 ()A t T t f t ττ ≤?=?? (2-6) 其傅里叶复数系数为 12 n n A F Sa T ωττ?? = ??? (2-7) 由于傅里叶复系数为实数,因而各谐波分量的相位为零(n F 为正)或为π±(n F 为负),因此不需要分别画出幅度频谱n F 与相位频谱n φ。可以直接画出傅里叶系数n F 的分布图。 如图2.4.1所示。该图显示了周期性矩形脉冲信号()T f t 频谱的一些性质,实际上那个也是周期性信号频谱的普遍特性: ① 离散状频谱。即谱线只画出现在1ω的整数倍频率上,两条谱线的间隔为1ω(等于2π/t )。 ② 谱线宽度的包络线按采样函数()1/2a S n ωτ的规律变化。如图2.4.2所示。但1ω 为 2π τ 时,即( )2m π ωτ =(m=1,2,……)时,包络线经过零点。在两相邻 零点之间,包络线有极值点,极值的大小分别为-0.212()2A T τ,

实验:典型信号频谱分析报告

实验3.2 典型信号频谱分析 一、 实验目的 1. 在理论学习的基础上,通过本实验熟悉典型信号的波形和频谱特征,并 能够从信号频谱中读取所需的信息。 2. 了解信号频谱分析的基本方法及仪器设备。 二、 实验原理 1. 典型信号及其频谱分析的作用 正弦波、方波、三角波和白噪声信号是实际工程测试中常见的典型信号,这些信号时域、频域之间的关系很明确,并且都具有一定的特性,通过对这些典型信号的频谱进行分析,对掌握信号的特性,熟悉信号的分析方法大有益处,并且这些典型信号也可以作为实际工程信号分析时的参照资料。本次实验利用DRVI 快速可重组虚拟仪器平台可以很方便的对上述典型信号作频谱分析。 2. 频谱分析的方法及设备 信号的频谱可分为幅值谱、相位谱、功率谱、对数谱等等。对信号作频谱分析的设备主要是频谱分析仪,它把信号按数学关系作为频率的函数显示出来,其工作方式有模拟式和数字式二种。模拟式频谱分析仪以模拟滤波器为基础,从信号中选出各个频率成分的量值;数字式频谱分析仪以数字滤波器或快速傅立叶变换为基础,实现信号的时—频关系转换分析。 傅立叶变换是信号频谱分析中常用的一个工具,它把一些复杂的信号分解为无穷多个相互之间具有一定关系的正弦信号之和,并通过对各个正弦信号的研究来了解复杂信号的频率成分和幅值。 信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。时域信号x(t)的傅氏变换为: 式中X(f)为信号的频域表示,x(t)为信号的时域表示,f 为频率。 3. 周期信号的频谱分析 周期信号是经过一定时间可以重复出现的信号,满足条件: dt e t x f X ft j ?+∞ ∞--=π2)()(

简化版第3章-信号的分类与描述

第3章 信号的描述方法
3.1 信号的分类 3.2 信号的时域描述 3.3信号的频域描述 3.4 随机信号的描述

在工程和科学研究中,经常要对许多客观存在的物体 或物理过程进行观测,就是为了获取有关研究对象状态 与运动等特征方面的信息。
被研究对象的信息量往往是非常丰富的,测试工作是按 一定的目的和要求,获取信号中感兴趣的、有限的某些特 定信息,而不是全部信息。
为了达到测试目的,需要研究信号的各种描述方式, 本章介绍信号基本的时域和频域描述方法。

3.1 信号的分类
信号按数学关系、取值特征、能量功率等,可以分为: 确定性信号和非确定性信号 连续信号和离散信号 能量信号和功率信号

3.1.1 分类方法一:确定性信号和随机信号

1.确定性信号:能用明确的数学关系式或图像表达
的信号称为确定性信号。
x(t)
m
A
x(t)
k
0
t
0
x (t ) A cos(
k m
t
0
)

u周期信号:经过一段时间间隔重复出现的信号,无
始无终(时域无穷)。典型的如正(余)弦信号。
数学表达:
x(t) x(t nT0 )
(n 1, 2, )
T0 = 2 / 0 =1/ f0 (0 k / m)
周期:满足上式的最小T 值。
频率:周期的倒数,f = 1/T,单位:(Hz 赫兹)
圆频率/角频率:频率乘以2 f, 即 =2 f =2 /T
实际应用中,n 通常取为正整数。

周期信号的频谱分析

信号与系统 实验报告 实验三周期信号的频谱分析 实验报告评分:_______ 实验三周期信号的频谱分析 实验目的: 1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法; 2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;

3、掌握各种典型的连续时间非周期信号的频谱特征。 实验内容: (1)Q3-1 编写程序Q3_1,绘制下面的信号的波形图: 其中,0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos( 0t)、cos(3 0t)、cos(5 0t)和x(t) 的波形图,给图形加title,网格线和x坐标标签,并且程序能够接受从键盘输入的和式中的项数。 程序如下: clear,%Clear all variables close all,%Close all figure windows dt = 0.00001; %Specify the step of time variable t = -2:dt:4; %Specify the interval of time w0=0.5*pi; x1=cos(w0.*t); x2=cos(3*w0.*t); x3=cos(5*w0.*t); N=input('Type in the number of the harmonic components N='); x=0; for q=1:N; x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q; end subplot(221) plot(t,x1)%Plot x1 axis([-2 4 -2 2]); grid on, title('signal cos(w0.*t)') subplot(222) plot(t,x2)%Plot x2 axis([-2 4 -2 2]); grid on, title('signal cos(3*w0.*t))') subplot(223) plot(t,x3)%Plot x3 axis([-2 4 -2 2])

用FFT对信号作频谱分析

实验三:用FFT 对信号作频谱分析 一、实验原理与方法 1、用FFT 对信号作频分析是学习数字信号处理的重要内容,经常需要进行分析的信号是模拟信号的时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是N π2,因此要求D N ≤π2。可以根据此式选择FFT 的变换区间N 。误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时,离散谱的包络才能逼近连续谱,因此N 要适当选择大一些。 2、周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。如果不知道信号周期,可以尽量选择信号的观察时间长一些。 3、对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。如果是模拟周期信号,也应该选取整数倍周期长度,经过采样后形成周期序列,按照周期序列的谱分析进行。 二、实验内容 1、对以下序列进行FFT 谱分析: )()(41n R n x = ?????≤≤-≤≤+=n n n n n n x 其他0 7483 01 )(2 ?????≤≤-≤≤-=n n n n n n x 其他0 7433 04)(3 选择FFT 的变换区间N 为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析。程序见附录3.1、实验结果见图3.1。 2、对以下周期序列进行谱分析: n n x 4cos )(4π = n n n x 8cos 4cos )(5π π+= 选择FFT 的变换区间N 为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。程序见附录3.2、实验结果见图3.2。 3、对模拟周期信号进行频谱分析: t t t t x πππ20cos 16cos 8cos )(6++= 选择采样频率Fs=64Hz ,FFT 的变换区间N 为16、32、64三种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。程序见附录3.3、实验结果见图3.3。

第四章 周期信号的频谱分析

第四章 周期信号的频域分析 1. 内容提要 本章介绍连续周期信号的傅立叶级数及其基本性质;连续周期信号频谱的概念,相位谱的作用。对离散周期信号傅立叶级数和其基本性质做简单了解。 2. 学习目标 通过本章的学习,应达到以下要求: (1)掌握周期信号频谱的概念及信号频带宽度的概念。 (2)熟悉傅里叶变换的主要性质。 (3)熟悉频域分析法。 (4)了解离散傅立叶级数的概念 3. 重点难点 (1) 信号的对称性和傅立叶系数的关系 (2) 连续信号的频谱分析,包括周期信号频谱的概念,相位谱和功率谱。 4. 应用 周期信号频域分析的MATLAB 实现 5. 教案内容 4.1 连续时间信号的傅立叶变换 周期信号的定义 周期信号是定义在001/f T =(,)-∞∞区间,每隔一定的时间间隔0T ,按相同规律重复变化的信号。即对t R ?∈,存在一个大于零的0T ,使得 0()(),f t T f t t R +=?∈ 其中0T 为基波周期,002/T ωπ=为基波角频率,001/f T =为基波频率

傅立叶级数的实质 就是将复杂信号分解成为更容易处理的信号形式。 4.1.1 指数形式的傅里叶级数 连续时间信号的傅立叶级数表示为 0()jnw t n n f t C e ∞ =-∞ = ∑ 称n C 为周期信号()f t 的傅立叶系数。傅立叶系数的计算公式为 00 00 1 ()t T jn t t Cn f t e dt T ω+-= ? 4.1.2 三角形式的傅立叶级数 若函数()f t 满足狄里赫利条件,周期信号f(t) 展开成傅里叶级数。 01111212111()cos sin cos 2sin 2cos sin n n f t a a t b t a t b t a n t b n t ωωωωωω=++++++++ 0111 (cos sin )n n n a a n t b n t ωω∞ ==++∑ 式中,n 为正整数;系数0,,n n a a b 称为傅里叶系数,考虑到三角函数集是一组完备的正交函数集,因此,可得一个周期1(0,)T 的傅里叶系数: 1 11200112 11()()T T T a f t dt f t dt T T -==?? 1 10 12()cos T n a f t n tdt T ω=? 1 10 12()sin T n b f t n tdt T ω=?

什么是频率响应函数

动态信号分析仪的一个常见应用是测量机械系统的频率响应函数(FRF)。这也称为网络分析,系统的输入和输出同时测量。通过这些多通道测量,分析仪可以测量系统如何“改变”输入。一个常见的假设是,如果系统是线性的,那么这个“变化”被频率响应函数(FRF)充分描述。事实上,对于线性和稳定的系统,只要知道频率响应函数,就可以预测系统对任何输入的响应。 宽带随机、正弦、阶跃或瞬态信号在测试和测量应用中被广泛地用作激励信号。图1说明了一个激励信号x,可以应用于一个UUT(测试单元),并生成一个或多个由y表示的响应,输入和输出之间的关系称为传递函数或频率响应函数,由H(y,x)表示。一般来说,传递函数是一个复杂的函数,描述系统如何将输入信号的大小和相位作为激励频率的函数。 在各种激励条件下,对UUT系统的特性进行了实验测量。这些特征包括:频率响应函数(FRF),通过以下参量描述: 增益频率函数。相位频率函数。共振频率,阻尼因素,总谐波失真,非线性。 利用宽带随机激励的FFT、交叉功率谱法测量频率响应。宽带激励可以是高斯分布的真随机噪声信号,也可以是一个伪随机信号,其振幅分布可以由用户来定义。宽带这一术语可能具有误导性,因为一个好的实现的随机激励信号应该是频带有限的,并由分析频率范围的上限控制。也就是说,激励不应该激发高于测

量仪器所能测量的频率。随机发生器只产生频宽在分析频率范围内随机信号。这也将把激发能量集中在有用的频率范围,以提高测试动态范围。 宽带随机激励的优点是它能在短时间内激发宽频段,因此总测试时间较短。宽带激励的缺点是其频率能量在短时间内广泛传播。每个频率点激发的能量贡献远小于总信号能量(大概是-30到-50dB小于总数)。即使对于频率响应函数(FRF)估计有一个大的平均数字,宽带信号也不能有效地测量UUT的极端动态特性。 扫频正弦测量,优化了每个频率点的测量值。由于激励信号是一个正弦波,在某一时刻其所有的能量都集中在一个频率上,改进了宽带激励中的动态范围不足的缺点。此外,如果频率响应幅值大小下降,响应的跟踪滤波器可以帮助接收到非常小的正弦信号。只要优化每个频率的输入范围,就可以将测量的动态范围扩展到150分贝以上。 频率响应函数的应用很广,其中测试试件的固有频率是基础应用,可以有效的避免共振频率。试件由于材质、材料属性、形状的不同会影响自身刚度和质量。它的固有频率只受刚度分布和质量分布的影响,阻尼对固有频率的影响有限。质量增大固有频率必然降低,刚度增大固有频率必然增大。 理论上讲,试件有多阶固有频率。在二维频谱图中,并不是所有的峰值对应的都是固有频率,因为有可能是激励频率或是它的倍频。因此通常通过测量频响函数的方式来测量固有频率,频响函数对应的峰值都是系统的固有频率。多数情况下,我们只关心低阶或特定阶固有频率。 常用两种方法测试频率响应函数,锤击法和正弦扫频法。

离散系统的频率响应分析和零、极点分布

实验2 离散系统的频率响应分析和零、极点分布 一、实验目的 通过MATLAB仿真简单的离散时间系统,研究其时域特性,加深对离散系统的冲激响应,频率响应分析和零、极点分布的概念的理解。 二、基本原理 离散系统的时域方程为 其变换域分析方法如下: 频域 ) ( ) ( ) ( ] [ ] [ ] [ ] [ ] [ω ω ωj j j m e H e X e Y m n h m x n h n x n y= ? - = * =∑∞ -∞ = 系统的频率响应为 ω ω ω ω ω ω ω jN N j jM M j j j j e d e d d e p e p p e D e p e H - - - - + + + + + + = = ... ... ) ( ) ( ) ( 1 1 Z域 ) ( ) ( ) ( ] [ ] [ ] [ ] [ ] [z H z X z Y m n h m x n h n x n y m = ? - = * =∑∞ -∞ = 系统的转移函数为 N N M M z d z d d z p z p p z D z p z H - - - - + + + + + + = = ... ... ) ( ) ( ) ( 1 1 1 1 分解因式 ∏- ∏- = ∑ ∑ = = - = - = - = - N i i M i i N i i k M i i k z z K z d z p z H 1 1 1 1 ) 1( ) 1( ) ( λ ξ ,其中i ξ 和i λ 称为零、极点。 在MATLAB中,可以用函数[z,p,K]=tf2zp(num,den)求得有理分式形式的系统转移函数的零、极点,用函数zplane(z,p)绘出零、极点分布图;也可以用函数zplane (num,den)直接绘出有理分式形式的系统转移函数的零、极点分布图。 另外,在MATLAB中,可以用函数 [r,p,k]=residuez(num,den)完成部分分式展开计算;可以用函数sos=zp2sos(z,p,K)完成将高阶系统分解为2阶系统的串联。 三、实验内容及要求 一个LTI离散时间系统的输入输出差分方程为 y(n)-1.6y(n-1)+1.28y(n-2) =0.5x(n)+0.1x(n-1) (1)编程求出此系统的单位冲激响应序列,并画出其波形。 (2)若输入序列x(n)=δ(n)+2δ(n-1)+3δ(n-2)+4δ(n-3)+5δ(n-4),编程求此系统输出序列y(n),并画出其波形。 (3)编程得到系统频响的幅度响应和相位响应,并画图。 (4)编程得到系统的零极点分布图,分析系统的因果性和稳定性。 解答:

周期方波信号的频谱具有三个特点1

1.测试系统的组成:传感器+中间变换装置+显示记录装置 传感器:反映被测对象特性的物理量(如噪声、温度)检出并转换为电量; 中间变换装置:对接收到的电信号用硬件电路进行分析处理或经A/D 变换后用软件进行计算; 显示记录装置:将测量结果显示出来,提供给观察者或其它自动控制装置 2.周期方波信号的频谱具有三个特点:○ 1离散性,频谱是非周期性离散的线状频谱,成为谱线,连接个谱线顶点的曲线为频谱的包络线,它反映了各频率分量的幅度随频率的变化情况。 ○2谐波性 普线以基波频率0 ω为间隔等距离分布,任意两谐频之比都是整数或整数比,即为有理数。各次谐波的频率都是基频0ω的整数倍,相邻频率的间隔为0ω或它的整数倍。 ○ 3收敛性 周期信号的幅值频谱是收敛的。即谐波的频率越高,其幅值越小,再整个信号中所占的比重也就越小。 傅立叶变换的性质:○ 1线性叠加性○2尺度展缩性○3对称性○4时移性质○5频移性质 采样定理:信号)(t x 的傅立叶变换为)(ωX ,其频率范围为m m ωω~-,当m s ωω2 ,频谱发生混叠。采样频率s ω的选择对正确的采样是至关重要的。如果m s ωω2≥则不会发生频混关系,因此,对采样脉冲的间隔S T 须加以限制,即采样频率()s s T /2πω或()s s T f /1必须大于或等于()t x 中的最高频率m ω的两倍,这就是采样定理,其表达式为m s ωω2≥或 m s f f 2≥ 实际采样频率一般选得大于2m ω. 测试系统的静态特性 不是真测试的条件:○1系统的幅频特性在输入信号()t x 的频谱范围内为常数;○ 2系统的相频特性()ω?是过原点且具有负斜率的直线。 传感器的分类:○1按输入量分类(用它所测量的物理量来分类):测力传感器、位移传感器、 温度传感器;○ 2按其输出量分类:电路参数型传感器、发电型传感器。 参数型传感器的工作原理:将被测物理量转换为电路参数的传感器,主要有电阻式、电容式、电感式三种。 电阻式传感器是把被测量转化为电阻变化的传感器。 电阻式传感器按其工作原理可分为变阻器式和电阻应变式两类。变阻式传感器通过改变电位器触头位置实现位移到电阻的转换。 电阻应变片的工作原理基于"力→应变→电阻变化“三个基本转换环节。 半导体电阻材料应变片的工作原理主要是利用半导体材料的电阻率随应力变化,这一现象常称为压阻效应。 电容传感器是将各种被测物理量转换为电容量变化的装置。

矩形脉冲信号频谱分析

矩形脉冲信号频谱分析

小组成员: 刘鑫 龙宇 秦元成 王帅 薛冬寒 梁琼健 一、傅里叶分析方法与过程 周期信号的分解 1、三角形式 周期为T 的周期信号,满足狄里赫利(Dirichlet )条件(实际中遇到的所有周期信号都符合该条件),便可以展开为傅里叶级数的三角形式,即: ∑∑∞ =∞ =Ω+Ω+=110sin cos 21 )(n n n n t n b t n a a t f (1) ?-=Ω=2 2 ,2,1cos )(2T T n dt t n t f T a n Λ (2)

?-=Ω=2 2 ,2,1sin )(2T T n dt t n t f T b n Λ (3) 式中: T π2= Ω 为基波频率,n a 与 n b 为傅 里叶系数。 其中 n a 为n 的偶函数, n b 为n 的奇函数。 将上式中同频率项合并可写成: ∑∞ =+Ω+=++Ω++Ω+=1022110)cos 21 ... )2cos()cos(21 )(n n n t n A A t A t A A t f ???( 式中: ) arctan(... 3,2,1,2 2 0n n n n a b n b a A a A n n -==+==? (5)

n n n n n n A b A a A a ??sin cos 0 0-=== (6) 2.指数形式 由于 2 cos jx jx e e x -+= (7) 三角函数形式可以写为 t jn j n n t jn j n n t n j n t n j n e e A e e A A e e A A t f n n n n Ω--∞=Ω∞=+Ω-∞ =+Ω∑∑∑++=++=????1 10)(1)(0212121] [2 1 21)( (8) 将上式第三项中的n 用-n 代换,并考虑到 为n 的偶函数, 为n 的奇函数 则上式可写为: t jn j n n t jn j n n t jn j n n t jn j n n e e A e e A A e e A e e A A t f n n n n Ω∞ --=Ω∞=Ω--∞-=-Ω∞=∑∑∑∑++=++=-????1 101 1021 2121212121)( (9)

周期信号的频谱的特点

周期信号的频谱的特点 一、 周期信号的频谱 一个周期信号)(t f ,只要满足狄里赫利条件,则可分解为一系列谐波分量之和。其各次谐波分量可以是正弦函数或余弦函数,也可以是指数函数。不同的周期信号,其展开式组成情况也不尽相同。在实际工作中,为了表征不同信号的谐波组成情况,时常画出周期信号各次谐波的分布图形,这种图形称为信号的频谱,它是信号频域表示的一种方式。 描述各次谐波振幅与频率关系的图形称为振幅频谱,描述各次谐波相位与频率关系的图形称为相位频谱。根据周期信号展成傅里叶级数的不同形式又分为单边频谱和双边频谱。 1单边频谱 若周期信号)(t f 的傅里叶级数展开式为式(3-15),即 ∑ ∞ =+Ω+=10)cos()(n n n t n A A t f ? (3-24) 则对应的振幅频谱n A 和相位频谱n ?称为单边频谱。 例3-3 求图3-4所示周期矩形信号)(t f 的单边频谱图。 解 由)(t f 波形可知, )(t f 为偶函数,其傅里叶系数

?==2/0021)(4T dt t f T a ?=Ω=2/0)4/sin(2cos )(4T n n n tdt n t f T a ππ 0=n b 故 ∑∑∞=∞=Ω+=Ω+=110cos )4/sin(241cos 2)(n n n t n n n t n a a t f ππ 因此 410=A , ππn n A n )4/sin(2= 即 45.01=A , 32.02≈A , 15.03≈A , 04=A , 09.05≈A , 106.06≈A ┅ 单边振幅频谱如图3-5所示。 t f(t) 图 3 - 4τ τττ4 2/ 0 2/ 4--1图 3 - 50.25 0.45 0.320.150.090.106ΩΩΩΩΩΩΩ7 6 5 4 3 2 0A n 2双边频谱

第四章傅立叶变换习题

第三章傅立叶变换 第一题选择题 1.连续周期信号f (t )的频谱F(w)的特点是 D 。 A 周期连续频谱 B 周期离散频谱 C 非周期连续频谱 D 非周期离散频谱 2.满足抽样定理条件下,抽样信号f s (t)的频谱)(ωj F s 的特点是 (1) (1)周期、连续频谱; (2)周期、离散频谱; (3)连续、非周期频谱; (4)离散、非周期频谱。 3.信号的频谱是周期的连续谱,则该信号在时域中为 D 。 A 连续的周期信号 B 离散的周期信号 C 连续的非周期信号 D 离散的非周期信号 4.信号的频谱是周期的离散谱,则原时间信号为 (2) 。 (1)连续的周期信号 (2)离散的周期信号 (3)连续的非周期信号 (4)离散的非周期信号 5.已知f (t )的频带宽度为Δω,则f (2t -4)的频带宽度为( 1 ) (1)2Δω (2)ω?2 1 (3)2(Δω-4) (4)2(Δω-2) 6.若=)(1ωj F F =)()],([21ωj F t f 则F =-)]24([1t f ( 4 ) (1)ωω41)(21j e j F - (2)ωω41)2 (21j e j F -- (3)ωωj e j F --)(1 (4)ωω21)2 (21j e j F -- 7.信号f (t )=Sa (100t ),其最低取样频率f s 为( 1 ) (1)π100 (2)π 200 (3)100π (4)200 π 8.某周期奇函数,其傅立叶级数中 B 。 A 不含正弦分量 B 不含余弦分量 C 仅有奇次谐波分量 D 仅有偶次谐波分量 9.某周期偶谐函数,其傅立叶级数中 C 。 A 无正弦分量 B 无余弦分量 C 无奇次谐波分量 D 无偶次谐波分量 10.某周期奇谐函数,其傅立叶级数中 C 。 A 无正弦分量 B 无余弦分量 C 仅有基波和奇次谐波分量 D 仅有基波和偶次谐波分量 11.某周期偶函数f(t),其傅立叶级数中 A 。

周期信号频谱分析

实验名称:周期信号的频谱分析 教材名称:电工电子实验技术(下册)页码:P142 实验目的: 1、了解和掌握周期信号频谱分析的基本概念; 2、掌握Multisim软件用于频谱分析的基本方法; 3、加深理解周期信号时域参数变化对其谐波分量的影响及变化趋势。 实验任务: 1、根据9-1给定的波形和参数测量各谐波分量的幅度值。 2、根据所测数据绘制每一波形的谱线图。 设计提示: 实验电路图: 图一、分析用电路及信号发生器调整窗口 实验结果: 表9-1数据: 周期信号的频谱分析(Multisim) 0 10 20 30 40 50 60 70 80 90 100 矩形波10%-4.023 1.923 1.833 1.689 1.499 1.273 1.024 0.763 0.506 0.263 0.047 矩形波30%-2.023 5.123 3.040 0.699 0.897 1.271 0.659 0.236 0.739 0.595 0.046 矩形波50%-0.022 6.366 0.045 2.121 0.045 1.271 0.045 0.906 0.045 0.703 0.045 正弦波0 4.999 0 0 0 0 0 0 0 0 0 三角波50%0 4.053 0 0.451 0 0.162 0 0.083 0 0.050 0 三角波70%0 3.903 1.147 0.166 0.177 0.193 0.079 0.030 0.072 0.048 0 三角波90%0 3.479 1.654 1.012 0.669 0.450 0.298 0.186 0.103 0.043 0 N 0 1 2 3 4 5 6 7 8 9 10 注:谱线数取10+直流。

周期信号的频谱分析

信号与系统 实验三周期信号的频谱分析 实验报告评分:______ 实验三周期信号的频谱分析 实验目的: 1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法; 2、观察截短傅里叶级数而产生的“Gibbs 现象”,了解其特点以及产生的原因; 3、掌握各种典型的连续时间非周期信号的频谱特征。 实验内容: (1)Q3-1 编写程序 Q3_1,绘制下面的信号的波形图:

其中,0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos( 0t)、cos(3 0t)、cos(5 0t) 和 x(t) 的波形图,给图形加title,网格线和 x 坐标标签,并且程序能够接受从键盘输入的和式中的项数。 程序如下: clear,%Clear all variables close all,%Close all figure windows dt = 0.00001; %Specify the step of time variable t = -2:dt:4; %Specify the interval of time w0=0.5*pi; x1=cos(w0.*t); x2=cos(3*w0.*t); x3=cos(5*w0.*t); N=input('Type in the number of the harmonic components N='); x=0; for q=1:N; x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q; end subplot(221) plot(t,x1)%Plot x1 axis([-2 4 -2 2]); grid on, title('signal cos(w0.*t)') subplot(222) plot(t,x2)%Plot x2 axis([-2 4 -2 2]); grid on, title('signal cos(3*w0.*t))') subplot(223) plot(t,x3)%Plot x3 axis([-2 4 -2 2]) grid on, title('signal cos(5*w0.*t))') subplot(224) plot(t,x)%Plot xt axis([-2 4 -2 2]) grid on, title('signal xt')

周期信号频谱3特点

1-1 周期信号频谱3特点 离散性,谐波性,收敛性 1-2 信号的分哪几类以及特点是什么? ⑴、 按信号随时间的变化规律分为确定性信号和分确定性信号,确定信号分为周期信号 (包括谐波信号和一般周期信号)和非周期信号(准周期信号和以便非周期信号); 非确定性信号包括平稳随机信号(包括各态历经信号和非各态历经信号)和非平稳 随机信号。 ⑵、 按信号幅值随时间变化的连续性分类,信号包括连续信号和离散信号,其中连续信 号包括模拟信号和一般模拟信号,离散信号包括一般离散信号和数字信号。 (3)按信号的能量特征分类,信号包括能量有限信号和功率有限信号。 1-2 什么是单位脉冲函数)(t δ?它有什么特性?如何求其频谱? ⑴单位脉冲函数的定义 在ε时间内矩形脉冲()εδt (或三角形脉冲及其他形状脉冲)的面积为1,当0ε→时,() εδt 的极限()0 lim εεδt →,称为δ函数。 ⑵()δt 函数的性质①积分筛选特性。②冲击函数是偶函数,即()()δt δt =-。③乘积(抽 样)特性:④卷积特性: ⑶单位脉冲信号的傅立叶变换等于1,其频谱如下图所示,这一结果表明,在时域持续时间 无限短,幅度为无限大的单位冲击信号,在频域却分解为无限宽度频率范围内幅度均匀的指 数分量。 2-1.线性系统主要性质及为什么理想测量系统是线性系统? (1)线性系统的主要性质: 叠加性,比例特性微分特性,微分特性,积分特性,频率保持特性 (2)这是因为目前处理线性系统及其问题的数学理论较为完善,而对于动态测试中的非线 性校正还比较困难。虽然实际的测试系统不是一种完全的线性系统,但在一定的工作频段上 和一定的误差允许范围内均可视为线性系统,因此研究线性系统具有普遍性。 2-2.测量系统的静态特性及动态特性 答: 测量系统静态特性的主要参数有灵敏度、线性度、回程误差、量程、精确度、分辨力、 重复性、漂移、稳定性等。 测量系统的动态特性指输入量随着时间变化时,其输出随着输入而变化的关系。主要分 析方法有时域微分方程、传递函数、频响函数和脉冲响应函数。 4-5 什么是调制和解调,调制和解调的作用是什么? 答:所谓调制就是使一个信号的某些参数在另一信号的控制下而发生变化的过程。 从已调制波中恢复出调制信号的过程,称为解调。 调制的主要作用:便于区分信号和噪声,给测量信号赋予一定特征。 解调的主要作用:已调制波中恢复出调制信号

实验三_周期信号的频谱分析

实验三 信号的频谱分析 一、实验目的 1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法; 2、观察截短傅里叶级数而产生的“Gibbs 现象”,了解其特点以及产生的原因; 3、掌握各种典型的连续时间非周期信号的频谱特征 二、原理说明: 1、连续时间周期信号的傅里叶级数分析 任何一个周期为T 1的正弦周期信号,只要满足狄利克利条件,就可以展开成傅里叶级数。 其中三角傅里叶级数为: ∑∞ =++=1000)]sin()cos([)(k k k t k b t k a a t x ωω 2.1 或: ∑∞ =++ =1 00)cos()(k k k t k c a t x ?ω 2.2 其中1 02T π ω= ,称为信号的基本频率(Fundamental frequency ),k k b a a ,和,0分别是信号)(t x 的直流分量、余弦分量幅度和正弦分量幅度,k k c ?、为合并同频率项之后各正弦谐波分量的幅度和初相位,它们都是频率0ωk 的函数,绘制出它们与0ωk 之间的图像,称为信号的频谱图(简称“频谱”),k c -0ωk 图像为幅度谱,k ?-0ωk 图像为相位谱。 三角形式傅里叶级数表明,如果一个周期信号x(t),满足狄里克利条件,那么,它就可以被看作是由很多不同频率的互为谐波关系(harmonically related )的正弦信号所组成,其中每一个不同频率的正弦信号称为正弦谐波分量 (Sinusoid component),其幅度(amplitude )为k c 。也可以反过来理解三角傅里叶级数:用无限多个正弦谐波分量可以合成一个任意的非正弦周期信号。 指数形式的傅里叶级数为: ∑∞ -∞ == k t jk k e a t x 0)(ω 2.3 其中,k a 为指数形式的傅里叶级数的系数,按如下公式计算: ?--= 2 /2 /1 110)(1 T T t jk k dt e t x T a ω 2.4 指数形式的傅里叶级数告诉我们,如果一个周期信号x(t),满足狄里克利条件,那么,它就可以被看作是由很多不同频率的互为谐波关系(harmonically related )的周期复指数信号所组成,其中每一个不同频率的周期复指数信号称为基本频率分量,其复幅度(complex amplitude )为k a 。这里“复幅度(complex amplitude )”指的是k a 通常是复数。

信号的频谱分析报告实验报告材料

实验四 信号的频谱分析 一.实验目的 1.掌握利用FFT 分析连续周期,非周期信号的频谱,如周期,非周期方波,正弦信号等。理解CFS ,CTFT 与DFT (FFT )的关系。 2.利用FFT 分析离散周期,非周期信号的频谱,如周期,非周期方波,正弦信号等。理解DFS ,DTFT 与DFT (FFT )的关系,并讨论连续信号与离散信号频谱分析方法的异同。 二.实验要求 1.编写程序完成任意信号数字谱分析算法; 2.编写实验报告。 三.实验容 1.利用FFT ,分析并画出sin(100),cos(100)t t ππ频谱,改变采样间隔与截断长度,分析混叠与泄漏对单一频率成分信号频谱的影响。 (1)sin (100*pi*t )产生程序: close all ; clc; clear; t=0:0.0025:0.5-0.0025; f=400*t; w0=100*pi; y=sin(w0*t); a=fft(y); b=abs(a)/200; d=angle(a)*180/pi; subplot(311); plot(t,y); title('y=sin(wt)'); xlabel('t'); ylabel('y(t)'); subplot(312); stem(f,b); title('振幅'); xlabel('f'); ylabel('y(t)'); subplot(313); stem(f,d); title('相位'); xlabel('t'); ylabel('y(t)');

混叠 close all; clc; clear; t=0:0.0115:0.46-0.0115; f=(t/0.0115)*2; w0=100*pi; y=sin(w0*t); a=fft(y); b=abs(a)/40; d=angle(a)*180/pi; subplot(311); plot(t,y); title('y=sin(wt)'); xlabel('t'); ylabel('y(t)'); subplot(312); stem(f,b); title('振幅'); xlabel('f'); ylabel('y(t)'); subplot(313); stem(f,d); title('相位'); xlabel('t'); ylabel('y(t)');

相关文档
最新文档