时间序列上机实验-ARIMA模型的建立(季节乘积模型)

时间序列上机实验-ARIMA模型的建立(季节乘积模型)
时间序列上机实验-ARIMA模型的建立(季节乘积模型)

实验二 ARIMA 模型的建立

一、实验目的

熟悉ARIMA 模型,掌握利用ARIMA 模型建模过程,学会利用自相关系数和偏自相关系数对ARIMA 模型进行识别,利用最小二乘法等方法对ARIMA 模型进行估计,利用信息准则对估计的ARIMA 模型进行诊断,以及学会利用ARIMA 模型进行预测。掌握在实证研究如何运用Eviews 软件进行ARIMA 模型的识别、诊断、估计和预测。

二、基本概念

ARIMA 模型,即将非平稳时间序列转化为平稳时间序列,然后将平稳的时间序列建立ARMA 模型。ARIMA 模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA )、自回归过程(AR )、自回归移动平均过程(ARMA )以及ARIMA 过程。

在ARIMA 模型的识别过程中,主要用到两个工具:自相关函数ACF ,偏自相关函数PACF 以及它们各自的相关图。对于一个序列{}t X 而言,它的第j 阶自相关系数j ρ为它的j 阶自协方差除以方差,即j ρ=j 0γγ ,它是关于滞后期j 的函数,因此我们也称之为自相关函数,通常记ACF(j )。偏自相关函数PACF(j )度量了消除中间滞后项影响后两滞后变量之间的相关关系。

三、实验内容

(1)根据时序图的形状,采用相应的方法把非平稳序列平稳化;

(2)对经过平稳化后的2000年1月到2011年10月美国的失业率数据建立ARIMA (,,p d q )模型,并利用此模型进行失业率的预测。

四、实验要求:

了解ARIMA 模型的特点和建模过程,了解AR ,MA 和ARIMA 模型三者之间的区别与联系,掌握如何利用自相关系数和偏自相关系数对ARIMA 模型进行识别,利用最小二乘法等方法对ARIMA 模型进行估计,利用信息准则对估计的ARIMA 模型进行诊断,以及如何利用ARIMA 模型进行预测。

五、实验步骤

(1) 输入原始数据

打开Eviews 软件,选择“File ”菜单中的“New--Workfile ”选项,在“Workfile structure type ”栏中选择“Dated-regular frequency ”,在“Frequency ”栏中选择“Monthly ”,分别在起始月输入1991.01,终止月输入2010.12,点击ok ,见图1。再建立一个New object ,将选取的x 的月度数据复制进去 。

图一

(2)做出时序图并判断

做出该序列的时序图2,看出该序列呈一定的上升趋势,周期性不是很明显。直观来看,显著非平稳。

图2:时序图

进一步考察其自相关图和偏自相关图,如图3

图3:x的自相关图和偏自相关图

自相关系数可以看出,衰减到零的速度非常缓慢,所以断定x 序列非平稳。为了证实这个结论,进一步对其做ADF检验,结果见图4,可以看出在显著性水平

0.05下,接受存在一个单位根的原假设,进一步验证了原序列不平稳。

图4:序列x的ADF检验

(3)原始数据的差分处理

由于数据有上升趋势,先对其进行一阶差分处理来消除趋势。点击“Generate

Series”在“Generate Series by Equation”对话框中输入相应的命令“x1=D(x)”

以消除趋势项,其时序图见图5。

图5:x1的时序图

由图5可以粗略的判断序列x1平稳,可见,趋势项以明显消除,但是明显看到出现了以年为周期的季节效应,所以对x做一阶12步差分来提取原序列的趋势效应和季节效应,点击“Generate Series”在“Generate Series by Equation”对话框中输入相应的命令“x12=D(x1,12)”其时序图见图6,

图6:x12的时序图

周期性得以部分消除,下面进一步考察x12的自相关和偏自相关图,如图7

图7:x12的自相关和偏自相关图

由图7可以看出,自相关系数3阶截尾,但在5阶和12阶处大于两倍标准差,偏自相关系数3阶截尾,在12阶和24阶处大于两倍标准差且具有一定的周期性。Q统计量的P值有小于0.05的情况,因此序列为平稳非白噪声序列。再进一步对其做ADF检验,结果见图8。可以看出在显著性水平0.05下,拒绝存在一个单位根的原假设,进一步验证了x12序列平稳。

图8:x12的ADF检验

(4)模型尝试:

在序列工作文件窗口点击View/Descriptive Statistics/Histogram and States 对x12序列做描述统计分析见图9,

图9:x12序列描述统计分析

可见序列均值非0,需要在原序列基础上生成一个新的0均值序列。点击Generate Series,在对话框中输入y12=x12+0.008571,并对y12做描述统计分析见图10可见序列均值为0。

图10:y12序列描述统计分析

由图7的自相关和偏自相关图可知:自相关和偏自相关系数3阶显著,所以先尝试拟合ARMA(3,3)模型,在主窗口输入:ls y12 ar(1) ar(2) ar(3) ma(1) ma(2)ma(3),得下图:

图11:ar(3)的拟合结果

由图12可知,存在不显著的解释变量,剔除不显著的解释变量并进行进一步的尝试,得到最优的模型为ARMA((1,2),3),结果如图12

图12:y12的ar(3)模型拟合图

由图12可知,模型的拟合效果不佳,下面考察模型拟合后的残差,如图13

图13:残差图

由图13可知,残差不是白噪声序列,模型的信息提取不充分,模型不理想。考虑到该序列既具有短期相关性又具有季节效应,短期相关性和季节效应不能简单

地、可加性地提取,因而估计该序列的季节效应和短期相关性之间具有复杂的关联性。这时通常假定短期相关性和季节效应之间具有乘积关系,尝试使用乘积模型来拟合序列的发展:

由图9,序列a可看作偏自相关系数3阶截尾,自相关系数3阶截尾。

故先尝试ARMA(2,1,2)×(1,1,1)12,在主窗口输入:ls y12 ar(1) ar(2) ar(3) sar(12) ma(1) ma(2)sma(12)结果如下图

图14:ARMA(2,1,2)×(1,1,1)12模型拟合结果

由图14可知,模型拟合存在一些不显著的解释变量,下面进行一系列的尝试,最终确定最优的模型为:ARMA((2、3、4),1,4)×(0,1,1)12,模型拟合结果如图15

下面查看残差的自相关和偏自相关图

图16:ARMA((2、3、4),1,4)×(0,1,1)12的残差的自相关和偏自相关图

图17:ARMA((2、3、4),1,4)×(0,1,1)12拟合效果图

由图17可知模型拟合的效果比较好,所以决定使用ARMA((2、3、4),1,4)×(0,1,1)12作最终的模型拟合结果。

7、模型的预测:

首先扩展样本期至2012-12,最后共有三个变量值为空。在Eviews中有两种预测方式:“Dynamic”和“Static”,前者是根据所选择的一定的估计区间,进行多步向前预测;后者是只滚动的进行向前一步预测,即每预测一次,用真实值代替预测值,加入到估计区间,再进行向前一步预测。点击Dynamic forecast,“Forecast sample”中输入2000M01 2012M12,结果见图18:

图18:模型动态预测图

图中实线代表的是y12的预测值,两条虚线则提供了2倍标准差的置信区间。可以看到,随着预测时间的增长,预测值序列的均值(接近0)上下波动,预测效果应该还不错。软件默认将预测值放在YF中。下面观察原序列Y12和YF之间的动态关系。同时选中Y12和YF,击右键,点open/as group,然后点击view/graph,保持默认值不变,点击“确定”,出现图19。

图19:动态预测效果图

可见,动态预测值虽然呈一条波动的曲线,但是与实际值有一定出入,说明动态预测效果不太理想。

下面我们再利用“Static”方法来预测,得到如图20所示的结果。

图20:静态拟合图

图中可以看到,“Static ”方法得到的预测值波动性要大;同时,方差比例的下降也表明较好的模拟了实际序列的波动 ,Theil 不相等系数为0.363423,其中协方差比例为0.861706,表明模型的预测结果较理想。同样同时选中Y12和YF ,击右键,点open/as group ,然后点击view/graph ,保持默认值不变,点击“确定”,出现图21,

图21:静态拟合效果图

上图说明模型模型的预测结果比较理想,从y12f 序列里面可以得到向前两步的预测值分别为:0.11081908593、-0.0033916132。

综合上述分析过程,实际上我们是针对原序列(X ):2000年1月—2011年9月美国失业率数据序列,建立了一个ARMA((2、3、4),1,4)×(0,1,1)12模型进行拟合,模型形式如下:

234121223410.2045 1.29010.35100.6651(1)(1B )0.008571(10.8997)1 1.53010.26760.8688t t B B B B B x B B B B

μ-++----=+--+ 可写为:

2341212

23410.2045 1.29010.35100.6651(1)(1B )(10.8997)0.0085711 1.53010.26760.8688t t B B B B B x B B B B μ-++---=++--+

孔凡伟(PB10204014)

多元时间序列建模分析

应用时间序列分析实验报告

单位根检验输出结果如下:序列x的单位根检验结果:

1967 58.8 53.4 1968 57.6 50.9 1969 59.8 47.2 1970 56.8 56.1 1971 68.5 52.4 1972 82.9 64.0 1973 116.9 103.6 1974 139.4 152.8 1975 143.0 147.4 1976 134.8 129.3 1977 139.7 132.8 1978 167.6 187.4 1979 211.7 242.9 1980 271.2 298.8 1981 367.6 367.7 1982 413.8 357.5 1983 438.3 421.8 1984 580.5 620.5 1985 808.9 1257.8 1986 1082.1 1498.3 1987 1470.0 1614.2 1988 1766.7 2055.1 1989 1956.0 2199.9 1990 2985.8 2574.3 1991 3827.1 3398.7 1992 4676.3 4443.3 1993 5284.8 5986.2 1994 10421.8 9960.1 1995 12451.8 11048.1 1996 12576.4 11557.4 1997 15160.7 11806.5 1998 15223.6 11626.1 1999 16159.8 13736.5 2000 20634.4 18638.8 2001 22024.4 20159.2 2002 26947.9 24430.3 2003 36287.9 34195.6 2004 49103.3 46435.8 2005 62648.1 54273.7 2006 77594.6 63376.9 2007 93455.6 73284.6 2008 100394.9 79526.5 run; proc gplot; plot x*t=1 y*t=2/overlay; symbol1c=black i=join v=none; symbol2c=red i=join v=none w=2l=2; run; proc arima data=example6_4; identify var=x stationarity=(adf=1); identify var=y stationarity=(adf=1); run; proc arima; identify var=y crrosscorr=x; estimate methed=ml input=x plot; forecast lead=0id=t out=out; proc aima data=out; identify varresidual stationarity=(adf=2); run;

时间序列分析基于R——习题答案

第一章习题答案 略 第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 ()0t E x =,2 1 () 1.9610.7 t Var x ==-,220.70.49ρ==,220φ= 3.2 1715φ=,2115 φ= 3.3 ()0t E x =,10.15 () 1.98(10.15)(10.80.15)(10.80.15) t Var x += =--+++ 10.8 0.7010.15 ρ= =+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-= 1110.70φρ==,2220.15φφ==-,330φ= 3.4 10c -<<, 1121,1,2 k k k c c k ρρρρ--?=? -??=+≥? 3.5 证明: 该序列的特征方程为:32 --c 0c λλλ+=,解该特征方程得三个特征根: 11λ=,2c λ=3c λ=-

季节性时间序列分析方法

第七章季节性时间序列分析方法 由于季节性时间序列在经济生活中大量存在,故将季节时间序列从非平稳序列中抽出来,单独作为一章加以研究,具有较强的现实意义。本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建立、季节调整方法X-11程序。 本章的学习重点是季节模型的一般形式和建模。 §1 简单随机时序模型 在许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。比如:建筑施工在冬季的月份当中将减少,旅游人数将在夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。对于这各时间数列我们可以说,变量同它上一年同一月(季度,周等)的值的关系可能比它同前一月的值的相关更密切。 一、季节性时间序列 1.含义:在一个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。具有周期特性的序列就称为季节性时间序列,这里S为周期长度。 注:①在经济领域中,季节性的数据几乎无处不在,在许多场合,我们往往可以从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7)2.处理办法: (1)建立组合模型; (1)将原序列分解成S个子序列(Buys-Ballot 1847) 对于这样每一个子序列都可以给它拟合ARIMA模型,同时认为各个序列之间是相互独立的。但是

这种做法不可取,原因有二:(1)S 个子序列事实上并不相互独立,硬性划分这样的子序列不能反映序列{}t x 的总体特征;(2)子序列的划分要求原序列的样本足够大。 启发意义:如果把每一时刻的观察值与上年同期相应的观察值相减,是否能将原序列的周期性变化消除?(或实现平稳化),在经济上,就是考查与前期相比的净增值,用数学语言来描述就是定义季节差分算子。 定义:季节差分可以表示为S t t t S t S t X X X B X W --=-=?=)1(。 二、 随机季节模型 1.含义:随机季节模型,是对季节性随机序列中不同周期的同一周期点之间的相关关系的一种拟合。 AR (1):t t S t S t t e W B e W W =-?+=-)1(11??,可以还原为:t t S S e X B =?-)1(1?。 MA (1):t S t S t t t e B W e e W )1(11θθ-=?-=-,可以还原为:t S t S e B X )1(1θ-=?。 2.形式:广而言之,季节型模型的ARMA 表达形式为 t S t S e B V W B U )()(= (1) 这里,?? ? ??----=----=?=qS q S S S pS P S S S t d S t B V B V B V B V B U B U B U B U X W ΛΛ2212211)(1)()(平稳。 注:(1)残差t e 的内容;(2)残差t e 的性质。 §2 乘积季节模型 一、 乘积季节模型的一般形式 由于t e 不独立,不妨设),,(~m d n ARIMA e t ,则有 t t d a B e B )()(Θ=?φ (2) 式中,t a 为白噪声;n n B B B B ???φ----=Λ22111)(;m m B B B B θθθ----=ΘΛ22111)(。 在(1)式两端同乘d B ?)(φ,可得: t S t d S t D S d S t d S a B B V e B B V X B U B W B U B )()()()()()()()(Θ=?=??=?φφφ (3) 注:(1)这里t D S S X B U ?)(表示不同周期的同一周期点上的相关关系;t d X B ?)(φ则表示同一周期内不同周期点上的相关关系。二者的结合就能同时刻划两个因素的作用,仿佛是显像管中的电子扫

时间序列分析基于R——习题答案

第一章习题答案 第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 Au+ocorreliil. i ons Correlation -1 M 7 6 5 4 3 2 1 0 I ; 3 4 5 6 7 9 9 1 1.00000■Hi ■ K. B H,J B ik L L1■* J.1 jA1-.IM L L* rn^rp ■ i>i?iTwin H'iTiii M[lrp i,*nfr 'TirjlvTilT'1 iBrp O.7QOO0■ill. Ii ill ■ _.ill?L■ ill iL si ill .la11 ■ fall■ 1 ■ rpTirp Tp和阳申■丽轉■晒?|?卉(ft 0.41212■强:料榊<牌■ 0.14343'■讯榊* -.07078■ -.25758, WWHOHHf ■ -.375761 marks two 总t and&rd errors 2.2 (1) 非平稳,时序图如下 (2) - ( 3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

Ctorrelat ion LOOOOO n.A'7F1 0.72171 0.51252 Q,34982 0.24600 0.20309 0.?1021 0.26429 0.36433 0.49472 0.58456 0.60198 0.51841 Q ?菲晡 日 0.20671 0.0013& -,03243 -.02710 Q.01124 0,08275 0.17011 Autocorrel at ions raarka two standard errors 2.3 (1) 自相关系数为: 0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2 )平稳序列 (3) 白噪声序列 2.4 LB=4.83 , LB 统计量对应的分位点为 0.9634 , P 值为0.0363。显著性水平 :-=0.05,序列 不能视为纯随机序列。 2.5 (1) 时序图与样本自相关图如下 AuEocorreI ati ons 弗卅制iti 电卅栅冷卅樹 側樹 榊 惟 1 ■ liihCidi iliihQriHi il>LljU_nll Hnlidiili Hialli iT ,, T^,, T^s ?T* iTijTirr ,^T 1 IT * -i> ■> - ■ ■ *畑** ? ■ ■ 耶曲邯 ? ■ ■ ■ >|{和怦I {册卅KHi 笊出恸 mrpmrp 山!rpEHi erp . 卑*寧* a 1 *

基于时间序列模型的中国GDP增长预测分析

第33卷 第178期2012年7月 财经理论与实践(双月刊) THE THEORY AND PRACTICE OF FINANCE AND ECONOMICS Vol.33 No.178 Jul. 2012 ·信息与统计· 基于时间序列模型的中国GDP增长预测分析 何新易 (南通大学商学院,江苏南通 226019)* 摘 要:作为度量一个国家或地区所有常住单位在一定时期之内所生产和所提供的最终产品或服务的重要总量指标,如果能够对GDP做出正确的预测,必然可以有效引导宏观经济健康发展,为高层管理部门提供决策依据。选用适合短期预测的ARIMA模型对中国1952~2010年的GDP进行计量建模分析,预测结果认为未来五年中国的经济增长仍将处于一个水平较高的上升通道。 关键词:时间序列模型;GDP;预测 中图分类号:F234 文献标识码: A 文章编号:1003-7217(2012)04-0096-04 一、引 言 作为度量一个国家或地区所有常住单位在一定时期之内所生产和所提供的最终产品或服务的重要总量指标,国内生产总值(Gross Domestic Product,GDP)对于判断经济态势运行、衡量经济综合实力、正确制定经济政策等诸多方面,以及在经济研究实际工作中,均起着不可替代的重要作用。 熊志斌(2011)深入分析了时间序列模型与神经网络(NN)模型的优势和劣势,按照两种模型的预测特性,在比较的基础之上,分别构建了ARIMA模型和NN模型,并根据一定算法对两种模型进行了集成。将GDP时间序列的数据结构,根据在非线性空间和线性空间的预测优势,进一步分解为线性非线性残差和自相关主体两部分,即首先用ARIMA分析技术构建线性主体模型,然后用NN模型估计非线性残差,再对序列的整个预测结果进行最终集成。仿真实证结果表明:与单一模型相比,集成模型的预测准确率显著提高,进行GDP预测当然使用集成模型更为有效[1]。桂文林和韩兆洲(2011)认为由于迄今为止,包括季度GDP在内的经季节调整之后的经济数据,中国政府尚未进行公布,不但无法进行国际之间的横向比较,也不利于监测中国宏观经济态势。本文运用1996年第1季度至2009年第4季度的中国实际GDP数据,构建了状态空间模型,使用卡尔曼滤波迭代算法对季节调整模型状态向量的 各分量,进行了最优平滑、预测和估计,并使用极大似然方法估计了超参数。经过对GDP的主要季节和趋势特征的分析,计算出了环比增长率指标来监测和分析经济走势,并与国际通用的TRAMO-SEATS季节调整模型进行了对比,以便鉴别趋势拐点,制定相关的经济政策[2]。高帆(2010)运用1952~2008年的上海GDP增长率数据,实证研究其内在变动机制,将GDP增长率分解为纯生产率效应、纯劳动投入效应、纯生产结构效应、纯劳动结构效应,并分析了这四种效应之间的交互影响。结果表明:在上海GDP增长率提高的四种效应之中,纯生产率效应起到了关键作用。上海GDP增长率自1978年改革开放之后,在整体上对纯生产率效应的依赖度趋于增强。在1978~1989年期间,纯劳动结构效应是GDP增长的主要因素,由于市场化改革的进一步加大,劳动力跨部门流转在很大程度上得以实现。在1990~2008年期间,纯生产率效应是GDP增长的主要因素,正是由于在此历史阶段,由于资本深化进一步加速,从而有效提高了部门劳动生产率。基于实证的研究结论,可以针对性地制定出今后上海市经济实现持续增长的若干宏观政策[3]。腾格尔和何跃(2010)利用中国季度GDP数据分别构建了ARIMA和ARCH模型,同时利用GMDH自组织方法尝试建模,经过Bon-ferroni-Dunn检验,表明与单一模型相比,组合模型的拟合能力更强。研究表明,基于GMDH组合的GDP模 *收稿日期: 2012-02-12 作者简介: 何新易(1966—),男,湖北武汉人,南通大学商学院副教授,经济学博士,研究方向:宏观国民经济问题、中国企业集团融资和投资。

季节性时间序列分析方法

季节性时间序列分析方 法 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

第七章季节性时间序列分析方法 由于季节性时间序列在经济生活中大量存在,故将季节时间序列从非平稳序列中抽出来,单独作为一章加以研究,具有较强的现实意义。本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建立、季节调整方法X-11程序。 本章的学习重点是季节模型的一般形式和建模。 §1 简单随机时序模型 在许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。比如:建筑施工在冬季的月份当中将减少,旅游人数将在夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。对于这各时间数列我们可以说,变量同它上一年同一月(季度,周等)的值的关系可能比它同前一月的值的相关更密切。 一、季节性时间序列 1.含义:在一个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。具有周期特性的序列就称为季节性时间序列,这里S为周期长度。 注:①在经济领域中,季节性的数据几乎无处不在,在许多场合,我们往往可以从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7) 2.处理办法: (1)建立组合模型; (1)将原序列分解成S个子序列(Buys-Ballot 1847)

对于这样每一个子序列都可以给它拟合ARIMA 模型,同时认为各个序列之间是相互独立的。但是这种做法不可取,原因有二:(1)S 个子序列事实上并不相互独立,硬性划分这样的子序列不能反映序列{}t x 的总体特征;(2)子序列的划分要求原序列的样本足够大。 启发意义:如果把每一时刻的观察值与上年同期相应的观察值相减,是否能将原序列的周期性变化消除( 或实现平稳化),在经济上,就是考查与前期相比的净增值,用数学语言来描述就是定义季节差分算子。 定义:季节差分可以表示为S t t t S t S t X X X B X W --=-=?=)1(。 二、 随机季节模型 1.含义:随机季节模型,是对季节性随机序列中不同周期的同一周期点之间的相关关系的一种拟合。 AR (1):t t S t S t t e W B e W W =-?+=-)1(11??,可以还原为:t t S S e X B =?-)1(1?。 MA (1):t S t S t t t e B W e e W )1(11θθ-=?-=-,可以还原为:t S t S e B X )1(1θ-=?。 2.形式:广而言之,季节型模型的ARMA 表达形式为 t S t S e B V W B U )()(= (1) 这里,?? ? ??----=----=?=qS q S S S pS P S S S t d S t B V B V B V B V B U B U B U B U X W 2212211)(1)()(平稳。 注:(1)残差t e 的内容;(2)残差t e 的性质。 §2 乘积季节模型 一、 乘积季节模型的一般形式 由于t e 不独立,不妨设),,(~m d n ARIMA e t ,则有

基于时间序列序列分析优秀论文

梧州学院 论文题目基于时间序列分析梧州市财政 收入研究 系别数理系 专业信息与计算科学 班级 09信息与计算科学 学号 200901106034 学生姓名胡莲珍 指导老师覃桂江 完成时间

摘要 梧州市财政收入主要来源于基金收入,地方税收收入和非税收收入等几方面。近年来梧州市在自治区党委、自治区政府和市委的正确领导下,全市广大干部群众深入贯彻落实科学发展观,抢抓机遇,开拓进取,克难攻坚,使得全市经济连续几年快速发展,全市人民的生活水平也大幅度提高,但伴随着发展的同时也存在一些问题,本文主要通过研究分析梧州财政收入近几年的状况,根据采用时间序列分析中的一次简单滑动平均法研究分析梧州市财政收入和支出的情况,得到的结果是梧州市财政收入呈现下降状态,而财政支出却逐年上涨,这种状况将导致梧州市人民生活水平下降,影响梧州市各方面的发展。给予一些有益于梧州市财政发展的建议。本文首先介绍主要运用的时间序列分析的概念及其一次简单滑动平均法的方法,再用图表说明了梧州市财政近几年的财政收入和支出状况,然后建立模型,分析由时间序列分析方法得出的对2012年财政收入状况的预测结果,最后,鉴于提高梧州市财政收入的思想,给予了一些合理性建议,比如:积极实施工业强县战略,壮大工业主导财源;大力发展第三产业,强化地方财源建设;完善公共财政支出机制,着力构建和谐社会。 关键词:梧州市;财政收入;时间序列分析;建立模型;建议

Based onThe Time Series Analysis of Wuzhou city Finance Income Studies Abstract Wuzhou city, fiscal revenue mainly comes from fund income, local tax revenue and the tax revenue etc. Wuzhou city in recent years in the autonomous region party committee, the government of the autonomous region and the municipal party committee under the correct leadership, the cadres and masses thoroughly apply the scientific outlook on development, catch every opportunity, pioneering and enterprising, g hard, make the crucial economic rapid development for several years, the people's living standard has also increased significantly, but with the development at the same time, there are also some problems, this paper mainly through the research and analysis the condition of wuzhou fiscal revenue in recent years, according to the time series analysis of a simple moving average method research and analysis of financial income and expenditure wuzhou city, the result obtained is wuzhou city, fiscal revenue decline present condition, and fiscal spending is rising year by year, the situation will lead to wuzhou city, the people's living standards decline, influence all aspects of wuzhou city development. Give some Suggestions on the development of the financial benefit wuzhou city. This paper first introduces the main use of the time series analysis of the concept and a simple moving average method method, reoccupy chart illustrates the wuzhou city, in recent years the financial revenue and expenditure situation, then set a model, analysis the time series analysis method to draw 2012 fiscal income condition prediction results, finally, in view of wuzhou city, improve the financial income thoughts, give some advice, for instance: rationality vigorously implement the strategy of industrial county, strengthen the industry leading financial sources, A vigorous development of the third industry, and to strengthen the construction of local revenue;

时间序列季节性分析spss

表1 为某公司连续144个月的月度销售量记录,变量为sales。试用专家模型、ARIMA模型和季节性分解模型分析此数据。

选定样本期间为1978年9月至1990年5月。按时间顺序分别设为1至141。 一、画出趋势图,粗略判断一下数据的变动特点。 具体操作为:依次单击菜单“Analyz e→Forecasting→Sequence Chart”,打开“Sequence Chart”对话框,在打开的对话框中将sales选入“Variables”列表框,时间变量date 选入“Time Axis Labels”,单击“OK”按钮,则生成如图2 所示的sales序列。 图1 “Sequence Chart”对话框

从趋势图可以明显看出,时间序列的特点为:呈线性趋势、有季节性变动,但季节波动随着趋势增加而加大。 二、模型的估计 (一)、季节性分解模型 根据时间序列特点,我们选择带线性趋势的季节性乘法模型作为预测模型。 1、定义日期 具体操作为:依次单击菜单“Data→Define Date”,打开“Define Date”对话框,在“Cases Are”列表框选择“Years,months”的日期格式,在对话框的右侧定义数据的起始年份、月份。定义完毕后,单击“OK”按钮,在数据集中生成日期变量。 图3 “Define Date”对话框 2、季节分解 具体操作为:“Analyze→Forecasting→Seasonal Decomposition”打开“Seasonal Decomposition”对话框,将待分析的序列变量名选入“Variable”列表框。在“Model Type”选择组中选择“Multiplicative”模型;在“Moving Average Weight”选择组

时间序列分析法原理及步骤

时间序列分析法原理及步骤 ----目标变量随决策变量随时间序列变化系统 一、认识时间序列变动特征 认识时间序列所具有的变动特征, 以便在系统预测时选择采用不同的方法 1》随机性:均匀分布、无规则分布,可能符合某统计分布(用因变量的散点图和直方图及其包含的正态分布检验随机性, 大多服从正态分布 2》平稳性:样本序列的自相关函数在某一固定水平线附近摆动, 即方差和数学期望稳定为常数 识别序列特征可利用函数 ACF :其中是的 k 阶自 协方差,且 平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋于 0, 前者测度当前序列与先前序列之间简单和常规的相关程度, 后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。实际上, 预测模型大都难以满足这些条件, 现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。 二、选择模型形式和参数检验 1》自回归 AR(p模型

模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量互相独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性的比你更造成的困难用 PACF 函数判别 (从 p 阶开始的所有偏自相关系数均为 0 2》移动平均 MA(q模型 识别条件

平稳时间序列的偏相关系数和自相关系数均不截尾,但较快收敛到 0, 则该时间序列可能是 ARMA(p,q模型。实际问题中,多数要用此模型。因此建模解模的主要工作时求解 p,q 和φ、θ的值,检验和的值。 模型阶数 实际应用中 p,q 一般不超过 2. 3》自回归综合移动平均 ARIMA(p,d,q模型 模型含义 模型形式类似 ARMA(p,q模型, 但数据必须经过特殊处理。特别当线性时间序列非平稳时,不能直接利用 ARMA(p,q模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中 d (差分次数一般不超过 2. 模型识别 平稳时间序列的偏相关系数和自相关系数均不截尾,且缓慢衰减收敛,则该时间序列可能是 ARIMA(p,d,q模型。若时间序列存在周期性波动, 则可按时间周期进

基于时间序列模型与线性回归模型的历史数据预测

基于时间序列模型与线性回归模型的历史数据预测 摘要:本文通过具体案例,简要说明根据时间序列数据建立和相应经济理论建立线性回归模型的简要步骤及基本原则,并着重介绍了在模型建立和模型有效性检验过程中需要注意的三个主要问题,最后简单介绍了进行模型修正的相应方法。 一、引言 多元线性回归模型的一般形式为: Y=β0+β1X1+β2X2+…+βkXk+μi(k,i=1,2,…,n) 其中k为解释变量的数目,βk(k=1,2,…,n)称为回归系数,上式也被称为总体回归函数的随机表达式。 从统计意义上说,所谓时间序列模型就是将某一个指标在不同时间上的不同数值,按照时间的先后顺序排列而成的数列。这种数列由于受到各种偶然因素的影响,往往表现出某种随机性,彼此之间存在着统计上的依赖关系。从数学意义上说,如果我们对某一过程中的某一个变量或一组变量X(t)进行观察测量,在一系列时刻t1,t2,…,tn(t为自变量,且t1

数学建模时间序列分析

基于Excel的时间序列预测与分析 1 时序分析方法简介 1.1时间序列相关概念 1.1.1 时间序列的内涵以及组成因素 所谓时间序列就是将某一指标在不同时间上的不同数值,按照时间的先后顺序排列而成的数列。如经济领域中每年的产值、国民收入、商品在市场上的销量、股票数据的变化情况等,社会领域中某一地区的人口数、医院患者人数、铁路客流量等,自然领域的太阳黑子数、月降水量、河流流量等等,都形成了一个时间序列。人们希望通过对这些时间序列的分析,从中发现和揭示现象的发展变化规律,或从动态的角度描述某一现象和其他现象之间的内在数量关系及其变化规律,从而尽可能多的从中提取出所需要的准确信息,并将这些知识和信息用于预测,以掌握和控制未来行为。 时间序列的变化受许多因素的影响 ,有些起着长期的、决定性的作用 ,使其呈现出某种趋势和一定的规律性;有些则起着短期的、非决定性的作用,使其呈现出某种不规则性。在分析时间序列的变动规律时,事实上不可能对每个影响因素都一一划分开来,分别去作精确分析。但我们能将众多影响因素,按照对现象变化影响的类型,划分成若干时间序列的构成因素,然后对这几类构成要素分别进行分析,以揭示时间序列的变动规律性。影响时间序列的构成因素可归纳为以下四种: (1)趋势性(Trend),指现象随时间推移朝着一定方向呈现出持续渐进地上升、下降或平稳的变化或移动。这一变化通常是许多长期因素的结果。 (2)周期性(Cyclic),指时间序列表现为循环于趋势线上方和下方的点序列并持续一年以上的有规则变动。这种因素是因经济多年的周期性变动产生的。比如,高速通货膨胀时期后面紧接的温和通货膨胀时期将会使许多时间序列表现为交替地出现于一条总体递增 地趋势线上下方。 (3)季节性变化(Seasonal variation),指现象受季节性影响 ,按一固定周期呈现出的周期波动变化。尽管我们通常将一个时间序列中的季节变化认为是以1年为期的,但是季节因素还可以被用于表示时间长度小于1年的有规则重复形态。比如,每日交通量数据表现出为期1天的“季节性”变化,即高峰期到达高峰水平,而一天的其他时期车流量较小,从午夜到次日清晨最小。

时间序列上机实验-ARIMA模型的建立(季节乘积模型)

实验二 ARIMA 模型的建立 一、实验目的 熟悉ARIMA 模型,掌握利用ARIMA 模型建模过程,学会利用自相关系数和偏自相关系数对ARIMA 模型进行识别,利用最小二乘法等方法对ARIMA 模型进行估计,利用信息准则对估计的ARIMA 模型进行诊断,以及学会利用ARIMA 模型进行预测。掌握在实证研究如何运用Eviews 软件进行ARIMA 模型的识别、诊断、估计和预测。 二、基本概念 ARIMA 模型,即将非平稳时间序列转化为平稳时间序列,然后将平稳的时间序列建立ARMA 模型。ARIMA 模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA )、自回归过程(AR )、自回归移动平均过程(ARMA )以及ARIMA 过程。 在ARIMA 模型的识别过程中,主要用到两个工具:自相关函数ACF ,偏自相关函数PACF 以及它们各自的相关图。对于一个序列{}t X 而言,它的第j 阶自相关系数j ρ为它的j 阶自协方差除以方差,即j ρ=j 0γγ ,它是关于滞后期j 的函数,因此我们也称之为自相关函数,通常记ACF(j )。偏自相关函数PACF(j )度量了消除中间滞后项影响后两滞后变量之间的相关关系。 三、实验内容 (1)根据时序图的形状,采用相应的方法把非平稳序列平稳化; (2)对经过平稳化后的2000年1月到2011年10月美国的失业率数据建立ARIMA (,,p d q )模型,并利用此模型进行失业率的预测。 四、实验要求: 了解ARIMA 模型的特点和建模过程,了解AR ,MA 和ARIMA 模型三者之间的区别与联系,掌握如何利用自相关系数和偏自相关系数对ARIMA 模型进行识别,利用最小二乘法等方法对ARIMA 模型进行估计,利用信息准则对估计的ARIMA 模型进行诊断,以及如何利用ARIMA 模型进行预测。 五、实验步骤 (1) 输入原始数据 打开Eviews 软件,选择“File ”菜单中的“New--Workfile ”选项,在“Workfile structure type ”栏中选择“Dated-regular frequency ”,在“Frequency ”栏中选择“Monthly ”,分别在起始月输入1991.01,终止月输入2010.12,点击ok ,见图1。再建立一个New object ,将选取的x 的月度数据复制进去 。

季节性时间序列分析方法

第七章季节性时刻序列分析方法 由于季节性时刻序列在经济生活中大量存在,故将季节时刻序列从非平稳序列中抽出来,单独作为一章加以研究,具有较强的现实意义。本章共分四节:简单随机时刻序列模型、乘积季节模型、季节型时刻序列模型的建立、季节调整方法X-11程序。 本章的学习重点是季节模型的一般形式和建模。 §1 简单随机时序模型 在许多实际问题中,经济时刻序列的变化包含专门多明显的周期性规律。比如:建筑施工在冬季的月份当中将减少,旅游人数将在夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。关于这各时刻数列我们能够讲,变量同它上一年同一月(季度,周等)的值的关系可能比它同前一月的值的相关更紧密。 一、季节性时刻序列 1.含义:在一个序列中,若通过S个时刻间隔后呈现出相似性,我们讲该序列具有以S为周期的周期性特性。具有周期特性的序列就称为季节性时刻序列,那个地点S为周期长度。 注:①在经济领域中,季节性的数据几乎无处不在,在许多场合,我们往往能够从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时刻序

列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7)2.处理方法: (1)建立组合模型; (1)将原序列分解成S个子序列(Buys-Ballot 1847) 关于如此每一个子序列都能够给它拟合ARIMA模型,同时认为各个序列之间是相互独立的。然而这种做法不可取,缘故有二:(1)S个子序列事实上并不相互独立,硬性划分如此的子序列不能反映序列{} x的总体特 t 征;(2)子序列的划分要求原序列的样本足够大。 启发意义:假如把每一时刻的观看值与上年同期相应的观看值相减,是否能将原序列的周期性变化消除?(或实现平稳化),在经济上,确实是

基于时间序列模型的xx省GDP统计分析

摘要 在国民经济发展的过程中,国内生产总值(GDP)在一些程度上是衡量一个国家综合国力的重要参考指标。这个指标把国民经济经济活动的产出成果概括在一个极为简明的统计数字当中,为评价和衡量国家经济情况、经济增长趋势及社会财富的经济表现提供了一个较为综合的尺度,可以说,它是影响经济生活的重要指标之一,对其进行分析具有重要的理论与现实意义。 本文基于时间序列模型理论,以江苏省1996年至2016年地区生产总值为数据基础,建立ARIMA模型,并利用该模型对2017年江苏省GDP进行预测。 关键词:时间序列分析江苏省GDP ARIMA模型

Abstract In the process of national economic development, gross domestic product (GDP) is an important reference index to measure a country's overall national strength. The index of economic activities in the national economy output results summarized in a very simple statistics, which provides a more comprehensive scale for evaluating and measuring the economic situation of a country. It is one of the important indicators of influence of economy. To analyze it has important theoretical and practical significance. Based on the time series theory, this paper establishes a time series model based on the GDP of Jiangsu province from 1996 to 2016 and then uses the model to predict the future GDP of Jiangsu province. Key words:Time series analysis;Jiangsu GDP;ARIMA Model.

时间序列季节调整方法在气象要素预测中的应用分析

《现代农业科技》2009年第23期 时间序列预测法是一种重要的预测方法,其预测模型比较简单,对资料的要求比较单一,只需变量本身的历史数据,因此在实际中有广泛的适用性。气象要素时间序列常呈现出一定的季节性波动,有的以年度为周期,有的以季度、月、日为周期,通常称这类序列为季节性序列。时间序列如果有季节性,则趋势有时很难判断,从而影响对未来的精确预测。 1季节调整方法 气象要素是随时间变化的,对它的观测形成一组有序 数据,称这种数据为时间序列。对时间序列处理的方法大体有2种:一种是从“时域”角度进行分析,称为时间序列分析或时序分析;另一种是从“频域”角度进行分析,称为频谱分析或谱分析。一个时间序列可以包括上面4个部分中的全部或者几个部分。 在实际应用中,一般使用以下2类模型:一是加法模型:Y=T+C+S+e ;二是乘法模型:Y=T ×C ×S ×e 。文中采用乘法型季节模型:Y 1=f (t )×F j ,其中,f (t )是序列长期变动趋势项;F j 是季节因子,它表示季节性变动幅度的大小,j =1,2,……k ,如月度为周期则k =12,季度为周期则k =4。 季节调整的主要步骤如下:第一步,估计趋势项T ,然后得到季节项和误差项的乘积S ·e=Y /T ;第二步,去掉残差项,估计季节项S ,把与不同季节对应的数字称为季节因子,对季节因子进行规范化;第三步,从原始数据中去掉季节项 Y /S ,得到没有季节项的新的时间序列。对新时间序列进行 趋势估计,建立合理的趋势模型,根据趋势模型预测趋势,然后让趋势乘以季节指数,得到未来的预测[1,2]。 2实际应用分析 首先用季节调整方法对临汾市1962~2006年逐月气 温、降水资料进行趋势分析,利用得到的趋势方程对2007年数值进行预测。为了检验该方法的准确性,用线性回归方法对气温和降水资料进行预测,将2种方法进行比较。气温、降水的趋势采用一次线性方程表示,即:y =a 0+a 1t 。式中,y 为平均地温(最大冻土深度);t 为时间;a 1为线性趋势项。由于温度、降水存在月差异,在用线性回归方法进行趋势分析时,对12个月的数据分别进行趋势分析,利用得到的12个线性方程对2007年的月数据进行了预测;季节调整步骤如前所述。 得到的误差结果如表1所示。在气温预测方面,2种方法的最大误差均出现在冬季12月~翌年2月,季节调整方 法的误差是线性回归方法的2倍;春、夏、秋季,季节调整方法的误差小于线性回归方法,其中季节调整方法的最大误差出现在11月(23%),线性回归方法的最大误差出现在3月(73%),4~10月2种方法都保持在较小的误差,最大误差均为10%。降水预测方面,降水的不确定性使得2种方法对降水的预测都存在很大的误差;1月由于无降水,所以未进行误差分析;2种方法的最大误差出现的时间与气温不同,均出现在4月、5月、11月,季节调整的误差较大,而其余月份线性回归方法的误差较大。 笔者对临汾地区16个县1976~2006年逐月气温进行季节调整后,再进行预测发现,地域也表现出不同的误差特征,虽然最大误差都出现在冬季,但有个别冬季月份误差在 10%以下;其中古县、浮山、霍州除冬季外,各月也保持较大的误差,基本在20%以上,其余县除冬季外,各月误差均保持在20%以下,但时间段又有不同,侯马、曲沃、洪洞除冬季外各月误差均保持在20%以下;永和、隰县、翼城只有4~10月误差保持在20%以下;其余县只有4~9月误差保持在20%以下。3结语 季节调整方法的不足在于有序列长度变短造成的数据损失及滑动阶数确定的主观人为性,其精度不仅与方法本身有关系,也与数据的性质有关[3,4]。因此,在实际应用中要结合专业知识,并从使用目的和具体情况来考虑是否选用该方法。 4参考文献 [1]黄嘉佑.气象统计分析与预报方法[M].北京:气象出版社,2004.[2]潘红宇.时间序列分析[M].北京:对外经济贸易大学出版社,2006.[3]孙春薇,王旭磊,辛永训,等.几种关于时间序列季节调整方法的研 究[J].青岛农业大学学报(自然科学版),2007,24(2):149-153. [4]范维,张磊,石刚.季节调整方法综述比较[J].统计研究,2006(2):70-73. 时间序列季节调整方法在气象要素预测中的应用分析 张建玲1 林苗苗2刘建华3 申国华4 (1山西省隰县气象局,山西隰县041300; 2 河南省南阳市气象局;3 山西省临汾市气象局;4 山西省翼城县气象局) 摘要采用时间序列方法,对临汾市气象要素时间序列进行了季节调整,结果表明该方法不仅对要素表现出不同的特征,对地域也有区别;通过与线性回归比较,发现该方法也能达到较好的精度,但在实际应用中要结合专业知识,根据使用目的与具体情况考虑是否使用。 关键词气象要素;时间序列;季节调整方法;应用中图分类号O211.61;P42文献标识码A 文章编号1007-5739(2009)23-0376-01 收稿日期 2009-10-22 农业基础科学表1 气温、降水预测值与实测值的误差对比 月份 气温误差 降水误差 线性回归季节调整 线性回归季节调整 1 105.1315.8--244.275.70.4 5.7372.912.962.062.94 2.0 4.0287.6416.0510.210.4123.2123.16 1.60.270.132.87 4.4 4.422.213.28 3.0 1.273.870.99 5.8 2.919.8 1.510 4.1 2.650.238.31114.423.01622.72355.71293.7182.312.08.4 (%) 注:“-”表示未做比较。 376

相关文档
最新文档