21.4(2)无理方程

21.4(2)无理方程
21.4(2)无理方程

21.4 (2)无理方程

教学目标

(1)会解简单的无理方程(方程中只含一个或两个关于未知数的二次根式);

(2)能根据二次根式的性质,直接判断含二次根式的特殊无理方程的根的情况;

(3)通过解无理方程,进一步体会事物之间相互转化的关系,培养辩证观点; 教学重点及难点

解简单的无理方程;根据二次根式的性质直接判断无理方程的根的情况。 教学媒体:多媒体

教学过程设计

一、 复习

解无理方程的一般步骤是什么?

无理方程如何进行“验根”?

二、 例题讲解

讲解

解下列方程:

(1);632-=-x x (2);1222+=-x x

(3);323x x =-- (4).12=-+x x

思考:

在解无理方程的时候要注意些什么?

小结:

解只含一个“根号”的无理方程时,一般将“根号项”放在方程的一边,把其他“项”放在方程的另一边,然后进行平方,这样求解比较简单;解含两个“根号”的无理方程时,一般将两个“根号项”分别放在等号两边,两边平方后再整理,这样可以简化解题过程;如果含两个“根号”的无理方程中还有其他“项”,通常要经过两次平方,才能把原方程转化为有理方程.

[说明]例题中(1)、(2)两个无理方程,只需方程两边直接平方就可以去掉根号;

(3)、(4)两个无理方程,则要先移项,再进行平方,这样求解比较简便.课本将它们分成两个例题,现在将它们放在一道题目中,目的是为了加强学生对两种类型方程的对照和比较,从而对解法上的差异形成更为鲜明的印象.在讲解时,重视解题的示范,再引导学生对如何简化无理方程的解题过程进行反思小结,有利于学生清晰地掌握.

提问

不解方程,你能判断出下列方程的根的情况吗? ①011=++x ; ②11=+-x x ; ③325=-+-x x .

5、归纳

对于某些特殊的无理方程,可以不解方程直接判断它的解的情况,主要依据是“对于二次根式a ,有0,0≥≥a a .”

[说明]观察分析也是解无理方程的一种方法(在特殊情况下可用).通过提问,让学生来观察和判断无理方程有无实数根,激发学生从另外的角度来分析无理方程,而不是不加辨别地采取一般方法进行解题,使学生养成良好的观察和分析习惯.补充②③两题是为了丰富此方法的适应类型,让学生掌握方法,从而能举一反三.

三、巩固练习

课本练习21.4(2) 1、2、3

四、课堂小结

通过本堂课你有什么收获?

五、作业布置

练习册21.4(2)

六、教学反思或后记

教研一元一次方程知识点梳理

一元一次方程知识点梳理 一、方程的有关概念 1.方程:含有未知数的等式就叫做方程. 2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1,这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x )=5等都是一元一次方程. 例 下列方程中是一元一次方程的是( ) A .23x y = B .()7561x x +=- C .()21112x x +-= D .12x x -= 3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解. 注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论. 例 若方程315ax x -=的解为x =5,则a 等于( ) A. 80 B. 4 C. 6 D. 2 例 若x =2是方程k (2x -1)=kx +7的解,那么求k 的值 二、等式的性质 等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等. 等式的性质(1)用式子形式表示为:如果a=b ,那么a±c=b±c 等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等, 等式的性质(2)用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =b c 三、移项法则:把等式一边的某项变号后移到另一边,叫做移项. 四、去括号法则 1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同. 2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变. 五、解方程的一般步骤 步 骤 名 称 方 法 依 据 注 意 事 项 1 去分母 在方程两边同时乘以所有分母的最小公倍数(即把每个含分母的部分和不 含分母的部分都乘以所有分母的最小 公倍数) 等式性质2 1、不含分母的项也要乘以最小公倍数;2、分子是多项式的一定要先用括号括起来。 2 去括号 去括号法则(可先分配再去括号) 乘法分配律 注意正确的去掉括号前带负数的括号 3 移项 把未知项移到议程的一边(左边),常数项移到另一边(右边) 等式性质1 移项一定要改变符号 4 合并 同类项 分别将未知项的系数相加、常数项相加 1、整式的加减; 2、有理数的加法法则 单独的一个未知数的系数为“±1” 5 系数化为“1” 在方程两边同时除以未知数的系数(方程两边同时乘以未知数系数的倒数) 等式性质2 不要颠倒了被除数和除数(未知数的系数作除数——分母) *6 检根 x=a 方法:把x=a 分别代入原方程的两边,分别计算出结果。 ① 若 左边=右边,则x=a 是方程的解; ② 若 左边≠右边,则x=a 不是方程的解。 注:当题目要求时,此步骤必须表达出来。

(完整版)初中数学知识点总结分式方程和无理方程

初中数学知识点总结分式方程和无理方程 知识点总结 一.分式方程、无理方程的相关概念: 1.分式方程:分母中含有未知数的方程叫做分式方程。 2.无理方程:根号内含有未知数的方程。(无理方程又叫根式方程) 3.有理方程:整式方程与分式方程的统称。 二.分式方程与无理方程的解法: 1.去分母法: 用去分母法解分式方程的一般步骤是: ①在方程的两边都乘以最简公分母,约去分母,化成整式方程; ②解这个整式方程; ③把整式方程的根代入最简公分母,看结果是不是零,使最简公分母不为零的根是原方程的根,使最简公分母为零的根是增根,必须舍去。 在上述步骤中,去分母是关键,验根只需代入最简公分母。 2.换元法: 用换元法解分式方程的一般步骤是: ②换元:换元的目的就是把分式方程转化成整式方程,要注意整体代换的思想; ③三解:解这个分式方程,将得出来的解代入换的元中再求解; ④四验:把求出来的解代入各分式的最简公分母检验,若结果是零,则是原方程的增根,必须舍去;若使最简公分母不为零,则是原方程的根。 解无理方程也大多利用换元法,换元的目的是将无理方程转化成有理方程。 三.增根问题: 1.增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的增根。 2.验根:因为解分式方程可能出现增根,所以解分式方程必须验根。 3.增根的特点:增根是原分式方程转化为整式方程的根,增根必定使各分式的最简公分母为0。 解分式方程的思想就是转化,即把分式方程整式方程。 常见考法 (1)考查分式方程的概念、分式方程解和增根的机会比较少,通常与其他知识综合起来命题,题型以选择、填空为主; (2)分式方程的解法,是段考、中考考查的重点。 误区提醒

一元一次方程 基础知识整理

一元一次方程 1.定义:方程与一元一次方程 含有未知数的叫方程,方程必须具备两个条件:第一是等式,第二是含有未知数。 方程中只含有一个未知数,且未知数的次数都是1的整式方程叫做一元一次方程。 2.方程的解与解方程 使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”! 解方程就是求出使方程中左右两边均相等的未知数的值,是过程。 3.等式的性质 (1):等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; (2):等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式. 解方程的过程就是把方程逐步化为x=a(常数)的形式,等式的性质是重要的转化依据。 4.解方程 (1)合并同类项与移项:合并时牢记:同类项的系数相加,字母连同指数不变,系数为负数时要注意符号。(2)移项(移项要变号):移项就是把等式一边的某项变号后移到另一边。一般把方程转化为含有未知数的在方程的左边,常数在方程的右边。注意与加法交换律不一样。移项是把某些项从方程的一边移到另一边,移动要变号,而加法交换律只是加数之间交换位置,改变的只是顺序不改变符号。 (3)去括号与去分母:去括号法则与整式去括号法则相同:括号外的因数是整数时,去括号后原括号内各项的符号与原来的符号相同。括号外的因数是负数时,去括号内后,原括号内各项的符号与原来的符号相反。 去分数:先把分式化成整式再计算。应注意各项都要乘以各分母的最小公倍数,不要漏乘分母的项,如果分子是一个多项式,去分母时要将分子作为一个整体加上括号。当分母是小数时,要先利用分母的基本性质把小数转化成整数,然后再去分母。 (4)一元一次方程解法的一般步骤: 化简方程----------分数基本性质去分母----------同乘(不漏乘)最简公分母 去括号----------注意符号变化移项----------变号 合并同类项--------合并后注意符号系数化为1---------未知数细数是几就除以几 5.列方程 (1)读题分析法:…………多用于“和,差,倍,分问题” 仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,

利用换元法解方程(组)教学内容

第6讲 利用换元法解方程 一、方法技巧 (一)换元法解方程是用新元代替方程中含有未知数的某个部分,达到化简的目的. (二)运用换元法解方程,主要有三种类型:分式方程、无理方程、整式(高次)方程. 解分式方程、无理方程、整式(高次)方程的基本思想是将分式方程化为整式方程、无理方程化为有理方程、整式(高次)方程逐步降次. (三)换元的方法是以所讨论方程的特有性质为依据的,不同的方程就有不同的换元方 法,因此,这种方法灵活性大,技巧性强.恰当地换元,可将复杂方程化简,以便寻求解题的途径. 常用换元方法有局部换元、均值换元、倒数换元、常数换元等. 例如:① 256011x x x x ????++= ? ?++? ??? ,可使用局部换元法,设1x y x =+ ②22110x x x x +++=,变形后也可使用局部换元法,设1x t x += ③222212219116 x x x x x x x +++++=+++,看着很繁冗,变形整理成222211191116 x x x x x x +++++=+++时,就可使用局部换元法. ④()()443182x x +++=,可设()()3122x x y x +++==+,方程变成 ()()441182y y ++-=,使方程变得易解,这是均值换元法. ⑤4326538560x x x x +-++=,符合与中间项等距离的项的系数相等, 如46x 与6,35x 与5x 系数相等,可构造1x x + 换元,是倒数换元法. ⑥32310x x +++=,不易求解,若反过来看,把设x 看作已 t ,则方程就变成()() 2232110x t x t x ?+++-=, 数字换元法不常用,但不失为一种巧妙的解题方法. 有时根据方程各部分特点可设双元,达到化繁为简,求解的目的. 例如:

(完整word版)初中数学几种不定方程和方程组的解题技巧和方法

初中数学几种不定方程和方程组的解题技巧和方法 凯里市大风洞正钰中学曾祥文 摘要:教学作为一种有明确目的性的认知活动,其有效性是教育工作者所共同追求的。在初中数学教学中不定方程与方程(组)占很大的比例,是中学生经常出错和不懂的部分。本文主要探讨几种不定方程和方程组的解题技巧和方法。 关键词:初中数学不定方程方程 教学作为一种有明确目的性的认知活动,其有效性是教育工作者所共同追求的。有效教学是教师在达成教学目标和满足学生发展需要方面都很成功的教学行为,它是教学的社会价值和个体价值的双重体现。数学是人们对客观世界定性把握和定量刻画、逐渐抽象、形成方法和理论,并进行广泛应用的过程。数学教学是教师对学生进行数学思维培养的一种认知过程。 方程(组)中,未知数的个数多于方程的个数时,它的解往往有无数多个,不能唯一确定,因此这类方程常称为不定方程(组),解不定方程没有固定的方法,需具体问题具体分析,经常用到整数的整除、奇数偶数的特性、因数分解、不等式估值、穷举、分离整数、配方等知识与方法,解不定方程的技巧是对方程适当变形,灵活运用相关知识。本文就几类常见的不定方程与方程做如下浅析。 1 非负数的巧用 在初中数学中,经常用的非负数有:①a2 ≥0 ;②|a|≥0;③a≥0若干个非负数的和为0,那么每个非负数均为0, 例1:已经x2 + y2-x+2y+5/4= 0 ,求x 、y的值。 评析:方程左边配方可变为非负数之和 解:由x2 + y2-x+ 2y+5/4= 0 得( x—1/2 ) 2+ ( y +1 ) 2= 0 所以( x—1/2 ) 2≥0,( y + 1 )2≥≥0 一般地,几个非负数之和为0,则每个非负数均为0。所以x=1/2, y=1 2 二元一次方程的整数解

一元一次方程知识点及经典例题

精心整理一、知识要点梳理 知识点一:方程和方程的解 1.方程:含有_____________的______叫方程 注意:a.必须是等式b.必须含有未知数。 易错点:(1).方程式等式,但等式不一定是方程;(2).方程中的未知数可以用x表示,也可以用其他字母表示;(3).方程中可以含多个未知数。 考法:判断是不是方程: 例:下列式子:(1).8-7=1+0(2). 1、一元一次方程: 一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。 要点诠释: 一元一次方程须满足下列三个条件: (1)只含有一个未知数; (2)未知数的次数是1次; (3)整式方程. 2、方程的解: 判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法 1、方程的同解原理(也叫等式的基本性质) 等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。 如果,那么;(c为一个数或一个式子)。 等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。 如果,那么;如果,那么 要点诠释: 分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。

即:(其中m≠0) 特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为:-=1.6。方程的右边没有变化,这要与“去分母”区别开。 2、解一元一次方程的一般步骤: 解一元一次方程的一般步骤 变 形 步 骤 具体方法变形根据注意事项 去分母方程两边都乘以 各个分母的最小 公倍数 等式性质 2 1.不能漏乘不含分母的项; 2.分数线起到括号作用,去 掉分母后,如果分子是多项 式,则要加括号 去括号先去小括号,再 去中括号,最后 去大括号 乘法分配 律、去括 号法则 1.分配律应满足分配到每一 项 2.注意符号,特别是去掉括 号 移项把含有未知数的 项移到方程的一 边,不含有未知 数的项移到另一 边 等式性质 1 1.移项要变号; 2.一般把含有未知数的项移 到方程左边,其余项移到右 边 合并同类项把方程中的同类 项分别合并,化 成“b ax=”的形 式(0 ≠ a) 合并同类 项法则 合并同类项时,把同类项的 系数相加,字母与字母的指 数不变 未知数的系方程两边同除以 未知数的系数a, 得 a b x= 等式性质 2 分子、分母不能颠倒

换元法解方程

换元法解方程 西安市第八十五中学江树基 换元法是用新元代替方程中含有未知数的某个部分,达到化简的目的.换元的方法是以所讨论方程的特有性质为依据的,不同的方程就有不同的换元方法,因此,这种方法灵活性大,技巧性强.恰当地换元,可将复杂方程化简,以便寻求解题的途径.常用方法有均值代换、多元代换、常数代换等. 解分式方程、无理方程、高次方程的基本思想是将分式方程化为整式方程、无理方程化为有理方程、高次方程逐步降次,实现这一基本思想的方法有多种,其中换元法是常用的一种重要方法,本文注重研究用换元法解方程的技能、技巧. 一、分式方程 分析:这个方程左边两个分式互为倒数关系,抓住这一特点,可设 ∴(y-1)2=0,解得y=1. 经检验,x 1,x 2 都是原方程的根. 分析:观察方程的分母,发现各分母均是关于x的二次三项式,仅常数项不同,抓住这一特点,可设y=x2+2x. 解:设y=x2+2x,则原方程可化为 即y2-y-12=0,解得y1=4,y2=-3.

x2+2x=-3,无实数解. 例3 解方程 分析:观察方程的分母,发现三个分母都是关于x的二次三项式,仅一次项不同,抓住这一特点,可设y=x2+2x+10. 解:设y=x2+2x+10,则原方程可化为 解得y =9x,y2=-5x. 1 由x2+2x+10=9x,解得x =5,x2=2. 1 由x2+2x+10=-5x,解得x =-5,x4=-2. 3 经检验知,它们都是原方程的解. 注:以上三个例子可看出,换元时必须对原方程进行仔细观察、分析,抓住方程的特点,恰当换元,化繁为简,达到解方程的目的. 二、无理方程 两边立方,并整理得 y3-2y2+3y=0,即y(y2-2y+3)=0, ∴y=0或y2-2y+3=0,无解. 经检验知x=-1是原方程的解. 可设两个未知数,利用韦达定理解. 原方程为m+n=1,又∵(m+n)3=m3+n3+3mn·(m+n)=4+3mn=1,∴mn=-1.

平方差公式与完全平方公式

平方差公式与完全平方公式 (a+b )2 = a 2+2ab+b 2 (a -b )2=a 2-2ab+b 2 (a+b )(a -b )=a 2-b 2 应用1、平方差公式的应用: 例1、利用平方差公式进行计算: (1)(5+6x )(5-6x ) (2)(x +2y )(x -2y ) (3)(-m +n )(-m -n ) 解: 例2、计算: (1)(y x 41-- ) (y x 4 1 +-) (2)(-m -n )(m -n ) (3)(m +n )(n -m )+3m 2 (4)(x+y )(x -y )(x 2-y 2 ) 解: 例3、计算: (1)103×97 (2)118×122 (3)3 220 3119? 解: 应用2、完全平方公式的应用: 例4、计算: (1)(2x -3)2 (2)(4x+5y ) 2 (3)(y x 2 1-)2 (4)(-x -2y )2 (5)(-x+y 2 1)2 解: 例5、利用完全平方公式计算: (1)1022 (2)1972 (3)199992 -19998×20002 解: 试一试:计算:123456789×123456787- 1234567882 =_______________

应用3、乘法公式的综合应用: 例6、计算: (1)(x+5)2 -(x+2)(x -2) (2)(a+b+3)(a+b -3) (3)(a -b+1)(b -a+1) (4)(a+b -c )2 解: 例7、(1)若 4ax x 4 12 ++是完全平方式,则:a=________________ (2)若4x 2 +1加上一个单项式M 使它成为一个完全平方式,则M=_______________ 例 8、(1)已知:3a 1 a =+ ,则:__________a 1 a 22=+ (2)已知:5a 1a =-,则:__________a 1a 22 =+ (3)已知:a+b=5,ab=6,则:a 2 +b 2 =_______ (4)已知:(a+b )2=7,(a -b )2 =3,则:a 2+b 2 = ,ab= 例9、计算: (1))10 11()411)(311)(211(2222----ΛΛ (2))12()12)(12)(12)(12(32 842+++++ΛΛ 解: 例10、证明:x 2+y 2 +2x -2y+3的值总是正的。 【模拟试题】 一、耐心填一填 1、计算:(2+3x )(-2+3x )=_____________;(-a -b )2 =______________. *2、一个多项式除以a 2-6b 2得5a 2+b 2 ,那么这个多项式是_________________. 3、若ax 2 +bx+c=(2x -1)(x -2),则a=________,b=_______,c=_________. 4、已知 (x -ay ) (x + ay ) = x 2-16y 2 , 那么 a = ______________. 5、多项式9x 2 +1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是____________.(填上一个你认为正确的即可) 6、计算:(a -1)(a+1)(a 2 -1)=__________. 7、已知x -y=3,x 2-y 2 =6,则x+y=________. 8、若x+y=5,xy=6,则x 2+y 2 =__________. 9、利用乘法公式计算:1012=___________;1232 -124×122=____________. 10、若A=(2-1)(2+1)(22+1)(24+1)……(232 +1)+1,则A 的个位数字是___________. 二、精心选一选(每小题3分,共30分) 1、计算结果是2x 2 -x -3的是( ) A.(2x -3)(x+1) B.(2x -1)(x -3) C.(2x+3)(x -1) D.(2x -1)(x+3) 2、下列各式的计算中,正确的是( ) A.(a+5)(a -5)=a 2-5 B.(3x+2)(3x -2)=3x 2 -4 C.(a+2)(a -3)=a 2-6 D.(3xy+1)(3xy -1)=9x 2y 2 -1 3、计算(-a+2b )2 ,结果是( ) A. -a 2+4ab+b 2 B. a 2-4ab+4b 2 C. -a 2-4ab+b 2 D. a 2-2ab+2b 2 4、设x+y=6,x -y=5,则x 2-y 2 等于( )

不定方程的解法与应用

摘要 不定方程是初等数论的一个重要内容,在相关学科和实际生活中也有着广泛的应用.本文首先归纳了整数分离法、系数逐渐减小法和辗转相除法等几种常用的二元一次不定方程的解法;其次进一步讨论了求n元一次不定方程和二次不定方程整数解的方法;最后论述了不定方程在中学数学竞赛题、公务员行测试题和其他学科中的应用,并举例说明. 关键词:不定方程;二元一次不定方程;数学竞赛;公务员试题

Abstract The integral solutions of indeterminate equation solving method is an important content of elementary number theory, has been widely used in related disciplines and in real life. This paper summarizes the integer separation method, coefficient decreases and the Euclidean algorithm and several commonly used two element indefinite equation solution, secondly is further discussed. For n linear indeterminate equation and the method of two time indefinite equation integer solution, and finally discusses the indeterminate equation applied in secondary school mathematics, civil servants for test and other subjects, and illustrated with examples. Key words: i ndeterminate equation; two element indefinite equation; Mathematics contest; civil service examination.

谈无理方程的解法

宿城区中扬中学 张家旭 根号下含有未知数的方程叫无理方程。解无理方程的指导思想是通过乘方把无理方程转化为有理方程。由于在乘方过程中扩大了方程中未知数的取值范围,可能会产生增根,所以,解无理方程一定要验根,验根是必不可少的步骤。但对一些特殊的方程可考虑用特殊的方法来解,比较方便。现将解无理方程的基本方法和几种特殊方法归纳如下,供参考。 一、观察法 例1、 解方程 )2(5222+-=+x x 解:无论x 取什么值时,522+x 恒为正,而)2(2+-x 恒为负,矛盾。所以,此方程无解。 例2、 解方程 53-=-x x 解:根据算术根的定义,要保证x -3有意义,必须要x ≤3,而要使53-=-x x 有意义,必须要使x ≥5,这显然矛盾。所以,原方程无解。 例3、解方程 638=---x x 解:要使8-x 有意义,x ≥8,要使x -3有意义,x ≤3,显然不存在同时满足这两个条件的x 值。故此方程无解。 例4、解方程 x x x 21679-=-+- 分析:这个方程的特点是:左边两个根号下的被开方式的和等于右边根号下的被开方式。所以,由观察可得其解。 解:原方程可化为)7()9(79x x x x -+-=-+- 由观察得x=7或者x=9 显然x=9是增根。所以,原方程的解为x=7。 注:我们对一些较为简单的或者是有特殊关系的无理方程,可通过观察,根据算术根的定义或利用根式的有关性质,直接判断它们解的情况。这样,可不必盲目的去解方程,避免走弯路。 二、直接平方法 例5、解方程 x x x =-+2722 解:移项得,=+x x 722x+2 两边平方整理得,0432=-+x x 解得,4,121-==x x 经检验,42-=x 是增根。所以,原方程的解为x=1 。 注:含有一个根式的无理方程,通过整理后,通常要进行一次平方,即可把无理方程转化为有理方程。 例6、解方程 1542=+--x x 解:移项、两边平方并整理得,5210+=-x x 两边再平方并整理得, 080242=+-x x 解得 x =20, 或者x=4, 经检验,x=4是增根。所以,原方程的解为x=20。 注:含有两个根式的无理方程,通过整理后,通常要进行两次平方才能获得方程的解。 三、换元法 例7、解方程 0393253222=+++-+x x x x

最新平方差公式练习题

平方差公式 A卷:基础题 一、选择题 1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式 C.只能是多项式D.以上都可以 2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b) C.(1 3a+b)(b-1 3 a)D.(a2-b)(b2+a) 3.下列计算中,错误的有() ①(3a+4)(3a-4)=9a2-4; ②(2a2-b)(2a2+b)=4a2-b2; ③(3-x)(x+3)=x2-9; ④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2. A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5 二、填空题 5.(-2x+y)(-2x-y)=______.

6.(-3x 2+2y 2)(______)=9x 4-4y 4. 7.(a+b -1)(a -b+1)=(_____)2-(_____)2. 8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____. 三、计算题 9.利用平方差公式计算:20 23×1913. 10.计算:(a+2)(a 2+4)(a 4+16)(a -2). B 卷:提高题 一、七彩题 1.(多题-思路题)计算: (1)(2+1)(22+1)(24+1)…(22n +1)+1(n 是正整数); (2)(3+1)(3 2+1)(34+1)…(32008+1)-401632.

2.(一题多变题)利用平方差公式计算:2009×2007-20082. (1)一变:利用平方差公式计算: 22007200720082006-?. (2)二变:利用平方差公式计算:22007200820061 ?+. 二、知识交叉题 3.(科内交叉题)解方程:x (x+2)+(2x+1)(2x -1)=5(x 2+3). 三、实际应用题 4.广场内有一块边长为2a 米的正方形草坪,经统一规划后, 南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?

不定方程的解法

基本介绍编辑本段 不定方程是数论的一个分支,它有着悠 久的历史与丰富的内容。所谓不定方程是指解的范围为整数、正整数、有理数或代数整数的方程或方程组,其未知数的个数通常多于方程的个数。 古希腊数学家丢番图于三世纪初就研究过若干这类方程,所以不定方程又称丢番图方程,是数论的重要分支学科,也是历史上最活跃的数学领域之一。不定方程的内容十分丰富,与代数数论、几何数论、集合数论等等都有较为密切的联系。1969 年,莫德尔较系统地总结了这方面的研究成果。 2 发展历史编辑本段

希腊的丢番图早在公元3 世纪就开始研究不定方程,因此常称不定方程为丢番图方程。Diophantus ,古代希腊人,被誉为代数学的鼻祖,流传下来关于他的生平事迹并不多。今天我们称整系数的不定方程为「Diophantus 方程」,内容主要是探讨其整数解或有理数解。他有三本著作,其中最有名的是《算术》,当中包含了189 个问题及其答案,而许多都是不定方程组(变量的个数大于方程的个数)或不定方程式(两个变数以上)。丢番图只考虑正有理数解,而不定方程通常有无穷多解的。 研究不定方程要解决三个问题:①判断何时有解。②有解时决定解的个数。③求出所有的解。中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5 世纪的《张丘建算经》中的百鸡问题标志中国对不定方程理论有了系统研究。秦九韶的大衍求一术将不定方程与同余理论联系起来。百鸡问题说:“鸡翁一,直钱五,鸡母一,直钱三,鸡雏三,直钱一。百钱买百鸡,问鸡翁、母、雏各几何”。设x,y,z 分别表鸡翁、母、雏的个数,则此问题即为不定方程组的非负整数解x,y,z,这是一个三元不定方程组问题。 3 常见类型编辑本段

一元一次方程知识点总结

第三课时一元一次方程 廖雅欣2月3日 1、从算式到方程 ①一元一次方程 ⑴方程:方程是含有未知数的等式。列方程式,要先设字母表示未知数(通常用x、y、z等字母表示未知数),,然后根据题目中的相等关系写出等式。 注:Ⅰ、方程有两个条件,一是含有未知数,二是含有“=”,二者缺一不可。如 都是方程。 Ⅱ、方程一定是等式,但等式不一定是方程,如6+2=8,又如a+b=b+a,a+2a=3a,它们是表示运算律的恒等式,其中的字母不是未知数而是任意数,故他们也不是方程。 ⑵一元一次方程:只含有一个未知数(元),未知数的次数是1,等号两边都是整式(包含单项式与多项式)的方程。 注:Ⅰ、一元一次方程中分母不含未知数,即方程是由整式组成的,如就不是一元一次方程。 Ⅱ、一元一次方程中只含有一个未知数,如就不是一元一次方程。(注意含参数的一元一次方程) Ⅲ、一元一次方程化简以后未知数的次数为1,是指含有未知数的项的最高次数为1,如就不是一元一次方程,而可以化简为,故是一元一次方程。 Ⅳ、注意判别一元一次方程与恒等式(式中的字母取任意值等式都恒成立)。 ⑶解方程:解方程就是求出使方程中等号左右两边相等的未知数的值,这个使方程中等号左右两边相等的未知数的值叫做方程的解。 归纳: 分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。 2、等式的性质 ①等式的性质1:等式的两边加上(或减去)同一个数(或式子),结果仍相等。 如果a=b,那么a±c=b±c ②等式性质2 :等式两边同乘同一个数,或除以同一个不为0的数,结果仍相等。 如果a=b,那么ac=bc ; 如果a=b且c不等于0,那么a÷c=b÷c 掌握关键:<1>“两边”“同一个数(或式子) ” <2>“除以同一个不为0的数” 补充性质:③对称性:等式的左右两边交换位置,所得的结果仍是等式,即由a=b可以推得b=a. ④传递性:如果a=b,b=c,那么a=c. 利用等式的性质解方程,实质就是将方程转化为x=a(a是常数)的形式。 3、解一元一次方程 最简方程? 形如ax=b(a、b都是已知数,a≠0)的方程,我们称为最简方程.它的解是x=b÷a. 将方程化为最简方程: ①去括号:用分配律,去括号解决关于含括号的一元一次方程。 ②合并同类项:把含有未知数的项合并在一起。

第七讲 分式方程和无理方程的解法

分式方程和无理方程的解法 初中大家已经学习了可化为一元一次方程的分式方程的解法.本讲将要学习可化为一元二次方程的分式方程的解法以及无理方程的解法.并且只要求掌握(1)不超过三个分式构成的分式方程的解法,会用”去分母”或”换元法”求方程的根,并会验根;(2)了解无理方程概念,掌握可化为一元二次方程的无理方程的解法,会用”平方”或”换元法”求根,并会验根. 分析:去分母,转化为整式方程. 解:原方程可化为: 142 12(2)(2)2 x x x x x +-=++-- 方程两边各项都乘以2 4x -: 2(2)42(2)4x x x x -+-+=- 即2 364x x -=-, 整理得:2 320x x -+= 解得:1x =或2x =. 检验:把1x =代入2 4x -,不等于0,所以1x =是原方程的解; 把2x =代入24x -,等于0,所以2x =是增根. 所以,原方程的解是1x =. 说明: (1) 去分母解分式方程的步骤: ①把各分式的分母因式分解; ②在方程两边同乘以各分式的最简公分母; ③去括号,把所有项都移到左边,合并同类项; ④解一元二次方程; ⑤验根. (2) 验根的基本方法是代入原方程实行检验,但代入原方程计算量较大.而分式方程可能产生的增根,就是使分式方程的分母为0的根.所以我们只要检验一元二次方程的根,是否使分式方程两边同乘的各分式的最简公分母为0.若为0,即为增根;若不为0,即为原方程的解. 2.用换元法化分式方程为一元二次方程 【例2】解方程 22 23()4011 x x x x --=-- 分析:本题若直接去分母,会得到一个四次方程,解方程很困难.但注意到方程的结构特点, 设 2 1x y x =-,即得到一个关于y 的一元二次方程.最后在已知y 的值的情况下,用去分母的方法解方程 2 1 x y x =-. 解:设 2 1 x y x =-,则原方程可化为:2340y y --= 解得4y =或1y =-.

《平方差公式解方程》教学设计(黑龙江县级优课)

21.2.3《因式分解》教学设计(自主、互助模式) 一、学习目标 1、会用因式分解法(提公因式法,公式法)解某些简单的一元 二次方程 2、能根据具体的一元二次方程的特征,灵活选择不同的因式 分解法解方程,体会解决问题的方法多样性 二、重点: 应用分解因式法解一元二次方程 三、难点: 灵活应用各种分解因式的方法解一元二次方程 四、教学方法: 自主预习——互助合作——交流探究——巩固深化 五、教学媒体: 多媒体,预习导学案 六、教学时数:1课时 七、课前准备: 知识准备 1、分解因式的方法 2、已学解方程的方法 3、新课预习 (1)因式分解法的概念 (2)因式分解法的依据

(3)因式分解法的步骤(由例题归纳) (4)预习检测(做练习题) (5)发现自己的困惑,并寻求方法解决 教学流程: 第一环节:交流预习 1.(生)学生以同桌为主,以师友交流的方式互相检查预习情况, 从完成情况、对错、是否有疑问等互相检查,并把困惑解决, 不能完成的可以展示给大家,或让老师完成。 2.(师)教师巡视,并掌握整体情况.适时评价 情况预测:(1)有的学生偷懒,完成不了(2)有的学生底子薄,完成困难(3)交流的时间不够,差生不能掌握 解决方法:教师适度监督,关注,点拔,并鼓励其要完成任务。第二环节:互相探究 1、(生)学生展示: 学生展示完成板书主要内容.并讲解例题归纳解题步骤.其他同 学可以给予补充,提出问题,最后形成统一认识。 2、(师)教学适档点拨总结方法,适时给予评价. 第三环节:分层提高 1、(生)以学生以预习,互助探究环节为基础,完成大屏的习题. 在答题过程中.基础题以学友为主,以师父为助.要体现互相交流,帮助. 2、(师)教师适时点拨,及时评价.以小组得分作为激励机制

用换元法解各种复杂方程

用换元法解各种复杂方程 用换元思想探索双二次方程、无理方程、分式方程这三类方程的解法。 [内容综述] “换元法”是一种重要的数学方法,它可以把较复杂的问题转化为较简单的问题去解决。在解高次方程、分式方程、无理方程的过程中都可以应用换元方法,其要点是把方程中的一些表达形式相同的部分看成一个整体并设新的字母表示,从而达到化简方程并把原方程化归为已经会解的一元一次或一元二次方程的目的。 [问题精讲] 1.在中学课程中,只要求学生会解一些特殊的高次方程,最常见的就是“双二次方程”,即只含有未知数的四次项、二次项和常数项的方程。对于这类方程,可以经过对二次项的换元转化为一元二次方程。例1,解方程(x 2+1)2=x 2+3 分析:思路1:以x 2+1为一个整体进行换元,因此要对方程右边进行变形使其含有x 2+1。 思路2:把方程展开成标准的双二次方程,再对x 2 进行换元。 解法一:原方程可化为(x 2+1)2-(x 2+1)-2=0,设x 2+1=y 得y 2-y-2=0, 解得 y 1=2,y 2=-1,x 2+1=-1无实根, 由x 2+1=2解得x 1=1,x 2=-1。 解法二:由原方程得x 4+x 2-2=0,设x 2=y (解题熟练时,这一换元过程也可以不写出) 得y 2+y-2=0,解得y 1=1,y 2=-2,x 2=-2无实根, 由x 2=1解得x 1=1,x 2=-1。 注意:换元的关键是善于发现或构造方程中表达形式相同的部分作为换元的对象。在解方程的过程中换元的方法常常不是唯一的,解高次方程时,只要能达到降次目的的换元方法都可以应用。例如在牛刀小试题1中,可以设4x 2+2=y ,则原方程化为y 2+y-12=0;也可以设4x 2+1=y ,则原方程化为y 2+3y-10=0(选C ),(还可以设4x 2=y 等等,学生可以自己练习)。但是无论采用哪一种换元方法,所得方程的解都是相同的。 2.解无理方程时,常把原方程中的一个含有未知数的根式作为整体进行换元,达到化去根号转化为可解方程的目的。这时经过变形,原方程的某个整式部分常可表示为新元的平方。 例2,解方程051356222=-----x x x x 分析:为使原方程中出现形式相同的部分,可以将其变形为 03135)13(222=------x x x x 。 解:设y x x =--132,则原方程可以化为2y 2-5y-3=0 解得(不符合算术根的定义,舍去。) 由3132=--x x 得x 1=5,x 2=-2,经检验是原方程的根。

(完整版)平方差公式题型总结

平方差公式练习题 一、选择题 1、下列多项式乘法,能用平方差公式进行计算的是( ) A.(x+y)(-x -y) B.(2x+3y)(2x -3z) C.(-a -b)(a -b) D.(m -n)(n -m) 2、下列多项式乘法,不能用平方差公式计算的是( ) A.(-a -b )(-b+a) B.(xy+z) (xy -z) C.(-2a -b) (2a+b) D.(0.5x -y) (-y -0.5x) 4、(42x -5y)需乘以下列哪个式子,才能使用平方差公式进行计算( ) A.-42x -5y B.-42x +5y C.(42x -5y ) D.(4x+5y) 5、4a +(1-a)(1+a)(1+2a )的计算结果是( ) A.-1 B.1 C.24a -1 D.1-24a 6.下列计算正确的是( ) A.(2x+3)(2x -3)=22x -9 B.(x+4)(x -4)=2x -4 C.(5+x)(x -6)=2x -30 D.(-1+4b)(-1-4b)=1-162b 7.下列各式运算结果是x 2-25y 2的是( ) A.(x+5y)(-x+5y) B.(-x -5y)(-x+5y) C.(x -y)(x+25y) D.(x -5y)(5y -x) 8.下列式中能用平方差公式计算的有( ) ①(x-1 2y)(x+1 2y), ②(3a-bc)(-bc-3a), ③(3-x+y)(3+x+y), ④(100+1)(100-1) A.1个 B.2个 C.3个 D.4个 9.下列式中,运算正确的是( ) ①222(2)4a a =, ②21 1 1 (1)(1)1339x x x -++=-, ③235(1)(1)(1)m m m --=-, ④232482a b a b ++??=. A.①② B.②③ C.②④ D.③④ 10.乘法等式中的字母a 、b 表示( ) A.只能是数 B.只能是单项式 C.只能是多项式 D.单项式、?多项式都可以 11.(-a +1)(a +1)(a 2+1)等于………………( ) (A )a 4-1 (B )a 4+1(C )a 4+2a 2+1 (D )1-a 4 二.填空题 1、(x -1)(x +1)=_____, (2a +b )(2a -b )=_____, (31 x -y )(31 x +y )=_____. 2、(x +4)(-x +4)=_____, (x +3y )(_____)=9y 2-x 2, (-m -n )(_____)=m 2-n 2 3、98×102=(_____)(_____)=( )2-( )2=_____. 4、-(2x 2+3y )(3y -2x 2)=_____. 5、(a -b )(a +b )(a 2+b 2)=_____. 6、(_____-4b )(_____+4b )=9a 2-16b 2 ,(_____-2x )(_____-2x )=4x 2-25y 2 7、(xy -z )(z +xy )=_____, (65x -0.7y )(65x +0.7y )=_____. 8、(41x +y 2)(_____)=y 4-161 x 2

二元一次不定方程的解法总结与例题

探究二元一次不定方程 (Inquires into the dual indefinite equation) 冯晓梁(XiaoLiang Feng)(江西科技师范学院数计学院数一班 330031)【摘要】:二元一次不定方程是最简单的不定方程, 一些复杂的不定方程常常化为二元一次不定方程问题加以解决。我们讨论二元一次方程的整数解。 The dual indefinite equation is the simple the indefinite equation, some complex indefinite equations change into the dual indefinite equation question to solve frequently. We discuss the dual linear equation the integer solution. 【关键字】:二元一次不定方程初等数论整数解 (Dual indefinite equation Primary theory of numbers Integer solution) 二元一次方程的概念:含有两个未知数,并且未知项的次数是1的方程叫做二元一次方程。一个方程是二元一次方程必须同时满足下列条件;①等号两边的代数式是整式; ②具有两个未知数;③未知项的次数是1。 如:2x-3y=7是二元一次方程,而方程4xy-3=0中含有两个未知数,且两个未知数的次数都是1,但是未知项4xy的次数是2,所以,它是二元二次方程,而不是二元一次方程。 定理1.形如(不同时为零)的方程称为二元一次不定方程。 [1] 二元一次方程的解和解二元一次方程:能使一个二元一次方程两边的值相等的未知数的一组值叫做这个方程的一个解,但若对未知数的取值附加某些限制,方程的解可能只有有限个。 通常求一个二元一次方程的解的方法是用一个未知数的代数式表示另一个未知数,如x-2y=3变形为x=3+2y,然后给出一个y的值就能求出x的一个对应值,这样得到的x、y的每对对应值,都是x-2y=3的一个解。 定理2.方程有解的充要是;[2] 若,且为的一个解,则方程的一切解都可以表示成: (t为任意整数)

一元一次方程知识点完整版(供参考)

第三章:一元一次方程 本章板块 知识梳理 【知识点一:方程的定义】 方程:含有未知数的等式就叫做方程。 注意未知数的理解,n m x ,,等,都可以作为未知数。 题型:判断给出的代数式、等式是否为方程 方法:定义法 例1、判定下列式子中,哪些是方程? (1)4=+y x (2)2>x (3)642=+(4)92 =x (5)2 11=x 【知识点二:一元一次方程的定义】 一元一次方程:①只含有一个未知数(元); ②并且未知数的次数都是1(次); ③这样的整式方程叫做一元一次方程。 题型一:判断给出的代数式、等式是否为一元一次方程 方法:定义法 例2、判定下列哪些是一元一次方程? 0)(22=+-x x x , 712 =+x π ,0=x ,1=+y x ,31 =+ x x ,x x 3+,3=a 题型二:形如一元一次方程,求参数的值 方法:2 x 的系数为0;x 的次数等于1;x 的系数不能为0。 例3、如果()051=+-m x m 是关于x 的一元一次方程,求m 的值 例4、若方程()05122 =+--ax x a 是关于x 的一元一次方程,求a 的值 【知识点三:等式的基本性质】 等式的性质1:等式两边都加上(或减去)同个数(或式子),结果仍相等。即:若a=b ,则a ±c=b ±c 等式的性质2:等式两边同时乘以同一个数,或除以同一个不为0的数,结果仍相等。即:若b a =,则bc ac =;若b a =,0≠c 且 c b c a = 例5、运用等式性质进行的变形,不正确的是( ) A 、如果a=b ,那么a-c=b-c B 、如果a=b ,那么a+c=b+c C 、如果a=b ,那么 c b c a = D 、如果a=b ,那么ac=bc 【知识点四:解方程】 方程的一般式是:()00≠=+a b ax 题型一:不含参数,求一元一次方程的解

相关文档
最新文档