支持向量机神经网络在判别前列腺癌中的应用研究_李梅

基于BP神经网络和SVM的分类方法研究

龙源期刊网 https://www.360docs.net/doc/3d18671337.html, 基于BP神经网络和SVM的分类方法研究作者:王宏涛孙剑伟 来源:《软件》2015年第11期 摘要:介绍了BP神经网络和SVM算法的分类原理。附加动量因子和随机梯度下降法是对BP神经网络进行优化的重要方法,利用Google实验室的MNIST手写数字库研究了动量因子和随机数以及SVM不同核函数对分类性能影响,为实际应用中模型的选择提供一定依据。同时也研究了两个算法在不同样本数下的性能表现,实验表明样本数较少时SVM比BP具有更高的泛化能力。最后结合两个算法特点,给出层次分类法并做为今后研究方向。 关键词:MNIST数字库;BP神经网络;支持向量机;分类性能 中图分类号:TP391.41 文献标识码:A DOI:10.3969/j.issn.1003-6970.2015.11.024 0 引言 很多实际应用问题都可归为分类问题,如故障诊断、模式识别等,分类过程包括分类器构造和运用模型进行分类两个步骤。神经网络和支持向量机(SVM)是分类领域中两种重要方法。神经网络是模拟人脑神经系统的数学模型,具有高度并行性、较强的自学习自适应和联想记忆功能特点。Vapnik在20世纪90年代基于统计学习理论提出支持向量机,它是借助最优化方法解决问题的,求解支持向量转化为解凸二次优化问题,它能够获得全局最优解,是结构风险最小化的算法。经过多年发展神经网络和支持向量机在很多领域取得成功,但是神经网络和支持向量机参数选择没有理论上支撑,参数选择优化是算法应用成功的关键,挖掘模型参数对算法性能影响具有重要意义。本文在Google的手写数字库上研究了BP(Back Propagation)神经网络和支持向量机的附加动量因子、随机数和不同核函数等变量对准确率、计算时间以及收敛曲线的影响,比较两个算法在不同训练样本数时性能表现。最后结合BP神经网络算法和SVM的各自特点提出分层分类模型,该方法适用于具有结构分解、功能分解特点的对象,为复杂对象分类提供了一种思路。 1 BP神经网络和SVM算法 1.1 BP神经网络技术 神经网络是对人脑的抽象、模拟和简化的信息处理模型,其中神经元数学模型、网络连接方式以及神经网络学习方式是神经网络的三个关键。神经网络原理是利用网络的学习和记忆功能,让神经网络学习各个类别中的样本特征,在遇到待识别样本时神经网络利用记住的特征信

(完整word版)支持向量机(SVM)原理及应用概述分析

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

支持向量机分类器

支持向量机分类器 1 支持向量机的提出与发展 支持向量机( SVM, support vector machine )是数据挖掘中的一项新技术,是借助于最优化方法来解决机器学习问题的新工具,最初由V.Vapnik 等人在1995年首先提出,近几年来在其理论研究和算法实现等方面都取得了很大的进展,开始成为克服“维数灾难”和过学习等困难的强有力的手段,它的理论基础和实现途径的基本框架都已形成。 根据Vapnik & Chervonenkis的统计学习理论 ,如果数据服从某个(固定但未知的)分布,要使机器的实际输出与理想输出之间的偏差尽可能小,则机器应当遵循结构风险最小化 ( SRM,structural risk minimization)原则,而不是经验风险最小化原则,通俗地说就是应当使错误概率的上界最小化。SVM正是这一理论的具体实现。与传统的人工神经网络相比, 它不仅结构简单,而且泛化( generalization)能力明显提高。 2 问题描述 2.1问题引入 假设有分布在Rd空间中的数据,我们希望能够在该空间上找出一个超平面(Hyper-pan),将这一数据分成两类。属于这一类的数据均在超平面的同侧,而属于另一类的数据均在超平面的另一侧。如下图。 比较上图,我们可以发现左图所找出的超平面(虚线),其两平行且与两类数据相切的超平面(实线)之间的距离较近,而右图则具有较大的间隔。而由于我们希望可以找出将两类数据分得较开的超平面,因此右图所找出的是比较好的超平面。 可以将问题简述如下: 设训练的样本输入为xi,i=1,…,l,对应的期望输出为yi∈{+1,-1},其中+1和-1分别代表两类的类别标识,假定分类面方程为ω﹒x+b=0。为使分类面对所有样本正确分类并且具备分类间隔,就要求它满足以下约束条件: 它追求的不仅仅是得到一个能将两类样本分开的分类面,而是要得到一个最优的分类面。 2.2 问题的数学抽象 将上述问题抽象为: 根据给定的训练集

陆振波SVM的MATLAB代码解释

%构造训练样本 n = 50; randn('state',6); x1 = randn(2,n); %2行N列矩阵 y1 = ones(1,n); %1*N个1 x2 = 5+randn(2,n); %2*N矩阵 y2 = -ones(1,n); %1*N个-1 figure; plot(x1(1,:),x1(2,:),'bx',x2(1,:),x2(2,:),'k.'); %x1(1,:)为x1的第一行,x1(2,:)为x1的第二行 axis([-3 8 -3 8]); title('C-SVC') hold on; X = [x1,x2]; %训练样本d*n矩阵,n为样本个数,d为特征向量个数 Y = [y1,y2]; %训练目标1*n矩阵,n为样本个数,值为+1或-1 %训练支持向量机 function svm = svmTrain(svmType,X,Y,ker,p1,p2) options = optimset; % Options是用来控制算法的选项参数的向量 https://www.360docs.net/doc/3d18671337.html,rgeScale = 'off'; options.Display = 'off'; switch svmType case'svc_c', C = p1; n = length(Y); H = (Y'*Y).*kernel(ker,X,X); f = -ones(n,1); %f为1*n个-1,f相当于Quadprog函数中的c A = []; b = []; Aeq = Y; %相当于Quadprog函数中的A1,b1 beq = 0; lb = zeros(n,1); %相当于Quadprog函数中的LB,UB ub = C*ones(n,1); a0 = zeros(n,1); % a0是解的初始近似值 [a,fval,eXitflag,output,lambda] = quadprog(H,f,A,b,Aeq,beq,lb,ub,a0,options); %a是输出变量,它是问题的解 % Fval是目标函数在解a 处的值 % Exitflag>0,则程序收敛于解x Exitflag=0,则函数的计算达到了最大次数 Exitflag<0,则问题无可行解,或程序运行失败 % Output 输出程序运行的某些信息

支持向量机的实现

模式识别课程大作业报告——支持向量机(SVM)的实现 姓名: 学号: 专业: 任课教师: 研究生导师: 内容摘要

支持向量机是一种十分经典的分类方法,它不仅是模式识别学科中的重要内容,而且在图像处理领域中得到了广泛应用。现在,很多图像检索、图像分类算法的实现都以支持向量机为基础。本次大作业的内容以开源计算机视觉库OpenCV为基础,编程实现支持向量机分类器,并对标准数据集进行测试,分别计算出训练样本的识别率和测试样本的识别率。 本报告的组织结构主要分为3大部分。第一部分简述了支持向量机的原理;第二部分介绍了如何利用OpenCV来实现支持向量机分类器;第三部分给出在标准数据集上的测试结果。 一、支持向量机原理概述

在高维空间中的分类问题实际上是寻找一个超平面,将两类样本分开,这个超平面就叫做分类面。两类样本中离分类面最近的样本到分类面的距离称为分类间隔。最优超平面指的是分类间隔最大的超平面。支持向量机实质上提供了一种利用最优超平面进行分类的方法。由最优分类面可以确定两个与其平行的边界超平面。通过拉格朗日法求解最优分类面,最终可以得出结论:实际决定最优分类面位置的只是那些离分类面最近的样本。这些样本就被称为支持向量,它们可能只是训练样本中很少的一部分。支持向量如图1所示。 图1 图1中,H是最优分类面,H1和H2别是两个边界超平面。实心样本就是支持向量。由于最优超平面完全是由这些支持向量决定的,所以这种方法被称作支持向量机(SVM)。 以上是线性可分的情况,对于线性不可分问题,可以在错分样本上增加一个惩罚因子来干预最优分类面的确定。这样一来,最优分类面不仅由离分类面最近的样本决定,还要由错分的样本决定。这种情况下的支持向量就由两部分组成:一部分是边界支持向量;另一部分是错分支持向量。 对于非线性的分类问题,可以通过特征变换将非线性问题转化为新空间中的线性问题。但是这样做的代价是会造成样本维数增加,进而导致计算量急剧增加,这就是所谓的“维度灾难”。为了避免高维空间中的计算,可以引入核函数的概念。这样一来,无论变换后空间的维数有多高,这个新空间中的线性支持向量机求解都可以在原空间通过核函数来进行。常用的核函数有多项式核、高斯核(径向基核)、Sigmoid函数。 二、支持向量机的实现 OpenCV是开源计算机视觉库,它在图像处理领域得到了广泛应用。OpenCV 中包含许多计算机视觉领域的经典算法,其中的机器学习代码部分就包含支持向量机的相关内容。OpenCV中比较经典的机器学习示例是“手写字母分类”。OpenCV 中给出了用支持向量机实现该示例的代码。本次大作业的任务是研究OpenCV中的支持向量机代码,然后将其改写为适用于所有数据库的通用程序,并用标准数据集对算法进行测试。本实验中使用的OpenCV版本是,实验平台为Visual

支持向量机的matlab代码

支持向量机的matlab代码 Matlab中关于evalin帮助: EVALIN(WS,'expression') evaluates 'expression' in the context of the workspace WS. WS can be 'caller' or 'base'. It is similar to EVAL except that you can control which workspace the expression is evaluated in. [X,Y,Z,...] = EVALIN(WS,'expression') returns output arguments from the expression. EVALIN(WS,'try','catch') tries to evaluate the 'try' expression and if that fails it evaluates the 'catch' expression (in the current workspace). 可知evalin('base', 'algo')是对工作空间base中的algo求值(返回其值)。 如果是7.0以上版本 >>edit svmtrain >>edit svmclassify >>edit svmpredict function [svm_struct, svIndex] = svmtrain(training, groupnames, varargin) %SVMTRAIN trains a support vector machine classifier % % SVMStruct = SVMTRAIN(TRAINING,GROUP) trains a support vector machine % classifier using data TRAINING taken from two groups given by GROUP. % SVMStruct contains information about the trained classifier that is % used by SVMCLASSIFY for classification. GROUP is a column vector of % values of the same length as TRAINING that defines two groups. Each % element of GROUP specifies the group the corresponding row of TRAINING % belongs to. GROUP can be a numeric vector, a string array, or a cell % array of strings. SVMTRAIN treats NaNs or empty strings in GROUP as % missing values and ignores the corresponding rows of TRAINING. % % SVMTRAIN(...,'KERNEL_FUNCTION',KFUN) allows you to specify the kernel % function KFUN used to map the training data into kernel space. The % default kernel function is the dot product. KFUN can be one of the % following strings or a function handle: % % 'linear' Linear kernel or dot product % 'quadratic' Quadratic kernel % 'polynomial' Polynomial kernel (default order 3) % 'rbf' Gaussian Radial Basis Function kernel % 'mlp' Multilayer Perceptron kernel (default scale 1) % function A kernel function specified using @,

数据挖掘第二讲作业

第二讲大数据分析处理概述 1、Hadoop是一个(C) A.进行大数据分析处理的操作系统 B.专门存储大数据的数据库 C.大数据计算框架 D.收费的商业数据分析服务提供商 2、Hadoop集群可以运行的3个模式是(ABC)多选 A.本地模式 B.伪分布模式 C.全分布模式 D.离线模式 3、在Hadoop中,计算任务被称为Job,JobTracker是一个后台服务进程,启动之后,会一直监听并接收来自各个TaskTracker发送的心跳信息,包括资源使用情况和任务运行情况等信息,它使用的端口号是(B) A.70 B.30 C.80 D.60 4、在Hadoop中,一个作业(Job)包含多个任务(Task),从JobTracker接收并执行各种命令:运行任务、提交任务、杀死任务等;另一方面,将本地节点上各个任务的状态通过心跳周期性汇报给JobTracker,它使用的端口号是(D) A.70 B.30 C.80 D.60 5、Hadoop是由(B)语言编写的 A.C B.Java C.Python D.Scala 6、Hadoop中,集群的结构是(A) A.Master/Slave 结构 B.P2P结构 C.串行结构 D.以上都是 7、Hadoop平台中使用哪种技术可以运行Python语言编写的MapReduce代码(A)

A.Hadoop Streaming B.Hadoop C++编程接口 C.Hive D.Hbase 8、在Hadoop中,下列哪项主要提供基础程序包以及和操作系统进行交互(A) A.Hadoop Common package B.Hadoop Distributed File System C.Hadoop YARN D.MapReduce Engine 9、Hadoop的局限和不足(ABCD) A.抽象层次低,需要手工编写代码来完成,使用上难以上手 B.对于迭代式数据处理性能比较差 C.中间结果也放在HDFS文件系统中 D.时延高,只适用Batch数据处理,对于交互式数据处理,实时数据处理的支持不够 10、以下哪项不是Hadoop Streaming框架的优点(C) A.可以使用其他语言(包括脚本语言)编写的程序移植到Hadoop平台上 B.可以使用性能更好的语言(C/C++)来编写程序 C.可以不用设置Map与Reduce过程 D.Streaming框架汇总通过limit等方式可以灵活的先知应用程序使用的内存等资源 11、下列哪些选项是Hadoop Streaming框架的缺点(A) A.Hadoop Streaming默认只能处理文本数据,无法直接对二进制数据进行处理 B.Hadoop Streaming 不方便程序向Hadoop平台移植 C.Streaming中的mapper和reducer默认只能向标准输出写数据,不能方便地处理多路输出 D.只要程序能从标准输入读取数据、向标准输出写数据,就能使用Hadoop Streaming 12、在Hadoop中,下列哪项主要功能是计算资源的调度(C) A.Hadoop common package B.Hadoop Distributed File System C.Hadoop YARN D.MapReduce Engine 13、在Hadoop中,下列哪项负责文件的分布式存储与访问(B) A.Hadoop common package B.Hadoop Distributed File System C.Hadoop YARN D.MapReduce Engine 14、在Hadoop中,下列哪项负责计算任务的并行化(D) A.Hadoop common package B.Hadoop Distributed File System

Matlab-SVM整理

SVM整理 1各种svm程序包 1.1 matlab高级版本中自带的svm函数 我现在使用的matlab版本为matlab 7.6.0(R2008a)这个版本中已经自带svm算法,分别为生物信息工具箱(bioinformatics toolbox)中svmclassify函数和svmtrain函数,为上下级关系。 SVMStruct=svmtrain(Training,Group)%svmtrain的输入为样本点training和样本的分类情况group,输出为一个分类器svmstruct. 核函数,核参数,和计算方法等都是可选的,如SVMStruct = svmtrain(…, ‘Kernel_Function’, Kernel_FunctionValue, …) 但是切记切记一定要成对出现。 然后,将分类器和testing sample带入svmclassify中,可以得到分类结果和准确度。 举个例子 svmStruct=svmtrain(data(train,:),groups(train),’Kernel_Function’,'rbf’,'Kernel_FunctionValue’,’5′,’showplot’,true); %用了核宽为5的径向基核,且要求作图 %这里我觉得原作者的写法有误,应该是svmStruct = svmtrain(data(train,:),groups(train),... 'Kernel_Function','rbf','RBF_Sigma',5,'showplot',true); classes = svmclassify(svmStruct,data(test,:),’showplot’,true); %要求输出检测样本点的分类结果,且画图表示。 tip 1: 有归一化scale功能,可以通过调参数实现 tip 2: 计算方法可选qp,smo,ls tip 3: 有个关于soft margin的盒子条件,我不太明白是干嘛的,谁懂得话,就给我讲讲哈 tip 4: 画出来的图很难看 to sum up: 挺好的 1.2较早使用的工具箱SVM and Kernel Methods Matlab Toolbox 2005年法国人写的,最近的更新为20/02/2008 下载的地址为http://asi.insa-rouen.fr/enseignants/~arakotom/toolbox/index.html 这是我最早开始用的一个工具箱,我很喜欢,到现在还是,对于svm的初学者是个很好的toolbox. 有详细的说明和很多的demo和例子, 包含现今几乎所有的有关svm的成熟算法和数据预处理方法(pca及小波等)。 最最重要的是有回归!!! 且函数简单,容易改动延伸。

支持向量机非线性回归通用MATLAB源码

支持向量机非线性回归通用MA TLAB源码 支持向量机和BP神经网络都可以用来做非线性回归拟合,但它们的原理是不相同的,支持向量机基于结构风险最小化理论,普遍认为其泛化能力要比神经网络的强。大量仿真证实,支持向量机的泛化能力强于BP网络,而且能避免神经网络的固有缺陷——训练结果不稳定。本源码可以用于线性回归、非线性回归、非线性函数拟合、数据建模、预测、分类等多种应用场合,GreenSim团队推荐您使用。 function [Alpha1,Alpha2,Alpha,Flag,B]=SVMNR(X,Y,Epsilon,C,TKF,Para1,Para2) %% % SVMNR.m % Support Vector Machine for Nonlinear Regression % All rights reserved %% % 支持向量机非线性回归通用程序 % GreenSim团队原创作品,转载请注明 % GreenSim团队长期从事算法设计、代写程序等业务 % 欢迎访问GreenSim——算法仿真团队→https://www.360docs.net/doc/3d18671337.html,/greensim % 程序功能: % 使用支持向量机进行非线性回归,得到非线性函数y=f(x1,x2,…,xn)的支持向量解析式,% 求解二次规划时调用了优化工具箱的quadprog函数。本函数在程序入口处对数据进行了% [-1,1]的归一化处理,所以计算得到的回归解析式的系数是针对归一化数据的,仿真测 % 试需使用与本函数配套的Regression函数。 % 主要参考文献: % 朱国强,刘士荣等.支持向量机及其在函数逼近中的应用.华东理工大学学报 % 输入参数列表 % X 输入样本原始数据,n×l的矩阵,n为变量个数,l为样本个数 % Y 输出样本原始数据,1×l的矩阵,l为样本个数 % Epsilon ε不敏感损失函数的参数,Epsilon越大,支持向量越少 % C 惩罚系数,C过大或过小,泛化能力变差 % TKF Type of Kernel Function 核函数类型 % TKF=1 线性核函数,注意:使用线性核函数,将进行支持向量机的线性回归 % TKF=2 多项式核函数 % TKF=3 径向基核函数 % TKF=4 指数核函数 % TKF=5 Sigmoid核函数 % TKF=任意其它值,自定义核函数 % Para1 核函数中的第一个参数 % Para2 核函数中的第二个参数 % 注:关于核函数参数的定义请见Regression.m和SVMNR.m内部的定义 % 输出参数列表 % Alpha1 α系数 % Alpha2 α*系数 % Alpha 支持向量的加权系数(α-α*)向量

神经网络与支持向量机的竞争与协作

神经网络与支持向量机的竞争与协作 简单介绍了神经网络与支持向量机,对比分析两者的优缺点,提出了神经网络与支持向量机的协作发展,为两者实际应用的缺欠领域创造更多可能。 标签:神经网络;支持向量机;竞争;协作 人工神经网络(Artificial Neural Network,ANN)与支持向量机(Support Vector Machine,SVM)都是非线性分类模型。1986年,Rummelhart与McClelland创造出前馈型神经网络学习算法,简称BP算法。Vapnik等人于1992年提出支持向量机的概念。神经网络为包含输入、输出以及隐含层的非线性模型,隐含层可以是单层也可以是多层,支持向量机则运用核理论将非线性问题转换为线性问题。神经网络与支持向量机同为统计学习的代表方法,其中神经网络建立在传统统计学的基础上,支持向量机则建立在统计学理论的基础上。传统统计学假定样本数据无限大,从而推导出各种算法,得到其统计性质及其渐进理论。而在实际应用中,样本数为有限数据,对神经网络算法造成了限制。为了对比分析,研究者分别对BP神经网络与支持向量机进行仿真实验,得出支持向量机具有更强的逼近能力这一结果。但从后文所述支持向量机的优缺点来看,当训练样本规模较大时,运用支持向量机的算法很难实现。一直以来,神经网络与支持向量机处于“竞争”的关系,但无论是神经网络还是支持向量机,都做不到完美无缺。 1 人工神经网络 1.1 神经网络特点 神经网络是由大量的神经细胞(亦称神经元)组成,这些神经细胞具有很高的互连程度,构成了神经网络复杂的并行结构。神经网络结构来源于对人脑结构的模仿,因而也反映了人脑的基本结构与基本特征,构成了类似人脑结构复杂程度的学习与运算系统。为前馈网络选择适当的隐含层数目与隐含层节点数目,便能以任意精度逼近非线性函数。在工业过程的控制与建模操作中,神经网络技术得以广泛应用并成果显著。神经网络具有以下特点:在线及离线学习,自学习和自适应不确定的系统;能够辨识非线性系统,逼近任意非线性函数;讯息分布存储、并行处理,因而容错性强且处理速度快;通过神经网络运算,解决自动控制计算的许多问题。具有以上特点,使神经网络良好的应用于自动控制领域。 1.2 神经网络缺陷 神经网络的缺陷性主要表现为:网络结构需事先确定,训练过程不断修正,无法保证最优网络;通过实验调整网络权系数,且有局限性;样本数目足够多时结果质量好,但需要大量训练时间;出现无法得到最优解的情况,易陷入局部最优;目前收敛速度的决定条件无法判断,定量分析训练过程的收敛速度无法实现;经验风险最小化原则的基础下,无法保证优化时神经网络的泛化能力。前馈型神经网络普遍运用于自动控制领域,但实际应用中存在的问题却不容忽视,在经验

支持向量机数据分类预测

支持向量机数据分类预测 一、题目——意大利葡萄酒种类识别 Wine数据来源为UCI数据库,记录同一区域三种品种葡萄酒的化学成分,数据有178个样本,每个样本含有13个特征分量。50%做为训练集,50%做为测试集。 二、模型建立 模型的建立首先需要从原始数据里把训练集和测试集提取出来,然后进行一定的预处理,必要时进行特征提取,之后用训练集对SVM进行训练,再用得到的模型来预测试集的分类。 三、Matlab实现 3.1 选定训练集和测试集 在178个样本集中,将每个类分成两组,重新组合数据,一部分作为训练集,一部分作为测试集。 % 载入测试数据wine,其中包含的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量 load chapter12_wine.mat; % 选定训练集和测试集 % 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集 train_wine = [wine(1:30,:);wine(60:95,:);wine(131:153,:)]; % 相应的训练集的标签也要分离出来 train_wine_labels = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)]; % 将第一类的31-59,第二类的96-130,第三类的154-178做为测试集 test_wine = [wine(31:59,:);wine(96:130,:);wine(154:178,:)]; % 相应的测试集的标签也要分离出来 test_wine_labels = [wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)]; 3.2数据预处理 对数据进行归一化: %% 数据预处理 % 数据预处理,将训练集和测试集归一化到[0,1]区间 [mtrain,ntrain] = size(train_wine); [mtest,ntest] = size(test_wine); dataset = [train_wine;test_wine]; % mapminmax为MATLAB自带的归一化函数 [dataset_scale,ps] = mapminmax(dataset',0,1); dataset_scale = dataset_scale';

四种支持向量机用于函数拟合与模式识别的Matlab示

四种支持向量机用于函数拟合与模式识别的Matlab示四种支持向量机用于函数拟合与模式识 别的Matlab示 四种支持向量机用于函数拟合与模式识别的Matlab示例程序(转)2010-08-08 10:02使用要点: 应研学论坛人工智能与模式识别版主magic_217之约,写一个关于针对初学者的四种支持向量机工具箱的详细使用说明。同时也不断有网友向我反映看不懂我的源代码,以及询问如何将该工具箱应用到实际数据分析等问题,其中有相当一部分网友并不了解模式识别的基本概念,就急于使用这个工具箱。本文从模式识别的基本概念谈起,过渡到神经网络模式识别,逐步引入到这四种支持向量机工具箱的使用。 本文适合没有模式识别基础,而又急于上手的初学者。作者水平有限,欢迎同行批评指正~ 模式识别基本概念 [1] 模式识别的方法有很多,常用有:贝叶斯决策、神经网络、支持向量机等等。特别说明的是,本文所谈及的模式识别是指"有老师分类",即事先知道训练样本所属的类别,然后设计分类器,再用该分类器对测试样本进行识别,比较测试样本的实际所属类别与分类器输出的类别,进而统计正确识别率。正确识别率是反映分类器性能的主要指标。 分类器的设计虽然是模式识别重要一环,但是样本的特征提取才是模式识别最关键的环节。试想如果特征矢量不能有效地描述原样本,那么即使分类设计得再好也无法实现正确分类。工程中我们所遇到的样本一般是一维矢量,如:语音信号,或者是二维矩阵,如:图片等。特征提取就是将一维矢量或二维矩阵转化成一个维

数比较低的特征矢量,该特征矢量用于分类器的输入。关于特征提取,在各专业领域中也是一个重要的研究方向,如语音信号的谐振峰特征提取,图片的PCA特征提取等等。 [2]神经网络模式识别 神经网络模式识别的基本原理是,神经网络可以任意逼近一个多维输入输出函数。以三类分类:I、II、III为例,神经网络输入是样本的特征矢量,三类样本的神经网络输出可以是[1;0;0]、[0;1;0]、[0;0;1],也可以是[1;-1;-1]、[-1;1;-1]、[-1;-1;1]。将所有样本中一部分用来训练网络,另外一部分用于测试输出。通常情况下,正确分类的第I类样本的测试输出并不是[1;0;0]或是[1;-1;-1],而是如[0.1;0;-0.2]的输出。也是就说,认为输出矢量中最大的一个分量是1,其它分量是0或是-1就可以了。 [3]支持向量机的多类分类 支持向量机的基本理论是从二类分类问题提出的。我想绝大部分网友仅着重于理解二类分类问题上了,我当初也是这样,认识事物都有一个过程。二类分类的基本原理固然重要,我在这里也不再赘述,很多文章和书籍都有提及。我觉得对于工具箱的使用而言,理解如何实现从二类分类到多类分类的过渡才是最核心的内容。下面我仅以1-a-r算法为例,解释如何由二类分类器构造多类分类器。 二类支持向量机分类器的输出为[1,-1],当面对多类情况时,就需要把多类分类器分解成多个二类分类器。在第一种工具箱LS_SVMlab中,文件 Classification_LS_SVMlab.m中实现了三类分类。训练与测试样本分别为n1、 n2,它们是3 x15的矩阵,即特征矢量是三维,训练与测试样本数目均是15;由于是三类分类,所以训练与测试目标x1、x2的每一分量可以是1、2或是3,分别对应三类,如下所示: n1=[rand(3,5),rand(3,5)+1,rand(3,5)+2];

GIS空间分析名词解释

.... 拓扑分析、空间叠加、缓冲分析、网络分析P3 数字地面模型(DTM): 数字高程模型(DEM): 不规则三角网(TIN): 地质统计学:是利用空间变量的自相关特征研究空间随机场性质的一种统计理论。它分为(1)结构分析理论;(2)克立格插值理论(插值理论);(3)条件模拟理论。 协方差、空间采样理论P9 估计误差:是指实测值与真实值之间的误差。 估计方差:是指估计误差的离散程度。 z,它的空间分布由x , y水平坐标系统来描述。 DEM派生信息:以数字地面模型为基础,通过数字地形分析(DTA)手段可提取出用于描述地表不同方面特征的参数,这些参数统称为DEM派生信息。 坡度、坡向、曲率P16 地面曲率:地面曲率是对地形表面一点扭曲变化程度的定量化度量因子,地面曲率在垂直和水平两个方向上分量分别称为平面曲率和剖面曲率。 剖面曲率、平面曲率、坡形P18 汇流量(汇流面积):一个栅格单元的汇流量是其上游单元向其输送的水流量的总和。 地形湿度指数:单位等高线上的汇流面积与坡度之比。 通视分析:就是利用DEM判断地形上任意点之间是否可以相互可见的技术方法,分为视线分析和视域分析。 ,具体指在点. 线. 面实体周围自动建立的一定宽度的多边形。 叠置分析:是将同一地区的两组或两组以上的要素进行叠置,产生新的特征的分析方法。 合成叠置、统计叠置P30 交、并、剪P31 差、识别P32 距离分析:用于分析图像上每个点与目标的距离,如有多目标,则以最近的距离作为栅格值。 距离制图、直线距离分析P32 密度分析:针对一些点要素(或线要素)的特征值(如人口数)并不是集中在点上(或线上)的特点,对要素的特征值进行空间分配,从而更加真实地反映要素分布。 密度制图:根据输入的要素数据集计算整个区域的数据聚集状况,从而产生一个连续的密度表面。 泰森多边形:设平面有n个互不重叠的离散数据点,则其中任意一个离散数据点Pi都有一个临近范围Bi,在Bi中的任一点同Pi点间的距离都小于它们同其它离散数据点间的距离,其中Bi是一个不规则多边形,称为泰森多边形。 重分类Reclassify:即基于原有数值,对原有数值重新进行分类整理从而得到一组新值并输出,是对单个波段,改变值的分布。 重采样Resample:是改变影像分辨率(每个像素点代表矢量大小),可以用于多波段。 像元统计、邻域统计、区域统计P38 Aggregate、Majority Filter、Expand和Shrink P38 协方差函数、互协方差函数P44 平稳假设:指区域化变量Z(x)的任意n维分布函数不因空间点x发生位移而改变。 二阶平稳假设:数学期望与协方差函数均存在且平稳。 两点之差的方差之半定义为Z(x)的变差函数。 角度容差、距离容差P50 块金常数、变程、基台值P51 套和结构:实际的区域化变量的变化性是十分复杂的,反映在变差函数上就是它的结构不是单纯的一种结构,而是多层次结构叠加在一起称为套和结构。 ,克里格法是建立在变异函数理论及结构分析基础上,在有限区域内对区域化变量取值进行线性无偏最优估计的方法。

基于数据数量对支持向量机和BP神经网络性能分析

基于数据数量对支持向量机和BP神经网络性能分析 摘要 本文在阐述创新型预测模型理论的基础上,分别利用基于BP神经网络和支持向量机的玉米开盘预测模型,在样本大小不同情况下对玉米开盘价格指数进行了研究和预测。研究结果表明,基于支持向量机的预测模型在预测精度、运算时间、最优性等方面均优于基于BP神经网络的预测模型。 近年来,以GARCH类模型、SV类模型等为代表的预测模型在资产价格预测方面获得了广泛的应用,但是这些模型在研究中往往受到样本数据分布、样本容量等方面的限制。因此,包括以神经网络、支持向量机等智能算法为基础的创新型预测模型,在金融资产价格预测方面得到了广泛的应用。本文在阐述创新型预测模型理论的基础上,分别利用基于神经网络、支持向量机的预测模型,在不同样本大小的基础上,就玉米开盘价格分别用支持向量机和单隐层和双隐层的BP神经网络做预测,比较预测结果,对比分析支持向量机和BP神经网络在样本大小不同的情况下两者的性能分析。 关键词:支持向量回归BP神经网络libsvm工具箱

一、模型介绍 1、模型介绍1.1 支持向量机回归 1.1.1 支持向量机回归模型的介绍 在机器学习中,支持向量机(SVM,还支持矢量网络)是与相关的学习算法有关的监督学习模型,可以分析数据,识别模式,用于分类和回归分析。给定一组训练样本,每个标记为属于两类,一个SVM 训练算法建立了一个模型,分配新的实例为一类或其他类,使其成为非概率二元线性分类。一个SVM 模型的例子,如在空间中的点,映射,使得所述不同的类别的例子是由一个明显的差距是尽可能宽划分的表示。新的实施例则映射到相同的空间中,并预测基于它们落在所述间隙侧上属于一个类别。 除了进行线性分类,支持向量机可以使用所谓的核技巧,它们的输入隐含映射成高维特征空间中有效地进行非线性分类。1.1.2 支持向量回归求解过程图 1.1.3核函数的介绍 利用支持向量机解决回归问题时,需要根据求解问题的特性,通过使用恰当的核函数来代替内积。这个核函数不仅要在理论上要满足Mercer 条件,而且在实际应用中要能够反映训练样本数据的分布特性。因此,在使用支持向量机解决某一特定的回归问题时,选择适当的核函数是一个关键因素。在实际的应用中,最常用的核函数有4种:线性核、多项式核、径向基(简称RBF)核、多层感知机核等。函数关系表达式分别如下: (1)线性核函数 ) (),(x x x x K i i ?=

用于分类的支持向量机

文章编号:100228743(2004)0320075204 用于分类的支持向量机 黄发良,钟 智Ξ (1.广西师范大学计算机系,广西桂林541000;  2.广西师范学院数学与计算机科学系,广西南宁530001) 摘 要:支持向量机是20世纪90年代中期发展起来的机器学习技术,建立在结构风险最小化原理之上的支持向量机以其独有的优点吸引着广大研究者,该文着重于用于分类的支持向量机,对其基本原理与主要的训练算法进行介绍,并对其用途作了一定的探索. 关键词:支持向量机;机器学习;分类 中图分类号:TP181 文献标识码:A 支持向量机S VM (Support Vector Machine )是AT&T Bell 实验室的V.Vapnik 提出的针对分类和回归问题的统计学习理论.由于S VM 方法具有许多引人注目的优点和有前途的实验性能,越来越受重视,该技术已成为机器学习研究领域中的热点,并取得很理想的效果,如人脸识别、手写体数字识别和网页分类等. S VM 的主要思想可以概括为两点:(1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能;(2)它基于结构风险最小化理论之上在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界. 1 基本原理 支持向量机理论最初来源于数据分类问题的处理,S VM 就是要寻找一个满足要求的分割平面,使训练集中的点距离该平面尽可能地远,即寻求一个分割平面使其两侧的margin 尽可能最大. 设输入模式集合{x i }∈R n 由两类点组成,如果x i 属于第1类,则y i =1,如果x i 属于第2类,则y i =-1,那么有训练样本集合{x i ,y i },i =1,2,3,…,n ,支持向量机的目标就是要根据结构风险最小化原理,构造一个目标函数将两类模式尽可能地区分开来,通常分为两类情况来讨论,(1)线性可分,(2)线性不可分. 1.1 线性可分情况 在线性可分的情况下,就会存在一个超平面使得训练样本完全分开,该超平面可描述为: w ?x +b =0(1) 其中,“?”是点积,w 是n 维向量,b 为偏移量. 最优超平面是使得每一类数据与超平面距离最近的向量与超平面之间的距离最大的这样的平面.最优超平面可以通过解下面的二次优化问题来获得: min <(w )= 12‖w ‖2(2) Ξ收稿日期:2004202206作者简介:黄发良(1975-),男,湖南永州人,硕士研究生;研究方向:数据挖掘、web 信息检索. 2004年9月 广西师范学院学报(自然科学版)Sep.2004 第21卷第3期 Journal of G u angxi T eachers Education U niversity(N atural Science Edition) V ol.21N o.3

相关文档
最新文档