DDR管脚功能

DDR管脚功能
DDR管脚功能

1.CK,CK-----时钟

2.CKE--------时钟启用

3.CS----------芯片选择

4.ODT--------出错终止

5.RAS, CAS, WE-------命令输入

6.DM---------输入数据取样

7.BA0-BA2------储存地址输入

8.A0-A13--------地址输入

9.RESET--------复位

10. DQ-------------数据输入/输出

11. DQS-----------数据选通

12. TDQS---------终止数据选通

13. VDDQ---------DQ供电

14. VSSQ---------信号接地

15. VDD-----------内核供电

16. VSS-----------接地

17. VREFDQ-----参考电压DQ

18.VREFCA------参考电压CA

19.ZQ--------参考ZQ校准

信号分组:

DDR2的布线中习惯把信号分成若干组来进行设计,分成同组的信号具有相关或者相似的信号特性。

时钟组:差分时钟信号,每一对信号都是同频同相的。ckp0和ckn0为一对。

数据组:对主板64位DDR2内存来说数据每8位(也就是一个byte)为一组可以分为八组,数据dq[0:7]、数据掩码dqm0、数据选通差分信号dqsp0和dqsn0为一组,以此类推。同个数据组的信号应该在同一个信号层上走线,换层也应该一起换,为了方便在同一个信号层走线可以将数据位互换。比如dq2信号在走线的时候发现如果按照原理图来走线会跟dq4交错,这样就不得不换层走线,我们通过互换数据位就可以使信号走同层,对内存来说每一位存进什么内容读出也是什么内容,互换不会受影响,但是互换的条件必须是在同一组内8个bit之间。

地址/命令组:MA[0:14]、BA0、BA1、BA2、RAS、CAS、WE

控制组:时钟使能CKE、片选CS、终端电阻选通ODT为一组,对内存条来说DIMM0用到了CKE0、CKE1、CS0、CS1、ODT0、ODT1。做板载内存设计的时候,可以只用CKE0、CS0、ODT0,控制4片16位的内存芯片

元器件封装及基本管脚定义说明(精)知识讲解

元器件封装及基本管脚定义说明 以下收录说明的元件为常规元件 A: 零件封装是指实际零件焊接到电路板时所指示的外观和焊点的位置。包括了实际元件的外型尺寸,所占空间位置,各管脚之间的间距等,是纯粹的空间概念。因此不同的元件可共用同一零件封装,同种元件也可有不同的零件封装. 普通的元件封装有针脚式封装(DIP与表面贴片式封装(SMD两大类. (像电阻,有传统的针脚式,这种元件体积较大,电路板必须钻孔才能安置元件,完成钻孔后,插入元件,再过锡炉或喷锡(也可手焊),成本较高,较新的设计都是采用体积小的表面贴片式元件(SMD )这种元件不必钻孔,用钢膜将半熔状锡膏倒入电路板,再把SMD 元件放上,即可焊接在电路板上了。 元件按电气性能分类为:电阻, 电容(有极性, 无极性, 电感, 晶体管(二极管, 三极管, 集成电路IC, 端口(输入输出端口, 连接器, 插槽, 开关系列, 晶振,OTHER(显示器件, 蜂鸣器, 传感器, 扬声器, 受话器 1. 电阻: I.直插式 [1/20W 1/16W 1/10W 1/8W 1/4W] AXIAL0.3 0.4 II. 贴片式 [0201 0402 0603 0805 1206] 贴片电阻 0603表示的是封装尺寸与具体阻值没有关系 但封装尺寸与功率有关通常来说 0201 1/20W 0402 1/16W 0603 1/10W

0805 1/8W 1206 1/4W 电容电阻外形尺寸与封装的对应关系是: 0402=1.0x0.5 0603=1.6x0.8 0805=2.0x1.2 1206=3.2x1.6 1210=3.2x2.5 1812=4.5x3.2 2225=5.6x6.5 III. 整合式 [0402 0603 4合一或8合一排阻] IIII. 可调式[VR1~VR5] 2. 电容: I.无极性电容[0402 0603 0805 1206 1210 1812 2225] II. 有极性电容分两种: 电解电容 [一般为铝电解电容, 分为DIP 与SMD 两种] 钽电容 [为SMD 型: A TYPE (3216 10V B TYPE (3528 16V C TYPE (6032 25V D TYP E (7343 35V] 3. 电感: I.DIP型电感 II.SMD 型电感

常用集成电路管脚图

12345 6 78 9 10 11 12 13 14 74LS00 1A 1B 1Y 2A 2B 2Y GND 3Y 3A 4Y 4B 4A Vcc 3B 2输入四与非门 74LS00 1 2 3 4 5678 9 10 11 12 13 14 74LS02 1A 1B 1Y 2A 2B 2Y GND 3Y 3A 4Y 4B 4A Vcc 3B 二输入四或非门 74LS02 六反相器 74LS04 1 2 3 4 5678 9 10 11 12 13 14 74LS10 1B 1Y 1A 2A 3B 2B GND 2Y 2C 3Y 3C 3A Vcc 1C 三输入三与非门 74LS10 1 2 3 4 5678 9 10 11 12 13 14 74LS20 1B 2C 1A NC 2B 1C GND 1Y 1D 2Y NC 2A Vcc 2D 四输入二与非门 74LS20 4线-10线译码器 74LS42 1234 5 6789 10 11 12 13 14 15 16 74LS48 B C LT BI/RBO RBI D A GND e d c b a g f Vcc BCD-七段译码器/驱动器 74LS48 12 345678 9 10 11 12 13 14 74LS74 1CLR 1D 1CLK 1PR 1Q GND 2Q 2PR 2CLK 2D 2CLR Vcc 2Q 正沿触发双D 型触发器 74LS74 双J-K 触发器 74LS76 二输入四异或门 74LS86 常用集成电路管脚图(一) 4位移位寄存器 74LS95 负沿触发双J-K 触发器 74LS112

常用电子器件管脚排列图

常用电子器件管脚排列图 附录1 逻辑符号对照示例 附录表1.1 逻辑非、逻辑极性符号对照示例(以反相器为例) 附录表1.2 几种常用逻辑门的逻辑符号比较示例 附录表1.3 逻辑符号、框图、管脚排列比较示列(以74HC390为例)

附录2 集成电路 1. 集成电路命名方法 集成电路命名方法见附录表2.1 附录表2.1 国产半导体集成电路型号命名法(GB3430-82) 2.集成电路介绍 集成电路IC 是封在单个封装件中的一组互连电路。装在陶瓷衬底上的分立元件或电路有时还和单个集成电路连在一起,称为混合集成电路。把全部元件和电路成型在单片晶体硅材料上称单片集成电路。单片集成电路现在已成为最普及的集成电路形式,它可以封装成各种类型的固态器件,也可以封装成特殊的集成电路。 通用集成电路分为模拟(线性)和数字两大类。模拟电路根据输入的各种电平,在输出端产生各种相应的电平;而数字电路是开关器件,以规定的电平响应导通和截止。有时候集成电路标有LM (线性类型) 或DM(数字类型)符号。 集成电路都有二或三个电源接线端:用CC V 、DD V 、SS V 、V +、V -或GND 来表示。这是一般应用所需要的。 双列直插式是集成电路最通用的封装形式。 其引脚标记有半圆形豁口、标志线、标志圆点 等,一般由半圆形豁口就可以确定各引脚的位置。 双列直插式的引脚排列图如附录图2.1所示。 3.使用TFL 集成电路与CMOS 集成电路的注意事项 (1) 使用TYL 集成电路注意事项 ① TYL 集成电路的电源电压不能高于V 5.5+。 使用时,不能将电源与地颠倒错接,否则将会因为过大电流而造成器件损坏。 附录图 2.1双列直插式集成电路的引脚排列

电子元件识别大全附图简体

1.0目的 制订本指南,规范公司的各层工作人员认识及辨别日常工作中常用的各类元件。 2.0范围 公司主要产品(电脑主机板)中的电子元件认识: 2.1工作中最常用的的电子元件有:电阻、电容、电感、晶体管(包括二极管、发光二极管及三极管)、晶体、晶振(振荡器)和集成电路(IC)。 2.2连接器元件主要有:插槽、插针、插座等。 2.3其它一些五金塑胶散件:散热片、胶针、跳线铁丝等。 4.0电子元件 4.1电阻 电阻用“R”表示,它的基本单位是欧姆(Ω) 1MΩ(兆欧)=1,000KΩ(千欧)=1,000,000Ω 公司常用的电阻有三种:色环电阻、排型电阻和片状电阻。 色环电阻的外观如图示: 图1五色环电阻图2四色环电阻 较大的两头叫金属帽,中间几道有颜色的圈叫色环,这些色环是用来表示该电阻的阻值和范围的,共有12种颜色,它们分别代表不同的数字(其中金色和银色表误差): 我们常用的色环电阻有四色环电阻(如图2)和五色环电阻(如图1): 1).四色环电阻(普通电阻):电阻外表上有四道色环: 这四道环,首先是要分出哪道是第一环、第二环、第三环和第四环:标在金属帽上的那道环叫第一环,表示电阻值的最高位,也表示读值的方向。如黄色表示最高位为四,紧挨第一环的叫第二环,表示电阻值的次高位,如紫色表示次高位为7;紧挨第2环的叫第3环,表示次高位后“0”的个数,如橙色表示后面有3个0;最后一环叫第4环,表示误差范围,一般仅用金色或银色表示,如为金色,则表示误差范围在±10%之间。 例如:某电阻色环颜色顺序为:黄-紫-橙-银,表示该电阻的阻值为:47,000Ω=47KΩ,误差范围:±10%之间。

芯片引脚图及引脚描述

555芯片引脚图及引脚描述 555的8脚是集成电路工作电压输入端,电压为5~18V,以UCC表示;从分压器上看出,上比较器A1的5脚接在R1和R2之间,所以5脚的电压固定在2UCC/3上;下比较器A2接在R2与R3之间,A2的同相输入端电位被固定在UCC/3上。 1脚为地。2脚为触发输入端;3脚为输出端,输出的电平状态受触发器控制,而触发器受上比较器6脚和下比较器2脚的控制。 当触发器接受上比较器A1从R脚输入的高电平时,触发器被置于复位状态,3脚输出低电平; 2脚和6脚是互补的,2脚只对低电平起作用,高电平对它不起作用,即电压小于1Ucc/3,此时3脚输出高电平。6脚为阈值端,只对高电平起作用,低电平对它不起作用,即输入电压大于2 Ucc/3,称高触发端,3脚输出低电平,但有一个先决条件,即2脚电位必须大于1Ucc/3时才有效。3脚在高电位接近电源电压Ucc,输出电流最大可打200mA。 4脚是复位端,当4脚电位小于0.4V时,不管2、6脚状态如何,输出端3脚都输出低电平。 5脚是控制端。 7脚称放电端,与3脚输出同步,输出电平一致,但7脚并不输出电流,所以3脚称为实高(或低)、7脚称为虚高。 555集成电路管脚,工作原理,特点及典型应用电路介绍. 1 555集成电路的框图及工作原理 555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体,如图1所示。 2. 555芯片管脚介绍 555集成电路是8脚封装,双列直插型,如图2(A)所示,按输入输出的排列可看成如图2(B)所示。其中6脚称阈值端(TH),是上比较器的输入;2脚称触发端(TR),是下比较器的输入;3脚是输出端(Vo),它有O和1两种状态,由输入端所加的电平决定;7脚是放电端(DIS),它是内部放电管的输出,有悬空和接地两种状态,也是由输入端的状态决定;4脚是复位端(MR),加上低电平时可使输出为低电平;5脚是控制电压端(Vc),可用它改变上下触发电平值;8脚是电源端,1脚是地端。 图2 555集成电路封装图 我们也可以把555电路等效成一个带放电开关的R-S触发器,如图3(A)所示,这个特殊的触发器有两个输入端:阈值端(TH)可看成是置零端R,要求高电平,触发端(TR)可看成是置位端S,要求低电平,有一个输出端Vo,Vo可等效成触发器的Q端,放电端(DIS)可看成是由内部放电开关控制的一个接点,由触发器的Q端控制:Q=1时DIS端接地,Q=0时DIS 端悬空。另外还有复位端MR,控制电压端Vc,电源端VDD和 地端GND。这个特殊的触发器有两个特点: (1)两个输入端的触发电平要求一高一低,置零端R即阈值端(TH)要求高电平,而置位端s 即触发端(TR)则要求低电乎; (2)两个输入端的触发电平使输出发生翻转的阈值电压值也不同,当V c端不接控制电压时,对TH(R)端来讲,>2/3VDD是高电平1,<2/3VDD是低电平0:而对TR(S)端来讲,>1/3VDD是

74LS系列芯片引脚图资料大全

74系列芯片引脚图资料大全 作者:佚名来源:本站原创点击数:57276 更新时间:2007年07月26日【字体:大中小】 为了方便大家我收集了下列74系列芯片的引脚图资料,如还有需要请上电子论坛https://www.360docs.net/doc/3f18897760.html,/b bs/ 反相器驱动器LS04 LS05 LS06 LS07 LS125 LS240 LS244 LS245 与门与非门LS00 LS08 LS10 LS11 LS20 LS21 LS27 LS30 LS38 或门或非门与或非门LS02 LS32 LS51 LS64 LS65 异或门比较器LS86 译码器LS138 LS139 寄存器LS74 LS175 LS373

反相器: Vcc 6A 6Y 5A 5Y 4A 4Y 六非门 74LS04 ┌┴—┴—┴—┴—┴—┴—┴┐六非门(OC门) 74LS05 _ │14 13 12 11 10 9 8│六非门(OC高压输出) 74LS06 Y = A )│ │ 1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A 1Y 2A 2Y 3A 3Y GND 驱动器: Vcc 6A 6Y 5A 5Y 4A 4Y ┌┴—┴—┴—┴—┴—┴—┴┐ │14 13 12 11 10 9 8│ Y = A )│六驱动器(OC高压输出) 74LS07 │ 1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A 1Y 2A 2Y 3A 3Y GND Vcc -4C 4A 4Y -3C 3A 3Y ┌┴—┴—┴—┴—┴—┴—┴┐ _ │14 13 12 11 10 9 8│ Y =A+C )│四总线三态门74LS125 │ 1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ -1C 1A 1Y -2C 2A 2Y GND

器件管脚图及功能表

1 附录6 器件管脚图及功能表 74LS74双D 正沿触发器 74LS273八D 触发器 74LS377八D 触发器 74LS374八D 触发器 (三态输出) 74LS175双输出四D 触发器 74LS245 74LS161四位二进制同步计数器 74LS139双2:4译码器

2 74LS151 八选一选择器 74LS157 四个二选一选择器 74LS257 四个二选一选择器 (非反相三态输出) 注:i 等于d 2d 1d 0对应的十进制数 6116 2K*8 RAM 2716 2K*8 ROM 2732 4K*8 ROM 74LS138 3:8译码器 74LS148 8:3八进制优先编码器 74LS85 四位幅度比较器

附录9微指令寄存器的各字段微操作信号输出去向及功能 指令字段IR7~0 3

附录10 联机通讯指南 一、准备 1、准备一台PC机。 2、把TEC-2机在实验台上放好打开,将TEC-2的随机电源放在TEC-2的左侧,并确认电源开关处在关断的位置。 二、连接电源线 1、将TEC-2机电源的直流输出插头P8插在TEC-2机垂直板左侧的插座P8上; 将TEC-2机电源的直流输出插头P9插在TEC-2水平板左侧的插座P9上。 特别提醒注意:不要接反P8和P9,否则会烧机器或电源。 2、将TEC-2电源的电源线一端接电源的交流输入插孔,另一端接220V交流电源接线盒。 注意:TEC-2电源的交流电源线必须和计算机的电源线接在同一个有地线的电源接线盒上,以保证两设备共地,否则可能烧毁电源或机器。 三、连接TEC-2和PC 1、准备好随机提供的TEC-2和PC的串口通讯电缆。该电缆一端是9孔的插头,另一端是25孔的插头。 注意:TEC-2随机提供多条通讯电缆,请务必正确选用,以免错误连接造成联机失败。 2、把串口通讯电缆的9孔插头接在TEC-2机的上板左下角V70插座上,25孔插头插在计算机的串口上(COM1或COM2)。 如果PC上没有25针的串口或者25针的串口已被其它设备占用,TEC-2 随机提供一个9转25的转换器可以把25孔的插头转换成9孔的插头,接在9针的串口上。 四、TEC-2的初始设置 将TEC-2大板下方钮子开关S2~S0拨成100(向上为“1”,向下为“0”); FS1~FS4拨成1010(向上为“1”,向下为“0”); 将CONT/STEP钮子开关拨到CONT位置。 五、开机 1、打开计算机电源开关,使计算机正常启动。 2、打开TEC-2电源开关,TEC-2大板左上角一排指示灯亮。 六、加载通讯软件 1、用户可以根据联机PC的软件配置情况选择以下三种方法之一运行联机通讯软件。4

基本元器件的规范化图形

基本元器件的规范化图形。 1 2 3 4 5 6、继电器

7、二极管类 8、三极管类

9 10

5.4电源、地的命名要求、规范化图形及注意事项 1、电源、地的命名和规范化图形 建议电源使用图标,方便修理人员查找 其他地名称统一标识为实际的地的名称。 2、注意事项 如果需要使用符号,请注意使用的“SYMBOL”的“NAME”是否与设计中的网络名相同,如果不同,在生成网表时会产生两个网络名。例如通常我们放置的“GND”符号都是

而实际这个符号的“NAME”可能是“GND”也可能是“GND_POWER”、,而系统通常默认的都是“GND_POWER”。如果设计中没有将“GND”与“GND_POWER”连接在一起,网表中就会出现“GND”、“GND_POWER”两个网名,很显然不同的网名在EDA设计时是不能被连接在一起的。 对于有可焊接管脚的金属壳体器件,如:复位按钮、拨码开关、连接器等,在原理图中应该明确表示金属壳体是接哪一种地,如:工作地,还是接ESD防护及屏蔽地。 CMOS电路的不用的输入端不能悬空。 第二部分元器件原理图建库规范 1.目的。 对绘图者在CaptureV10.0平台上建立元器件原理图符合进行规范要求,增加电路图的可读性及确保库资源共享。 2.范围。 本标准规定了在CaptureV10.0平台上元器件原理图符号建库规范。 本标准适用于公司在CaptureV10.0平台上的元器件原理图符号建库和审核。 3.管理建议。 1、由绘图人员来负责Cadence元器件原理图模型的建立和该元器件资料的查询。 2、由EDA元器件库维护人员负责Cadence元器件原理图符号模型的审核。 3、由EDA元器件库维护人员负责将审核通过的元器件原理图符号模型分类加入到Cadence元器件原理图符号库中,如果元器件并不符合已有的库类别,将其加入其它类中。 4.CADENCE元器件建库步骤和要求。 4.1 CADENCE元器件原理图库器件模型的建造总体要求。 库模型根据实际情况权衡制作,遵循的一个原则是通俗易懂。以下提出几点约定须共同遵守: 1、只要元器件上有的管脚,图形库都应体现出来,不允许使用隐含管脚的方式(包括未使用的管脚)。 2、对IC器件,在空间允许的情况下尽量做成矩形或方形;对于管脚的安排,可根据功能模块和管脚号的顺序综合考虑管脚的排列,原则输入放置在左边,输出放置在右边,电源放置在上边,地放置在下面。 3、对连接器、插针等有2列的接插件,管脚号的命名顺序应该和板片中的命名保持一致。 4、对于CPLD/FPGA器件,做成矩形或方形;对于管脚的安排,原则上要求按照管脚顺序号进行排列。 5、对电阻、电容、电感、二极管、发光二极管、三极管、保险丝、过压保护器、复位开关、电池等分立器件及小封装器件,图形使用常见的简易图形表示。 4.2 CADENCE元器件建库步骤和具体要求。 4.2.1 N e w Part Proterties 的设置。 当需要添加一个新的元器件库的时候,首先我们会在capturev16.5中遇到下面这个New Part Properties窗口:

74系列芯片引脚图

74系列芯片引脚图、功能、名称、资料大全(含74LS、74HC等),特别推荐为了方便大家,我收集了下列74系列芯片的引脚图资料。 说明:本资料分3部分:(一)、TXT文档,(二)、图片,(三)、功能、名称、资料。 (一)、TXT文档 反相器驱动器LS04 LS05 LS06 LS07 LS125 LS240 LS244 LS245 与门与非门LS00 LS08 LS10 LS11 LS20 LS21 LS27 LS30 LS38 或门或非门与或非门 LS02 LS32 LS51 LS64 LS65 异或门比较器LS86 译码器LS138 LS139 寄存器LS74 LS175 LS373

反相器: Vcc 6A 6Y 5A 5Y 4A 4Y 六非门 74LS04 ┌┴—┴—┴—┴—┴—┴—┴┐六非门(OC门) 74LS05 _ │14 13 12 11 10 9 8│六非门(OC高压输出) 74LS06 Y = A )│ │ 1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A 1Y 2A 2Y 3A 3Y GND 驱动器: Vcc 6A 6Y 5A 5Y 4A 4Y ┌┴—┴—┴—┴—┴—┴—┴┐ │14 13 12 11 10 9 8│ Y = A )│六驱动器(OC高压输出) 74LS07 │ 1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘

1A 1Y 2A 2Y 3A 3Y GND Vcc -4C 4A 4Y -3C 3A 3Y ┌┴—┴—┴—┴—┴—┴—┴┐ _ │14 13 12 11 10 9 8│ Y =A+C )│四总线三态门 74LS125 │ 1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ -1C 1A 1Y -2C 2A 2Y GND Vcc -G B1 B2 B3 B4 B8 B6 B7 B8 ┌┴—┴—┴—┴—┴—┴—┴—┴—┴—┴┐ 8位总线驱动器 74LS245 │20 19 18 17 16 15 14 13 12 11│ )│ DIR=1 A=>B │ 1 2 3 4 5 6 7 8 9 10│ DIR=0 B=>A └┬—┬—┬—┬—┬—┬—┬—┬—┬—┬┘ DIR A1 A2 A3 A4 A5 A6 A7 A8 GND

器件管脚图及功能表上课讲义

器件管脚图及功能表

收集于网络,如有侵权请联系管理员删除 附录6 器件管脚图及功能表 74LS74双D 正沿触发器 74LS273八D 触发器 74LS377八D 触发器 74LS374八D 触发器 (三态输出) 74LS175双输出四D 触发器 74LS245 74LS161四位二进制同步计数器 74LS139双2:4译码器

收集于网络,如有侵权请联系管理员删除 74LS151 八选一选择器 74LS157 四个二选一选择器 74LS257 四个二选一选择器 210 6116 2K*8 RAM 2716 2K*8 ROM 2732 4K*8 ROM 74LS138 3:8译码器 74LS148 8:3八进制优先编码器

附录9微指令寄存器的各字段微操作信号输出去向及功能 收集于网络,如有侵权请联系管理员删除

附录10 联机通讯指南 一、准备 1、准备一台PC机。 2、把TEC-2机在实验台上放好打开,将TEC-2的随机电源放在TEC-2的左侧,并确认电源开关处在关断的位置。 二、连接电源线 1、将TEC-2机电源的直流输出插头P8插在TEC-2机垂直板左侧的插座P8上; 将TEC-2机电源的直流输出插头P9插在TEC-2水平板左侧的插座P9上。 特别提醒注意:不要接反P8和P9,否则会烧机器或电源。 2、将TEC-2电源的电源线一端接电源的交流输入插孔,另一端接220V交流电源接线盒。 注意:TEC-2电源的交流电源线必须和计算机的电源线接在同一个有地线的电源接线盒上,以保证两设备共地,否则可能烧毁电源或机器。 三、连接TEC-2和PC 1、准备好随机提供的TEC-2和PC的串口通讯电缆。该电缆一端是9孔的插头,另一端是25孔的插头。 注意:TEC-2随机提供多条通讯电缆,请务必正确选用,以免错误连接造成联机失败。 收集于网络,如有侵权请联系管理员删除

74系列芯片引脚大全

74系列芯片引脚图资料大全(2008-04-24 17:37:47) 74系列芯片引脚图资料大全 反相器驱动器LS04 LS05 LS06 LS07 LS125 LS240 LS244 LS245 与门与非门LS00 LS08 LS10 LS11 LS20 LS21 LS27 LS30 LS38 或门或非门与或非门LS02 LS32 LS51 LS64 LS65 异或门比较器LS86 译码器LS138 LS139 寄存器LS74 LS175 LS373 反相器: Vcc 6A 6Y 5A 5Y 4A 4Y 六非门74LS04 ┌┴—┴—┴—┴—┴—┴—┴┐六非门(OC门) 74LS05 _ │14 13 12 11 10 9 8│六非门(OC高压输出) 74LS06 Y = A )│ │1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A 1Y 2A 2Y 3A 3Y GND 驱动器: Vcc 6A 6Y 5A 5Y 4A 4Y ┌┴—┴—┴—┴—┴—┴—┴┐ │14 13 12 11 10 9 8│ Y = A )│六驱动器(OC高压输出) 74LS07 │1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A 1Y 2A 2Y 3A 3Y GND Vcc -4C 4A 4Y -3C 3A 3Y ┌┴—┴—┴—┴—┴—┴—┴┐ _ │14 13 12 11 10 9 8│ Y =A+C )│四总线三态门74LS125 │1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ -1C 1A 1Y -2C 2A 2Y GND Vcc -G B1 B2 B3 B4 B8 B6 B7 B8 ┌┴—┴—┴—┴—┴—┴—┴—┴—┴—┴┐8位总线驱动器74LS245 │20 19 18 17 16 15 14 13 12 11│ )│DIR=1 A=>B │1 2 3 4 5 6 7 8 9 10│DIR=0 B=>A └┬—┬—┬—┬—┬—┬—┬—┬—┬—┬┘ DIR A1 A2 A3 A4 A5 A6 A7 A8 GND 页首非门,驱动器与门,与非门或门,或非门异或门,比较器译码器寄存器 正逻辑与门,与非门:

74ls138管脚图及功能真值表

74ls138引脚图 74HC138管脚图:74LS138为3 线-8 线译码器,共有54/74S138和54/74LS138两种线路结构型式,其工作原理如下: 当一个选通端(G1)为高电平,另两个选通端(/(G2A)和/(G2B))为 低电平时,可将地址端(A、B、C)的二进制编码在一个对应的输出端以低 电平译出。 利用G1、/(G2A)和/(G2B)可级联扩展成24 线译码器;若外接一个反 相器还可级联扩展成32 线译码器。 若将选通端中的一个作为数据输入端时,74LS138还可作数据分配器 用与非门组成的3线-8线译码器74LS138

3线-8线译码器74LS138的功能表 无论从逻辑图还是功能表我们都可以看到74LS138的八个输出引脚,任何时刻要么全为高电平1—芯片处于不工作状态,要么只有一个为低电平0,其余7个输出引脚全为高电平1。如果出现两个输出引脚同时为0的情况,说明该芯片已经损坏。 当附加控制门的输出为高电平(S=1)时,可由逻辑图写出

由上式可以看出,同时又是这三个变量的全部最小项的译码输出,所以也把这种译码器叫做最小项译码器。 71LS138有三个附加的控制端、和。当、时,输出为高电平(S=1),译码器处于工作状态。否则,译码器被禁止,所有的输出端被封锁在高电平,如表3.3.5所示。这三个控制端也叫做“片选”输入端,利用片选的作用可以将多篇连接起来以扩展译码器的功能。 带控制输入端的译码器又是一个完整的数据分配器。在图3.3.8电路中如果把作为“数据”输入端(同时),而将作为“地址”输入端,那么从送来的数据只能通过所指定的一根输出线送出去。这就不难理解为什么把叫做地址输入了。例如当=101时,门的输入端除了接至输出端的一个以外全是高电平,因此的数据以反码的形式从输出,而不会被送到其他任何一个输出端上。 【例3.3.2】试用两片3线-8线译码器74LS138组成4线-16线译码器,将输入的4位二进制代码译成16个独立的低电平信号。 解:由图3.3.8可见,74LS138仅有3个地址输入端。如果想对4位二进制代码,只能利用一个附加控制端(当中的一个)作为第四个地址输入端。 取第(1)片74LS138的和作为它的第四个地址输入端(同时令),取第(2)片的作为它的第四个地址输入端(同时令),取两片的、、,并将第(1)片的和接至,将第(2)片的接至,如图3.3.9所示,于是得到两片74LS138的输出分别为

LM339引脚图与功能简介

LM2901/LM339/LM239/LM139的引脚和原理参数完全一样,只是使用温度不一样。 LM339引脚图与功能简介 LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是: 1)失调电压小,典型值为2mV; 2)电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V; 3)对比较信号源的内阻限制较宽; 4)共模范围很大,为0~(Ucc-1.5V)Vo; 5)差动输入电压范围较大,大到可以等于电源电压; 6)输出端电位可灵活方便地选用。 LM339集成块采用C-14型封装,图1为外型及管脚排列图。由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。 LM339类似于增益不可调的运算放大器。每个比较器有两个输入端和一个输出端。两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。选不同阻值的上拉电阻会影响输出端高电位的值。因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。另外,各比较器的输出端允许连接在一起使用。

74系列芯片-名字对照表

74LS系列: 74LS00 TTL 2输入端四与非门 74LS01 TTL 集电极开路2输入端四与非门 74LS02 TTL 2输入端四或非门 74LS04 TTL 六反相器 74LS08 TTL 2输入端四与门 74LS10 TTL 3输入端3与非门 74LS112 TTL 带预置清除负触发双J-K触发器 74LS122 TTL 可再触发单稳态多谐振荡器 74LS138 TTL 3-8线译码器/复工器 74LS14 TTL 六反相施密特触发器 74LS151 TTL 8选1数据选择器 74LS153 TTL 双4选1数据选择器 74LS154 TTL 4线—16线译码器 74LS160 TTL 可预置BCD异步清除计数器 74LS161 TTL 可予制四位二进制异步清除计数器74LS166 TTL 八位并入/串出移位寄存器 74LS192 TTL 可预置BCD双时钟可逆计数器 74LS193 TTL 可预置四位二进制双时钟可逆计数器74LS194 TTL 四位双向通用移位寄存器 74LS20 TTL 4输入端双与非门 74LS21 TTL 4输入端双与门 74LS273 TTL 带公共时钟复位八D触发器 74LS30 TTL 8输入端与非门 74LS32 TTL 2输入端四或门 74LS42 TTL BCD—十进制代码译码器 74LS47 TTL BCD—7段高有效译码/驱动器 74LS48 TTL BCD—7段译码器/内部上拉输出驱动74LS51 TTL 2-3/2-2输入端双与或非门 74LS74 TTL 带置位复位正触发双D触发器 74LS76 TTL 带预置清除双J-K触发器 74LS85 TTL 四位数字比较器 74LS86 TTL 2输入端四异或门 74LS90 TTL 可二/五分频十进制计数器

集成块的管脚认识

集成块的管脚认识 在电子技术高速发展的今天,集成电路的使用已经相当普遍。我们在使用集成块时,首先遇到的一个问题就是如何正确识别集成电路的各管脚,使之与电路图中所标的管脚相对应,这是使用者必须熟练掌握的一项基本技能。 半导体集成电路的品种、规格繁多,但就其管脚的排列情况常见的有以下 3 种形式:一是按圆周分布,即所有管脚分布在同一个圆周上;二是双列分布,即管脚分两行排列;三是单列分布,即管脚单行排列。 为了便于使用者识别集成电路的管脚排列顺序,各种集成电路一般都标有一定的标记,现把常见的几种标记及管脚顺序的识别方法分述如下: 1 .管键标记:使用这种识别标记的集成电路,用圆柱形金属外壳封装,其管脚按圆周分布,外形如图① 所示。它的管脚排列顺序是:从管顶往下看,自管键开始沿逆时针方向依次是第 1 、 2 、3…… 脚(见图① )。5G1555 、 AN374 等的管脚就是这样排列的。 2 .弧形凹口标记:这种识别标记多用在双列直插型集成电路上。弧形凹口位于集成电路的一个端部,其外形如图② 所示。管脚排列顺序的识别方法是,正视集成块外壳上所标的型号,弧形凹口下方左起第 1 脚为该集成电路的第 1 脚,以这个管脚开始沿逆时针方向依次是第2 、 3 、4…… 脚(见图② )。 TA7614AP 、μPC1353C 等就是使用这种识别标记的。

3 .圆形凹坑、小圆圈、色条标记:双列直插型和单列直插型的集成电路多采用这种识别标记,其外形如图③ 所示。这种集成电路的管脚识别标记和型号都标在外壳的同一平面上。它的管脚排列顺序是,正视集成块的型号,圆形凹坑(或小圆圈、色条)的下方左起第一脚为集成电路的第 1 脚。对于双列直插型的集成块,从第 1 脚开始沿逆时针方向,依次是第 2 、 3 、4…… 脚;对于单列直插型的集成块,从第 1 脚开始其后依次是第 2 、 3 、4…… 脚(见图③ )。 LA4422 、 NE555P 、 CD4017BCN 等都是使用这种识别标记。 4 .斜切角标记:这种标记一般用在单列直插型集成电路上,其外形如图④ 所示。其管脚的排列顺序是,从斜切角的这一端开始,依次是第 1 、2 、3…… 脚(见图④ )。 AN5710 、 LA4140 等都是使用这种识别标记。 应当指出有不少集成电路同时使用两种识别标记,如μPC1366 ,既使用弧形凹口标记,又使用小圆圈标记。但两种标记对集成电路的管脚排列顺序的识别效果是统一的(见图⑤ 所示)。也有少数的集成电路,外壳上没有以上所介绍的各种标记,而只有该集成电路的型号,对于这种集成电路管脚序号的识别,应把集成块上印有型号的一面朝上,正视型号,其左下方的第 1 脚为集成电路的第 1 脚位置,然后沿逆时针方向计数,依

及其他系列芯片引脚图大全

一:分类 74ls00 2输入四与非门 74ls01 2输入四与非门 (oc) 74ls02 2输入四或非门 74ls03 2输入四与非门 (oc) 74ls04 六倒相器 74ls05 六倒相器(oc) 74ls06 六高压输出反相缓冲器/驱动器(oc,30v) 74ls07 六高压输出缓冲器/驱动器(oc,30v) 74ls08 2输入四与门 74ls09 2输入四与门(oc) 74ls10 3输入三与非门 74ls11 3输入三与门 74ls12 3输入三与非门 (oc) 74ls13 4输入双与非门 (斯密特触发) 74ls14 六倒相器(斯密特触发) 74ls15 3输入三与门 (oc) 74ls16 六高压输出反相缓冲器/驱动器(oc,15v) 74ls17 六高压输出缓冲器/驱动器(oc,15v) 74ls18 4输入双与非门 (斯密特触发) 74ls19 六倒相器(斯密特触发) 74ls20 4输入双与非门 74ls21 4输入双与门 74ls22 4输入双与非门(oc) 74ls23 双可扩展的输入或非门 74ls24 2输入四与非门(斯密特触发)

74ls25 4输入双或非门(有选通) 74ls26 2输入四高电平接口与非缓冲器(oc,15v) 74ls27 3输入三或非门 74ls28 2输入四或非缓冲器 74ls30 8输入与非门 74ls31 延迟电路 74ls32 2输入四或门 74ls33 2输入四或非缓冲器(集电极开路输出) 74ls34 六缓冲器 74ls35 六缓冲器(oc) 74ls36 2输入四或非门(有选通) 74ls37 2输入四与非缓冲器 74ls38 2输入四或非缓冲器(集电极开路输出74ls39 2输入四或非缓 冲器(集电极开路输出) 7 4ls40 4输入双与非缓冲器 7 4ls41 bcd-十进制计数器 7 4ls42 4线-10线译码器(bcd输入) 7 4ls43 4线-10线译码器(余3码输 入) 7 4ls44 4线-10线译码器(余3葛莱 码输入) 7 4ls45 bcd-十进制译码器/驱动器 7 4ls46 bcd-七段译码器/驱动器

常用集成电路管脚图

1 / 2 勿用作商业用途 12345 6 78 9 10 11 12 13 14 74LS00 1A 1B 1Y 2A 2B 2Y GND 3Y 3A 4Y 4B 4A Vcc 3B 2输入四与非门 74LS00 1 2 3 4 5678 9 10 11 12 13 14 74LS02 1A 1B 1Y 2A 2B 2Y GND 3Y 3A 4Y 4B 4A Vcc 3B 二输入四或非门 74LS02 六反相器 74LS04 1 2 3 4 5678 9 10 11 12 13 14 74LS10 1B 1Y 1A 2A 3B 2B GND 2Y 2C 3Y 3C 3A Vcc 1C 三输入三与非门 74LS10 1 2 3 4 5678 9 10 11 12 13 14 74LS20 1B 2C 1A NC 2B 1C GND 1Y 1D 2Y NC 2A Vcc 2D 四输入二与非门 74LS20 4线-10线译码器 74LS42 1234 5 6789 10 11 12 13 14 15 16 74LS48 B C LT BI/RBO RBI D A GND e d c b a g f Vcc BCD-七段译码器/驱动器 74LS48 12 345678 9 10 11 12 13 14 74LS74 1CLR 1D 1CLK 1PR 1Q GND 2Q 2PR 2CLK 2D 2CLR Vcc 2Q 正沿触发双D 型触发器 74LS74 双J-K 触发器 74LS76 二输入四异或门 74LS86 常用集成电路管脚图(一) 4位移位寄存器 74LS95 负沿触发双J-K 触发器 74LS112 常用集成电路管脚图(二)

常用电子器件管脚排列

常用电子器件管脚排列图附录1 逻辑符号对照示例 附录表1.1 逻辑非、逻辑极性符号对照示例(以反相器为例) 逻辑符号逻辑功能 逻辑非 A Y 逻辑极性 附录表1.2 几种常用逻辑门的逻辑符号比较示例 标准非门与门与非门或门或非门异或门国标 GB4728.12 ---85(IEC 617—12) 美国一些公 司的标准 附录表1.3 逻辑符号、框图、管脚排列比较示列(以74HC390为例) 项目逻辑符号框图管脚排列 图形 功能功能标注清晰,但烦 琐。用于原理图中 简单易用,但功能有时提示不全。多用 于原理电路图中 管脚位置确切,但功能可能提示 不全。用于装配电路图、接线图

附录2 集成电路 1. 集成电路命名方法 集成电路命名方法见附录表2.1 附录表 2.1 国产半导体集成电路型号命名法(GB3430-82) 第零部分 第一部分 第二部分 第三部分 第四部分 用字母表示器件符合国家标准 用字母表示器件 的类型 用阿拉伯数字和用字母表示器件的系列品 种代号 用字母表示器件的工作温度范围 用字母表示器件的 封装形式 符号 意义 符号 意义 符号 意义 符号 意义 C 中国制造 T H E C F D W J B M μ TTL HTL ECL CMOS 线性放大器 音响、电视电路 稳压器 接口电路 非线性电路 存储器 微型电路 C E R M 0 ~70℃ -48 ~75℃ -55 ~85℃ -55 ~125℃ W B F D P J K T 陶瓷封装 塑料封装 全密封扁 平 陶瓷直插 塑料直插 黑陶瓷扁 平 金属菱形 金属圆形 2.集成电路介绍 集成电路IC 是封在单个封装件中的一组互连电路。装在陶瓷衬底上的分立元件或电路有时还和单个集成电路连在一起,称为混合集成电路。把全部元件和电路成型在单片晶体硅材料上称单片集成电路。单片集成电路现在已成为最普及的集成电路形式,它可以封装成各种类型的固态器件,也可以封装成特殊的集成电路。 通用集成电路分为模拟(线性)和数字两大类。模拟电路根据输入的各种电平,在输出端产生各种相应的电平;而数字电路是开关器件,以规定的电平响应导通和截止。有时候集成电路标有LM (线性类型) 或DM(数字类型)符号。 集成电路都有二或三个电源接线端:用CC V 、DD V 、SS V 、V +、V -或GND 来表示。这是一般应用所需要的。 双列直插式是集成电路最通用的封装形式。 其引脚标记有半圆形豁口、标志线、标志圆点 等,一般由半圆形豁口就可以确定各引脚的位置。 双列直插式的引脚排列图如附录图2.1所示。 3.使用TFL 集成电路与CMOS 集成电路的注意事项 (1) 使用TYL 集成电路注意事项 附录图 2.1双列直插式集成电路的引脚排列

74系列功能表

7400 TTL 2输入端四与非门 7401 TTL 集电极开路2输入端四与非门7402 TTL 2输入端四或非门 7403 TTL 集电极开路2输入端四与非门7404 TTL 六反相器 7405 TTL 集电极开路六反相器 7406 TTL 集电极开路六反相高压驱动器7407 TTL 集电极开路六正相高压驱动器7408 TTL 2输入端四与门 7409 TTL 集电极开路2输入端四与门 7410 TTL 3输入端3与非门 74107 TTL 带清除主从双J-K触发器 74109 TTL 带预置清除正触发双J-K触发器7411 TTL 3输入端3与门 74112 TTL 带预置清除负触发双J-K触发器7412 TTL 开路输出3输入端三与非门 74121 TTL 单稳态多谐振荡器 74122 TTL 可再触发单稳态多谐振荡器74123 TTL 双可再触发单稳态多谐振荡器74125 TTL 三态输出高有效四总线缓冲门74126 TTL 三态输出低有效四总线缓冲门7413 TTL 4输入端双与非施密特触发器74132 TTL 2输入端四与非施密特触发器74133 TTL 13输入端与非门 74136 TTL 四异或门 74138 TTL 3-8线译码器/复工器 74139 TTL 双2-4线译码器/复工器 7414 TTL 六反相施密特触发器 74145 TTL BCD—十进制译码/驱动器 7415 TTL 开路输出3输入端三与门 74150 TTL 16选1数据选择/多路开关 74151 TTL 8选1数据选择器 74153 TTL 双4选1数据选择器 74154 TTL 4线—16线译码器 74155 TTL 图腾柱输出译码器/分配器 74156 TTL 开路输出译码器/分配器 74157 TTL 同相输出四2选1数据选择器74158 TTL 反相输出四2选1数据选择器7416 TTL 开路输出六反相缓冲/驱动器74160 TTL 可预置BCD异步清除计数器74161 TTL 可予制四位二进制异步清除计数器74162 TTL 可预置BCD同步清除计数器74163 TTL 可予制四位二进制同步清除计数器74164 TTL 八位串行入/并行输出移位寄存器

相关文档
最新文档