材科基作业3

材科基作业3

第三章作业答案

1.说明面心立方结构的潜在滑移系有12个,体心立方结构的潜在滑移系有48个。

2.一个位错环能否各部分都是螺位错?能否各部分都是刃位错?为什么?

3.纯铁的空位形成能为105kJ/mol. 将纯铁加热到850℃后激冷至室温(20℃),假设高温下的空位能全部保留,试求过饱和空位浓度与室温平衡空位浓度的比值。

4.写出距位错中心为R1范围内的位错弹性应变能。如果弹性应变能为R1范围的一倍,则所涉及的距位错中心距离R2为多大?

5.简单立方晶体(100)面有一个b=[001]的螺位错。

(a)在(001)面有1个b=[010]的刃位错和它相截,相截后2个位错产生扭折还是割阶?(b)在(001)面有1个b=[100]的螺位错和它相截,相截后2个位错产生扭折还是割阶?

6. 某面心立方晶体可动滑移系为(11-1)[-110],点阵常数a=0.2nm.

1) 指出引起滑移的单位位错柏氏矢量

2) 滑移由刃型位错引起,指出滑移线方向

3) 滑移由螺型位错引起,指出滑移线方向

4) 上述情况下滑移时位错线滑移方向

5) 假定该滑移系上作用0.7MPa的切应力,计算单位刃型位错和螺型位错线受力大小和方向

7.如图,某晶体的滑移面上有一柏氏矢量为b的位错环,并受到一均匀切应力τ。

分析该位错环各段位错的结构类型。

求各段位错线所受的力的大小及方向。

在τ的作用下,该位错环将如何运动?

在τ的作用下,若使此位错环在晶体中稳定不动,其最小半径应为多大?

武汉大学《880材料科学基础》考研真题详解

武汉大学《880材料科学基础》考研真题详解 2021年武汉大学《880材料科学基础》考研全套 目录 ?全国名校材料科学基础考研真题汇编(含部分答案) 说明:本科目考研真题不对外公布(暂时难以获得),通过分析参考教材知识点,精选了有类似考点的其他院校相关考研真题,以供参考。 2.教材教辅 ?石德珂《材料科学基础》(第2版)配套题库【名校考研真题+章节题库+模拟试题】 说明:以上为本科目参考教材配套的辅导资料。 ? 试看部分内容

名校考研真题 导论 1.试举例分析材料加工过程对材料使用性能的影响。[中南大学2007研] 答:材料加工过程对材料使用性能有重要而复杂的影响,材料也必须通过合理的工艺流程才能制备出具有实用价值的材料来。通过合理和经济的合成和加工方法,可以不断创制出许多新材料或改变和精确控制许多传统材料的成分和结构,可以进一步发掘和提高材料的性能。 材料的制备/合成和加工不仅赋予材料一定的尺寸和形状,而且是控制材料成分和结构的必要手段。如钢材可以通过退火、淬火、回火等热处理来改变它们内部的结构而达到预期的性能,冷轧硅钢片经过复杂的加工工序能使晶粒按一定取向排列而大大减少铁损。 2.任意选择一种材料,说明其可能的用途和加工过程。[中南大学2007研] 答:如Al-Mg合金。作为一种可加工、不可热处理强化的结构材料,由于具有良好的焊接性能、优良的耐蚀性能和塑性,在飞机、轻质船用结构材料、运输工业的承力零件和化工用焊接容器等方面得到了广泛的应用。 根据材料使用目的,设计合金成分,考虑烧损等情况进行配料,如A15Mg合金板材,实验室条件下可在电阻坩埚炉中750℃左

材料科学基础名词解释

第二章 1.定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些? 定性:对称轴、对称中心、晶系、点阵、晶胞定量:晶胞参数,晶向指数 1.依据结合力的本质不同,晶体的键合作用分为哪几类?其特点是什么? 共价键、离子键、金属键、范德华键、氢键。 离子键:没有方向性和饱和性,结合力很大。 共价键:具有方向性和饱和性,结合力也很大,一般大于离子键。 金属键:没有方向性和饱和性的共价键,结合力是原子实和电子云之间的库仑力。 范德华键:是通过分子力而产生的键合,结合力很弱 氢键:是指氢原子与半径较小,电负性很大的原子相结合所形成的键。 2.等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙? 六方最密堆积、面心立方紧密堆积,8个四面体空隙,6个八面体空隙 3.n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的?2n个四面体空隙,n个八面体空隙。 不等径球堆积时,较大球体作等径球的紧密堆积,较小的球填充在大球紧密堆积形成的空隙中。其中稍小的球体填充在四面体空隙,稍大的则填充在八面体空隙,如果更大,则会使堆积方式稍加改变,以产生较大的空隙满足填充的要求。 4.解释下列概念 晶体:是内部质点在三维空间有周期性和对称性排列的固体。 晶系:晶体根据其在晶体理想外形或综合宏观物理性质中呈现的特征对称元素可划分为立方、六方、三方、四方、正交、单斜、三斜等7类,是为7个晶系。(六三四立方,单三斜正交) 晶包:是从晶体取出反映其周期性和对称性的结构的最小重复单元。 晶胞参数:晶胞的形状和大小可以用6个参数来表示,此即晶胞参数,它们是三条棱边的长度a,b,c和三条棱边的夹角a,B,r. 空间点阵:空间点阵是一种表示晶体内部质点排列规律的几何图形。 米勒指数:是晶体的常数之一,是晶面在3个结晶轴上的截距系数的倒数比,当化为最简单的整数比后,所得出的3个整数称为该晶面的米勒指数。 离子晶体的晶格能:晶格能又叫点阵能。它是在OK时1mol离子化合物中的正、负离子从相互分离的气态结合成离子晶体时所放出的能量。 配位数:配位数是中心离子的重要特征。直接同中心离子(或原子)配位的原子数目叫中心离子(或原子)的配位数。 离子极化:离子极化指的是在离子化合物中,正、负离子的电子云分布在对方离子的电场作用下,发生变形的现象。离子极化能对金属化合物性质产生影响。主要表现为离子间距离缩短,离子配位数降低,同时变形电子云相互重合,使键性由离子键向共价键过渡,最终使晶体结构类型发生变化。 同质多晶和类质同晶:同质多晶是一种物质在不同热力学条件下形成两种或两种以上不同结构的现象,由此所产生的每一种化学组成相同但结构不同的晶体,称为变体。类质同晶:化学组成相似的物质,在相同的热力学条件下,形成的晶体具有相同的结构,这种结构称为类质同晶现象。 正尖晶石与反正尖晶石:在尖晶石结构中,如果A离子占据四面体空隙,B离子占据八面体空隙,则称为正尖晶石。反之,如果半数的B离子占据四面体空隙,A离子和另外半数的B离子占据八面体空隙,则称为反尖晶石。 铁电效应:有自发极化且在外电场作用下具有电滞回线的晶体。

材科练习题

第1章固体结构 1 填空题 1 按照原子(或分子)排列的规律性又可将固态物质分为两大类,__________和 _________。晶体中的原子在空间呈有规则的____________________排列;而非晶体的原子则是_____________排列的。 2 将实际晶体结构看成完整无缺的理想晶体并简化,将其中每个质点抽象为规则排 列于空间的几何点,称之为___________。这些点在空间呈周期性规则排列并具有完全相同的周围环境,这种由它们在三维空间规则排列的阵列称为_________________。具有代表性的基本单元(最小平行六面体)作为规则阵列的组成单元,称为___________。 3 所谓_______________是指晶体结构中任一原子周围最近邻且___________的原子 数;而_______________是指晶体结构中原子体积占总体积的百分比。面心立方和密排六方结构的致密度均为____________,是纯金属中最密集的结构。 4 有些固态金属在不同的温度和压力下具有不同的晶体结构即具有 ________________,转变的产物称为__________________。当金属由一种晶体结构变为另一种晶体结构时,将伴随有质量体积的跃变即体积的突变。 5 组成合金的基本的___________的物质称为组元。组元可以是金属和非金属元素, 也可以是化合物。固态下所形成的合金相基本上可分为_________和__________两大类。 6 固溶体是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶质原子)所 形成的均匀混合的________________,它保持着_____________的晶体结构类型。

材料科学基础试题

第一章原子排列 本章需掌握的内容: 材料的结合方式:共价键,离子键,金属键,范德瓦尔键,氢键;各种结合键的比较及工程材料结合键的特性; 晶体学基础:晶体的概念,晶体特性(晶体的棱角,均匀性,各向异性,对称性),晶体的应用 空间点阵:等同点,空间点阵,点阵平移矢量,初基胞,复杂晶胞,点阵参数。 晶系与布拉菲点阵:种晶系,14种布拉菲点阵的特点; 晶面、晶向指数:晶面指数的确定及晶面族,晶向指数的确定及晶向族,晶带及晶带定律六方晶系的四轴座标系的晶面、晶向指数确定。 典型纯金属的晶体结构:三种典型的金属晶体结构:fcc、bcc、hcp; 晶胞中原子数、原子半径,配位数与致密度,晶面间距、晶向夹角 晶体中原子堆垛方式,晶体结构中间隙。 了解其它金属的晶体结构:亚金属的晶体结构,镧系金属的晶体结构,同素异构性 了解其它类型的晶体结构:离子键晶体结构:MgO陶瓷及NaCl,共价键晶体结构:SiC陶瓷,As、Sb 非晶态结构:非晶体与晶体的区别,非晶态结构 分子相结构 1. 填空 1. fcc结构的密排方向是_______,密排面是______,密排面的堆垛顺序是_______致密度为___________配位数是________________晶胞中原子数为___________,把原子视为刚性球时,原子的半径是____________;bcc结构的密排方向是_______,密排面是_____________致密度为___________配位数是________________ 晶胞中原子数为___________,原子的半径是____________;hcp结构的密排方向是_______,密排面是______,密排面的堆垛顺序是_______,致密度为___________配位数是________________,晶胞中原子数为 ___________,原子的半径是____________。 2. bcc点阵晶面指数h+k+l=奇数时,其晶面间距公式是________________。 3. Al的点阵常数为0.4049nm,其结构原子体积是________________。 4. 在体心立方晶胞中,体心原子的坐标是_________________。 5. 在fcc晶胞中,八面体间隙中心的坐标是____________。 6. 空间点阵只可能有___________种,铝晶体属于_____________点阵。Al的晶体结构是__________________, -Fe的晶体结构是____________。Cu的晶体结构是_______________, 7点阵常数是指__________________________________________。 8图1是fcc结构的(-1,1,0 )面,其中AB和AC的晶向指数是__________,CD的晶向指数分别 是___________,AC所在晶面指数是--------------------。

名词解释(材料科学基础)

第二章原子尺度的结构 1. 阿雷尼乌斯方程式 2. 氢键氢键是分子间作用力的一种,是一种永久偶极之间的作用力,氢键发生在已经以 共价键与其它原子键合的氢原子与另一个原子之间(X-H…Y),通常发生氢键作用的氢原子两边的原子(X、Y)都是电负性较强的原子。 3. 电离势从孤立的中性原子中去掉一个电子所需的能量叫做原子的电离势。 4. 短程序凝聚态物质中原子的近邻排列的规律性。 5. 键能将相距无限远的两个离子或原子集合在一起时系统所作的功,或将原子完全地 相互分开所需向系统提供的能量。 6. 键长两个成键原子A和B的平衡核间距离。 7. 线膨胀系数指温度每变化1℃材料长度变化的百分率。 8. 交联橡胶链之间的一次键是通过打开未饱和的双键而生成的,这成为交联。 9. 电负性元素的原子在化合物中把电子吸引向自己的本领叫做元素的电负性。 10. 长程序材料在比键长大得多的距离呈现有序时,称这些材料具有长程序。 11. 热力学研究物质的热性质与外部的系统变量如压力温度组成等之间的关系。 12. 范德瓦尔键由瞬间偶极矩和诱导偶极矩产生的分子间引力所构成的物理键。 第三章晶体结构 1. 各向异性指材料在各方向的力学和物理性能呈现差异的特性。 2. 各向同性材料的性质和测量方向无关。 3. 原子堆垛因子(APF)在晶体结构中原子占据的体积与可利用的总体积的比率定义为 原子堆垛因子。 4. 晶体点阵晶体点阵是晶体粒子所在位置的点在空间的排列。 5. 密勒指数用以描述晶体点阵系统中指定的点方向面的惯用约定。 6. 多晶体整个物体是由许多杂乱无章的排列着的小晶体组成的,这样的物体叫多晶体。 7. 同素异构体很多材料在特定温度下其晶体结构会发生从一种单胞到另一种单胞的转 变。而化合物出现这种该行为称为多形性。 第四章点缺陷和扩散 1.扩散涉及一种原子移动到另一种原子基体中去的物质输运过程。 2. 扩散系数表示气体(或固体)扩散程度的物理量。 3. 有效渗入距离扩散物质含量具有原始含量与表面含量平均值的地方。 4. 间隙原子间隙原子指某个晶格间隙中挤进了原子。 5. 点缺陷三个方向上的尺寸都很小的缺陷,相当于原子的尺寸,例如空位、间隙原子、 置换原子等。 6. 自扩散在纯材料中原子的迁动称为自扩散。 7. 置换固溶体当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或 者说溶质原子置换了溶剂点阵的部分溶剂原子,这种固溶体就称为置换固溶体。 8. 空位指在晶体结构中本应由质点正常占有的位置,实际上缺失了质点。

材基习题及答案

第三章 作业与习题的解答 一、作业: 2、纯铁的空位形成能为105 kJ/mol 。将纯铁加热到850℃后激冷至室温(20℃),假设高温下的空位能全部保留,试求过饱和空位浓度与室温平衡空位浓度的比值。(e 31.8=6.8X1013) 6、如图2-56,某晶体的滑移面上有一柏氏矢量为b 的位错环,并受到一均匀切应力τ。 (1)分析该位错环各段位错的结构类型。 (2)求各段位错线所受的力的大小及方向。 (3)在τ的作用下,该位错环将如何运动? (4)在τ的作用下,若使此位错环在晶体中稳定 不动,其最小半径应为多大? 解: (2)位错线受力方向如图,位于位错线所在平面,且于位错垂 直。 (3)右手法则(P95):(注意:大拇指向下,P90图3.8中位错 环ABCD 的箭头应是向内,即是位错环压缩)向外扩展(环扩大)。 如果上下分切应力方向转动180度,则位错环压缩。 (4) P103-104: 2sin 2d ?τd T s b = θRd s =d ; 2/sin 2 θ?d d = ∴ τ ττkGb b kGb b T R ===2 注:k 取0.5时,为P104中式3.19得出的结果。 7、在面心立方晶体中,把两个平行且同号的单位螺型位错从相距100nm 推进到3nm 时需要用多少功(已知晶体点阵常数a=0.3nm,G=7﹡1010Pa )? (31002100 32ln 22ππGb dr w r Gb ==?; 1.8X10-9J ) 8、在简单立方晶体的(100)面上有一个b=a[001]的螺位错。如果

它(a)被(001)面上b=a[010]的刃位错交割。(b)被(001)面上b=a[100]的螺位错交割,试问在这两种情形下每个位错上会形成割阶还是弯折? ((a ):见P98图3.21, NN ′在(100)面内,为扭折,刃型位错;(b)图3.22,NN ′垂直(100)面,为割阶,刃型位错) 9、一个 ]101[2- =a b 的螺位错在(111)面上运动。若在运动过程中遇 到障碍物而发生交滑移,请指出交滑移系统。 对FCC 结构:(1 1 -1)或写为(-1 -1 1) 10、面心立方晶体中,在(111)面上的单位位错]101[2-=a b ,在(111) 面上分解为两个肖克莱不全位错,请写出该位错反应,并证明所形成的扩展位错的宽度由下式给出: γπ242 b G d s ≈ 应为 γπ242a G d s ≈ (G 为切变模量,γ为层错能) (P116式3.33,两个矢量相乘的积=|b1|˙|b2|˙cos(两矢量夹角) 11、在面心立方晶体中,(111)晶面和)(- 111晶面上分别形成一个扩展位错: (111)晶面:]211[6]112[6]110[2----+→a a a =A+B )111(- 晶面:]211[6]211[6]011[2a a a +→-=C+D 两个扩展位错在各自晶面上滑动时,其领先位错相遇发生位错反应,求出新位错的柏氏矢量;用图解说明上述位错反应过程;分析新位错的组

材科基作业题

石墨是由二维石墨层一片片沿其法线方向以ABABAB …方式重叠而成,片层间距相等,且为l 0=0.336nm 。每层碳原子构成正六角形网状结构,片层投影如下图所示(注:实心点代表A 层原子,空心点代表B 层原子)。碳原子与碳原子的最近距离a =0.142nm 。 (1) 画出石墨片层(二维)的Brivais 空间点阵,并确定其点阵矢量; (2) 确定石墨晶体的Brivais 点阵类型及点阵常数大小。 (3) 比较石墨片层的晶胞与原胞的异同。 解:(1)石墨片层的Bravais 空间点阵如下图红虚线所示,其中a 1和a 2为点阵矢量。如两原子间距离为a ,则点阵矢量可表示为(i,j 为单位矢量): 10 22cos3033sin 6022a a j j a ai a j ai j ===+= (2)若考虑对称性,则石墨为六方晶胞,其点阵常数大小为: 00.1420.246a nm === 00220.3360.672c l nm ==?= 0090,120αβγ=== (3)石墨片层的晶胞(黄色)与原胞(浅兰色)分别如下图所示。 j i

3. 推导出正六变形点阵的倒易点阵矢量,并确定其倒易点阵的空间点阵类型。 解:设正六边形的变长为a ,建立如图所示的直角坐标系,正六边形的原胞矢量可以写为: 122a a i j a ai =+= (1) 其点阵常数间的关系为设其倒易点阵矢量为: 111222b x i y j b x i y j =+=+ 则由公式:1122211211 0a b a b a b a b ?=?=?=?= 可得: 1211b j b j a a =+=+ (2) 将(1)式和(2)式进行比较,可知两组点阵矢量具有完全相同的形式,由(2)矢量所构成的倒易点阵仍是正六边形。 注:原胞矢量的写法不唯一。 1. 有一工件需要使用到1000℃以上, (1)采用铁合金材料可能会出现什么问题? (2)试计算由于铁晶型转变所造成的体积变化。 (3)假设单轴应变为体积应变的1/3,铁的弹模量为210GPa,试计算所产生的应力大小。 (已知:BCC 铁的晶格常数为0.2863nm ,FCC 铁晶格常数为0.3591nm ) 111222111222)1022)02)02 0)12 a i j x i y j x a x i j x i y j a a y i x i y j y a i x i y j ?+=?=?????=+=????????=+=????=??+=?? (+)((+)(()(() (i

材料科学基础知识点总结

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。 相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,

材基本学期作业题分析

第二章固体结构 一.解释下列名词:拓扑密排相,多晶型性/同素异构体/同素异构转变,固溶强化,有序固溶体,有序畴,反相畴界。 二、简述题 1、写出3种典型金属晶体的密排方向、密排面及堆垛方式,画出FCC 和BCC结构中的一个四面体间隙和一个八面体间隙位置。 2、原子间结合能相对大小与固溶体微观不均匀性的关系。 3、影响固溶体有序化的主要因素。 三、分析计算题 1、影响两类固溶体溶解度的主要因素。 2、各类型中间相的概念、结构特点与影响因素。 3. 含12.3wt% Mn、1.34wt%C的奥氏体钢,其点阵常数为0.3624nm,密度为7.83g/cm3,已知C、Fe、Mn的原子量分别为12,55.84,5 4.92,试计算此奥氏体钢晶胞内的实际原子数,并分析C、Mn在此奥氏体钢的固溶方式。 4.当Fe从fcc结构转变为bcc结构时,a)按晶体的钢球模型,若球的直径不变,计算其体积膨胀多少?b)经x射线衍射测定在912℃时,α-Fe的a=0.2892nm,γ-Fe的a=0.3633nm, 计算从γ-Fe转变为α-Fe 时,其体积膨胀为多少?与a)相比,说明导致差别的原因。 5. β-黄铜(CuZn)具有体心立方结构,其Zn与Cu原子之比为46∶54,在450℃时若有90%的(1/2 1/2 1/2)位置被铜原子占据,问有多少百分数的(0 0 0)位置被铜原子占据? 第三章晶体缺陷 1、解释以下基本概念:肖脱基空位、弗兰克尔空位、刃型位错、螺型位错、混合位错、柏氏矢量、位错密度、位错的滑移、位错的攀移、弗兰克-瑞德源、派-纳力、单位位错、不全位错、堆垛层错、位

错反应、扩展位错。 2、纯铁的空位形成能为105 kJ/mol 。将纯铁加热到850℃后激冷至室温(20℃),假设高温下的空位能全部保留,试求过饱和空位浓度与室温平衡空位浓度的比值。(e 31.8=6.8X1013) 3、计算银晶体接近熔点时多少个结点上会出现一个空位(已知: 银的熔点为960C ,银的空位形成能为1.10 eV )。 4、割阶或扭折对原位错线运动有何影响? 5、 一个位错环能否各部分都是螺位错?能否各部分都是刃位错?为什么? 6、如图2-56,某晶体的滑移面上有一柏氏 矢量为b 的位错环,并受到一均匀切应力τ。 (1)分析该位错环各段位错的结构类型。 (2)求各段位错线所受的力的大小及方向。 (3)在τ的作用下,该位错环将如何运动? (4)在τ的作用下,若使此位错环在晶体中稳定不动,其最小半径应为多大? 7、在面心立方晶体中,把两个平行且同号的 单位螺型位错从相距100nm 推进到3nm 时需要用多少功(已知晶体点阵常数a=0.3nm,G=7﹡1010Pa )? (3 1002100 3 2ln 22 π πGb dr w r Gb ==? ; 1.8X10 -9 J ) 8、在简单立方晶体的(100)面上有一个b=a[001]的螺位错。如果它(a)被(001)面上b=a[010]的刃位错交割。(b)被(001)面上b=a[100]的螺位错交割,试问在这两种情形下每个位错上会形成割阶还是弯折?

06材料科学基础试卷A(答案)

装 订 线 装 订 线 内 不 要 答 题 学 号 姓 名 班 级 东 北 大 学 秦 皇 岛 分 校 课程名称: 材料科学基础 试卷: A 考试形式: 闭卷 授课专业: 材料科学与工程 考试日期: 2008年12月31日 试卷:共 4 页 一、填空题:(每空1分,共20分) 1、三元凝聚系统中最大相数是 4 。 2、某一氮气和氧气的混合物系统,其独立组元数是 2 ,相数是 1 。 3、下图为晶核的半径r 与△G 间的关系,现有不同温度的三条曲线,请指出哪条温度最高? T 1 。哪条温度最低? T 3 。 4、在单元系的p (压强)-T (温度)相图内,当高温相向低温相转变时体积 收缩,则根据克拉珀龙方程,相界线的斜率为 正 (填正、负或大 于零、小于零)。 5、测定某种晶体凝固时生长速度(υg )与液固相界面前端动态过冷度(△T K )的关系为υg 正比于△T K 2,则该晶体的长大属于 借螺型位错长大 方式。 6、一般金属在非均匀形核时,所需的过冷度是其结晶温度Tm 的0.02 倍。 7、高分子从熔体冷却结晶时,通常形成 球晶 。高分子的熔点随其晶 片厚度的增加而 增加 。 8、二元包晶合金中,有α相和β相两相,α相是初生相,其包晶转变式为βα→+L 9、调幅分解是经过 组元的上坡扩散 方式形成。 10、有效分配系数K e 表示液相的混合程度,其值范围是 K 0

材料科学基础最全名词解释

1.固相烧结:固态粉末在适当的温度,压力,气氛和时间条件下,通过物质与气孔之间的传质,变为坚硬、致密烧结体的过程。 液相烧结:有液相参加的烧结过程。 2.金属键:自由电子与原子核之间静电作用产生的键合力。 3.离子键:金属原子自己最外层的价电子给予非金属原子,使自己成为带正电的正离子,而非金属得到价电子后使自己成为带负电的负离子,这样正负离子靠它们之间的静电引力结合在一起。 共价键:由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。氢键:由氢原子同时与两个电负性相差很大而原子半径较小的原子(O,F,N等)相结合而产生的具有比一般次价键大的键力。 弗兰克缺陷:间隙空位对缺陷 肖脱基缺陷:正负离子空位对的 奥氏体:γ铁内固溶有碳和(或)其他元素的、晶体结构为面心立方的固溶体。 布拉菲点阵:除考虑晶胞外形外,还考虑阵点位置所构成的点阵。 不全位错:柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。 玻璃化转变温度:过冷液体随着温度的继续下降,过冷液体的黏度迅速增大,原子间的相互运动变得更加困难,所以当温度降至某一临界温度以下时,即固化成玻璃。这个临界温度称为玻璃化温度Tg。 表面能:表面原子处于不均匀的力场之中,所以其能量大大升高,高出的能量称为表面自由能(或表面能)。 半共格相界:若两相邻晶体在相界面处的晶面间距相差较大,则在相界面上不可能做到完全的一一对应,于是在界面上将产生一些位错,以降低界面的弹性应变能,这时界面上两相原子部分地保持匹配,这样的界面称为半共格界面或部分共格界面。 柏氏矢量:描述位错特征的一个重要矢量,它集中反映了位错区域内畸变总量的大小和方向,也使位错扫过后晶体相对滑动的量。 柏氏矢量物理意义: ①从位错的存在使得晶体中局部区域产生点阵畸变来说:一个反映位错性质以及由位错引起的晶格畸变大小的物理量。 ②从位错运动引起晶体宏观变形来说:表示该位错运动后能够在晶体中引起的相对位移。 部分位错:柏氏矢量小于点阵矢量的位错 包晶转变:在二元相图中,包晶转变就是已结晶的固相与剩余液相反应形成另一固相的恒温转变。 包析反应:由两个固相反应得到一个固相的过程为包析反应。 包析转变:两个一定成分的固相在恒温(T)下转变为一个新的固相的恒温反应。包析转变与包晶转变的相图特征类似,只是包析转变中没有液相,只有固相。 粗糙界面:界面的平衡结构约有一半的原子被固相原子占据而另一半位置空着,这时界面称为微观粗糙界面。 重合位置点阵:当两个相邻晶粒的位相差为某一值时,若设想两晶粒的点阵彼此通过晶界向对方延伸,则其中一些原子将出现有规律的相互重合。由这些原子重合位置所组成的比原来晶体点阵大的新点阵,称为重合位置点阵。 成分过冷;界面前沿液体中的实际温度低于由溶质分布所决定的凝固温度时产生的过冷。

材力第4章作业题解答

习题4-2图 第4章 弹性杆件横截面上的切应力分析 4-1 两根长度相等、直径不等的圆轴承受相同的扭矩受扭后,轴表面上母线转过相同的角度。设直径大的轴和直径小的轴的横截面上的最大切应力分别为max 1τ和max 2τ,切变模量分别为G 1和G 2。试判断下列结论的正确性。 (A )max 1τ>max 2τ; (B )max 1τ<max 2τ; (C )若G 1>G 2,则有max 1τ>max 2τ; (D )若G 1>G 2,则有max 1τ<max 2τ。 正确答案是 B 。 解:因两圆轴等长,轴表面上母线转过相同角度,指切应变相同,即γγγ==21由剪切胡克定律γτG =知21G G >时,max 2max 1ττ>。 4-2 图示实心圆轴承受外扭转力偶,其力偶矩T = 3kN ·m 。试求: 1.轴横截面上的最大切应力; 2.轴横截面上半径r = 15mm 以内部分承受的扭矩所占全部横截面上扭矩的百分比; 3.去掉r = 15mm 以内部分,横截面上的最大切应力增加的百分比。 解:1.7.7006.0π1610316 π3 33P P max 1=???====d T W T W M x τMPa 2. 4 π2d π2d 4 p p 01r I M I M A M x x r A r ?=??=?=? ?ρρρρτρ ∴ %25.6161)6015(161632 π4π24π244 444p 4==?==? ==d r d r I r M M x r 3. ?? ? ??-==43p max 2)21(116πd T W M x τ 4-3 图示开口和闭口薄壁圆管横截面的平均直径均为D 、壁厚均为δ,横截面上的扭矩均为T = M x 。试: 1.证明闭口圆管受扭时横截面上最大切应力 2 max π2D M x δτ≈ 2.证明开口圆管受扭时横截面上最大切应力 D M x π32max δτ≈ 3.画出两种情形下,切应力沿壁厚方向的分布。 解:1.δττD D A D M A x π2 d 2??=?=? ∴ 2π2D M x δτ= 即:2 max π2D M x δτ= 2.由课本(8-18)式 D M D M hb M x x x π3π33222max δδτ=?== 4-4 直径d = 25mm 的钢轴上焊有两凸台,凸台上套有外径D = 75mm 、壁厚δ=1.25mm 的薄壁管,当杆承受外扭转力遇矩T = 73.6N ·m 时,将薄壁管与凸台焊在一起,然后再卸去外力偶。假定凸台不变形,薄壁管与轴的材料相同,切变模量G = 40MPa 。试: 1.分析卸载后轴和薄壁管的横截面上有没有内力,二者如何平衡? 习题4-3图 τ (a-1) (b-1) (a-2) max τ (b-2)

胡赓祥《材料科学基础》(第3版)配套模拟试题及详解(二)【圣才出品】

胡赓祥《材料科学基础》(第3版)配套模拟试题及详解(二) 一、填空题(每题3分,共9分) 1.体心立方金属的滑移系是由_________滑移面和_________滑移方向组成的。 <> {110}111 【答案】; 2.根据晶体缺陷的几何特征,可将它们分为_________、_________、_________三类。 【答案】点缺陷;线缺陷;面缺陷 3.莱氏体是_________与_________的机械混合物。 【答案】奥氏体;渗碳体 二、名词解释(每题4分,共12分) 1.再结晶 答:冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状况,这个过程称之为再结晶。 2.割阶 答:在位错的滑移运动过程中,若曲折线段垂至于位错的滑移面时,称之为割阶。 3.柯肯达尔效应 答:由于两种原子的扩散速率不同,导致了一种原子扩散出去的通量不等于另一种原子扩散进入的通量,进而导致标志面(Mo丝)移动的现象称之为柯肯达尔效应。 三、简答题(每题6分,共48分) 1.原子的结合键有哪几种?各有什么特点? 答:原子的结合键有:

(1)离子键。其特点是:正负离子相互吸引;键合很强,无饱和性,无方向性;熔 点、硬度高,固态不导电,导热性差。(2)共价键。其特点是:相邻原子通过共用电子对结合;键合强,有饱和性,有方向性;熔点、硬度高,不导电,导热性有好有差。 (3)金属键。其特点是:金属正离子与自由电子相互吸引;键合较强,无饱和性,无方向性;熔点、硬度有高有低,导热导电性好。 (4)分子键。其特点是:分子或分子团显弱电性,相互吸引;键合很弱,无方向性;熔点、硬度低,不导电,导热性差。 (5)氢键。其特点是:类似分子键,但氢原子起关键作用;键合弱,有方向性;熔点、硬度低,不导电,导热性好。 2.简述柏氏矢量的物理意义与应用。答:(1)柏氏矢量的物理意义:①表征位错线的性质。据与位错线的取向关系可b v b v 确定位错线性质;②表征了总畸变的积累。围绕一根位错线的柏氏回路任意扩大或移动,b v 回路中包含的点阵畸变量的总累和不变,因而由这种畸变总量所确定的柏氏矢量也不改变;③表征了位错强度。同一晶体中大的位错具有严重的点阵畸变,能量高且不稳定。位b v b v 错的许多性质,如位错的能量,应力场,位错受力等,都与有关。 b v (2)柏氏矢量的应用:柏氏矢量可表示位错性质和取向,即晶体滑移方向。柏氏矢量越大,位错周围晶体畸变越严重。 3.一根多晶Zn ()棒和一根多晶镁()棒受压缩变形,分析二/ 1.86c a =/ 1.62c a =者的变形特征,比较二者的塑性。(提示:从分析滑移和孪生入手) 答:多晶体压缩滑移转动,(0001)转向压缩面,产生织构。继续压缩,滑移越来越难。 对于Zn :由于c /a =1.86,位于锐角区,宏观压力方向与微观孪生变形相适应,故可发生孪生。孪生之后改变位向可继续滑移,反复进行,故表现出较好的塑性。 对于Mg :由于c /a =1.62,压力轴位于钝角区,宏观压力方向与微观孪生变形相反,故不可发生孪生。因此表现出较差的塑性。 4.根据凝固理论,简述细化晶粒的基本途径。 答:由凝固理论可知,结晶时单位体积中的晶粒数目Z 取决于形核率N 和晶体长大速率V g 两个因素,即ZN /V 。基本途径: (1)增加过冷度T 。T 增加,ZV g 都随之增加,但是N 的增长率大于V 的增长率。 因而N /V 的值增加,即Z 增多。(2)加入形核剂。加入形核剂后,可以促使过冷液体发生非均匀形核。即不但使非均匀形核所需的基底增多,而且使临界晶核半径减小,这都使晶核数目增加,从而细化晶粒。

运动员选材复习作业题

运动员选材复习作业题 一、名词解释 变异、克托莱指数、体型、遗传、发育、基础心率、青春性高血压、基础心率、遗传力选材法、耐力素质、运动素质 二、填空题 1、选择选材方法的依据和标准有()、()、()、()和可行性等。 2、皮纹具有()、()、()等特点。 3、运动素质是人体在活动中所表现的(),其可分为()、()。 4、选材的适宜年龄宜采用()更加合理。 5、力量包括()、()、()、()等。 6、根据运动单位的工作性质,可以将肌纤维分为()和()。 7、运动技术质量的评价应该从()、()、()等方面来考虑。 8、竞技战术选材的测评内容包含()、()、()。 9、影响运动选材的主要因素有()、()、()、()。 10、运动能力遗传规律包括()、()、()。 11、生长发育的基本规律具有()、()、()等特点。 12、选材的适宜年龄宜采用()更加合理。 13、运动素质通常包括()、()、()、()等基本素质,还包括灵敏、协调、平衡等复合素质。 14、根据收缩速度,可以将肌纤维分为()和()。

15、运动技术选材的内容包括(),(),()和技术学习能力。 16、评价运动技术效果的方法有()、()、()。 三、简答题 1、运动选材的原则有哪些? 2、影响运动选材的因素有哪些? 3、PTC尝味能力与身体素质有什么关系? 4、如何理解“成人”运动项目和“少年”运动项目? 5、生长发育的基本规律有哪些? 6、你认为目前运动心理选材存在的问题有哪些? 7、运动选材的意义是什么? 8、研究遗传与选材的关系及其规律有何意义? 9、PTC尝味能力与人体形态有什么关系? 10、如何理解出成绩年龄“年轻化”? 11、影响体型的因素有哪些? 12、运动员心理选材的依据是什么?

(完整word版)材科基试卷 (1)

华中科技大学 材料科学与工程学院试卷(A) (闭卷) 考试科目:材料科学基础 班级:材料1101,1102,1103 考试日期:2013年11月26日 姓名:班级:学号: 评分

一、单项选择题(每题2分,共20分) 1.实际金属结晶时,通过控制形核率N和长大速率G的比值来控制晶粒大小,在下列情况下获得粗大晶粒( B ) (A)N/G很大(B)N/G很小(C)N和G接近(D)不确定 2.材料中能发生扩散的根本原因是(C ) (A)温度的变化(B)存在浓度梯度(C)存在化学势梯度(D)压力的变化 3.马氏体相变属于( A )。 (A)无扩散型相变。(B)扩散型相变。 (C)非共格相变。(D)扩散与非扩散混合型相变。 4.在SiO2七种晶型转变中,存在两种转变方式:一种为位移型转变,另一种为重构转变,位移转变需要的激活能( B )重构转变的激活能。 (A)大于(B)小于(C)等于(D)视具体情况而定 5.对于铁碳合金而言,铸铁和碳钢的区别在于有无(C ) (A)渗碳体(B)铁素体(C)莱氏体(D)珠光体 6.某金属凝固时的形核功为△G*,其临界形核表面能为σ。假设晶核为球形,则△G*和σ的关系为( A ) (A)σ=3△G * (B)σ=1/3△G* (C)σ=△G * (D)σ=2△G* 7.下列材料中属于良好的绝缘体是:( C ) (A)金属(B)单晶硅(C)绝大多数陶瓷(D)石墨

8.根据三元相图的垂直截面图,可以( B ) (A )分析相成分变化规律 (B )分析材料的平衡凝固过程 (C )用杠杠定律计算各相的相对含量 (D )得到三元系投影图 9.当压力不变时,根据相律:( C ) (A )单元系中两相平衡反应可以在某个温度区间内进行 (B )二元系中三相平衡反应可以在某个温度区间内进行 (C )三元系中三相平衡反应可以在某个温度区间内进行 (D )三元系中四相平衡反应可以在某个温度区间内进行 10.运用区域熔炼方法可以( D )。 (A ) 使材料成分更均匀。 (B )可以消除晶体中的微观缺陷。 (C )可以消除晶体中的宏缺陷。 (D )可以提高金属的纯度。 二、液/固相变时,画出自由能变化△G 与晶胚r 之间的关系图,从能量的角度简述 晶体的形核过程。单组元液相和合金熔体在凝固时均可能形成树枝晶,它们的结晶过程有何不同。(10分) 在一定的过冷度下,液体中若出现一固态的晶体,该区域的能量将发生变化,一方面一定体积的液体转变为固体,体积自由能会下降,形成晶体形核的驱动力。另一方面增加了液-固相界面,增加了表面自由能,形成晶体形核的阻力。因此总的吉布斯自由能变化量为: 单组元液相在负的温度梯度下形成枝晶,而合金熔体 由于存在成分过冷现象,无论正温度梯度还是负的温度 梯度均可能形成枝晶。 3 2443 V G r G r ππσ?=?+

材科基网上习题

2.8题(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求出该晶面的米勒指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的米勒指数。 2.9题在立方晶系的晶胞中画出下列米勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与[111],(322)与[236],(257)与[111],(123)与[121],(102),(112),(213),[110],[111],[120],[321]。 2.10题写出面心立方格子的单位平行六面体上所有结点的坐标。 2.16题从理论计算公式计算NaC1与MgO的晶格能。MgO的熔点为2800℃,NaC1为80l℃, 请说明这种差别的原因。 2.8题参考答案: 解:(1)h:k:l=1/2:1/3:1/6=3:2:1,∴该晶面的米勒指数为(321); (2)h:k:l=3:2:1,∴该晶面的米勒指数为(321)。 2.10题参考答案:解:(0,0,0)、(0,1/2,1/2)、(1/2,0,1/2)、(1/2,1/2,0) 2.13题参考答案: 解:e=1.602×10-19,ε0=8.854×10-12,N0=6.022×1023 对于NaCl:z1=1,z2=1,A=1.748,n Na+=7,n Cl-=9,n=8,r0=2.819×10-10m ∴NaCl的晶格能为u NaCl=752KJ/mol; 对于MgO:z1=2,z2=2,A=1.748,n O2-=7,n Mg2+=7,n=7,r0=2.12×10-10m ∴MgO的晶格能为u MgO=3920KJ/mol; ∵u MgO> u NaCl,∴MgO的熔点高。 2.9题参考答案:

材力第1-2章作业题解答

习题1-1图 习题1-2图 习题1-5图 基 础 篇 第1章 引 论 1-1 图示矩形截面直杆,右端固定,左端在杆的对称平面内作用有集中力偶,数值为M 。关于固定端处横截面A -A 上的内力分布,有四种答案,根据弹性体的特点,试分析哪一种答案比较合理。 正确答案是 C 。 1-2 图示带缺口的直杆在两端承受拉力F P 作用。关于A -A 截面上的内力分布,有四种答案,根据弹性体的特点,试判断哪一种答案是合理的。 正确答案是 D 。 1-3 图示等截面直杆在两端作用有力偶,数值为M ,力偶作用面与杆的对称面一致。关于杆中点处截面A -A 在杆变形后的位置(对于左端,由A A '→;对于右端,由A A ''→),有四种答案,试判断哪一种答案是正确的。 第2章 杆件的内力分析 2-1 图示等截面直梁,A 、B 两处分别为固定铰支和滑动铰支,AB 、BC 段分别承受向下和向上的均匀 分布载荷,其集度均为q ,C 端受集中弯矩Mc。试应用截面法求出梁的剪力方程和弯矩方程。 习题2-1图 解:由平衡条件得,A 、B 的支反力均为零。以A 为x 坐标原点,如图。 222(0)(){ (2)(2) 1(0)2(){1 (2)(2)2 q qx x l F x q x l l x l qx x l M x q x xl l l x l -≤<=-≤<-≤<=-+≤< x

2-2 应用平衡微分方程,试画出图示各梁的剪力图和弯矩图,并确定 m a x Q ||F 、max M 。 解:(a )0=∑A M ,l M F B 2R =(↑) 0=∑y F ,l M F A 2R -=(↓) l M F 2||max Q =, M M 2||max = (b )0=∑A M 022R 2=?+?+?--l F l ql l ql ql B ql F B 4 1 R =(↑) 0=∑y F ,ql F A 4 1 R -=(↓) 2R 4 1 41ql l ql l F M B C =?=?=(+) 2ql M A = ql F 45||max Q =, 2 max ||ql M = 2-3 梁的上表面承受均匀分布的切向力作用,其集度为p 。梁的尺寸如图所示。若已知p 、h 、l ,试导出轴力F N x 、弯矩M 与均匀分布切向力p 解:方法1: 1.以自由端为x 坐标原点,受力图(a ) 0=∑x F ,0N =+x F x p x p F x -=N ∴ p x F x -=d d N 0=∑C M ,02 =?-h x p M hx p M 2 1 = h p x M 2 1 d d = 方法2.0=∑x F 0d d N N N =-++x x x F x p F F ∴ p x F x -=d d N 0=∑C M 02 d d =? --+h x p M M M ∴ 2 d d h p x M = 2-4 试作2-5题中梁的轴力图和弯矩图,并确定 F R A F R A F R B F R B A B A B C D C E F R A F R B F R A

相关文档
最新文档