静电纺丝法制备碳纳米纤维及其应用

静电纺丝法制备碳纳米纤维及其应用
静电纺丝法制备碳纳米纤维及其应用

静电纺丝技术及其应用

静电纺丝技术及其应用 师奇松, 于建香, 顾克壮, 马春宝, 刘太奇 * (北京石油化工学院材料科学与工程系,北京102617) 摘 要:静电纺丝是一种新技术,它可制备出直径为纳米级的丝,最小直径可至1纳米。介绍了电纺丝制备原理、设备、影响纤维性能的主要工艺参数,综述了静电纺丝技术应用的最新进展,如制备长度无限可控的微米 纳米管子、超净纳米过滤材料等。关键词:纳米材料;纳米纤维;静电纺丝;应用中图分类号:TS 102.5 文献标识码:A 文章编号:0367-6358(2005)05-313-04 Electrospinning Technique and Its Application SHI Q-i song, YU Jian -xiang, GU Ke -zhuang, MA Chun -bao, LI U Ta-i qi * (De partment of Mate rial Scie nce and Enginee ring ,Be ijing Inst itute o f Petro -c he mic al Tec hnology ,Bei j ing 102617,China) Abstract :Electrospinning is a new technique,which can be used to prepare nanofibers with a diameter down to 1nm.In this paper,the theory of electrospinning technique,the equipments for preparing a electrospun fiber and the technological parameters affecting the properties of electrospun fibers were introduced.The new development of the applications of electrospinning technique,such as the preparation of micro nano tubes with controlled lengths and super -purification filtering materials,was reviewed. Key words :nanometer material;nanofiber;electrospinning;application 收稿日期:2003-11-14;修回日期:2004-01-12 基金项目:北京市组织部优秀人才启动经费(BZ00172002),北京市人事局留学人员科技活动择优资助项目(BR -016002)作者简介:师奇松(1977~),女,讲师,主要从事纳米纤维、相变材料的研究。E -mail:liutaiqi@https://www.360docs.net/doc/433120039.html,. 纳米纤维主要包括两个概念:一是严格意义上的纳米纤维,是指纤维直径小于100nm 的超微细纤维。另一概念是将纳米微粒填充到纤维中,对纤维进行改性,也就是我们通常意义上的纳米纤维。纳米纤维有以下几种制备方法:静电纺丝法、海岛形双组分复合纺丝法、分子喷丝板纺丝法、聚合过程中直接制造直径纳米纤维,以及采用直接纺丝或后整理方法将纳米粉体材料与纤维复合,制备纳米纤维的方法 [1-3] 。 1 静电纺丝技术 由于超细纤维的优良性能,人们对其制造方法进行了广泛的研究,但是用传统的纺丝方法很难纺出直径小于500nm 的纤维。而静电纺丝方法则能够纺出超细的纤维,直径最小可至1nm 。1.1 静电纺丝的成形工艺 静电纺丝技术与传统纺丝技术有着明显的不同,即静电纺丝技术通过静电力作为牵引力来制备超细纤维。图1是静电纺丝装置示意图。如图所示,在静电纺丝工艺过程中,将聚合物熔体或溶液加上几千至几万伏的高压静电,从而在毛细管和接地的接收装置间产生一个强大的电场力。当电场力施加于液体的表面时,将在表面产生电流。相同电荷相斥导致了电场力与液体的表面张力的方向相反。这样,当电场力施加于液体的表面时,将产生一个向外的力,对于一个半球形状的液滴,这个向外的力就与表面张力的方向相反。如果电场力的大小等于高分子溶液或熔体的表面张力时,带电的液滴就悬挂在毛细管的末端并处在平衡状态。随着电场力的增大,在毛细管末端呈半球状的液滴在电场力的作用下将被拉伸成圆锥状,这就是Taylor 锥。当电场力

静电纺纳米纤维与药物控制释放

静电纺纳米纤维与药物控制释放 陈义旺博士、教授、博士生导师、洪堡学者。南昌大学化学系主任,理学院副院长。 摘要 将抗肿瘤药物通过静电纺丝的方法装载到纳米纤维中以实现药物的控制释放,载药纳米纤维具有较低的药物突释效应,延长药物释放时间,并且从纳米纤维中缓释的抗肿瘤药物能很好地抑制HepG-2细胞的生长。负载抗肿瘤药物的电纺纳米纤维膜纤维能很好的应用于药物缓释系统,对肿瘤进行定位治疗及癌症手术后的化疗有很好的应用前景。 药物的控制释放一直是药物治疗领域中的重要课题。纳米纤维具有纵横交错的纳米孔结构、尺寸可控性好、比表面积大,是一种良好的新型载药系统;纳米纤维是封装药物的理想材料,它不但能将固体药物以颗粒形式封装入纤维内,还可以将液体药物以双层纤维或链珠状纤维形式进行封装[1,2]。因此,纳米纤维及其复合材料在药物控释系统、组织工程支架、伤口敷料等领域均得到了广泛的应用[3,4]。 研究内容 1.溶液电纺或乳液电纺PEG-PLLA/明胶复合纤维纳米纤维担载亲水/疏水药物控制释放及抗肿 瘤活性研究[5-7]应用。PEG-PLLA纳米纤维作为大环内酯类抗生素药物布雷菲德菌素A(BFA)的控制释放系统,用HPLC测定药物BFA在PBS溶液中的释放曲线,结果表明药物可以长时间的控制释放。用MTT法对含有3%,6%,9%,12%和15%BFA的纳米纤维进行体外抗肿瘤活性测试(人肝癌HepG2细胞),细胞生长抑制率在72h分别为64%,77%,80%,81%和85%。结果证明担载BFA的PEG-PLLA纳米纤维(BFA/PEG-PLLA)的对药物BFA 有很好的控释效果,适合癌症的术后化疗。通过乳液电纺方法成功将亲水药物头孢拉定及疏水的药物五氟尿嘧啶装载入PLGA纤维中,同时装载天然蛋白明胶来提高纤维的细胞粘附能力。装载明胶的纤维具有很好亲水性及力学性能,乳液电纺纤维具有低的药物突释效应,具有低的毒性

静电纺丝制备纳米纤维

静电纺丝制备MWNTs 高度取向的PSF/MWNTs-Epoxy 杂化纳米纤维 刘大伟,李旭,李刚,杨小平 北京化工大学有机/无机复合材料国家重点实验室,北京,100029 CFRP 复合材料在航天航空领域的广泛应用要求其具有良好的强度及韧性[1,2],然而单向纤维增强树脂基复合材料在垂直于纤维的方向力学性能较差,层间强度低,影响了CFRP 的 整体性能。本课题组采用静电纺丝的方法将MWNTs-Epoxy 预分散在纺丝液中[3],制备 PSF/MWNTs-Epoxy 杂化的纳米纤维膜,以碳纤维预浸布包覆的辊筒作为静电纺丝的接收器,通过将预浸料按照不同角度铺放于辊筒上以接收纳米纤维,来控制碳纳米管在复合材料中的取向,最终实现复合材料性能的可设计性。我们考察了MWNTs 环氧化改性效果,研究了不同MWNTs-Epoxy 含量对PSF/MWNTs-Epoxy 杂化纳米纤维膜微观形貌的影响。研究成果可总结为以下两方面:1)利用纯化、混酸化、环氧化等手段制备了MWNTs-Epoxy 。官能化MWNTs-Epoxy 的环氧基团接枝率为24.87%。MWNTs-Epoxy 在静电纺丝液中分散良好,且静电纺丝液的表面张力和电导率随MWNTs-Epoxy 含量的增加而提高。2)随着MWNTs-Epoxy 含量的升高,通过SEM 、TEM 照片可以看出,PSF/MWNTs-Epoxy 杂化纳米纤维的直径逐渐减少,通过取向红外和拉曼谱图研究发现PSF/MWNTs-Epoxy 杂化纳米纤维以及嵌于其内部的MWNTs-Epoxy 的取向度逐渐提高。MWNTs-Epoxy 良好的分散于PSF/MWNTs-Epoxy 杂化纳米纤维轴向位置。 图 1 5wt% MWNTs-Epoxy 含量的PSF/MWNTs-Epoxy 杂化纳米纤维取向表征图 (a )SEM 照片(b )TEM 照片(c )取向红外谱图(d )偏振拉曼谱图 本研究为江苏省自然科学基金(BK2011227)资助 参考文献: [1] Williams JC, Starke Jr EA. Progress in structural materials for aerospacesystems. Acta Metall 2003;51(10):5775–99. [2] Ahmed K, Noor AK, Venneri SL, Donald B, Paul DB, Hopkins MA. Structurestechnology for future aerospace systems. J Comput Struct 2000;74:507–19. [3] Gang Li , Xiaolong Jia , Zhibin Huang , Bo Zhu , Peng Li , Xiaoping Yang , Wuguo Dai. Prescribed morphology and interface correlation of MWNTs-EP/PSF hybridnanofibers reinforced and toughened epoxy matrix, Materials Chemistry and Physics 134 (2012) 958-965 10μm 10μm (a) (b) (c) (d) 10μm

通过静电纺丝技术制备导电高分子纳米纤维【开题报告】

开题报告 应用化学 通过静电纺丝技术制备导电高分子纳米纤维 一、选题的背景与意义 静电纺丝技术是目前制备纳米纤维最重要的基本方法。由于能直接、连续制备聚合物纳米纤维,因而成为国内外的研究热点。利用静电纺丝技术制备导电聚合物纤维是今年来发展起来的一项新的技术,然而由于导电高分子具有不溶,不熔的特点,利用静电纺丝技术制备导电聚合物纤维过程中遇到了许多困难,主要的问题在于:第一,导电聚合物刚性结构的特性使得静电纺丝过程难以进行;第二,大多数关于静电纺丝制备导电聚合物纤维的研究和应用仅仅处于实验室阶段,因此,必须通过更加深入的研究来探索静电纺丝技术制备聚合物纤维的最科学、最有效的方法,这将作为一个刺激,来实现在工业中大规模生产可控、可重复利用的静电纺丝聚合体纤维。 二、研究的基本内容与拟解决的主要问题: 综述利用静电纺丝技术制备导电聚合物纳米纤维的方法及相应的导电聚合物纤维的用途,综合对比各种方法的优缺点。 制备聚2乙烯基吡啶纳米纤维,利用它作为模板制备聚吡咯纳米纤维,尝试新的合成导电聚合物纳米纤维的方法。 三、研究的方法与技术路线: 合成聚2乙烯基吡啶,将2-乙烯基吡啶在引发剂存在聚合,产生聚2-乙烯基吡啶。 将聚2-乙烯基吡啶同氯金酸混合后,通过静电纺丝直接在高压下纺成纳米纤维。 上述纳米纤维在吡咯蒸汽中进行气相聚合,制备成核壳结构的聚吡咯纳米纤维。四、研究的总体安排与进度: 2010.07.08至2010.07.11:翻译文献,熟悉实验流程,设计实验步骤; 2010.07.12至2010.08.10:通过静电纺丝技术制备导电高分子纳米纤维;2010.11.08至2010.12.25:完成文献综述,文献翻译和开题报告; 2011.04.18至2011.05.08:撰写论文,准备答辩; 2011.05.12至2011.05.19:论文答辩。 五、主要参考文献: [1].Ioannis S. Chronakis , Sven Grapenson , Alexandra Jakob . Science Direct

静电纺丝技术及其应用

静电纺丝技术及其应用 师奇松, 于建香, 顾克壮, 马春宝, 刘太奇 3 (北京石油化工学院材料科学与工程系,北京102617) 摘 要:静电纺丝是一种新技术,它可制备出直径为纳米级的丝,最小直径可至1纳米。介绍了电 纺丝制备原理、设备、影响纤维性能的主要工艺参数,综述了静电纺丝技术应用的最新进展,如制备长度无限可控的微米Π纳米管子、超净纳米过滤材料等。关键词:纳米材料;纳米纤维;静电纺丝;应用中图分类号:TS 102.5 文献标识码:A 文章编号:036726358(2005)052313204 Electrospinning T echnique and Its Application SHI Qi 2s ong , Y U Jian 2xiang , G U K e 2zhuang , MA Chun 2bao , LI U T ai 2qi 3 (Department o f Material Science and Engineering ,Beijing Institute o f Petro 2chemical Technology ,Beijing 102617,China ) Abstract :E lectrospinning is a new technique ,which can be used to prepare nanofibers with a diameter down to 1nm.In this paper ,the theory of electrospinning technique ,the equipments for preparing a electrospun fiber and the technological parameters affecting the properties of electrospun fibers were introduced.The new development of the applications of electrospinning technique ,such as the preparation of micro Πnano tubes with controlled lengths and super 2purification filtering materials ,was reviewed. K ey w ords :nanometer material ;nanofiber ;electrospinning ;application 收稿日期:2003211214;修回日期:2004201212 基金项目:北京市组织部优秀人才启动经费(BZ 00172002),北京市人事局留学人员科技活动择优资助项目(BR 2016002)作者简介:师奇松(1977~),女,讲师,主要从事纳米纤维、相变材料的研究。E 2mail :liutaiqi @https://www.360docs.net/doc/433120039.html,. 纳米纤维主要包括两个概念:一是严格意义上 的纳米纤维,是指纤维直径小于100nm 的超微细纤维。另一概念是将纳米微粒填充到纤维中,对纤维进行改性,也就是我们通常意义上的纳米纤维。纳米纤维有以下几种制备方法:静电纺丝法、海岛形双组分复合纺丝法、分子喷丝板纺丝法、聚合过程中直接制造直径纳米纤维,以及采用直接纺丝或后整理方法将纳米粉体材料与纤维复合,制备纳米纤维的 方法[1-3] 。1 静电纺丝技术 由于超细纤维的优良性能,人们对其制造方法进行了广泛的研究,但是用传统的纺丝方法很难纺出直径小于500nm 的纤维。而静电纺丝方法则能够纺出超细的纤维,直径最小可至1nm 。1.1 静电纺丝的成形工艺 静电纺丝技术与传统纺丝技术有着明显的不 同,即静电纺丝技术通过静电力作为牵引力来制备超细纤维。图1是静电纺丝装置示意图。如图所示,在静电纺丝工艺过程中,将聚合物熔体或溶液加上几千至几万伏的高压静电,从而在毛细管和接地的接收装置间产生一个强大的电场力。当电场力施加于液体的表面时,将在表面产生电流。相同电荷相斥导致了电场力与液体的表面张力的方向相反。这样,当电场力施加于液体的表面时,将产生一个向外的力,对于一个半球形状的液滴,这个向外的力就与表面张力的方向相反。如果电场力的大小等于高分子溶液或熔体的表面张力时,带电的液滴就悬挂在毛细管的末端并处在平衡状态。随着电场力的增大,在毛细管末端呈半球状的液滴在电场力的作用下将被拉伸成圆锥状,这就是T aylor 锥。当电场力

静电纺丝纳米纤维的制备工艺及其应用

综述与专论 合成纤维工业,2009,32(4):48CH I NA SYNTHETI C FI BER I NDUSTRY 收稿日期:2008 09 17;修改稿收到日期:2009 05 27。作者简介:董晓英(1956 ),教授。从事纳米材料的教学和科研工作。 静电纺丝纳米纤维的制备工艺及其应用 董晓英1 董 鑫 2 (1.江苏技术师范学院,江苏常州 213001;2.慕尼黑大学,德国慕尼黑 80539)摘 要:简述了静电纺丝制备纳米纤维的原理;探讨了静电纺丝电压、流速、接收距离、溶剂浓度等工艺条 件;介绍了同轴静电纺丝制备皮芯结构的超细纤维及中空纤维技术以及静电纺丝纳米纤维毡在生物医药方面的应用。指出静电纺丝纳米纤维材料在生物医用方面具有广阔的应用前景,进一步实现低压纺丝、开发无毒溶剂,控制同轴静电纺丝纳米纤维的释放性能是今后静电纺丝的研发方向。 关键词:静电纺丝 纳米纤维 工艺 生物 医药 应用 中图分类号:TQ 340.64 文献识别码:A 文章编号:1001 0041(2009)04 0048 04 静电纺丝法是一种高速制备纳米纤维的有效方法,其装置简单,成本低廉,供选择的基体材料和所载药物种类众多,可通过改变电压、流速、接 收距离、溶液浓度配比等纺丝工艺控制纤维形貌,从而控制药物的释放。静电纺丝纳米纤维在生物、医药方面有着广泛的应用。1 静电纺丝及其工艺条件 静电纺丝技术最早报道于1934年的美国专利[1] ,发明人For mhals 用静电斥力的推动成功纺出醋酸纤维素纤维,溶剂为丙酮和乙醇。后来,For mha ls 改进了静电纺丝设备,通过多个针头纺丝或复合纺丝 [2] 。 1969年,英国Taylor [3] 研究了强电场作用下 水/油界面的形成。首先,从理论计算上考虑电场、重力和溶液粘度的影响,建立了锥状物模型,即在高压电场下溶液喷出前的形状称为Tay lor 锥。Tay l o r 还根据其模型计算了喷出时的临界锥角为98.6 。 静电纺丝纤维喷出针头后,在空中弯曲回转,最后落在接收器上,给人多股纤维同时喷出的印 象。阿克隆大学的Dosh i 等[4] 假设带电高分子溶液在喷出后互相排斥,克服表面张力而分裂成若干股纤维,落到接收器上形成无纺纤维毡。但是 麻省理工学院的Shin 等[5]和以色列的Yari n [6] 等通过高速成像,只有1股纤维从喷丝口喷出,然后在电场力作用下快速弯曲旋转,给人以很多股纤维的假象。1971年,杜邦公司的B au m garten [7] 研究了纺丝工艺参数对丙烯酸在N,N 二甲基甲酰(D M F)胺溶液中静电纺丝纤维直径的影响。纺 丝工艺参数主要包括喷射距离、溶液粘度、环境气体、流速和电压等。 1.1 电压 足够的电压是形成连续稳定纤维的先决条件。如果电压过小,则产生静电喷射,形成独立的珠状物。随着电压的增加,逐渐形成串珠结构,电压进一步增大,串珠逐渐减少,直至形成连续稳定 的纤维。Deitzel 等[8] 研究了聚氧化乙烯(PEO )/水体系中电压对喷丝口Tay lor 锥表面的影响。结果表明,当电压较小时,Tay lor 锥形成于针头外悬挂液滴的表面;随电压增加,液滴体积逐渐变小,直至液滴和Tay lor 锥相继消失。同时,纤维上串珠的分布密度也随电压增大而增加。因此,一般适宜电压为10~25kV 。1.2 流速 流速是影响静电纺丝纤维形貌的另一重要参数。M ege lski [9] 等研究了静电纺丝流速对聚苯乙烯/四氢呋喃(THF)体系的影响,随着流速增大,纤维直径增加,纤维表面的孔径也增大。同时,流速增大也促进了更明显的串珠结构,其原因是溶剂在到达接受装置前不能完全挥发。目前所采用的流速为1~3mL /h 。1.3 接收距离 接收距离也会在一定程度上影响静电纺丝的 纤维形貌。Jaeger [10] 等研究了PEO /水溶液的静电纺丝行为,随着接收距离由1c m 增大到3.5c m,纤维直径从19 m 下降到9 m 。根据M egel

静电纺丝技术研究及纳米纤维的应用前景..

静电纺丝技术研究及纳米纤维的应用前景 引言: 术语“电纺”来源于“静电纺丝”。虽然电纺这一术语是20世纪90年代才开始使用,但是其基本思想可以追述到60年前。1934一1944年间,FomalaS[1]申请了一系列的专利,发明了用静电场力来制备聚合物纤维的实验装置。1952年,vonnegut和NeubauerI53)发明了电场离子化技术,得到了粒径(0.lmm)均匀、带电程度高的线流。1955年,Drozin进行了不同液体在高电压下,形成气溶胶的研究。1966年,Simons发明了一种装置,用静电场纺丝法制备出了很轻超薄的无纺织物,他在研究中发现,低浓度溶液纺出的纤维较短且细;高浓度溶液纺出的纤维长且连续[2]。1971年,Baumgarten采用静电纺丝法制备出了直径在0.05u m一1.1um的丙烯酸纤维。自从80年代,特别是近些年,由于纳米技术的兴起,使得静电纺丝技术再度引起了纳米材料研究人员的高度关注。采用静电纺丝技术可以很容易的制备出直径在几百微米到几百纳米甚至几十纳米的高质量纤维。目前为止,己经有近上百种高分子采用静电纺丝技术被纺成纳/微米纤维。这些纳/微米纤维有些己经广泛应用于纳米复合材料、传感器、薄膜制造、过滤装置,以及生物医用材料的加工和制造上。本文立足于静电纺丝技术的研究现状,分别从材料的化学组成、纤维的分布方式和特殊结构形态三个方面进行了阐述。同时,概括并展望了纳米纤维的应用领域与前景。 1静电纺丝的基本原理 在电纺丝过程中,喷射装置中装满了充电的聚合物溶液或熔融液。在外加电场作用下,受表面张力作用而保持在喷嘴处的高分子液滴,在电场诱导下表面聚集电荷,受到一个与表面张力方向相反的电场力。当电场逐渐增强时,喷嘴处的液滴由球状被拉长为锥状,形成所谓的“泰勒锥”(Taylorcone)[3-6]。而当电场强度增加至一个临界值时,电场力就会液体的表面张力,从“泰勒锥”中喷出。喷射流在高电场的作用下发生震荡而不稳,产生频率极高的不规则性螺旋运动。

静电纺丝技术的工艺原理及应用

静电纺丝技术的工艺原理及应用 静电纺丝技术是目前制备纳米纤维最重要的基本方法。这一技术的核心是使带电荷流体在静电场中流动与变形,最终得到纤维状物质,从而为高分子成为纳米功能材料提供了一种新的加工方法。由于纳米纤维具有许多特性,例如纤维纤度细、比表面积大、孔隙率高,因而具有广泛的应用。 1、静电纺技术 静电纺是一项简单方便、廉价而且对环境无污染的纺丝技术。早在20世纪30年代,Formals A就已经在其专利中报道了利用高压静电纺丝,但是直到近些年,由于对纳米科技研究的迅速升温,激起了人们对这种可制备纳米尺寸纤维的纺丝技术进行深入研究的浓厚兴趣。 1.1 静电纺技术的基本原理 静电纺丝技术(Electrospinning fiber technique)是使带电的高分子溶液(或熔体)在静电场中流动变形,经溶剂蒸发或熔体冷却而固化,从而得到纤维状物质的一种方法。对聚合物纤维电纺过程的图式说明见图1。 静电纺丝机的基本组成主要有3个部分:静电高压电源、液体供给装置、纤维收集装置。静电高压电源根据电流变换方式可以分成DC/DC和AC/DC两种类型,实验中多用IX;/DC电源。液体供给装置是一端带有毛细管的容器(如注射器),其中盛 有高分子溶液或熔体,将一金属线的一端伸进容器中,使液体与高压电发生器的正极相连。纤维收集装置是在毛细管相对端设置的技术收集板,可以是金属类平面(如锡纸)或者是旋转的滚轮等。收集板用导线接地,作为负极,并与高压电源负极相连。另外随着对实验要求的提高,液体流量控制系统也被渐渐的采用,这样可以将液体的流速控制得更准确。电场的大小与毛细管口聚合物溶液的表面张力有关。由于电场的作用,聚合物溶液表面会产生电荷。电荷相互排斥和相反电荷电极对表面电荷的压缩,均会直接产生一种与表面张力相反的力。当电场强度增加时,毛细管口的流体半球表面会被拉成锥形,称为Taylor锥。进一步增加电场强度,是用来克服表面张力的静电排斥力到达一个临界值,此时带电射流从Taylor锥尖喷射出来。带电后的聚合物射流经过不稳定拉伸过程,

静电纺丝制备纳米纤维及其工业化研究进展

静电纺丝制备纳米纤维及其工业化研究进展* 杨大祥,李恩重,郭伟玲,王海斗,徐滨士 (装甲兵工程学院装备再制造技术国防科技重点实验室,北京100072) 摘要 针对静电纺丝技术从实验室走向工业化还存在产率低的问题,重点分析了为提高生产效率而采用的多针头纺丝和无针头纺丝等批量化生产方法,简述了静电纺丝的基本原理和实施方法,介绍了静电纺丝制备聚合物纤维、无机物纤维、同轴及中空纤维的情况和特点。随着对静电纺丝方法、设备、工艺和材料研究的深入,通过对高压静电场分布的控制采用多喷头组合方式和无针滚筒方式将成为产业化制备纳米纤维的有效手段。通过控制高压电场分布利用提高效率后的单孔纺丝方法制备出了长、宽、厚分别为1000mm 、350mm 、1.28mm 的芳纶1313纳米纤维布。最后对静电纺丝工业化规模制备纳米纤维材料进行了展望。 关键词 静电纺丝 纳米纤维 工业化 Research and Industrial Development of Nanofibers Prepared by Electrospinning YANG Daxiang,LI Enzhong,GU O Weiling,WA NG Haidou,XU Binshi (N ational K ey L aborato ry for Remanufacturing ,A cademy of A rmo red For ce Eng ineer ing,Beijing 100072)Abstract A cco rding to the pr oblems that the electro spinning techno lo gy t ransfer f rom the laborat or y to the in -dustria lizatio n,the principle and methods of electro spinning ar e o ut lined,the nanofibers of polymer and ino rg anic ma -terials produced by electr ospinning ,including coax ial and hollo w fibers ar e intr oduced,and then the met ho ds of impr o -ving t he pro ductio n efficiency o f mult-i needles spinning and needless spinning are analyzed.W ith the develo pment o f the met ho d,equipment,technique and mater ials o f electro spinning,both the mult-i needles w ith high -v oltage contro -l ling and the needleless w ith ro ller modes w ill be the mo st effective methods of pr oducing nano fibers thro ugh electr o -spinning.A ramid -1313nano -fiber non -wo ven fabrics with leng th,width and thickenss o f 1000mm,350mm,1.28mm,respect ively have been produced v ia mo dif ied sing le needle electr ospinning method.At last,industr ialized nano fibers produced by electr ospinning go es to pr actice in China is in dir e need and with gr eat pr ospects. Key words elect rospinning ,nanofiber ,industr ializat ion *国家973项目(2007CB607601);解放军总后勤部十二 五预研资助项目 杨大祥:男,1977年生,博士,讲师 E -mail:yang dax iang@hot https://www.360docs.net/doc/433120039.html, 1 静电纺丝简介 静电纺丝是使带电荷的溶液或熔体在静电场中流动或变形,经溶剂蒸发或熔体冷却固化得到纤维状物质的一种过 程,简称电纺。根据被纺材料状态的不同可分为溶液静电纺丝和熔融静电纺丝。静电纺丝技术与传统纺丝技术有着明显的不同,传统的纺丝方法很难纺出直径小于500nm 的纤维,而静电纺丝方法则能够纺出超细的纤维,直径最小可至1nm [1-3]。同时,静电纺丝的装置和原理都比较简单,典型静电纺丝装置的示意图如图1所示,主要由高压电源、计量泵、纺丝液容器、喷丝头、收集器等部件组成。静电纺丝是通过静电力作为牵引力来制备超细纤维。在静电纺丝工艺过程中,通过对纺丝溶液或熔体施加几千至几万伏的高压静电,在喷丝头和接地的纤维收集器间将产生一个强大的电场力。 电场力施加于液体表面时将在纺丝液表面产生电流,根据相同电荷相互排斥的原理,致使电场力与液体表面张力方向相反,产生一个向外的力。如果电场力等于纺丝溶液或熔 体的表面张力,则带电液滴就会悬挂在喷丝头末端并处在平衡状态。随着电场力的增大,在喷丝头末端呈半球状的液滴在电场力的作用下将被拉伸成圆锥状,这就是T aylor 锥;当电场力超过一个临界值后,它将克服液滴的表面张力形成射流。射流在从喷丝头末端向接收装置运动的过程中会出现加速现象,导致射流在电场中的拉伸,最终在接收装置上形成纳米纤维。 自1934年A.Form hals 报道了其聚合物超细纤维的静电纺丝装置后,静电纺丝的研究进展非常缓慢。直到最近10年,随着纳米材料技术的飞速发展,静电纺丝作为目前所知最有望实现工业化生产连续纳米纤维的有效方法之一,得到科学界和产业界的广泛研究。上百种材料通过静电纺丝已经被制成了纳米纤维,纺丝原料的设计与控制、纺丝工艺的优化、静电纺丝原理和模型建立、纳米纤维的组成、结构和性能分析、纳米纤维在过滤材料、生物医学、结构-功能一体化和高性能复合材料等领域的应用成为前一阶段研究的热点。然而,静电纺丝技术要真正走向实用,必须首先实现静电纺

超疏水静电纺丝纳米纤维

超疏水静电纺丝纳米纤维 摘要:这篇文章介绍了最先进的静电纺丝纳米纤维的科技发展,以及它在自清洁簿膜、智能响应材料和其他相关领域的应用。超疏水自清洁,也成为“荷叶效应”,就是利用表面化学结构和拓扑学的正确结合,在表面形成了一个非常大的接触角并且通过重力使水带着表面上的污垢、颗粒以及其他污染物离开表面。本文简单介绍了超疏水自清洁的理论和静电纺丝过程中的基本原则,为了生成超疏水自清洁表面还讨论了静电纺丝过程的各种参数,这些参数可以有效的控制疏水实体的多渗透性结构的粗糙度,静电纺丝在纳米尺寸上的主要原则以及在通过静电纺丝合成一维材料时存在的困难也被完全的隐藏。另外,本文还比较了不同的静电纺丝纳米纤维的超疏水性能以及它们的科技应用。 关键字:超疏水静电纺丝纳米纤维性能应用展望

Superhydrophobic electrospun nanofibers Abstract: This review describes state-of-the-art scientific and technological developments of electrospun nanofibers and their use in self-cleaning membranes, responsive smart materials, and other related applications. Superhydrophobic self-cleaning, also called the lotus effect, utilizes the right combinations of surface chemistry and topology to form a very high contact angle on a surface and drive water droplets away from it, carrying with them dirt, particles, and other contaminants by way of gravity. A brief introduction to the theory of superhydrophobic self-cleaning and the basic principles of the electrospinning process is presented. Also discussed is electrospinning for the purpose of creating superhydrophobic self-cleaning surfaces under a wide variety of parameters that allow effective control of roughness of the porous structure with hydrophobic entities. The main principle of electrospinning at the nanoscale and existing difficulties in synthesis of one-dimensional materials by electrospinning are also covered thoroughly. The results of different electrospun nanofibers are compared to each other in terms of their superhydrophobic properties and their scientific and technological applications. Key words: superhydrophobic; electrospinning; nanofibers; properties; applications; outlook

认识静电纺丝

静电纺丝即在高压静电下用聚合物溶液进行纺丝的过程。静电纺丝可以制备直径在几十到几百纳米的纤维,产品具有较高的孔隙率和较大的比表面积,成分多样化,直径分布均匀,在生物医学、环境工程以及纺织等领域具有很高的应用价值。 原理 将聚合物溶液或熔体带上几千至上万伏高压静电,带电的聚合物液滴在电场力的作用下在毛细管的Taylor锥顶点被加速。 当电场力足够大时,聚合物液滴克服表面张力形成喷射细流。在细流喷射过程中溶剂蒸发或固化,最终落在接收装置上,形成类似非织造布状的纤维毡。

装置 静电纺丝的装置主要由推进泵、注射器、高压电源以及接收装置组成。其中,高压电源的正极与负极分别与注射器针头和接收装置相连,而接收装置的形式也是多样化的,可以是静止的平面、高速转动的滚筒或者圆盘。纺丝的参数设置、环境条件等对纺丝过程的影响至关重要。 高聚物

目前静电纺丝技术已经可用于几十种不同的高分子聚合物,既包括聚酯、聚酰胺、聚乙烯醇、聚丙烯腈等柔性高聚物的静电纺丝,也包括聚氨酯弹性体的静电纺丝以及液晶态的刚性高分子聚对苯二甲酰对苯二胺等的静电纺丝。 影响因素 静电纺丝法制备纳米纤维的影响因素很多,这些因素可分为溶液性质,如黏度、弹性、电导率和表面张力;控制变量,如毛细管中的静电压、毛细管口的电势和毛细管口与收集器之间的距离;环境参数,如溶液温度、纺丝环境中的空气湿度和温度、气流速度等。 溶液黏度对纤维性能的影响 同轴静电纺丝

同轴静电纺是在静电纺的基础上改造而来,其基本原理是在两个内径不同但同轴的毛细管中分别注入芯质和壳质溶液,二者在喷头末端汇合,在电场力的作用下固化成为复合纳米纤维。 同轴静电纺丝解决了纺丝时纺丝液必须是均一体系的缺陷,所制备的同轴纤维在均匀性、连续性上都优于其它方法得到的纤维。采用同轴静电纺丝的方法可以制得中空纤维和纳米复合纤维等。 应用

静电纺丝纳米纤维在过滤材料中的应用

静电纺丝纳米纤维在过滤材料中的应用 戚妙北京永康乐业科技发展有限公司 1.静电纺过滤材料简述 一般说来,人们对于过滤材料原材料的甄选基本会在以下几种材料中进行:天然纤维、合成纤维、玻璃纤维、陶瓷、矿物等等[1-2]。按照不同的加工工艺这些过滤材料可分为以下几类[3]:①机织物、针织物、编织网和纤维束等;②纺粘和熔喷无纺布;③多孔陶瓷材料;④有机膜和无机膜材料; ⑤静电纺丝材料。 传统纤维过滤材料是直通的孔隙,其孔隙率也只有30%~40%[4]。从生产工艺流程角度审视,传统纤维织造过滤材料流程长,产品的生产效率低,主要通过经纬纱之间的孔隙进行过滤,滤料本身产生的阻力也比较大;且织造成型的过滤材料必须在其形成粉尘层之后,才能起到阻挡较小颗粒状物质的作用,如果过滤材料还没有形成粉尘层、过滤层清灰或者其它原因破坏了滤料的粉尘层时,就会导致传统纤维滤料的过滤效率大幅下降。 在过滤材料上运用静电纺丝技术有非常多的优点,现将其归纳成以下几个方面[5-9]。 (1)纤维直径小,均一性好。提高纤维滤材过滤性能的有效方法之一就是降低其纤维的直径,因为对于由直径数十微米的纤维制备出的纤维过滤器,随着纤维直径的降低滤材的过滤效率会得到提高。 (2)小孔径、高孔隙率及高通量。运用静电纺丝技术的纤维孔隙率可达80%~90%,这种结构的滤材在有效地去除亚微米级别以及微米级别的颗粒的同时,对水流只会产生较小的阻碍比。 (3)大比表面积、强吸附力。静电纺纤维有非常大的比表面积,这种结构大大地增加了颗粒沉积在纤维滤材表面的几率,这会对过滤的效果产生巨大的改观。其次,当过滤的颗粒非常小时,这些细小的颗粒会堆积在膜表面,产生所谓的“层效应”,也会使得静电纺丝薄膜的有效孔径尺寸显著下降。 (4)可再生性、节约环保。在实际的过滤过程中,大部分的杂质会留在静电纺丝薄膜的表面,只有其他很少的一部分颗粒会在静电纺薄膜内部和底部沉积,这就决定了该过滤材料方便清洁的特性,它的可持续再生的吸附功能有利于环保要求并会降低成本。 (5)低成本、种类多及工艺可控。静电纺丝已经是高效制备纳米级纤维材料的主要途径之一,它的优点甚多,可纺物质种类涵盖广、生产制造的装置简单、纺丝成本低廉、纺丝工艺可控等等。静电纺丝技术已经成功制备出多种纳米纤维,包括有机、有机/无机复合和无机纳米纤维。 目前应用静电纺丝技术的纳米纤维过滤材料已经可以应用于诸多高要求的过滤领域,其对直径在0.3um以下的颗粒,过滤效率可达到99.97%以上,也由于它出色的过滤精度,该材料具备了广泛应用于电子、生物、医药和防护等领域的前景[10]。 2.静电纺丝在过滤材料的应用 根据不同的应用领域可将对于静电纺丝过滤材料的研究分为以下三个方面: 2.1气体过滤

影响静电纺丝制备纳米纤维的因素有哪些

影响静电纺丝制备纳米纤维的因素有哪些? 静电纺丝技术是制备纳米纤维的有效方法之一,影响因素较多,工艺较难控制。那么影响静电纺丝制备纳米纤维的因素有哪些呢? 纺丝温度对静电纺丝的影响是多方面的,升高温度有利于溶剂的挥发,使射流在电场中快速固化,使纳米纤维直径增大另一方面,纺丝温度变化还会直接影响纺丝液的粘度、表面张力及导电性,比如升高纺丝温度,纺丝液的粘度和表面张力均减小,导电率提高,加快射流分子链的运动速度,在电场力的作用下,射流不稳定性增强,容易形成珠结。 湿度对静电纺丝的影响主要表现在湿度会改变溶剂的挥发性,湿度升高会降低溶剂的挥发速率,湿度降低会增加溶剂的挥发速率,因此,可以通过调节环境湿度对纺丝所得的纳米纤维形貌进行调控。 当所施加的电压不同时,为打破表面张力与电场力的平衡,毛细管顶端的液滴将会产生不同的表面形状,影响然后所产生的喷射液滴及细流尺寸的分布情况、纤维形态和其所传导的电流大小。 纺丝液性质——包括纺丝液的分子质量、浓度、粘度、电导率、表面张力、比热、相变热等。 生产条件——包括施加的电场强度电压纺丝速度、喷丝头与收集板之间的收集距离、纺丝温度、毛细孔直径等。 环境参数——包括室温、湿度、环境气流速度等。 纺丝液粘度直接影响静电纺丝所得的纳米纤维的形貌和性质。纺丝液粘度越大,聚合物分子链越易缠结,射流越不稳定,纺丝难度较大,不易制得直径分布均匀的纳米纤维但是粘度小无法形成射流,只能形成微滴。 静电纺丝过程中,纺丝液由于表面电荷的静电斥力产生射流,在电场力作用下拉伸、固化成膜,因此纺丝液的导电性对纺丝效果有直接影响。选择导电性高的溶剂是最简单直接的方法,或者可以通过向纺丝液中加入无机盐、有机盐、离子液体及导电金属粒子来提高纺丝液的导电性。 静电纺丝过程中,当静电斥力大于溶液的表面张力时纺丝液才会形成射流。纺丝液的表面张力不仅影响泰勒锥的形成,而且还影响射流在高压场中的运动及分裂,对纤维的形貌有决定性作用。表面张力有减小液体表面积的作用,使纺丝液射流变成球形,而高压电场中的电场力以及纺丝液的黏弹力会抑制射流形状的快速变化,从而有利于形成光滑且均一的纤维。 接收距离直接影响电场强度和射流在电场中的飞行和拉伸时间。接收距离小,电场强度会增大,电场力对射流的拉伸作用随之增强,有利于形成直径较小的纳米纤维但是同时也会减小射流拉伸时间,导致溶剂未完全挥发,难以制备直径均匀的纳米纤维。 若纺丝液的喷射速度非常小,无法在喷丝口形成泰勒锥,也即无法进行静电纺丝。随着纺丝液喷射速度增大至某一最佳值时,泰勒锥形成后会不断旋转直至接收板上,喷射过程的间隔时间能充分的将溶剂挥发掉,制备直径较小且分布均匀的纳米纤维;当纺丝液喷射速度过大,射流内部的溶剂含量增大以致无法完全挥发,残余的溶剂使纤维粘结,纤维出现很多珠结。

静电纺丝法制备pvp纳米纤维研究进展

静电纺丝法制备pvp纳米纤维研究进展 学院:材料科学与工程学院 专业班级:材料化学151 学生姓名: 学号: 指导教师:1 成绩: 2018年6 月29 日 静电纺丝法制备pvp纳米纤维研究进展

王逸凡 (材料科学与工程学院材料化学151班) 摘要:采用双针尖平行放置的一对细小铜针作为接收装置,聚乙烯基吡咯烷酮(PVP)无水乙醇质量分数为10%,电压25kV,在不同的旋转数下纺出了PVP纳米纤维绳在电纺丝喷丝针头和接收铜针间的静电库仑引力,以及纺丝间库仑斥力的双重作用下,电纺出PVP纳米纤维,纺丝电源中断后,一端的铜针固定,另一端作高速旋转,在接收器铜针的高速旋转下最终制得PVP纳米纤维用扫描电子显微镜(SEM)对其进行表征实验结果表明,接收器旋转速度和接收距离对多纤维结构的形貌有显著影响讨论了纳米纤维的形成机理。 关键词:聚乙烯吡咯烷酮;静电纺丝;纳米纤维 1.引言 静电纺丝技术是一种简便低耗的微米和亚微米纤维制备技术高压电场克服了带电聚合物溶液或熔体的表面张力,形成喷射细流,在向负极移动的过程中溶剂蒸发,最终以无纺布的形式收集在接收装置上[1-3]一般来说,从喷嘴形成的液体纤维束在向负极移动的过程中,经常会出现某些特殊的几何形状,从理论上讲,这些形状能够随着纤维的固化而被保存下来Renekerl[4-5]等相继报道了花环纤维和带状纤维的制备过程,并以PEO 为原料获得了螺旋结构的纤维在此基础上, Teppera等[6]从PEO/PA SA双组分溶液中得到了较为规则的螺旋纤维德国的PaulD.Dalton等人[7]以一对平行的金属圆环为接收器当两圆环之间布满了定向纤维的长丝之后,转动其中的一个圆环,制备出定向纳米纤维的编织绳纳米纤维绳具有很高的柔韧性和孔隙度,在微电子器件、高级光学材料和药物传输等领域有着广泛的应用杨帆等人以双针尖为接收器,在两根接地的针尖之间收集到了定向的纳米纤维双针尖接收器方法收集到的纤维更为集中,取向程度也更为理想。至今为止,从单组分非导电高分子中得到具有规则纳米纤维绳结构的纤维还比较少见本文以平行相对的一对铜针尖为接收器,纺丝电源中断后,高速旋转其中一端的铜针,将收集到的定向纤维编织成缠绕紧密的聚乙烯吡咯烷酮的纤维绳,研究了螺旋纤维的形成条件、接收器装置和纺丝距离对纤维形貌的影响,讨论了螺旋纤维的形成机理. 1.1原理 近年来的研究已经证实静电纺丝技术一般来说包括三个步骤:(1)流体溶液喷射出来,沿着直线方向延伸;(2)随着电动弯曲不稳定性的增长,喷射流将会发生一定程度上的分

相关文档
最新文档