电流调节器的作用及功能

电流调节器的作用及功能
电流调节器的作用及功能

一般情况下,交流电动机是可以通过调压来调速的,也就是调节电流了(因为降压后电流肯定会下降),它所有的调压器一般都自耦变压器,象老式的吊扇就是用自耦变压器来调速的。

直流电机也可以调压调速,一般用调电枢电压的方法来调速,用串电阻的方法或者可调电源都可以。

(1)跟随作用--作为内环的调节器,在外环转速的调节过程中,它的作用是使电流紧紧跟随其给定电压(即外环调节器的输出量)变化。

(2)抗扰作用--对电网电压的波动起及时抗扰的作用。

(3)加快动态过程--在转速动态过程中,保证获得电机允许的最大电流,从而加快动态过程。

(4)过流自动保护作用--当电机过载甚至堵转时,限制电枢电流的最大值,起快速的自动保护作用。一旦故障消失,系统立即自动恢复正常。这个作用对系统的可靠运行来说是十分重要的。

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

如需进一步了解相关仪器仪表产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/453600703.html,/

调节器正反作用

调节器的正反作用 当PV>SV,MV需要开大时为正作用;反之为反作用; 以上判断是在假设阀门特性后进行的,假设阀门为气开阀或电开阀(正作用),调节器的正反作用由被控对象、负反馈即可判断: 当PV>SV时,MV需开大可知被控对象为负,调节器为正,构成负反馈; 当PV>SV时,MV需关小可知被控对象为正,调节器为负,构成负反馈。 实际完整的判断方法为: 当PV>SV时 调节器 阀门需开大阀门需关小 气、电开阀正作用反作用 气、电关阀反作用正作用 调节器的正反作用设置原理: 实际上,调节器的正反作用通常根据PID控制的闭环回路负反馈的原则设置。 检测仪表×被控对象×调节器×调节阀= 负反馈 (1)现场各种检测仪表一般都认为是正作用的;(不考虑其正反作用) (2)气动调节阀门的正反特性由阀门定位器、执行机构的特性共同组成。

①定位器的正反作用(不考虑其正反作用) 输入信号4mA时输出气压最小,输入信号是20mA时输出气压最大,正作用;反之则为反作用。 从理论上说,智能电气阀门定位器可以调校为正作用或者反作用,但是我们在做回路分析时,我们只是以阀门的特性为研究对象,即根据回路特性确定阀门为正作用或者反作用,如果阀门定位器选择反作用,那么也就意味着阀门的执行机构和阀门结构正反作用要调整,也就是说,阀门从结构上做不到气源故障安全位置。所以说,从实践执行的角度来讲,阀门定位器几乎可以认为永远的正作用,除非使用场合有非常特殊的要求。 ②执行机构的正反作用(需要考虑): 气源压力由小变大时,阀门由关到开为正作用,反之为反作用。 气开、电开为正;气关、电关为负。 (3)被控对象正反作用(需要考虑): 当阀门增大时,被控对象也增加为正作用,反之为反作用。 简化后: DCS单回路的调节器的正反作用判定: 被控对象×调节器×调节阀= 负反馈 DCS串级回路副回路的调节器的正反作用判定: 副控对象×调节器×调节阀= 负反馈 DCS串级回路主回路的调节器的正反作用判定: 主控对象×副控对象×调节器= 负反馈

电流调节器设计举例

双闭环直流调速系统设计举例 例题2-1:某晶闸管供电得双闭环直流调速系统,整流装置采用三相桥式电路,基本 数据如下: 直流电动机: 220V、136A、 1460r /min, Ce=0、132V﹒min/r,允许过载倍数λ=1、5。 晶闸管装置放大系数Ks =40。 电枢回路总电阻R=0、5 时间常数 电流反馈系数β=0、062V/A(β≈10V/1.5I N) 试按工程方法设计电流调节器,设计要求如下 要求稳态指标:电流无静差; 动态指标:电流超调量<5%。 双闭环直流调速系统结构图如下

双闭环直流调速系统电流环得设计 1.确定时间常数 (1)整流装置滞后时间常数Ts 。 -I dL U d0 U n + - - + - U i ACR 1/R T l s+1 R T m s U *i U c K s T s s+1 I d 1 C e + E β T 0i s+1 1 T 0i s+1 ASR 1 T 0n s+1 α T 0n s+1 U *n n

三相桥式电路得平均失控时间Ts=0、0017s。 (2)电流滤波时间常数 三相桥式电路每个波头得时间就是3.33ms,为了基本滤平波头,应有(l~2)=3.33ms, 因此取=2ms=0、002s。 (3)电流环小时间常数;按小时间常数近似处理,取=0、0037s。 2.选择电流调节器结构 根据设计要求:5%,而且 因此可按典型1型系统设计。电流调节器选用PI型,其传递函数为 3.选择电流调节器参数 ACR超前时间常数:== 0、03s。 电流环开环增益:要求5%时,应取

=0、5因此 于就是,ACR得比例系数为 4.校验近似条件 电流环截止频率s-1 (1)晶闸管装置传递函数近似条件 ﹤ 现在 = s-1> 满足近似条件 (2)忽略反电动势对电流环影响得条件:; 现在, = 满足近似条件。 (3)小时间常数近似处理条件: =

电流调节器设计举例样本

双闭环直流调速系统设计举例 例题2-1:某晶闸管供电双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下: 直流电动机: 220V、136A、1460r/min,Ce=0.132V﹒min/r,容许过载倍数λ=1.5。 晶闸管装置放大系数Ks =40。 电枢回路总电阻R=0.5 时间常数 电流反馈系数β=0.062V/A(β≈10V/1.5I N) 试按工程办法设计电流调节器,设计规定如下 规定稳态指标:电流无静差; 动态指标:电流超调量<5%。 双闭环直流调速系统构造图如下

双闭环直流调速系统电流环设计 1.拟定期间常数 (1)整流装置滞后时间常数Ts 。 三相桥式电路平均失控时间 T s =0.0017s 。 -I dL U U + - - + - U ACR 1/R T s+1 R T s U * U K T s+1 I 1 + E β T s+1 1 T s+1 ASR 1 T s+1 α T s+1 U * n

(2)电流滤波时间常数 三相桥式电路每个波头时间是3.33ms,为了基本滤平波头,应有(l~2)=3.33ms, 因而取=2ms=0.002s。 (3)电流环小时间常数;按小时间常数近似解决,取=0.0037s。2.选取电流调节器构造 依照设计规定:5%,并且 因而可按典型1型系统设计。电流调节器选用PI型,其传递函数为 3.选取电流调节器参数

ACR超前时间常数:== 0.03s。电流环开环增益:规定5%时,应取=0.5因而 于是,ACR比例系数为 4.校验近似条件 电流环截止频率s-1(1)晶闸管装置传递函数近似条件﹤ 当前= s-1> 满足近似条件

传动教材第2章转速电流双闭环直流调速系统和调节器的工程设计方法

第2章 转速、电流双闭环直流调速系统 和调节器的工程设计方法 2.1 转速、电流双闭环直流调速系统及其静特性 采用PI 调节的单个转速闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,单闭环系统就难以满足需要,这主要是因为在单闭环系统中不能控制电流和转矩的动态过程。电流截止负反馈环节是专门用来控制电流的,并不能很理想地控制电流的动态波形,图2-1a)。 在起动过程中,始终保持电流(转矩)为允许的最大值,使电力拖动系统以最大的加速度起动,到达稳态转速时,立即让电流降下来,使转矩马上与负载相平衡,从而转入稳态运行。这样的理想起动过程波形示于图2-1b 。 为了实现在允许条件下的最快起动,关键是要获得一段使电流保持为最大值dm I 的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么,采用电流负反馈应该能够得到近似的恒流过程。应该在起动过程中只有电流负反馈,没有转速负反馈,达到稳态转速后,又希望只要转速负反馈,不再让电流负反馈发挥作用。 2.1.1 转速、电流双闭环直流调速系统的组成 系统中设置两个调节器,分别调节转速和电流,如图2-2所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE 。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统。 转速和电流两个调节器一般都采用PI 调节器,图2-3。两个调节器的输出都是带限幅 + TG n ASR ACR U *n + - U n U i U * i + - U c TA M + - U d I d UPE - M T 图2-2 转速、电流双闭环直流调速系统结构 ASR —转速调节器 ACR —电流调节器 TG —测速发电机 TA —电流互感器 UPE —电力电子变换器 内外 n i

电压调节器设计

基于PWM控制的交流发电机电压调节器 摘要:本文介绍了基于SG3525 PWM控制器的交流发电机电压调节器的硬件电 路。较为详细地分析了通过检测交流发电机的输出平均电压来改变输出PWM波 的占空比,进而控制电机励磁绕组产生合适的励磁电流来使输出电压稳定于规定 的水平。 关键词:电压调节器;PWM Alternator voltage regulator based on the PWM Controller Abstracts:This article introduces the design of hardware of the alternator voltage regulator system based on the SG3525 PWM controller for synchronous machines. Detailed analysis of how to change the average duty cycle of the PWM wave by detecting the average output voltage of the alternator, and thus control the motor field winding to generating the appropriate excitation current,so that the output voltage is stabilized at the required level. Key words: Voltage regulator; PWM 前言: 电压调节电路是航空发电机Array的重要组成部分。其基本组成有 电压检测、比较、放大与执行和 控制几个环节,如图1所示。本 文的交流发电机调压系统是以 SG3525芯片为核心的。交流发电 机的输出平均电压经电压采样电 路反馈到SG3525的1脚,即误差 放大器的反相端。当输出电压有 波动时,误差放大器会放大误差, 后续电路将会自动调节其输出 图1 电压调节器方块图 PWM波的占空比,进而使功率驱 动电路的输出波形的导通时间改变,从而调节了发电机的励磁电流,使其输出电压回复为正常值。 1 输出电压检测电路 本调节器输出电压的检测采用 平均电压检测,如图2所示。电压 Ud由三相电压经变压整流后取得, 其平均值取决于三个线电压的大 小。 图2 平均电压检测电路

《电力拖动自动控制系统》-第二章转速、电流双闭环直流调速系统和调节器的工程设计方法

第二章转速、电流双闭环直流调速系统和调节器 的工程设计方法 内容提要: 转速、电流双闭环控制的直流调速系统是应用最广性能很好的直流调速系统。本章着重阐明其控制规律、性能特点和设计方法,是各种交、直流电力拖动自动控制系统的重要基础。我们将重点学习: ●转速、电流双闭环直流调速系统及其静特性 ●双闭环直流调速系统的数学模型和动态性能分析 ●调节器的工程设计方法 ●按工程设计方法设计双闭环系统的调节器 ●弱磁控制的直流调速系统 2.1 转速、电流双闭环直流调速系统及其静特性 问题的提出: 第1章中表明,采用转速负反馈和PI调节器的单闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,例如:要求快速起制动,突加负载动态速降小等等,单闭环系统就难以满足需要。 1. 主要原因 是因为在单闭环系统中不能随心所欲地控制电流和转矩的动态过程。在单闭环直流调速系统中,电流截止负反馈环节是专门用来控制电流的,但它只能在超过临界电流值 Idcr 以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想地控制电流的动态波形。 2.理想的启动过程 a) 带电流截止负反馈的单闭环调速系统 b) 理想的快速起动过程 2-1 直 流调速系统起动过程的电流和转速波形 性能比较: 带电流截止负反馈的单闭环直流调速系统起动过程如图所示,起动电流达到最大值Idm 后,受电流负反馈的作用降低下来,电机的电磁转矩也随之减小,加速过程延长。理想起动过程波形如图所示,这时,起动电流呈方形波,转速按线性增长。这是在最大电流(转矩)受限制时调速系统所能获得的最快的起动过程。 3. 解决思路 为了实现在允许条件下的最快起动,关键是要获得一段使电流保持为最大值Idm的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么,采用

电流环调节器设计过程

电流环PID 调节器设计大致流程 以下设计过程主要参考文献[1],首先给出永磁同步电机参数表如下: 电机的反电势会使电流输出与给定存在偏差,但低速时反电势较小,可通过调节器的控制消除, 因此设计时可忽略不计。电流环传函结构图如图1所示,其中,v K 是逆变器电压放大倍数,表示逆变器直流侧电压与三角载波电压幅值之比,v τ是逆变器时间常数,与开关频率有关,s R 是电枢绕组电阻,q L 是交轴电感,β 是反馈系数, oi T 是反馈滤波时间常 数,ACR G 是电流调节器传递函数。 图1 未加校正时的电流环开环传函如下: (1)()(1)v iob v q s oi K G S L S R T S βτ= +++ (1) 式中: v τ、oi T 是小时间常数, 因此可将控制对象等效: ()[()1] v iob q s v oi K G L S R T S βτ=+++ (2) 电流调节器可选用 PI 调节器进行设计: 1p i ACR i K K S G K S += (3) 用 PI 调节器的零点来抵消控制对象的大时间常数极点, 如下: 11q p i s L K K S S R += + (4) 得到电流环的开环传递函数: [()1]*v ik i oi v s K G K S T S R βτ=++ (5) 系统要求电流环具有较快的响应速度, 同时超调又不可过大, 因此令: ()0.5v oi v i s K T K R βτ+= (6)

设定逆变器开关频率为f=18kHz ,于是逆变器时间常数155.6v us f τ==,将15.5dc v s U K U ==、0.6β=、 0.11ms oi T =和表1的电机参数代入到式(4)、式(6)中,得 6.5p K =,0.0022i K =。 加入 PI 调节器之前的系统开环幅相频率特性曲线如图2 所示, 系统明显不稳定; 加入 PI 调节器后得到的系统开环的幅相频率特性曲线如图 3 所示, 可见所设计的电流环是稳定的, 且有 45°左右的相角裕度。 图2 原系统幅相频率特性曲线 图3 补偿后电流环幅相频率特性曲线 参考文献: [1]刘军,敖然,韩海云,秦海鹏,朱德明.永磁同步电动机伺服系统电流环优化设计[J ]. 微特电机,2012,40(6):17-20. [2]熊小娟,韩亚荣,邱鑫.永磁同步电机伺服系统电流环设计及性能分析[J ]. 科技传播,2010,5(上):62-63. [3]陈荣,邓智泉,严仰光.永磁同步服系统电流环的设计[J ]. 南京航空航天大学学报,2004,36(2):220-225.

PI调节器

在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 比例(P)控制 比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。 积分(I)控制 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。

为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。 PID是比例,积分,微分的缩写.比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。积分调节作用:是使系统消除稳态误差,提高无差度。因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。积分作用常与另两种调节规律结合,组成PI 调节器或PID调节器。微分调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。因此,可以改善系统的动态性能。在微分时间选择合适情况下,可以减少超调,减少调节时间。微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器

自动调节器典型调节规律及调节过程分析

第八章 调节器调节规律及其对过程影响 第一节 自动调节器典型调节规律及调节过程分析 调节器的基本调节规律是模拟运行人员的基本操作,是运行人员调节动作精华的总结。选择合适的调节器动作规律是热工自动人员的职责范畴,但运行人员如果能理解各种动作的调节过程,就能够使用好相应的自动调节系统。 自动调节的目的是要及时准确地进行调节,前面我们已经讲到基本环节由比例、积分、惯性、微分、迟延组成。因为惯性、迟延环节不符合及时准确的要求,所以我们可考虑的就只有比例、积分、微分这三种特性了(积分、微分调节规律一般不能单独使用)。自动调节器的典型动作规律按照环节特性可分为比例(P )、比例积分(PI )、比例微分(PD )、比例积分微分(PID )。 一、典型调节规律 1. 比例(P )调节规律 比例调节作用简称为P 作用,是所有调节器必不可少的一种典型调节作用。P 作用实质上就是典型环节中的比例作用。不过这个环节一般用电子元件构成的电路来实现,其输入输出都是电信号。 比例环节的传递函数P K W =,P K 称为比例环节的比例放大系数;而在比例(P )调节作用中,传递函数习惯上表示成δ 1 =P W , (8-1) 式中 P K 1 = δ——调节器的比例带(比例度),δ越大,比例作用越弱。 下面以如图8-1所示的采用浮子式比例调节器的水位调节系统为例,说明比例调节器的调节规律。该系统的被调对象是有自平衡能力的单容水箱;浮子起到检测器的作用,用于感受水位的变化;比例调节器就是杠杆本身,杠杆以O 点为支点可以顺时针或逆时针转动。给定值的大小与给定值连杆的长短有关;选择流入侧阀门作为调节阀,由调节器来控制它的开度变化。当某种扰动使水位升高时(说明此时流入量1q >流出量2q ),浮子随之升高,通过杠杆作用使阀门芯下移,关小调节阀,流入量1q 减小直至等于流出量 2q 。反之,当某种扰动使水位降低时(说明此时流入量1q <流出量2q ,浮子随之降低,通过杠杆作用使阀门芯上移,开大调节阀,流入量1q 加大直至等于流出量2q 。这样,就可以自动地把水位H 维持在某个 高度附近,完成水位的自动调节。↓↑?μh ,↑↓?μh ,动作方向始终正确,朝着减小被调量波动的方向努力。比例调节器的动画演示见光盘第八章目录下”比例调节器流出侧扰动(阶跃减少)”和“比例调节 图示中连杆长度为L ,水位如图8-1所示。假设在目前调节阀门开度μ下流入流出正好平衡,水位稳定不变。此时,将给定值连杆变短后重新装入,由于连杆变短,水位还是原数值没有变化,所以调节器杠杆右侧下降左端升高,调节阀门开度阶跃开大,使流入量1q 阶跃增加,21q q >,进而引起水位H 上升,水位上升的同时,调节杠杆右侧又不断回升,杠杆左端下移,调节阀开度不断关小,使1q 减小,当21q q =时,水位处于新的平衡状态。这个新的水位高于原来的水位,所以给定值连杆长度变短相当于给定值的增

中主电路,电流调节器及转速

中北大学 电力拖动自动控制系统课程设计说明书 学生姓名:学号: 学院:信息与通信工程学院 专业:自动化 题目:双闭环V-M调速系统中主电路, 电流调节器及转速调节器的设计 指导教师: 2011年8月25日

中北大学 电力拖动自动控制系统课程设计任务书 11/12 学年第一学期 学院:信息与通信工程学院 专业:自动化 学生姓名:学号: 课程设计题目:双闭环V-M调速系统中主电路, 电流调节器及转速调节器的设计 起迄日期:8月22 日~8月26日 课程设计地点:中北大学 指导教师: 下达任务书日期: 2011年08月22日 课程设计任务书

一、 设计题目: 双闭环V-M 调速系统中主电路,电流调节器及转速调节器的设计。 二、 已知条件及控制对象的基本参数: (1)已知电动机参数为:nom p =3kW ,nom U =220V ,nom I =17.5A , nom n =1500r/min ,电枢绕组电阻a R =1.25Ω,2GD =3.532N m g 。采用 三相全控桥式电路,整流装置内阻rec R =1.3Ω。平波电抗器电阻 L R =0.3Ω。整流回路总电感 L=200mH 。 (2)这里暂不考虑稳定性问题,设ASR 和ACR 均采用PI 调 节器,ASR 限幅输出im U * =-8V ,ACR 限幅输出ctm U =8V ,最大给定nm U *=10V ,调速范围D=20,静差率s=10%,堵转电流 dbl I =2.1nom I ,临界截止电流 dcr I =2nom I 。 (3)设计指标:电流超调量δi %≤5%,空载起动到额定转速时的转速超调量δn ≤10%,空载起动到额定转速的过渡过程时间 t s ≤0.5。 三、 设计要求 (1)用工程设计方法和[西门子调节器最佳整定法]* 进行设计,决定ASR 和ACR 结构并选择参数。 (2)对上述两种设计方法进行分析比较。 (3)设计过程中应画出双闭环调速系统的电路原理图及动态结构图

转速电流双闭环直流调速系统仿真与设计说明

《运动控制系统》课程设计 题目:转速电流双闭环直流调速系统仿真与设计

转速电流双闭环直流调速系统仿真与设计 1. 设计题目 转速电流双闭环直流调速系统仿真与设计 2. 设计任务 已知某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下: 1)直流电动机:160V、120A、1000r/min、C e=0.136Vmin/r,允许过载倍数λ=1.4 2)晶闸管装置放大系数:K s=30 3)电枢回路总电阻:R=0.4Ω 4)时间常数:T l=0.023s,T m=0.2s,转速滤波环节时间常数T on取0.01s 5)电压调节器和电流调节器的给定电压均为10V 试按工程设计方法设计双闭环系统的电流调节器和转速调节器,并用Simulink建立系统模型,给出仿真结果。 系统要求: 1)稳态指标:无静差 2)动态指标:电流超调量σi ≤5%;空载起动到额定转速时超调量σn ≤10% 3. 设计要求 根据电力拖动自动控制理论,按工程设计方法设计双闭环调速系统的步骤如下: 1)设计电流调节器的结构和参数,将电流环校正成典型I型系统; 2)在简化电流环的条件下,设计速度调节器的结构和参数,将速度环校正成典型II型系统; 3)进行Simulink仿真,验证设计的有效性。 4.设计容 1)设计思路: 带转速负反馈的单闭环系统,由于它能够随着负载的变化而相应的改变电枢电压,以补偿电枢回路电阻压降的变化,所以相对开环系统它能够有效的减少稳态速降。 当反馈控制闭环调速系统使用带比例放大器时,它依靠被调量的偏差进行控制的,因此是有静差率的调速系统,而比例积分控制器可使系统在无静差的情况下保持恒速,实现无静差调速。 对电机启动的冲击电流以及电机堵转时的堵转电流,可以用附带电流截止负

直流电动机的转速调节器和电流调节器设计毕业设计

摘要 转速、电流双闭环控制的直流调速系统是性能很好的直流调速系统,更是一种当前应用广泛、经济、适用的电力传动系统,它具有调速范围广、精度高、动态性能好和易于控制等优点,是各种交、直流电力拖动自动控制系统的重要基础,所以在电力传动系统中得到了广泛的应用。基于设计题目,直流电动机调速控制器选用了转速、电流双闭环调速控制电路,调速系统的主电路采用了三相全控桥整流电路来供电。本论文首先确定整个设计的方案和框图;然后确定主电路的参数以及框图中所需的电动机参数;本论文的重点设计是直流电动机的转速调节器和电流调节器的设计,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,在直流调速系统起动过程中只有电流负反馈,达到稳态转速后,只要转速负反馈,二者之间实行串级联接。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称做外环。这就形成了转速、电流双闭环调速系统。转速和电流两个调节器都采用PI调节器,这样构成的双闭环直流调速系统就能获得良好的静、动态性能。最后采用MATLAB/SIMULINK对整个调速系统进行了仿真分析,使其满足工程设计参数指标。关键词:电力传动;双闭环;直流调速系统;电流调节器;转速调节器

Abstract Speed, current double closed loop control of DC speed regulation system is a very good performance of the DC motor speed control system, is also a kind of wide applications, economic, applicable to electric drive system, it has a wide speed range, high precision, good dynamic performance and easy to control, is all kinds of AC, DC electric drive automatic control system important basis, so in electric drive automatic control system has been widely used. Based on the design of the subject, the DC motor speed controller, the speed, current double closed loop speed control circuit, control system's main circuit adopts a three-phase full-bridge controlled rectifier circuit to supply power. This paper firstly determine the whole design scheme and block diagram; then to determine the parameters of the main circuit and the block diagram of the desired motor parameters; the focus of this paper is the design of DC motor speed regulator and current regulator design, respectively, to adjust the speed and current, which are respectively introduced into the speed negative feedback and current negative feedback, in DC control system start process only the current negative feedback, to achieve steady speed, as long as the speed negative feedback, two between implementation of cascade connection. From the closed loop structure, the current loop on the inside, known as the inner ring; the speed loop outside, called outer ring. This form of speed, current double closed loop speed regulation system. Speed and two current regulators have adopted PI regulator, the DC double loop speed control system can obtain good static, dynamic performance. Finally using the MATLAB / SIMULINK on the speed regulation system simulation and analysis are carried out, in order to meet the engineering design parameters. Key words:power transmission;double closed loop;DC speed control system;current regulator;speed regulator

PID调节器的作用及其参数对系统

实验六 PID调节器的作用及其参数对系统 调节质量的影响 一.实验目的: 1.了解和观测PID基本控制规律的作用,对系统动态特性和稳态特性及稳 定性的影响。 2.验证调节器各参数(Kc,Ti,Td), 在调节系统中的功能和对调节质量的 影响。 二. 实验内容: 1.分别对系统采取比例(P)、比例微分(PD)、比例积分(PI)、比例积分微分(PID) 控制规律,通过观察系统的响应曲线,分析系统各性能的变化情况。 1.观测定值调节系统(扰动作用时)在各调节规律下的响应曲线。 2.观测调节器参数变化对定值调节系统瞬态响应性能指标的影响。 三. 实验原理: 参考输入量(给定值)作用时,系统连接如图(6-1)所示: 图(6-1) 扰动信号作用时,系统连接如图(6-2)所示:

图(6-2) 四. 实验步骤: 利用MATLAB中的Simulink仿真软件。 l. 参考实验一,建立如图(6-1)所示的实验原理图; 2. 将鼠标移到原理图中的PID模块进行双击,出现参数设定对话框,将PID 控制器的积分增益和微分增益改为0,使其具有比例调节功能,对系统进行纯比例控制。 3. 单击工具栏中的图标,开始仿真,观测系统的响应曲线,分析系统性 能;调整比例增益,观察响应曲线的变化,分析系统性能的变化。 4. 重复步骤2-3,将控制器的功能改为比例微分控制,观测系统的响应曲线, 分析比例微分控制的作用。 5. 重复步骤2-3,将控制器的功能改为比例积分控制,观测系统的响应曲线, 分析比例积分控制的作用。 6. 重复步骤2-3,将控制器的功能改为比例积分微分控制,观测系统的响应曲 线,分析比例积分微分控制的作用。 7. 参照实验一的步骤,绘出如图(6-2)所示的方块图; 8. 将PID控制器的积分增益和微分增益改为0,对系统进行纯比例控制。不断 修改比例增益,使系统输出的过渡过程曲线的衰减比n=4,记下此时的比例增益值。 9. 修改比例增益,使系统输出的过渡过程曲线的衰减比n=2,记下此时的比例 增益值。 10. 修改比例增益,使系统输出呈临界振荡波形,记下此时的比例增益值。 11. 将PID控制器的比例、积分增益进行修改,对系统进行比例积分控制。不断

电压调节器设计

基于SG3525的交流发电机电压调节器 刘华吾(030820418)杨驹丰(030820424) 郑智勋(030820426)张超(030820425)陈兴(030820428) (F5研究小组) 摘要:本论文详细介绍了基于SG3525的交流发电机电压调节器的硬件电路,分析了交流发电机的输出电压如何控制励磁电流的大小.同时本系统具有过压,欠压保护以及过励磁电流保护,具有很好的运行特性. 关键词:电压调节器 A utomatic voltage regulator based on SG3525for synchronous machines Abstract:This paper introduces the design of hardware of the automatic voltage regulator system based on SG3525for synchronous machines.Detailed analyses of how the synchronous generator's exciting current is controlled by the voltage regulation system are presented.And the design comes with over-voltage,under-voltage and over-exciting current protection and reliable performance. Keywords:automatic voltage regulator synchronous machines exciting current 一.总述 图一:交流发电机调压器结构框图 基压

交流电机离散时间电流调节器的设计

卷第电力电子技术 基金项目:北京市教委资助项目(KM200710009001)定稿日期:2010-11-29 作者简介:杨立永(1974-),男,天津人,博士,副教授,研究方向为异步电机的参数辨识和风力发电及其并网技术。 1引言 在一个同步旋转励磁坐标系,作为控制系统内环的电流调节器可调节具有较大频率范围且高宽带零稳态误差的交流电流。然而,电动变量转换成同步坐标系时会在d ,q 轴之间产生交叉耦合,该耦合项与基准励磁频率成正比,因此当励磁频率增加时,电流调节器性能将减弱。文献[1]介绍了复矢量同步坐标系PI 电流调节器,解决了交叉耦合的作用,减小了整个系统对参数的敏感性[2]。在广义传递函数矩阵[3],通过使用复矢量电流控制方法进行交叉耦合的解耦。连续时域电流调节器可广泛应用于绝大多数场合,但当电流调节器在较高宽带或驱动需运行在相对采样频率较高的基 准励磁频率时,其数字化应用性能会减弱。在较大基频与采样频率比值下,若电流调节器没有很好地满足控制器的离散特性,将会导致系统不稳定。另外,使用SVPWM 控制逆变器在采用信号与应用控制响应之间就会产生固有延迟,进一步使控制器的设计复杂化,降低系统稳定性。 在此分析了离散时间复矢量电流调节器的设计方法和性能,比较了离散时域电流调节器的不同设计方法,建立了一离散时域交流电机模型,从而获知在较高基频与采样频率比值的特性和 SVPWM 的延迟。利用该电机模型设计了离散时域 复矢量PI 电流调节器,仿真和实验结果证明了该电流调节器的稳定性和鲁棒性。 2离散电流调节器的设计方法 设计连续时域系统数字控制器的普遍方法是 先设计连续时域控制器,然后通过近似地连续s 转换处理为离散的z 变换转变成等效离散型。该方法 交流电机离散时间电流调节器的设计 杨立永,田安民 (北方工业大学,电力电子与电气传动工程中心,北京 100041) 摘要:分析了运行在较高基频与采样频率的比值下异步电机的离散时间电流调节器的特点,该情况普遍应用在高速列车驱动和大型牵引驱动上。若电流调节器的设计不能很好地满足控制系统离散特性,在较高的基频与采样频率比值下,系统会发生严重的振荡或者不稳定响应。通过一个含SVPWM 延迟的离散时域交流电机模型,设计离散时域复矢量电流调节器。仿真和实验结果证明该调节器具有非常优越的稳定性和鲁棒性,充分满足了控制系统的离散特性。 关键词:调节器;交流电机;数字延迟中图分类号:TP214 文献标识码:A 文章编号:1000-100X (2011)05-0062-03 Discrete -time Current Regulator Design for AC Machine YANG Li -yong ,TIAN An -min (Power Electronic and Motor Drivers Enginerring Center , North China University of Technology ,Beijing 100041,China ) Abstract :The behaviors of discrete -time current regulators for AC machines operating at high ratios of fundamental -to -sampling frequencies are analyzed ,a situation common for high speed automotive drives and large traction drives.When the current regulator design does not properly incorporate the effects of the discrete nature of the controller ,the highly oscillatory ,or unstable response can occur ,at high ratios of fundamental -to -sampling frequencies.As a part of this in -vestigation ,a discrete -time domain AC machine model is developed that includes the delays associated with SVPWM.This model is used to design a discrete -time domain version of the complex vector current regulator that demonstrates improved response compared with the other regulators studied.Simulation and the experimental results prove that the complex vector peoformance indice has very superior stability and robustness ,fully meets the discrete control system.Keywords :regulaor ;alternating current machine ;digital delay Foundation Project :Supported by Education Committee Project of Beijing (No.KM200710009001) 第455期2011年5月 Vol.45,No.5May 2011 Power Electronics 62

调节器调调节规律的选择

调节器调调节规律的选择 目前,工业上常用的主要有P、I、D三种调节规律组合而成。调节器的选型应根据调节系统的特性和工艺要求。 比例调节器的特点是:调节器的输出与偏差成比例,阀门位置与偏差之间有对应关系。当负荷变化时,克服干扰能力强,过渡过程时间短,过程终了存在余差。负荷变化愈大,余差愈大。 它适用于调节通道滞后较小,负荷变化不大,工艺参数只要求在一个范围内变化的系统。如中间贮罐的液位、精馏塔塔釜液位,以及不太重要的蒸汽压力等。 比例积分调节器的特点是:积分作用使调节器的输出与偏差的积分成比例。积分作用使过渡过程结束时无余差,但稳定性降低。虽然加大比例度可以提高稳定性,但超调量和振荡周期都增大,回复时间也加长。 比例积分调节器适用于调通道滞后较小,负荷变化不大,工艺参数不允许有余差的系统。例如流量、压力和要求严格的液位调节系统,都采用比例积分调节器。这是使用最多,应用最广的调节器。 比例积分微分调节器的特点是:微分作用使调节器的输出与偏差变化速度成比例。它对克服容量滞后有显著效果。在比例的基础上加入微分作用则增加稳定性。再加上积分作用可以消除余差。对于滞后很小的对象,应避免引入微分作用,否则会导致系统的不稳定。 PID三作用调节器用于容量滞后较大的对象(如温度对象),负荷变化大的系统可获得满意的调节质量。

调节参数的工程整定 调节系统的过渡过程,与调节对象的特性、干扰形式和大小、调节方案的确定以及调节参数的整定有着密切的关系。对象特性和干扰情况是受工艺操作和设备特性限制的。在确定调节方案时,只能尽量设计合理,并不能任意改变它。一旦方案确定之后,对象各通道的特性就已成定居。这时调节系统的调节质量只取决于调节器参数的整定了。所谓调节器参数的整定,就是求取最好的过渡过程中调节器的比例度δ、积分时间T1、微分时间T D具体数值的工作。 整定调节器参数的方法,至今已有几十种,可分两大类。一类是理论计算整定法。如反应曲线法、频率特性法、根轨迹法等。这些方法都要获得对象的动态特性。由于化工对象特性复杂,其理论推导和实验测定都比较困难;有的不能得到完全符合实际对象特性的资料;有的方法繁琐,计算麻烦;有的采用近似方法忽略了一些因素。因此,最后所得数据可靠性不高,还需要拿到现场去修改。因而在工程上多不采用。 另一类是工程整定的方法。就是避开对象特性曲线和数学描述,直接在调节系统中进行整定。其方法简单,计算简便,容易掌握。当然,这是近似的方法,所得调节器的参数不一定是最佳参数。但是相当实用,可以解决一般实际问题。 一、经验凑试法 此法是根据经验先将调节器参数放在一个数值上,直接在闭合调节系统中,通过改变给定值施加干扰,在记录仪上看过渡过程曲线。

线性调节器的分类及原理

线性调节器可以分为有限时间调节器和无限时间调节器两类。 有限时间调节器指控制过程结束时间τ为有限值时的线性调节器。它的调节规律的表达式为 u*(t)=-R-1BTP(t)x(t) 式中R-1为逆矩阵,而 P(t)可由求解如下形式的黎卡提矩阵微分方程来确定: 有限时间调节器作用相当于一个线性状态反馈。其特点是不管被控对象是时变的还是定常的,调节器必定是时变的。下图为有限时间线性调节器和整个最优调节系统的框图。 无限时间调节器控制作用结束时间τ为无穷大时的线性调节器。只有在被控对象为完全能控(见能控性)的条件下,无限时间调节器才能使系统的偏离运动最终回复到原平衡状态。这类调节器问题的性能指标中的第一项必定是零,因此常可将其删去。无限时间调节器的调节规律的表达式是 u*(t)=- R-1BTPx(t) 式中P由求解下列黎卡提矩阵代数方程来定出: PA+ATP-PBR-1BTP+Q=0 无限时间调节器也是由线性状态反馈构成的。与有限时间调节器不同,无限时间调节器当被控对象为定常时也一定是定常的。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关仪器仪表产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/453600703.html,/

相关文档
最新文档