直流逆变器设计(DOC)

直流逆变器设计(DOC)
直流逆变器设计(DOC)

3KV A三相逆变器设计

1 概述

现代工业、交通运输、军事装备、尖端科学的进步以及人类生活质量和生存环境的改善,都依赖于高品质的电能,据统计70%的电能都是经过变换后才使用,而随着科技的发展,需要变换的比例将会进一步提高。电力电子技术为电力工业的发展和电力应用的改善提供了先进技术,它的核心是电能形式的变换和控制,并通过电力电子装置实现其应用。电力电子装置是以满足用电要求为目标,以电力半导体器件为核心,通过合理的电路拓扑和控制方式,采用相关的应用技术对电能实现变换和控制的装置。逆变器和直流斩波电路是应用很广的一种电力电子装置或技术。

直流斩波电路(DC Chopper)的功能是将直流电变为另一种固定的或可调的直流电,也称为直流-直流变换器(DC/DC Converter)直流斩波电路(DC Chopper)一般是指直接将直流变成直流的情况,不包括直流-交流-直流的情况;直流斩波电路的种类很多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic 斩波电路,Zeta斩波电路,前两种是最基本电路。

逆变器也称逆变电源,是将直流电能转变成交流电能的变流装置,是太阳能、风力发电中的一个重要部件。随着微电子技术与电力电子技术的迅速发展,逆变技术也从通过直流电动机—交流发电机的旋转方式,发展到晶闸管逆变技术,而今的逆变技术多采用了MOSFET、IGBT、GTO、IGCT、MCT 等多种先进且易于控制的功率器件,控制电路也从模拟集成电路发展到单片机控制甚至采用数字信号处理器(DSP)控制。各种现代控制理论如自适应控制、自学习控制、模糊逻辑控制、神经网络控制等先进控制理论和算法也大量应用于逆变领域。其应用领域也达到了前所未有的广阔,从毫瓦级的液晶背光板逆变电路到百兆瓦级的高压直流输电换流站;从日常生活的变频空调、变频冰箱到航空领域的机载设备;从使用常规化石能源的火力发电设备到使用可再生能源发电的太阳能风力发电设备,都少不了逆变电源。毋庸置疑,随着计算机技术和各种新型功率器件的发展,逆变装置也将向着体积更小、效率更高、性能指标更优越的方向发展。

PWM控制技术就是对脉冲的宽度进行调制的技术,即通过对一系列脉冲的宽度进行调制,来等效的获得所需要的波形(含形状和幅值);面积等效原理是PWM技术的重要基础理论。一种典型的PWM控制波形SPWM脉冲的宽度按正弦规律变化而和正弦波等效

的PWM波形称为SPWM波。SPWM法是一种比较成熟的也是目前使用较广泛的PWM法。在采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。SPWM 法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM 波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值。

本文通过详细讲述每个部分的工作原理、元件选择、电路构造和参数选择,设计出三相逆变器所需的升压电路、主电路、反馈与控制电路、PWM生成电路、触发电路和滤波电路,完整的阐述了一个三相逆变器的设计方法和过程。

2 方案论证

2.1 设计任务与要求

条件:输入直流电压:110V。

要求完成的主要任务:

设计容量为3KV A的三相逆变器,要求达到:

1)输出380V,频率50Hz三相交流电

2)完成总电路设计

3)完成电路中各元件的参数计算

2.2 设计任务分析

由于输入直流电压只有110V,而输出交流电压要求有效值为380V,所以必须通过升压电路将直流电压升到到一定值才能作为逆变器的输入电压。逆变器的核心是半导体开关器件,不同拓扑的逆变电路有不同的优缺点和应用领域。半导体开关器件需要触发信号才能导通,要使逆变器输出正弦波形,则需要特殊的触发电路对开关器件进行调制。逆变器输出带有高次谐波,需要滤波电路对谐波进行。在进行仿真前,需对上述电路模块进行比较论证和选择。

2.3各模块方案选择

2.3.1 升压电路选择

1)方案1:采用变压器直接对直流电压进行升压。

2)方案2:采用boost直流斩波升压电路通过改变占空比对直流电压进行调节升压。

考虑到实际变压器变比不可调或者调节范围很小,不利于逆变器输出的调节,而boost 电路通过调节开关器件的导通占空比可以灵活方便的调节输出电压的大小,从实际出发和从方便性出发,最终选择了boost电路作为升压电路。

2.3.2 逆变电路选择

逆变器按照输出的相数分,有单相、三相两种;按电路拓扑分,有半桥式、全桥式和推挽式。鉴于全桥结构的控制方式比较灵活,所以选择三相全桥电路作为逆变器主电路。

2.3.3逆变器触发电路选择

目前,逆变器广泛采用PWM脉宽调制技术实现对输出电压的控制。PWM技术主要体现在两个方面,一是控制策略,二是实现的手段。调制方式主要有直流脉宽调制和正弦波脉宽调制两种方式。直流脉宽输出的是方波,波形畸变严重,所以不适合;正弦波脉宽

调制输出波形只含高次谐波,可以大大减小滤波器的体积。所以最终选择正弦波脉宽调制,即SPWM技术。

2.3.4滤波电路选择

由于设计任务对波形畸变率没有特殊的要求,可以采用最普通的LC滤波电路作为逆变输出的滤波电路。

2.3.5总电路的控制方式

为了使输出电压波形稳定且可调,采用闭环控制方式,检查输出电压反馈到输入作为比较控制。

3 电路原理及设计

3.1 升压斩波电路

升压斩波电路如下图3.1所示。假设L 值、C 值很大,V 通时,E 向L 充电,充电电流恒为I 1,同时C 的电压向负载供电,因C 值很大,输出电压u o 为恒值,记为U o 。设V 通的时间为t on ,此阶段L 上积蓄的能量为1on EI t 。V 断时,E 和L 共同向C 充电并向负载R

供电。设V 断的时间为off t ,则此期间电感L 释放能量为01()off U E I t -,稳态时,一个周期

T 中L 积蓄能量与释放能量相等,即

o f f on t I E U t EI 101)(-=

化简得

0off T U E t =

输出电压高于电源电压,故称升压斩波电路,也称之为boost 变换器。

T 与off t 的比值为升压比,将升压比的倒数记作β,则

1αβ+=

E a

U -=110 升压斩波电路能使输出电压高于电源电压的原因 :L 储能之后具有使电压泵升的作用,并且电容C 可将输出电压保持住。

图3.1 升压斩波电路原理图

3.2 主电路原理图

逆变电源采用图 3.2所示主电路。首先采用升压斩波电路将110KV直流电压升高到400KV,因为对输出波形的要求不是很高,与负载并联的电容C取很大就可以达到滤波的目的。开关管T1~T6是IGBT,构成三相逆变桥。关断缓冲由电阻R、电容C和二极管D 并联网络组成;C0折算到变压器TM的原边后与L2一起构成交流输出滤波电路;变压器用作电路隔离和升压。

图3.2三相逆变器主电路原理图

3.3 SPWM控制系统

图3.3 三相SPWM控制系统框图

三相脉冲形成可采用上述介绍的SPWM控制方法,控制系统框图如3.2所示。下面介绍SPWM生成的各电路部分。

3.3.1数字分频电路

图2-3是数字分频电路,Y是石英晶体振荡器,它有稳定的震荡频率,频率稳定度可以达到万分之一。该电路选用震荡频率1.8432MHz的晶振,它和R1、C1、C2组成频率信号产生的电路,得到1.8432MHz频率信号,再经过数字电路CD4017、CD4040处理,输出两路频率信号。CD4017是十进制计数器,第7脚的Q3计数端引至第15脚的复位端可以实现3分频。CD4040是串行二进制计数器,9脚Q1可以得到2分频,2脚的Q6可以得到2的6次方既64分频。1.8432MHz的频率,分频后三角波频率为9.6kHz,标准正弦的扫描频率为102.3kHz。

图3.4 数字分频电路

3.3.2 标准正弦波形成电路

标准正弦波的长生是利用数字电路实现的,电路原理如图3.5所示。

在EPROM中存放的数据(十六进制)是这样得到的;将一个周期的单位正弦波分成N等份,每一点的数据在计算机上事先离散计算好在存放进去。由于写入的数据只能是正值,单位正弦波是和图中Uref的波形一致,幅值为1的正弦波。本例中将一个周期的正弦波分成N=2048份。

正弦扫描频率引入数字电路CD4040,CD4040的输出是一组地址扫描信号送到EPROM 的地址线上,EPROM2732中存放的数据便依次送到D/A转换器DAC0832,DAC0832将

这些数据转换成断续的模拟信号,经过一个小电容C1(0.1uf 以内)滤波,得到连续模拟信号Uref ,峰峰值由IO1端引入的给定电压Uc 决定,电路中Uc 来自调节器的输出。经运放LF365处理,可以获得正负对称、幅值为Uc 的标准正弦波SINE 。

图3.5 标准正弦波形成电路

要产生的标准正弦波的频率f1=50Hz ,那么扫描频率应该为:kHz Hz N f f h 4.1022048501=?=?=,和前面分频电路得到的频率一致。正弦波的频率由

稳定度相当高的晶振分频得到,故正弦波的波形畸变率很低;正弦波的幅值受控于给定电压。因此,该电路是一个高精度的正弦发生器。

上述电路具有通用性,对一个已经写好数据的EPROM,若改变正弦扫描频率,可以改变标准正弦波频率;若改变EPROM中的数据,可实现不同的PWM调制策略,如梯形波调制,注入特定次谐波;若再增加两套电路,在3个EPROM中存放相位互差120°的数据,就可实现三相SPWM控制。

3.3.3三角波形成电路

分频电路提供了三角波频率信号,即为9.6kHz的脉冲信号,应用隔直、比例和积分电路即可得到幅值适当,正负对称的三角波,其频率为9.6kHz。

3.3.4 SPWM形成电路

本装置SPWM形成电路如图3.6所示,正弦波信号SINE和三角载波信号TR来自前级电路;TL084是运算放大器,一TR由它接成的反向器得到。电路中大量使用了芯片LM311,它是DIP8封装的快速电压比较器,不仅可以作为比较器,还可以利用他的特点做脉冲封锁。下面介绍它的应用:8脚、4脚分别接芯片电源的正、负端;2脚、3脚分别是同向、反向输入;1脚是低电平设定(可接电源负或地),它的电压值决定了LM311输出的低电平值;7脚为输出端,逻辑判断为“高电平”时,集电极开路(OC门特性),因此,7脚必须有上拉电阻同正电源连接,否则,没有高电平输出,图中的R1、R2、R3、R4等都是上拉电阻;5、6脚用来调节输入平衡(可不用),6脚还可以用作选通,如果LM311的6脚接低电平。其输出恒为高电平,这个特点往往用来设置脉冲封锁。

该系统设置PWM信号低电平有效,即PWM信号为低电平时,驱动电路产生驱动脉冲,IGBT导通。Lock为保护电路输出的脉冲封锁信号;在电路出现故障时,lock的低电平送到后级各个LM311的6脚,使所有PWM为高电平封锁驱动脉冲。如果不利用LM311封锁驱动,也可以设置PWM高电平有效,取消后级的LM311。

图3.6 SPWM波形成电路

图3.6中R1~R4,C1~C4和Rp还组成了死区形成电路,参数大小决定死区时间,Rp 可以调节死区大小;IGBT的开关时间为2us左右,死区时间设为4us。

该装置采用了一种数模结合的SPWM控制电路,其框图如图2所示,它由数字分频电路、三角波形成电路、调节器、标准正弦波控制电路及PWM形成电路等组成。系统的电压调节是为了稳定电压,电流调节是为了限制输出电流。电源的正弦输出畸变率小于5%,要求不是太高,逆变器的输出功率1kW也不大。因此,系统仅采用电压平均值闭环控制,稳定输出电压,对输出波形采用开环控制,即直接将幅值受控的标准正弦波和三角波比较。

在3片EPROM内写入3个相差120°的正弦波数据,经过数模转换后,形成3个互差120°的正弦波。它们同一三角载波比较,便可得到三相SPWM控制脉冲分别驱动3个桥臂。

3.4 驱动电路

IGBT的驱动电路型号很多,IR21系列是国际整流器公司退出的高压驱动器,一片

IR2013课直接驱动中小容量的6支场控开关管,并且只需要一路控制电源。IR2013是28引脚双列直插式集成电路,应用方法如图3.15.HIN1、HIN2、HIN3为3个高侧输入端,LIN1、LIN2、LIN3为3路低侧输入端,HO1、VS1、HO2、VS2、HO3、VS3为3路高侧输出端,LO1、LO2、LO3为3路低侧输出端,Vss为电源地,VSD为驱动地,VB1、VB2、VB3为3路高侧电源端,FALUT为故障输出端,ITRIP为电流比较器输入端,CAO为电流放大器输出端,CA为电流放大器反向输入端。

图3.7

IR2130结构及应用电路

采用IR2130作为驱动电路时,外围元件少,性价比明显提高。它的高压侧的3路驱动电源有Ucc采用自举电路得到。3支快速二极管的阴极电位是浮动的,因此,它的反向耐压值必须大于主电路的母线电压峰值。IR2130最大正向驱动电流250mA,反向峰值驱动电流500mA;内部设有过流、过呀、欠压、逻辑识别保护;它的浮动电压做大不超过400V。

3.5 控制器设计

当采用瞬时值内环反馈双环控制时,内环为瞬时值环,用来控制输出电压波形的正弦波,外环采用平均值控制,以保证电压的平均值与参考值一致。如果波形正弦度好,平均值和有效值一一对应关系。

平均值外环的PI调节器输出控制正弦波幅值,幅值乘以单位正弦波后的信号为内环给定,与输出电压瞬时值比较经内环PI调节器输出正弦波调制信号,与三角载波比较后产生的

PWM信号经过驱动电路控制逆变器的开关器件。

图3.8瞬时值内环反馈双环控制

3.6辅助电源

在桥式逆变电路中,一个桥臂上下两管驱动电路的电源应各自独立,两个桥臂上的管无共地点下管可以共地。因此,驱动6管时,至少要有3路独立电源。采用单端反激式开关电源作为辅助电源提供3组20V电源和±12V电源。3组20V电源分别作为6个IGBT 的驱动模块电源,±12V电源给控制系统的芯片供电。只要有直流输入,辅助电源就供电,控制系统就具备控制和保护能力。

3.7总电路

由此得到电路图如3.9。

图3.9 总电路图

4 系统元件有关参数的计算

在电路中输入为110KV DC ,输出为380V AC 50 Hz ,输出功率为W P 3000=,功率因数设为1cos =?。调节升压电路的占空比71.0380

110110=-=-=?U E 使输出为400V ,调制比为1,求得逆变器输出的基波电压有效值为V U b 84.2822/400==。初步计算变压器的变压比为95.0400/380==k 。则电路各元件选取如下:

4.1 开关管和二极管的选择

(1)开关管的选择

最大输出情况下,电流有效值为

A V P I 895.71

0383000cos max =?=?=? 开关管额定电流CE I

A I I CE 79.15895.722max =?=?>

开关管额定电压CER V

V V V M CER 76038022=?=?=

(2)二极管的选择

额定电压RR V

V V RRM 038>

最大允许的均方根正向电流

FR FR frms I I I 57.12==π

二极管的额定电流为

A I I FR 03.557

.1895.757.1max ==> 4.2 L 、C 滤波器的设计

输出滤波器的作用是减小输出电压中的谐波,并保证基波电压输出。因滤波电容和负

载并联,它可以补偿感性电流,但是,滤波电容过大,反而会增加变压器的负担。因此,在设计滤波电路的时候,首先确定滤波电容的值。设计基本原则就是在额定负载时,使容性电流补偿一半的感性电流。

A A U P I C 2.960.8

38020.63000cos 2sin 0=???==φφ F F U I C C μπω24.7950238096.20=??==

取C=25F μ,选择500Hz 、500V 的交流电容。

开关管的工作频率取7.2kHz

逆变桥输出电压除基波外,还含有高次谐波,最低次谐波为12-p 次,而14450

7200===f f p s , 得到 Hz f 1995050)12002(=?-?=

考虑到死区的影响,一般选取输出滤波器的谐振频率为最低谐振频率的1/5~1/10。取谐振频率为2kHz,算出

mH C L 256.01096.18411079.241)200021(16

62=???=??=-π 折算到原边,mH L k L 284.0256.0)95

.01()1(221=?== 4.3 输出变压器选择

电源的输出功率为3KV A ,1cos =?,频率Hz f 50=。根据变压器选择手册可选择SD40*80*220mm 的50Hz 铁芯,查得变压器视在功率为3529V A 。本设计采用SD 型铁芯,用冷轧取向硅钢薄板 DQ151-35材料,占空系数92.0=c K 。求得磁芯截面积

2c 49.7792.0/35292.1/cm K P K S C =?==,若选取最大磁密s 12000

G B m =. 1)副边绕组

逆变桥输出的SPWM 波经过电感滤波后还是有一定的高频分量,一般取s s m G G B B 9600120008.0%80r =?==。根据变压器电压关系式V N S B fN U c r 3801049.7796000544.444.48-220=?????==可求得2302≈N 。取230匝。

2)原边绕组

逆变器输出的基波电压理想值为282.84V 。两只开关管的压降为4V 左右,开关频率

kHz f s 2.7=,死区设为s t d μ4=,则死区引起的最大电压损失为

V U t f U b d s 12.884.282104102.763=????==?-

基波电流在滤波电感上的压降为

V fLI U L 724.012.810284.0502231=????==-ππ

漏感的阻抗压降一般为3%~5%的基波电压,按12V 估算,则变压器的原边电压

V U 2.379)12724.012.8400(1=---=

变压器变比为00.12.379/380/12===U U k

5.229/21==k N N ,取300匝。

小结

很难想象最终还是把这个拓展训练做下来了,因为中间过程是多么曲折。当我刚拿到设计任务的时候,乍一眼看我还觉得题目比较简单,就是一个DC-AC转换电路,然后我脑海中立马浮现出课本上学的逆变电路图,简单的六只开关管接成桥式电路然后接负载。后来当我真正开始付之行动时才发现实际做起来要比理论分析难很多。

做任何事都要先有计划。首先,我解决的第一个问题是方案问题,根据输入输出电压的差别,我决定先用一个升压电路将直流电压进行升压处理后才输入到逆变器,而逆变器主电路则采用我们学的最多的三相桥式电路。

然后,我对各种模块电路进行了理论复习,记下每个电路需要哪些器件,以及各自的作用,在纸上画出了大概的模型图,以便设计时参考。

感觉这次拓展训练最难的地方是选择元件和计算参数,每个元件都有它的额定工作条件或范围,适当选择和使用才可以发挥出该原件最大的效益和作用,否则可能是电路工作不可靠或损坏元件。在计算变压器的型号、尺寸、铁芯材料、变比匝数时,花了很大气力。因为之前从来没学过这么细,很多内容相对比较陌生,只能对着书上的例子,再仔细浏览设计手册,一步一步的计算与选择。

此次三相pwm逆变器的设计中也存在一定的问题,发现了自己的很多不足之处,自己知识的很多漏洞,看到了自己的实践经验还是比较缺乏,理论联系实际的能力还需要提高。专业设计是培养学生综合应用所学知识、发现、提出、分析和解决实际问题锻炼实际能力的主要环节,是对学生实际工作能力的具体训练和考察过程,随着科学技术发展的日新日异,电子技术已经成为当今世界空前活跃的领域,在生活中可以说得是无处不在。因此作为大学生来说,掌握电子的开发技术是十分重要的。

回顾此次拓展训练,至今我仍感慨颇多,在过去的一个星期里,可以说是苦多于甜,但是可以学到很多的东西,同时不仅可以巩固了以前所学过的知识,而且学到了很多在书本上没有学到过的知识。在设计的过程中遇到问题,可以说是困难重重,难免会遇到各种各样的问题,比如有时候被一些小的、细的问题挡住看前进的步伐,让我总是为解决它而花费很长的时间,最后还要查阅其他的书籍才能找到解决的办法。

当然最关键的还是要靠自己亲自去领会思考如何解决问题,掌握独自面对问题分析问题的方法。不少人抱怨在大学学不到东西,我并不这样认为。我想无论是在学习还是在生

活上只有自己真正用心去学习和参与才可能有收获,这也算是本次三相pwm逆变器拓展训练给我知识之外的一点小小的感悟。总之本次拓展训练的收获确实很多,很珍惜这样的机会,因为可以锻炼自己提升自己。

这次的拓展训练终于顺利完成了,在设计中遇到了很多问题,最后在努力下终于迎刃而解。同时发现了还有很多工具及理论以后待学习。此次拓展训练培养了我严谨科学的思维,通过它架起理论与实际的桥梁。

参考文献

[1] 杨荫福.电力电子装置及系统.北京:清华大学出版社,2006

[2] 刘力.PWM技术在电源中的应用.武汉:武汉大学出版社,2000

[3] 王兆安.电力电子技术.北京:机械工业出版社,2009

[4] 杨泽民.电力电子技术原理与应用.沈阳:东北工学院出版社,1999

[5] Robert H.Bishop.Modern Contorl Systems Analysis and Design-Using MATLAB and Simulation[M].影印版. 北京:清华大学出版社,2008

毕业论文DCAC逆变器的设计

1 绪论 (1) 1.1 DC/AC逆变器的基本概念 (2) 1.2 逆变器的分类和用途 (3) 1.2.1 逆变器的基本分类 (3) 1.2.2 逆变器的用途 (4) 1.3 DC/AC逆变器的发展背景和发展方向 (4) 1.3.1 DC/AC逆变器的发展背景 (4) 1.3.2 DC/AC逆变器的发展方向 (5) 2 逆变器的主电路研究 (6) 2.1逆变系统基本工作原理 (6) 2.2 SPWM波的生成原理及控制方法分析 (6) 2.2.1 PWM控制的理论基础 (7) 2.2.2 PWM逆变电路及其控制方法 (8) 2.3 逆变器的主电路分析 (10) 2.3.1 低频环节逆变技术逆变器 (10) 2.3.2 高频环节逆变技术 (13) 3 小功率光伏并网系统的逆变器设计 (15) 3.1光伏发电的发展现状及前景 (15) 3.1.1 国外光伏发电现状及前景 (15) 3.1.2 国内光伏发电现状及前景 (16) 3.2 并网逆变器的拓扑 (16) 3.2.1低频环节并网逆变 (17) 3.2.2 高频环节并网逆变 (18) 3.2.3非隔离型并网逆变 (18) 3.3 小功率光伏并网逆变器的设计 (19) 3.3.1 小功率光伏并网逆变器的工作原理 (19) 3.3.2系统控制方案 (20) 3.3.3 TMS320F240软件控制流程 (25) 3.3.4系统保护 (26) 4 光伏并网逆变器的控制策略研究 (28) 4.1 输出控制方式 (28) 4.2 输出电压控制策略 (28) 4.3 输出电流控制策略 (29) 4.4 控制策略的选择和参考电流的确定 (30) 5总结 (32) 1 绪论

-逆变器输出滤波器计算-

输出滤波器的计算 一、滤波器选择的部分指标 (1)逆变电源的空载损耗是逆变电源的重要指标之一。空载损耗与空载时滤波器的输入电流有关,电流越大,损耗越大,原因有以下两个方面:一方面,滤波器的输入电流越大,逆变开关器件上的电流越大,逆变器的损耗就越大;另一方面,空载时滤波器的输入电流也流过电抗器及电容器,电流增大也会使电抗器及电容器的损耗增大。所以从限制空载电流的角度来讲,空载时滤波器的输入电流不能太大。一般的,空载时滤波器的输入基波电流不能超过逆变电源的额定输出电流的30%。 设I m 表示空载时输入滤波器的输入基波电流的有效值,U 0表示输出电压基波的有效值,Wo 为基波角 频率, 则由图1可得: 00Im CU ω= (1) 有上式可知,空载时滤波器输入基波电流的大小与C 成正比。所以从限制逆变电源空载损耗的角度来讲,LC 滤波器的电容之不能太大。 (2)逆变电源对非线性负载的适应性指标 逆变电源对非线性负载的适应性是衡量逆变电源性能优劣的重要指标。非线性负载之所以会引起逆变电源输出电压波形的畸变,是因为非线性负载时一种谐波电流源,它产生的谐波电流在逆变电源输出阻抗上产生谐波压降,从而引起输出电压波形畸变。可见逆变电源的输出阻抗直接关系着逆变电源对非线性负载的适应性,输出阻抗越小,逆变电源的输出阻抗直接关系着逆变电源对非线性负载的适应性,输出阻抗越小,逆变电源对非线性负载适应性越好。 开环时逆变电源的输出阻抗就是LC 滤波器的输出阻抗,根据公式LC L Z 201ωω?= (2)

在L 、C 乘积恒定时,L 越小,则输出阻抗值越小。 当逆变电源采用电容电流及电压瞬时值反馈控制方案时,可以得到和开环时相同的结论。 综上说述可以得到以下两点结论: 1)在L 、C 之积恒定时,L 越小,逆变电源的输出阻抗越小,逆变电源对非线性负载的适应性越好; 2)L 越小,越不容易出现过调制,逆变电源对非线性负载的适应性越好。、 (3)在采用同步调制控制方式的逆变电源中,频率为(2ωs -ω0)的谐波是逆变器输出PWM 波中复制最高的谐波,它对输出电压的波形影响最大。输出电压中,只要频率为(2ωs -ω0)的谐波符合要求,则其他高次谐波含量均能符合要求。所以在这种情况下设计LC 滤波器是,只需考虑滤波器对(2ωs -ω0)频率谐波的衰减。 二、输出LC 滤波器的计算 2.1综述 一般说来,空载与负载相比,空载时电压中的频率(2ωs -ω0)的谐波含量是最大的,根据公式: )(*)1(1*2)2(1222200απββπωωJ N Q N b HF s ++=? (3) 式中C L R Q L //=;00/)2(ωωω?=s N ;LC 20ωβ=;E U b /20=;2 2)1(/ββα?+=Q b ;)(1απJ 为1阶的Besset 函数,计算比较繁琐。 空载时,)2(00ωω?s HF 可表示为: )(*11*2)2(1 200απβπωωJ N b HF s ?=? (4) 式中:00/)2(ωωω?=s N ;LC 20ωβ=;E U b /20=;βα?=1b 。 对式(4)进行分析,可得空载时)2(00ωω?s HF 的特性如下: a ,当逆变电源输入电压增大时,输出电压中的频率为 )2(0ωω?s 的谐波的谐波含量将增大。

PWM逆变器控制电路设计

SPWM逆变器控制电路设计 一、课程设计的目的 通过电力电子计术的课程设计达到以下目的:一个单相 50HZ/220V逆变电源,外部采用:交流到直流再到交流的逆变驱动格式。在220V/50HZ外电源停电时,蓄电池就逆变供电。在设计电路时,主要分为正负12V稳压电源到SPWM波发生器(其中载波频率5KHZ)至H逆变电路再到逆变升压变压器再由220V/50HZ输出. 二、课程设计的要求 1注意事项 控制框图 设计装置(或电路)的主要技术数据 主要技术数据 输入直流流电源: 正负12V,f=50Hz 交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用桥式电压型逆变主电路,控制方法为SPWM控制原理输出交流:

电流为正弦交流波形,输出频率可调,输出负载为三相异步电动机,P=5kW等效为星形RL电路,R=10Ω,L=15mH 2.在整个设计中要注意培养灵活运用所学的电力电子技术 知识和创造性的思维方式以及创造能力 3.在整个设计中要注意培养独立分析和独立解决问题的能 力 4.课题设计的主要内容是主电路的确定,主电路的分析说 明,主电路元器件的计算和选型,以及控制电路设计。 报告最后给出所设计的主电路和控制电路标准电路图。 5.课程设计用纸和格式统一 三设计内容: 整流电路的设计和参数选择 滤波电容参数选择 逆变主电路的设计和参数选择 IGBT电流、电压额定的选择 SPWM驱动电路的设计 画出完整的主电路原理图和控制电路原理图 根据要求,整流电路采用二极管整流桥电容滤波电路,其电路图如图2.1所示:

SPWM逆变电路的工作原理 PWM控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等而宽度不等的脉冲。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变逆变输出频率。 1.PWM控制的基本原理 PWM控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)理论基础:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。这里所说的效果基本相同,是指环节的输出响应波形基本相同

逆变电源设计报告a.(DOC)

逆变电源设计与总结报告 2013年5月6日星期一

目录 一、方案论证与比较 (1) 1、总体方案的比较 (1) 2、隔离型DC-DC电路方案 (2) 3、高频变压器后级整流方案 (3) 4、SPWM波产生方案 (3) 二、理论分析与计算 (3) 1.高频变压器参数设计 (3) 2.LC低通滤波参数设计 (4) 三、电路与程序设计 (5) 1.推挽式隔离型直流变换电路 (5) 2.逆变电路 (7) 3.保护电路 (7) 4.辅助电源 (8) 5.SPWM产生程序 (8) 四、测试结果及分析 (9) 1.测试方法与测试条件 (9) 2.主要测试结果 (9) 元件参数根据计算可知,L=4.7UH,C=2.2UF.仿真波形如图11所示。 (10) 五、设计总结 (10)

摘要 本设计实现了一种基于的高频链逆变电源。系统由输入欠压保护、推挽升压、全桥逆变、SPWM波产生、低通滤波、输出过流保护、辅助电源等电路组成。12V 的直流电通过推挽式变换逆变为高频方波,经高频变压器升压,再整流滤波得到一个稳定的约320V直流电压。前级DC-DC变换采用SG3525驱动MOSFET得到高压直流电,然后通过产生的SPWM驱动全桥电路,再经低通滤波得到220V的工频正弦交流电。采用反激式开关电源升压再经稳压芯片稳压供电很好的实现隔离,并且具有输入欠压保护和输出过流保护,输出功率可达100W。该电源体积小、效率高、输出电压稳定,非常适用于车载逆变器。 关键词:推挽升压全桥逆变滤波反激式

Abstract This design implements a Cortex M3 based on the high-frequency link inverter power supply.System consists of input undervoltage protection, push-pull boost, full-bridge inverter, SPWM wave generator, low pass filtering, output over-current protection, auxiliary power and other circuit.12V direct current through the push-pull inverter is a high frequency square wave transform, the high-frequency step-up transformer, then rectified and filtered to get a stable DC voltage of about 320V.Former level DC-DC conversion by using SG3525 drive MOSFET high voltage DC and then generate the SPWM drive M3 full bridge circuit, and then low-pass filter obtained by the frequency sinusoidal AC 220V.With a flyback switching power supply step-up regulator chip re-powering through the realization of good isolation, and with input voltage protection and output over-current protection, output power up to 100W.The power, small size, high efficiency, output voltage stability, ideal for automotive inverter. Key words: push-pull boost full-bridge inverter flyback M3 概述 逆变器也称逆变电源,是将直流电能转变成交流电能的变流装置,是太阳能、风力发电中一个重要部件。随着微电子技术与电力电子技术的迅速发展,逆变技术也从通过直流电动机——交流发电机的旋转方式逆变技术,发展到二十世纪六、七十年代的晶闸管逆变技术,而二十一世纪的逆变技术多数采用了MOSFET、IGBT、GTO、IGCT、MCT 等多种先进且易于控制的功率器件,控制电路也从模拟集成电路发展到单片机控制甚至采用数字信号处理器(DSP)控制。各种现代控制理论如自适应控制、自学习控制、模糊逻辑控制、神经网络控制等先进控制理论和算法也大量应用于逆变领域。其应用领域也达到了前所未有的广阔,从毫瓦级的液晶背光板逆变电路到百兆瓦级的高压直流输电换流站;从日常生活的变频空调、变频冰箱到航空领域的机载设备;从使用常规化石能源的火力发电设备到使用可再生能源发电的太阳能风力发电设备,都少不了逆变电源。毋须怀疑,随着计算机技术和各种新型功率器件的发展,逆变装置也将向着体积更小、效率更高、性能指标更优越的方向发展。 一、方案论证与比较 1、总体方案的比较 方案一:如图1所示,12V的直流电经过DC-AC逆变成10V/50HZ交流电,再经工频变压器升压到220V.

逆变电路课程设计

本科电力电子技术课程设计说明书 题目:基于SG3524芯片的逆变电源设计 与MATLAB仿真 (控制电路) 学院:机电工程学院 专业:农业电气化与自动化 姓名:王德昭 学号:1 指导教师:洪宝棣 职称:副教授

设计完成日期:二Ο一五年一月 电力电子简介 (4) 课设的目的 (4) 课程设计要求 (4) 课程设计的主要内容与技术参数 (5) 二、单相电压型逆变电路 (7) 全桥逆变电路 (7) 三、器件的选择 (8) 内部结构图 SG3524引脚功能 SG3524引脚图 四、控制电路 (10) 五、心得体会 10

一、前言 电力电子简介 电力电子技术又称为功率电子技术,他是用于电能变换和功率恐控制的电子技术。电力电子技术示弱电控制强电的方法和手段,是当代高兴技术发展的重要内容,也是支持电力系统技术革命和技术革命的发展的重要基础,并节能降耗、增产节约提高生产效能的重要技术手段。微电子技术、计算机技术以及大功率电力电子技术的快速发展,极大地推动了电工技术、电气工程和电力系统的技术发展和进步。电力电子器件是电力电子技术发展的基础。正是大功率晶闸管的发明,使得半导体变流技术从电子学中分离出来,发展成为电力电子技术这一专门的学科。而二十时间九十年代各种全控型大功率半导体器件的发明,进一步拓展了电力电子技术应用和覆盖的领域和范围。电力电子技术的应用领域已经深入到国民经济的各个部门,包括钢铁、冶金、化工、电力、石油、汽车、运输以及人们的日常生活。功率范围大到几千兆瓦的高压直流输电,小到一瓦的手机充电器,电力电子技术随处可见。电力电子技术在电力系统中的应用中也有了长足的发展,电力电子装置与传统的机械式开关操作设备相比有动态响应快,控制方便,灵活的特点,能够显著地改善电力系统的特性,在提高系统稳定、降低运行风险、节约运行成本方面有很大潜力。 课设的目的 1)通过对单相桥式PWM逆变电路的设计,掌握单相桥式PWM逆变电路的工作原理,综合运用所学知识,进行单项桥式全控整流电路和系统设计的能力。 2)了解与熟悉单相桥式PWM逆变电路的控制方法。 3)理解和掌握单相桥式PWM逆变电路及系统的主电路、控制电路、保护电路的设计方法,掌握元器件的选择计算方法。 课程设计要求 1、输入直流电源:24V±10%; 2、输出交流电压:220V±10%; 3、控制电路芯片为SG3524;

光伏并网逆变器中滤波器的设计与研究

光伏并网逆变器中滤波器的设计与研究 摘要:光伏发电系统中存在着大量的非线性器件和负载,其对电网带来严重的谐波污染。为了有效地抑制谐波污染,本文提出了一种新的无源滤波器的结构设计,并且建立了一个交直交变流器与无源滤波器的Simulink 仿真模型。通过比较接入无源滤波器前后电流和电压的变化,对电流和电压波形进行傅里叶变换,得到它的频谱分析曲线。仿真结果表明:该滤波器的设计方法具有可行性和有效性,能够很好地抑制光伏逆变器DC/AC 变换后谐波分量,并且满足当前电力系统的要求。 关键词:光伏逆变器;无源滤波器;傅立叶变换 0 引言光伏发电系统中存在着大量的非线性器件和负载,其对电网带来严重的谐波污染。为了有效地提高电能质量,洁净电网,电网谐波治理问题已经愈来愈引起国内外学者和专家关注[1]。 滤波器具有消除谐波和提供无功补偿的功能,在治理谐波的问题上处于重要的位置。传统的滤波器分为有源滤波器和无源滤波器。有源滤波器存在着高成本、功能单一等缺点的限制,同时光伏发电系统受阳光、温度等不确定因素的影 响比较大,使得光伏阵列的直流母线利用率较低[2] 。无源滤波

器因其结构简单、设备投资少、运行可靠性高、运行费用低等优点,成为电力系统中最普遍的谐波抑制设备[3] 。在交流系统中,无源滤波器不仅可以起到滤波作用,而且还可以兼顾无功补偿的需求。因此它成为传统的补偿无功和抑制谐波的主要手段。 本文提出了一种新的无源电力滤波器,理论分析了该无源滤波器的可行性。利用Simulink 搭建系统仿真模型,同时采集滤波前和滤波后的电压、电流量,分别对其进行傅立叶变换,得到相应的频谱分析曲线。仿真结果表明,该无源滤波器能够很好地抑制光伏逆变器DC/AC 变换后谐波分量。 1无源滤波器的结构设计 无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联[4]。本文中无源滤波器是通过电感、电容和电阻一系列的串并联来达到滤波的效果,其结构简图如图 1 所示。 图 1 中所示的U、V、W 分别代表光伏逆变器输出的三相交流电。由于这其中含有很高的高频分量,因此我们通过必须接入三相无源滤波器,滤去当中的谐波分量来满足电力系统的要求。其中,电感L10和L20是含有电阻性的电感,L1 是纯电感,串联在电网当中的电感L1 主要是滤去电网中 电压的谐波分量。无源滤波器作为低通滤波器,频率高于其谐振

带LCL输出滤波器的并网逆变器控制策略研究

第31卷第12期中国电机工程学报V ol.31 No.12 Apr.25, 2011 34 2011年4月25日Proceedings of the CSEE ?2011 Chin.Soc.for Elec.Eng. 文章编号:0258-8013 (2011) 12-0034-06 中图分类号:TM 85 文献标志码:A 学科分类号:470?40 带LCL输出滤波器的并网逆变器控制策略研究 王要强,吴凤江,孙力,段建东 (哈尔滨工业大学电气工程系,黑龙江省哈尔滨市 150001) Control Strategy for Grid-connected Inverter With an LCL Output Filter WANG Yaoqiang, WU Fengjiang, SUN Li, DUAN Jiandong (Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang Province, China) ABSTRACT: The grid-connected inverter with LCL output filter is a third-order and multi-variable system, claiming a higher demands to the control system design. Aiming at this, a grid-connected inverter control strategy based on inverter-side current closed-loop and capacitor current feed-forward was proposed, controling the grid-side current indirectly through the inverter-side current. With the proposed control strategy, system stability and unity power factor are ensured, at the same time, no additional sensors are needed, making equipment costs reduced and reliability enhanced. Effectiveness and feasibility of the proposed strategy are validated by both the simulation and experiment results. KEY WORDS: grid-connected inverter; LCL filter; system stability; power factor; current estimation 摘要:并网逆变器用LCL输出滤波器是一个三阶多变量系统,给控制系统设计提出了更高的要求。针对该问题,提出一种基于逆变器侧电流闭环和电容电流前馈的并网逆变器控制策略,通过逆变器侧电流间接控制并网电流。该控制策略能够保证系统稳定和单位功率因数运行,并且整个控制过程无需增加额外的传感器,降低了系统成本,增强了系统可靠性。仿真和实验结果验证了提出控制策略的有效性与可行性。 关键词:并网逆变器;LCL滤波器;系统稳定性;功率因数;电流估计 0 引言 随着能源和环境问题的日益严峻,风力发电、光伏发电等新能源并网发电技术越来越受到人们的重视,已经成为能源可持续发展战略的重要组成部分[1-3]。并网逆变器作为发电系统与电网连接的核心装置,直接影响到整个并网发电系统的性能,近年来逐渐成为国内外研究的热点[4-6]。 基金项目:国家自然科学基金项目(50477009)。 Project Supported by National Natural Science Foundation of China (50477009). 并网逆变器传统上采用L滤波器来抑制并网电流中由功率器件通断引入的高次谐波[7-11],然而,随着逆变器功率等级的提高,特别是在中高功率应用场合,为降低功率器件的应力和损耗,一般选取较低的开关频率,致使网侧电流中的谐波含量增加。要使并网电流满足同样的谐波标准将需要一个较大的电感值。电感值的增加不仅会使网侧电流变化率下降,系统动态性能降低,还会带来体积过大、成本过高等一系列问题。针对上述问题,用LCL 滤波器代替L滤波器成为近年来相当有吸引力的解决方案[12-16]。LCL滤波器的阻抗值与流过的电流频率成反比,频率越高,阻抗越小,因此对电流高次谐波有更强的抑制能力。为此,在相同的谐波标准下LCL滤波器的应用可以降低总的电感取值,在大中功率应用场合,其优势尤为明显。但是,LCL滤波器是一个三阶多变量系统,给控制系统设计提出了更高的要求。如果直接采用典型的并网电流闭环的控制策略,系统是不稳定,的且不利于功率开关的保护[17]。文献[13]忽略滤波电容支路的影响,认为网侧电流和逆变器侧电流近似相等,采取逆变器侧电流闭环的控制策略,该策略易于系统稳定,且可以更为有效地保护功率开关,但电容支路的分流作用会使得系统功率因数降低。文献[16]提出采用逆变器侧电流和网侧电流加权平均值闭环的控制策略,系统稳定且在一定程度上提高了系统功率因数,然而加权平均电流和并网电流之间仍有相角差,并未彻底解决功率因数降低的问题。 本文提出一种基于逆变器侧电流闭环和电容电流前馈的并网逆变器控制策略,利用逆变器侧电流间接控制并网电流。电容电流通过估算获得,减少了电流传感器的数量,节约了系统成本,增强了系统可靠性。最后,通过仿真和实验对提出的控制

无源三相PWM逆变器控制电路设计-参考模板

无源三相PWM逆变器控制电路设计 一、课程设计的目的 通过电力电子计术的课程设计达到以下几个目的: 1、培养学生文献检索的能力,特别是如何利用Internet检索 需要的文献资料。 2、培养学生综合分析问题、发现问题和解决问题的能力。 3、培养学生运用知识的能力和工程设计的能力。 4、培养学生运用仿真工具的能力和方法。 5、提高学生课程设计报告撰写水平。 二、课程设计的要求 1注意事项 控制框图 设计装置(或电路)的主要技术数据 主要技术数据

输入交流电源: 三相380V,f=50Hz 交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用三相桥式电压型逆变主电路,控制方法为SPWM控制原理输出交流: 电流为正弦交流波形,输出频率可调,输出负载为三相异步电动机,P=5kW等效为星形RL电路,R=10Ω,L=15mH 2.在整个设计中要注意培养灵活运用所学的电力电子技术 知识和创造性的思维方式以及创造能力 3.在整个设计中要注意培养独立分析和独立解决问题的能 力 4.课题设计的主要内容是主电路的确定,主电路的分析说 明,主电路元器件的计算和选型,以及控制电路设计。 报告最后给出所设计的主电路和控制电路标准电路图。 5.课程设计用纸和格式统一 三设计内容: 整流电路的设计和参数选择 滤波电容参数选择 三相逆变主电路的设计和参数选择 IGBT电流、电压额定的选择 三相SPWM驱动电路的设计 画出完整的主电路原理图和控制电路原理图

根据要求,整流电路采用二极管整流桥电容滤波电路, 其 电路图如图2.1所示: 图2.1 考虑电感时电容滤波的三相桥式整流电路及其波形 a )电路原理图 b )轻载时的交流侧电流波形 c )重载时的交流侧电流波形 1. 其工作原理如下所示: 该电路中,当某一对二级管导通时,输入直流电压等于交流 侧线电压中最大的一个,该线电压既向电容供电,也向负载供电。 当没有二级管导通时,由电容向负载放电,u d 按指数规律下降。 设二极管在局限电路电压过零点δ角处开始导通,并以二极 管VD 6和VD 1开始同时导通的时刻为时间零点,则线电压为 a)c)R 462 i i

无源三相PWM逆变器控制电路设计65427

目录 第一章:课程设计的目的及要求 (2) 第二章整流电路 (5) 第三章逆变电路 (9) 第四章PWM逆变电路的工作原理 (11) 第五章三相正弦交流电源发生器 (14) 第六章三角波发生器 (15) 第七章比较电路 (16) 第八章死区生成电路 (18) 第九章驱动电路 (20) 附录 参考文献 课程设计的心得体会

第一章:课程设计的目的及要求 一、课程设计的目的 通过电力电子计术的课程设计达到以下几个目的: 1、培养学生文献检索的能力,特别是如何利用Internet检索 需要的文献资料。 2、培养学生综合分析问题、发现问题和解决问题的能力。 3、培养学生运用知识的能力和工程设计的能力。 4、培养学生运用仿真工具的能力和方法。 5、提高学生课程设计报告撰写水平。 二、课程设计的要求 1. 自立题目 题目:无源三相PWM逆变器控制电路设计 注意事项: ①学生也可以选择规定题目方向外的其它电力电子装置设计,如开关电源、镇流器、UPS电源等,

②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。首先要明确自己课程设计的设计容。 控制框图 设计装置(或电路)的主要技术数据 主要技术数据 输入交流电源: 三相380V,f=50Hz 交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用三相桥式电压型逆变主电路,控制方法为SPWM控制原理输出交流: 电流为正弦交流波形,输出频率可调,输出负载为三相异步电动机,P=5kW等效为星形RL电路,R=10Ω,L=15mH

设计容: 整流电路的设计和参数选择 滤波电容参数选择 三相逆变主电路的设计和参数选择 IGBT电流、电压额定的选择 三相SPWM驱动电路的设计 画出完整的主电路原理图和控制电路原理图 2.在整个设计中要注意培养灵活运用所学的电力电子技术 知识和创造性的思维方式以及创造能力 要求具体电路方案的选择必须有论证说明,要说明其有哪些特点。主电路具体电路元器件的选择应有计算和说明。课程设计从确定方案到整个系统的设计,必须在检索、阅读及分析研究大量的相关文献的基础上,经过剖析、提炼,设计出所要求的电路(或装置)。课程设计中要不断提出问题,并给出这些问题的解决方法和自己的研究体会。设计报告最后给出设计中所查阅的参考文献最少不能少于5篇,且文中有引用说明,否则也不能得优)。

逆变电源的设计开题报告

逆变电源的设计开题报告 毕业设计材料之二本科毕业设计(论文)开题报告题目:基于单片机的逆变电源设计课题类型:设计□ 学生姓名:学号:专业班级:学院:指导教师:开题时间:一、毕业设计内容及研究意义毕业设计论文内容设计一种基于AT89C51控制SA4828的逆变电源,它采用IGBT作为功率器件,IR2110作为IGBT的驱动芯片,并采用恒U/F的控制策略。毕业设计论文的研究意义1.可灵活地调节输出电压或电流的幅度和频率通过控制回路,我们可以控制逆变电路的工作频率和输出时间的比例,从而使输出电压或电流的频率和幅值按照人们的意愿或设备工作的要求来灵活地变化。 2.可将蓄电池中的直流电

转换成交流电或其他形式的直流电,这样就不会因为交流电网停电或剧烈变化而影响工作。 3.可明显地减小用电设备的体积和重量,节省材料在很多用电设备中,变压器和电抗器在很大程度上决定了其体积和重量,如果我们将变压器绕组中所加电压的频率大幅度提高,则变压器绕组匝数与有效面积之积就会明显减小,变压器的体积和重量明显地减小了。4.采用逆变技术的电源还具有高效节能的优越性,表现在如下几个方面:1)在许多应用交流电动机的场合,在其负载变化时,传统的方法是调节电动机的通电时间所占比例,这样电动机就会频繁地制动、起动。而电动机的起动、制动消耗的能量往往很大,如使用变频电源来调节电动机做功的量,则可节约很大一部分能量。 2)采用逆变技术的电源,其变压器的体积和重量大大减小了,也即减小了铁心横面积和线圈匝数。变压器本身的损耗主要包括原、副边铜耗和铁芯损耗,铁

芯横面积和线圈匝数的大幅度减小也就大大降低了铜耗和铁耗。因此,采用逆变技术大大提高变压器的工作频率,使得变压器的损耗变得比工频工作时小得多,从而达到节能的目的。3)传统的、采用工频变压器的整流式电源设备的功率因数一般在之间,这是因为其电流谐波成分和相移角都比较大。在逆变电源中,如果用功率因数校正技术,能使输入电流的谐波成分变得很小,从而使功率因数约为1,节能的效果非常明显。 5.动态响应快、控制性能好、电气性能指标好于逆变电路的工作频率高,调节周期短,使得电源设备的动态响应或者说动态特性好,表现为:对电网波动的适应能力强、负载效应好、启动冲击电流小、超调量小、恢复时间快、,输出稳定、纹波小。 6.电源故障保护快于逆变器工作频率高、控制速度快,对保护信号反应快,从而增加了系统的可靠性。另外,现代越来越复杂的电子设备对电源提出了各种各样的负载要

逆变器保护电路设计

安阳师范学院本科学生毕业设计报告逆变器保护电路设计 作者秦文 系(院)物理与电气工程学院 专业电气工程及其自动化 年级 2008级专升本 学号 081852080 指导教师潘三博 日期 2010.06.02 成绩

学生承诺书 本人郑重承诺:所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得安阳师范学院或其他教育机构的学位或证书所使用过的材料。与我一同工作的同志对本研究所做的任何贡献均以在论文中作了明确的说明并表示了谢意。 签名:日期: 论文使用授权说明 本人完全了解安阳师范学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。 签名: 导师签名: 日期:

逆变器保护电路设计 秦文 (安阳师范学院物理与电气工程学院,河南安阳 455002) 摘要:本文针对SPWM逆变器工作中的安全性问题,阐述了如何利用电路实现保护复位和死区调节。在PWM三相逆变器中,由于开关管存在一定的开通和关断时间,为防止同一桥臂上两个开关器件的直通现象,控制信号中必须设定几个微秒的死区时间。尽管死区时间非常短暂,引起的输出电压误差较小,但由于开关频率较高,死区引起误差的叠加值将会引起电机负载电流的波形畸变,使电磁力矩产生较大的脉动现象,从而使动静态性能下降,降低了开关器件的实际应用效果,但是却对逆变器的安全运行意义重大。 关键词:保护电路;复位电路;死区调节 1 引言 在现在的系统中电力器件的应用也越来越广而与此同时对器件的保护也被认识了其重要性。电子器件很易被损坏,保护电路的要求也很苛刻。在工程应用中,为了使SPWM 逆变器安全地工作,需要有可靠的保护系统。一个功能完善的保护系统既要保证逆变器本身的安全运行,同时又要对负载提供可靠的保护。 随着电力电子技术的发展,功率器件如IGBT、MOSFET等广泛应用于PWM变流电路中。对于任何固态的功率开关器件来讲,都具有一定的固有开通和关断时间,对于确定的开关器件,固有开通和关断时间内输入的信号是不可控的,称为开关死区时间,它引起开关死区效应,简称为死区效应。在电压型PWM逆变电路中,为避免同一桥臂上的开关器件直通,必须插入死区时间,这势必导致输出电压的误差。该误差是谐波的重要来源,它不但增加了系统的损耗,甚至还可能造成系统失稳。 随着电力电子技术的发展,逆变器主电路、控制电路发生了较大变化,其性能不断改善,当然,保护电路也应随之作相应完善。逆变器保护电路主要包括过压保护、过载(过流) 保护、过热保护等几个方面。 本文仅就保护复位电路与死区控制电路与的实现进行了分析和研究。 2 保护电路设计 较之电工产品,电力电子器件承受过电压、过电流的能力要弱得多,极短时间的过电压和过电流就会导致器件永久性的损坏。因此电力电子电路中过电压和过电流的保护装置是必不可少的,有时还要采取多重的保护措施。 2.1 死区控制电路的结构设计 死区控制电路的电路拓扑结构如图所示,其主要功能是确保主电路中的开关管S 1、S 2 不能同时导通。死区电路的波形图如图1所示,从图中可以明显地看出开关管S 1和S 2 的驱 动信号没有使S 1与 S 2 同时导通的重叠部分,这就是两个主开关管之间存在所谓的“死区”。 而通过改变HEF4528芯片的输出信号脉宽,就可以调节驱动信号的脉宽。(具体的方式是 通过改变HEF4528芯片的外接RC电路的参数值实现的,如图2所示)如图3所示R t 、C t 的值与输出脉宽的关系在本文中,选择电位器P2的阻值为10kΩ,电容C237的容值为103pF,因此由图3可知,输出信号的脉宽大约为10μs 。

逆变器SPWM控制电路与设计

信息技术 Information Technology 3.3 空间信息更新方法 3.3.1 利用GIS软件功能更新 随着GIS软件的发展,当前流行的GIS软件平台提供了时态GIS部分空间信息更新要求。如ArcGIS9.2针对时态GIS的数据组织需求以及功能需求,提供相应的解决方案,包括:时 间数据的存储格式NetCDF、时空数据建模、历史数据归档功能、多维数据图表分析、时间动画、追踪分析功能、实时数据获取等功能。 3.3.2 利用数据库功能自动更新 目前,大多数行业的G I S利用空间数据引擎(如:ArcSDE)将空间数据存储到关系型(如:SQL Server)或对象关系型(如:Oracle)数据库中。这些数据库提供触发器功能,触发器是针对单一数据表所撰写的特殊存储过程,当数据表发生添加、删除、更新操作时,自动执行所编写的脚本。如当空间信息表发生变化时,可使用数据库触发器功能将需要变化前的数据自动存储到历史信息表中。 如果经常要空间数据库定时自动执行一些脚本,如数据库备份、数据的提炼、数据库的性能优化、重建索引、自动重建历史、建立或更新多基态等工作。可利用数据库提供的作业(Job)功能实现空间信息的更新处理。 3.3.3 编写空间信息更新模块 不同的时态GIS对空间信息更新要求不同,利用GIS软件平台功能、数据库触发器和作业功能只能满足一定条件的更新,局限性较大。针对不同行业的时态GIS应用,需利用GIS 平台提供的二次开发功能有针对性编写空间信息更新模块,实现时态GIS空间信息用户手工更新和自动更新功能。 4 结论 时态GIS作为GIS研究和应用的一个新领域,受到普遍的关注。本文分析了时态GIS空间信息的更新问题,为了提高时空数据库存储和管理效率,研究了将空间信息和属性信息分开存储的时空数据库,并设计了时态GIS空间信息更新流程,给出了时态GIS空间信息更新技术和方法。 参考文献: 王贺封.时空数据模型及TGIS研究[J].测绘与空间地理信[1] 息,2006.08. 周晓光,陈军,朱建军等.基于事件的时空数据库增量更新[2] [J].中国图像图形学报,2006,11(10):1431-1438. 吴正升,胡艳,何志新.时空数据模型研究进展及其发展方[3] 向[J].测绘与空间地理信息,2009.12. 汪汇兵,唐新明,洪志刚.版本差量式时空数据模型研究[4] [J].测绘科学,2006.09. 李勇,陈少沛,谭建军.基于基态距优化的改进基态修正时[5] 空数据模型研究[J].测绘科学,2007.01. 逆变器SPWM控制电路 的研究与设计 李长华 刘平 (郑州大学信息工程学院,河南 郑州 450001) 摘 要:本文依据SPWM控制原理,以逆变器控制电路 为研究对象,通过分立电路设计出SPWM电路,调制 波为50Hz正弦波,载波为10KHz三角波,输出SPWM 波频率为20KHz。实验证明该电路稳定性好,有效克服 了温飘,反馈迅速,且成本低,输出实现倍频效应,对 逆变器控制的理解和学习有很好的指导作用,具有较高 的实用价值。 关键词:逆变器;SPWM控制;分立电路;倍频 中图分类号:TK-9 文献标识码:B 文章编号:1671-8089(2012)02-0088-03 A Design of SPWM Circuit of Inverter Lichanghua Liuping (The College of ZhengZhou University ZhengZhou 450001 China) Abstract: The principle of the driver circuit of an inverter is introduced in this paper. A SPWM control circuit is designed with discrete components. The frequency of triangular wave is 10KHz, the sine wave is 50Hz, and the SPWM is 20KHz. The experimental results show that this method can work well. Temperature drift is overcome. And the cost is low. The output frequency is doubled. In addition, this paper helps us understanding the SPWM control circuit better. And the pragmatic value of this design is high. Key words: inerter; SPWM control; discrete circuit; frequency doubling 0 引言 逆变器是一种通过半导体功率开关管的开通与关断作用将直流电转化为交流电的电路变换装置[1]。根据输出波形可分为方波逆变器和正弦波逆变器。由于多数负载要求逆变器输出正弦波,所以正弦波逆变器具有更广泛的应用空间。在高频化技术阶段,逆变器输出波形改善以PWM(Pulse Width [作者简介] 李长华,男,河南新乡人,郑州大学在读研究生,主要从事开关电源设计及逆变器研究。 – 88 – 2012年第11卷第2期

逆变器滤波器参数设置

1滤波特性分析 输出滤波方式通常可分为:L 型、LC 型和 LCL 型, 滤波方式的特点比较如下: (1)中的单 L 型滤波器为一阶环节,其结构简单,可以比较灵活地选择控制器且设计相对容易,并网控制策略不是很复杂,并网容易实现,是并网逆变器常用的滤波方式。缺点在于其滤波能力有限,比较依赖于控制器的性能。 (2)中的LC 型滤波器为二阶环节, C 的引入可以兼顾逆变器独立、并网双模式运行的要求,有利于光伏系统功能的多样化。然而,滤波电容电流会对并网电流造成一定影响。 (3)中的LCL 型滤波器在高频谐波抑制方面更具优势,在相同高频电流滤波效果下,其所需总电感值较小。但因为其为三阶环节,在系统中引入了谐振峰,必须引入适当的阻尼来削减谐振峰,这就导致了其控制策略复杂,系统稳定性容易受到影响。当三相光伏逆变器独立运行时,一般均采用 LC 型滤波方式。

并网逆变器的滤波器要在输出的低频段(工频 50Hz)时要尽量少的衰减,而要尽量衰减输出的高频段(主要是各次谐波)。 采用伯德图来分析各种滤波器的频域响应。[1] 一般并网逆变器滤波部分的电感为毫亨级,电容为微法级,这里电感值取 1m H,电容取 100u F,电感中的电阻取 0.02Ω,在研究LCL滤波器时,取电感值为 L1=L2=0.5m H,电阻 R1=R2=0.01Ω。 对于单电感滤波器,以输入电压和输出电流为变量,并且实际的电感中含有一定电阻,其传递函数为: 对于采用 LC 滤波器的并网逆变器,在并网运行时,电网电压直接加在滤波器中的电容两端,因此此时电容不起滤波作用,可以看作是一个负载,从滤波效果上来说,它等同于单电感滤波器。并且对于被控量选取为电感电流IL 的采用 LC滤波的并网逆变器,由于有电容的作用,其控制电流IL与实际输出电流Io 之间有如下图所示:

光伏并网逆变器设计方案讲解

100kW光伏并网逆变器 设计方案 目录 1. 百千瓦级光伏并网特点 (2) 2 光伏并网逆变器原理 (3) 3 光伏并网逆变器硬件设计 (3) 3.1主电路 (6) 3.2 主电路参数 (7) 3.2.1 变压器设计............................................................................. 错误!未定义书签。 3.2.3 电抗器设计 (7) 3.3 硬件框图 (10) 3.3.1 DSP控制单元 (11) 3.3.2 光纤驱动单元 (11) 3.3.2键盘及液晶显示单元 (13) 3 光伏并网逆变器软件 (13)

1. 百千瓦级光伏并网特点 2010年全球太阳能光伏发电系统装机容量将达到10000MWp(我国将达到400MWp),2010年以后还将呈进一步加速发展趋势。百千瓦级大型光伏发电并网用逆变控制功率调节设备,成本低,效率高,容量大,被国内外光伏界公认为是适合大功率光伏发电并网用的最具技术含量、最有发展前景的新一代主流产品,直接影响到未来光伏发电的走向。 百千瓦级大功率光伏并网逆变电源其应用对象主要为大型光伏并网电站,从原理上讲,其并网控制技术与中小功率光伏并网系统的控制技术基本相同,但由于装置容量较大,在技术指标的实现达标和功能设计方面却有较大区别。 在技术指标上,主要会影响: 1.并网电流畸变率 在系统的额定容量达到一定数量级时,一些存在的技术问题将会逐步暴露并影响到系统的性能指标,其最重要的一点就是并网电流波形畸变率的控制和电流滤波方式。该系统中的主变压器一般选择为三相Δ/Y型式,且容量较大,此时变压器的非线性和励磁电流对并网电流波形的影响不容忽视,否则会引起并网电流波形的明显畸变和三相电流不平衡。 2.电磁噪声 由于是三相桥式逆变结构,受IGBT功率模块的开关频率限制及考虑系统的效率指标,系统的电流脉动要远高于中小功率系统,对电流的滤波和噪声控制需要特别注意,此时对系统的滤波电路设计和并网电流PWM控制方式的研究至关重要。由于系统的dv/dt、di/dt和电流幅值较大,其EMI和EMC的指标实现可能存在技术难度,由于系统的噪声可能影响其电流、功率的检测和计算精度,在最大功率跟踪和孤岛效应识别等方面的影响还难以预计。 在技术指标上,主要考虑: 1)主电路工艺结构设计 2)散热工艺结构设计 3)驱动方式设计

相关文档
最新文档