2016二次函数专题复习一点的存在性问题

2016二次函数专题复习一点的存在性问题
2016二次函数专题复习一点的存在性问题

二次函数专题训练

二次函数专题复习一:点的存在性问题

二次函数专题复习二:二次函数中的相似三角形

二次函数专题复习三:面积类问题

二次函数专题复习四:线段的最值问题

二次函数专题复习五:二次函数中的圆

二次函数专题复习六:函数关系式问题

二次函数动点问题的学习归纳

二次函数专题复习一

点的存在性问题

一.解答题(共15小题)

1.(张家界)如图,抛物线y=ax2+bx经过点A(﹣4,0)、B(﹣2,2),连接OB、AB,

(1)求该抛物线的解析式.

(2)求证:△OAB是等腰直角三角形.

(3)将△OAB绕点O按逆时针方向旋转135°,得到△OA′B′,写出A′B′的中点P的坐标,试判断点P是否在此抛物线上.

(4)在抛物线上是否存在这样的点M,使得四边形ABOM成直角梯形?若存在,请求出点M坐标及该直角梯形的面积;若不存在,请说明理由.

2.(江西)已知:抛物线y=a(x﹣2)2+b(ab<0)的顶点为A,与x轴的交点为B,C(点B在点C的左侧).(1)直接写出抛物线对称轴方程;

(2)若抛物线经过原点,且△ABC为直角三角形,求a,b的值;

(3)若D为抛物线对称轴上一点,则以A,B,C,D为顶点的四边形能否为正方形?若能,请写出a,b满足的关系式;若不能,说明理由.

3.(义乌市)已知二次函数的图象经过A(2,0)、C(0,12)两点,且对称轴为直线x=4.设顶点为点P,与x轴的另一交点为点B.

(1)求二次函数的解析式及顶点P的坐标;

(2)如图1,在直线y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;

(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒个单位长度的速度由点P向点O 运动,过点M作直线MN∥x轴,交PB于点N.将△PMN沿直线MN对折,得到△P1MN.在动点M的运动过程中,设△P1MN 与梯形OMNB的重叠部分的面积为S,运动时间为t秒.求S关于t的函数关系式.

4.(成都)如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.

(1)求此抛物线的函数表达式;

(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;

(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为?若存在,求出点M的坐标;若不存在,请说明理由.

5.(湛江)如图,抛物线y=x2+bx+c的顶点为D(﹣1,﹣4),与y轴交于点C(0,﹣3),与x轴交于A,B两点(点A在点B的左侧).

(1)求抛物线的解析式;

(2)连接AC,CD,AD,试证明△ACD为直角三角形;

(3)若点E在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F为顶点的四边形为平行四边形?若存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.

6.(湘潭)如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另一点C(3,0).(1)求抛物线的解析式;

(2)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

7.(柳州)如图,一次函数y=﹣4x﹣4的图象与x轴、y轴分别交于A、C两点,抛物线y=x2+bx+c的图象经过A、

C两点,且与x轴交于点B.

(1)求抛物线的函数表达式;

(2)设抛物线的顶点为D,求四边形ABDC的面积;

(3)作直线MN平行于x轴,分别交线段AC、BC于点M、N.问在x轴上是否存在点P,使得△PMN是等腰直角三角形?如果存在,求出所有满足条件的P点的坐标;如果不存在,请说明理由.

8.(莱芜)如图,在平面直角坐标系中,已知点A(﹣2,﹣4),OB=2,抛物线y=ax2+bx+c经过点A、O、B三点.(1)求抛物线的函数表达式;

(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;

(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.

9.(江西)将抛物沿c1:y=﹣x2+沿x轴翻折,得拋物线c2,如图所示.

(1)请直接写出拋物线c2的表达式.

(2)现将拋物线C1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A,B;将抛物线C2向右也平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴交点从左到右依次为D,E.

①当B,D是线段AE的三等分点时,求m的值;

②在平移过程中,是否存在以点A,N,E,M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.

10.(济南)如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c

经过A、C两点,与AB边交于点D.

(1)求抛物线的函数表达式;

(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ 的面积为S.

①求S关于m的函数表达式,并求出m为何值时,S取得最大值;

②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上若存在点F,使△FDQ为直角

三角形?若存在,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.

二次函数专题训练

二次函数专题复习一:点的存在性问题

二次函数专题复习二:二次函数中的相似三角形

二次函数专题复习三:面积类问题

二次函数专题复习四:线段的最值问题

二次函数专题复习五:二次函数中的圆

二次函数专题复习六:函数关系式问题

二次函数动点问题的学习归纳

二次函数专题复习二

二次函数中的相似三角形

一.解答题(共5小题)

1.(营口)如图(1),直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.

(1)求该抛物线的解析式;

(2)在该抛物线的对称轴上是否存在点M,使以C、P、M为顶点的三角形为等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由;

(3)连接AC,在x轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由;

(4)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值.

(图(2)、图(3)供画图探究)

2.(仙桃天门潜江江汉油田)在平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(﹣3,0)、B(1,0),过顶点C作CH⊥x轴于点H.

(1)直接填写:a=_________,b=_________,顶点C的坐标为_________;

(2)在y轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;

(3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.

3.(深圳)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(l,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).

(1)求抛物线的解析式;

(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G,H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;

(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.

4.(宁波)如图,平面直角坐标系xOy中,点A的坐标为(﹣2,2),点B的坐标为(6,6),抛物线经过A、O、B 三点,连接OA、OB、AB,线段AB交y轴于点E.

(1)求点E的坐标;

(2)求抛物线的函数解析式;

(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接ON、BN,当点F在线段OB上运动时,求△BON面积的最大值,并求出此时点N的坐标;

(4)连接AN,当△BON面积最大时,在坐标平面内求使得△BOP与△OAN相似(点B、O、P分别与点O、A、N 对应)的点P的坐标.

5.(嘉兴)已知直线y=kx+3(k<0)分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t秒.

(1)当k=﹣1时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动(如图1).

①直接写出t=1秒时C、Q两点的坐标;

②若以Q、C、A为顶点的三角形与△AOB相似,求t的值.

(2)当时,设以C为顶点的抛物线y=(x+m)2+n与直线AB的另一交点为D(如图2),

①求CD的长;

②设△COD的OC边上的高为h,当t为何值时,h的值最大?

二次函数专题训练

二次函数专题复习一:点的存在性问题

二次函数专题复习二:二次函数中的相似三角形

二次函数专题复习三:面积类问题

二次函数专题复习四:线段的最值问题

二次函数专题复习五:二次函数中的圆

二次函数专题复习六:函数关系式问题

二次函数动点问题的学习归纳

二次函数专题复习三

面积类问题

一.解答题(共9小题)

1.(漳州)如图1,抛物线y=mx2﹣11mx+24m (m<0)与x轴交于B、C两点(点B在点C的左侧),抛物线另有一点A在第一象限内,且∠BAC=90°.

(1)填空:OB=_________,OC=_________;

(2)连接OA,将△OAC沿x轴翻折后得△ODC,当四边形OACD是菱形时,求此时抛物线的解析式;

(3)如图2,设垂直于x轴的直线l:x=n与(2)中所求的抛物线交于点M,与CD交于点N,若直线l沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.

2.(芜湖)平面直角坐标系中,?ABOC如图放置,点A、C的坐标分别为(0,3)、(﹣1,0),将此平行四边形绕点O 顺时针旋转90°,得到?A'B'OC'.

(1)若抛物线过点C,A,A',求此抛物线的解析式;

(2)?ABOC和?A'B'OC'重叠部分△OC'D的周长;

(3)点M是第一象限内抛物线上的一动点,问:点M在何处时△AMA'的面积最大?最大面积是多少?并求出此时M的坐标.

3.(天水)在梯形OABC中,CB∥OA,∠AOC=60°,∠OAB=90°,OC=2,BC=4,以点O为原点,OA所在的直线为x轴,建立平面直角坐标系,另有一边长为2的等边△DEF,DE在x轴上(如图(1)),如果让△DEF以每秒1个单位的速度向左作匀速直线运动,开始时点D与点A重合,当点D到达坐标原点时运动停止.

(1)设△DEF运动时间为t,△DEF与梯形OABC重叠部分的面积为S,求S关于t的函数关系式.

(2)探究:在△DEF运动过程中,如果射线DF交经过O、C、B三点的抛物线于点G,是否存在这样的时刻t,使得△OAG的面积与梯形OABC的面积相等?若存在,求出t的值;若不存在,请说明理由.

4.(十堰)如图,己知抛物线y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,﹣3).

(1)求抛物线的解析式;

(2)如图(1),己知点H(0,﹣1).问在抛物线上是否存在点G (点G在y轴的左侧),使得S△GHC=S△GHA?若存在,求出点G的坐标;若不存在,请说明理由;

(3)如图(2),抛物线上点D在x轴上的正投影为点E(﹣2,0),F是OC的中点,连接DF,P为线段BD上的一点,若∠EPF=∠BDF,求线段PE的长.

5.(日照)如图,抛物线y=ax2+bx(a>0)与双曲线y=相交于点A,B.已知点B的坐标为(﹣2,﹣2),点A在第

一象限内,且tan∠AOx=4.过点A作直线AC∥x轴,交抛物线于另一点C.

(1)求双曲线和抛物线的解析式;

(2)计算△ABC的面积;

(3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积?若存在,请你写出点D的坐标;若不存在,请你说明理由.

6.(清远)如图,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,﹣3)

(1)求抛物线的对称轴及k的值;

(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;

(3)点M是抛物线上的一动点,且在第三象限.

①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;

②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点的坐标.

7.(攀枝花)如图,已知二次函数y=x2+bx+c的图象的对称轴为直线x=1,且与x轴有两个不同的交点,其中一个交点坐标为(﹣1,0).

(1)求二次函数的关系式;

(2)在抛物线上有一点A,其横坐标为﹣2,直线l过点A并绕着点A旋转,与抛物线的另一个交点是点B,点B的横坐标满足﹣2<x B<,当△AOB的面积最大时,求出此时直线l的关系式;

(3)抛物线上是否存在点C使△AOC的面积与(2)中△AOB的最大面积相等?若存在,求出点C的横坐标;若不存在说明理由.

8.(南充)抛物线y=ax2+bx+c与x轴的交点为A(m﹣4,0)和B(m,0),与直线y=﹣x+p相交于点A和点C(2m ﹣4,m﹣6).

(1)求抛物线的解析式;

(2)若点P在抛物线上,且以点P和A,C以及另一点Q为顶点的平行四边形ACQP面积为12,求点P,Q的坐标;(3)在(2)条件下,若点M是x轴下方抛物线上的动点,当△PQM的面积最大时,请求出△PQM的最大面积及点M的坐标.

9.(娄底)如图,已知二次函数y=﹣x2+mx+4m的图象与x轴交于A(x1,0),B(x2,0)两点(B点在A点的右边),与y轴的正半轴交于点C,且(x1+x2)﹣x1x2=10.

(1)求此二次函数的解析式.

(2)写出B,C两点的坐标及抛物线顶点M的坐标;

(3)连接BM,动点P在线段BM上运动(不含端点B,M),过点P作x轴的垂线,垂足为H,设OH的长度为t,四边形PCOH的面积为S.请探究:四边形PCOH的面积S有无最大值?如果有,请求出这个最大值;如果没有,请说明理由.

二次函数专题训练

二次函数专题复习一:点的存在性问题

二次函数专题复习二:二次函数中的相似三角形

二次函数专题复习三:面积类问题

二次函数专题复习四:线段的最值问题

二次函数专题复习五:二次函数中的圆

二次函数专题复习六:函数关系式问题

二次函数动点问题的学习归纳

二次函数专题复习四

线段的最值问题

一.解答题(共8小题)

1.(宜昌)已知抛物线y=ax2+bx+c与直线y=mx+n相交于两点,这两点的坐标分别是(0,﹣)和(m﹣b,m2﹣mb+n),

其中a,b,c,m,n为实数,且a,m不为0.

(1)求c的值;

(2)设抛物线y=ax2+bx+c与x轴的两个交点是(x1,0)和(x2,0),求x1?x2的值;

(3)当﹣1≤x≤1时,设抛物线y=ax2+bx+c上与x轴距离最大的点为P(x0,y0),求这时|y0丨的最小值.

2.(雅安)如图,已知二次函数y=ax2+2x+c(a>0)图象的顶点M在反比例函数上,且与x轴交于AB两点.(1)若二次函数的对称轴为,试求a,c的值;

(2)在(1)的条件下求AB的长;

(3)若二次函数的对称轴与x轴的交点为N,当NO+MN取最小值时,试求二次函数的解析式.

3.(威海)如图,抛物线y=ax2+bx+c交x轴于点A(﹣3,0),点B(1,0),交y轴于点E(0,﹣3).点C是点A 关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=﹣x+m过点C,交y轴于D点.(1)求抛物线的函数表达式;

(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;

(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.

4.(眉山)如图,在直角坐标系中,已知点A(0,1),B(﹣4,4),将点B绕点A顺时针方向90°得到点C;顶点在坐标原点的拋物线经过点B.

(1)求抛物线的解析式和点C的坐标;

(2)抛物线上一动点P,设点P到x轴的距离为d1,点P到点A的距离为d2,试说明d2=d1+1;

(3)在(2)的条件下,请探究当点P位于何处时,△PAC的周长有最小值,并求出△PAC的周长的最小值.

5.(莱芜)如图,在平面直角坐标系中,已知点A(﹣2,﹣4),OB=2,抛物线y=ax2+bx+c经过点A、O、B三点.(1)求抛物线的函数表达式;

(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;

(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.

6.(嘉兴)已知直线y=kx+3(k<0)分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t秒.

(1)当k=﹣1时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动(如图1).

①直接写出t=1秒时C、Q两点的坐标;

②若以Q、C、A为顶点的三角形与△AOB相似,求t的值.

(2)当时,设以C为顶点的抛物线y=(x+m)2+n与直线AB的另一交点为D(如图2),

①求CD的长;

②设△COD的OC边上的高为h,当t为何值时,h的值最大?

7.(菏泽)如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).

(1)求抛物线的解析式及顶点D的坐标;

(2)判断△ABC的形状,证明你的结论;

(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.

8.(广安)如图所示,在平面直角坐标系中,四边形ABCD是直角梯形,BC∥AD,∠BAD=90°,BC与y轴相交于点M,且M是BC的中点,A、B、D三点的坐标分别是A(﹣1,0),B(﹣l,2),D(3,0).连接DM,并把线段DM 沿DA方向平移到ON.若抛物线y=ax2+bx+c经过点D、M、N.

(1)求抛物线的解析式.

(2)抛物线上是否存在点P,使得PA=PC?若存在,求出点P的坐标;若不存在,请说明理由.

(3)设抛物线与x轴的另一个交点为E,点Q是抛物线的对称轴上的一个动点,当点Q在什么位置时有|QE﹣QC|最大?并求出最大值.

二次函数专题训练

二次函数专题复习一:点的存在性问题

二次函数专题复习二:二次函数中的相似三角形

二次函数专题复习三:面积类问题

二次函数专题复习四:线段的最值问题

二次函数专题复习五:二次函数中的圆

二次函数专题复习六:函数关系式问题

二次函数动点问题的学习归纳

二次函数专题复习五

二次函数中的圆

一.解答题(共8小题)

1.(遵义)已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C.

(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标;

(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;

(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.

2.(襄阳)如图,在平面直角坐标系xoy中,AB在x轴上,AB=10,以AB为直径的⊙O'与y轴正半轴交于点C,连接BC,AC.CD是⊙O'的切线,AD丄CD于点D,tan∠CAD=,抛物线y=ax2+bx+c过A,B,C三点.

(1)求证:∠CAD=∠CAB;

(2)①求抛物线的解析式;

②判断抛物线的顶点E是否在直线CD上,并说明理由;

(3)在抛物线上是否存在一点P,使四边形PBCA是直角梯形?若存在,直接写出点P的坐标(不写求解过程);若不存在,请说明理由.

3.(荆州)如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA 所在直线为x轴、y轴建立平面直角

坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=经过A、C

两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.

(1)求B点坐标;

(2)求证:ME是⊙P的切线;

(3)设直线AC与抛物线对称轴交于N,Q点是此轴称轴上不与N点重合的一动点,

①求△ACQ周长的最小值;

②若FQ=t,S△ACQ=S,直接写出S与t之间的函数关系式.

4.(德州)在直角坐标系xoy中,已知点P是反比例函数(x>0)图象上一个动点,以P为圆心的圆始终与y

轴相切,设切点为A.

(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.

(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时:

①求出点A,B,C的坐标.

②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的?若存在,试求出所有满足条件的M点的坐标;若不存在,试说明理由.

5.(湘潭)如图,直线y=﹣x+6与x轴交于点A,与y轴交于点B,以线段AB为直径作⊙C,抛物线y=ax2+bx+c过A、C、O三点.

(1)求点C的坐标和抛物线的解析式;

(2)过点B作直线与x轴交于点D,且OB2=OA?OD,求证:DB是⊙C的切线;

(3)抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为直角梯形?如果存在,求出点P的坐标;如果不存在,请说明理由.

二次函数-平行四边形存在性问题

专题:二次函数中的平行四边形存在性问题 类型一:已知三个定点,再找一个定点构成平行四边形(平面内有三个点满足) 1.已知抛物线b ax ax y ++-=22与x 轴的一个交点为A (-1,0),与y 轴的正半轴交于点C. ⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标; ⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式; ⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A、B、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由. 类型:已知两个定点,再找两个点构成平行四边形 1.已知,如图抛物线2 3(0)y ax ax c a =++>与y 轴交于C 点,与x 轴交于A、B 两点,A 点在B 点左侧。点B 的坐标为(1,0),OC=30B. (1)求抛物线的解析式; (2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值: (3)若点E 在x 轴上,点P 在抛物线上。是否存在以A、C、E、P 为顶点且以AC 为一边的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.

2、练习如图,抛物线:c bx x y ++=22 1与x 轴交于A、B(A 在B 左侧),顶点为C(1,﹣2)。(1)求此抛物线的关系式;并直接写出点A、B 的坐标; (2)求过A、B、C 三点的圆的半径; (3)在抛物线上找点P,在y 轴上找点E,使以A、B、P、E 为顶点的四边形是平行四边形,求点P、E 的坐标。 1.如图,抛物线2 23y x x =--与x 轴交A、B 两点(A 点在B 点左侧),直线l 与抛物线交于A、C 两点,其中C 点的横坐标为2. (1)求A、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值; (3)点G 抛物线上的动点,在x 轴上是否存在点F,使A、C、F、G 这样的四个点为顶点的四边形是平行 四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.

(完整版)二次函数与三角形的存在性问题的解法

二次函数与三角形的存在性问题 一、预备知识 1、坐标系中或抛物线上有两个点为P (x1,y ),Q (x2,y ) (1)线段对称轴是直线2x 2 1x x += (2)AB 两点之间距离公式:221221)()(y y x x PQ -+-= 中点公式:已知两点 ()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++222121y y ,x x 。 2、两直线的解析式为11b x k y +=与 22b x k y += 如果这两天两直线互相垂直,则有121-=?k k 3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1 L2:y=k2x+b2 (1)当k1=k2,b1≠b2 ,L1∥L2 (2)当k1≠k2, ,L1与L2相交 (3)K1×k2= -1时, L1与L2垂直 二、三角形的存在性问题探究: 三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形 (一)三角形的性质和判定: 1、等腰三角形 性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。 判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。 2、直角三角形 性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。 判定:有一个角是直角的三角形是直角三角形。 3、等腰直角三角形 性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。 判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形 4、等边三角形 性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。 判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是60°的等腰三角形是等边三角形。

中考数学二次函数存在性问题 及参考答案

中考数学二次函数存在性问题 及参 考答案
一、二次函数中相似三角形的存在性问题 1.如图,把抛物线 向左平移 1 个单位,再向下平移 4 个单位,得到抛物线 . 所得抛物线与 轴交于 A,B 两点(点 A 在点 B 的左边),与 轴交于点 C,顶点为 D. (1)写出 的值;(2)判断△ACD 的形状,并说明理由; (3)在线段 AC 上是否存在点 M,使△AOM∽△ABC?若存在,求出点 M 的坐标;若不存在, 说明理由.
2.如图,已知抛物线经过 A(﹣2,0),B(﹣3,3)及原点 O,顶点为 C. (1)求抛物线的解析式; (2)若点 D 在抛物线上,点 E 在抛物线的对称轴上,且 A、O、D、E 为顶点的四边形是平行 四边形,求点 D 的坐标; (3)P 是抛物线上的第一象限内的动点,过点 P 作 PM x 轴,垂足为 M,是否存在点 P, 使得以 P、M、A 为顶点的三角形△BOC 相似?若存在,求出点 P 的坐标;若不存在,请说明 理由.
1 / 13

二、二次函数中面积的存在性问题 3.如图,抛物线 与双曲线 相交于点 A,B.已知点 B 的坐标为(-2,-2),点 A 在第一象限内,且 tan∠AOX=4.过点 A 作直线 AC∥ 轴,交抛物线于另一点 C. (1)求双曲线和抛物线的解析式; (2)计算△ABC 的面积; (3)在抛物线上是否存在点 D,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点 D 的坐标;若不存在,请你说明理由.
4.如图,抛物线 y=ax2+c(a>0)经过梯形 ABCD 的四个顶点,梯形的底 AD 在 x 轴上, 其中 A(-2,0),B(-1, -3). (1)求抛物线的解析式;(3 分) (2)点 M 为 y 轴上任意一点,当点 M 到 A、B 两点的距离之和为最小时,求此时点 M 的坐
2 / 13

二次函数的存在性问题(面积)及答案

图12-2 x C O y A B D 1 1 二次函数的存在性问题(面积问题) 1、[08云南双柏]已知:抛物线y =ax 2 +bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴 的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB

二次函数中和角有关的存在性问题

二次函数中与角有关的存在性问题 与角有关的存在性问题包括相等角的存在性、二倍角或半角的存在性,其他倍数关系角的存在性等,解决这类问题我们通常利用以下知识点去构造相关角: ①平行线的同位角、内错角相等;②等腰三角形的等边对等角;③相似三角形对应角相等;④全等三角形对应角相等;⑤三角形的外角定理等。 然后利用解直角三角形、相似三角形边的比例关系作为计算工具去计算求解,难度相对较大,需要同学们灵活运用,融会贯通。 【类型一 相等角的存在性问题】 (一).利用平行线、等腰三角形构造相等角 例1 如图,直线33+-=x y 与x 轴、y 轴分别交于A ,B 两点,抛物线c bx x y ++-=2 与直线y =c 分别交y 轴的正半轴于点C 和第一象限的点P ,连接PB ,得BOA PCB ≌△△(O 为坐标原点)。若抛物线与x 轴正半轴交点为点F ,设M 是点C ,F 间抛物线上的一点(包括端点),其横坐标为m . (1)直接写出点P 的坐标和抛物线的解析式. (2)求满足POA MPO ∠=∠的点M 的坐标.

(二).利用相似三角形构造相等角 例2 如图,抛物线c bx x y ++=2 2 1与x 轴交于A 、B 两点,与y 轴交于点C ,其对称轴交 抛物线于点D ,交x 轴于点E ,已知OB=OC=6. (1)求抛物线的解析式及点D 的坐标; (2)连接BD ,F 为抛物线上一动点,当EDB FAB ∠=∠时,求点F 的坐标; 解:(1)因为OB=OC=6,所以B (6,0),C ()6,0-, 将 B 、 C 点 坐 标 代 入 解 析 式 , 得 ()822 162212 2--=--= x x x y , 所以点D 的坐标为(2,—8) (2)如图1,过F 作FG ⊥x 轴于点G ,设?? ? ?? --6221, F 2x x x ,则FG=62212--x x ,AG=x +2,当EDB FAB ∠=∠时,且B ED GA ∠=∠F , 所以BDE FAG ∽△△,所以 FG AG EB DE = ,即2622 12482=--+=x x x , 当点F 在x 轴上方时,则有12422 --=+x x x ,解得x=—2(舍去)或x=7,此时F 点的坐标为?? ? ??297,; 当点F 在x 轴下方时,则有)(12422 ---=+x x x ,解得x=—2(舍去)或x=5,此时F 点的坐标为??? ? ?-275, ,,综上可知点F 的坐标为??? ?? 297,或?? ? ? ?-275, .

(完整版)二次函数中的存在性问题(答案)

二次函数中的存在性问题姓名 1.已知抛物线y=﹣x2+x﹣3与x轴交于A,B两点,与y轴交于点C.在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,请说明理由. 2.已知y=ax2+bx+c(a≠0)图象与直线y=kx+4相交于A(1,m),B(4,8)两点,与x轴交于原点及点C.(1)求直线和抛物线解析式; (2)在x轴上方的抛物线上是否存在点D,使S△OCD=2S△OAB?如果存在,求出点D坐标,如果不存在,说明理由. 3.已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C. (1)求此抛物线的解析式; (2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.

4.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),过点A的直线y=kx+1交抛物线于点C(2,3). (1)求直线AC及抛物线的解析式; (2)若直线y=kx+1与抛物线的对称轴交于点E,以点E为中心将直线y=kx+1顺时针旋转90°得到直线l,设直线l与y轴的交点为P,求△APE的面积; (3)若G为抛物线上一点,是否存在x轴上的点F,使以B、E、F、G为顶点的四边形为平行四边形?若存在,直接写出点F的坐标;若不存在,请说明理由. 5.如图,在平面直角坐标系中,抛物线交x轴于A,B两点(A在B的左侧),交y轴于点C. (1)求直线BC的解析式; (2)求抛物线的顶点及对称轴; (3)若点Q是抛物线对称轴上的一动点,线段AQ+CQ是否存在最小值?若存在,求出点Q的坐标;若不存在,说明理由; (4)若点P是直线BC上方的一个动点,△PBC的面积是否存在最大值?若存在,求出点P的坐标及此时△PBC 的面积;若不存在,说明理由.

二次函数的存在性问题(面积问题)

二次函数的存在性问题(面积问题) [08湖北荆州]已知:如图,R t △AOB 的两直角边OA 、OB 分别在x 轴的正半轴和y 轴的负 半轴上,C 为OA 上一点且OC =OB ,抛物线y=(x -2)(x -m )-(p-2)(p-m)(m 、p 为常数且m+2≥2p>0)经过A 、C 两点. (1)用m 、p 分别表示OA 、OC 的长; (2)当m 、p 满足什么关系时,△AOB 12220.(1)0 2)()(2)()0 )(2)0,222020 2,1(2),2 11 (2) 2211 (2)22 1 (2) 1 2(2)1 2 2()2 AOB AOB AO y x x m p p m x p x m p x p x m p m p m p p OA m p OC P OC OB S OA OB S OA OB P m p P m P m p m S =-----=---+=∴==+-+>>∴+->>∴=+-===∴==+-=-+++∴=-=+?-令得:(整理得:(当时,. B 最大 [08湖北荆州]如图,等腰直角三角形纸片AB C 中,AC =BC =4,∠ACB =90o,直角边AC 在x 轴上,B 点在第二象限,A (1,0),AB 交y 轴于E ,将纸片过E 点折叠使BE 与EA 所在直线重合,得到折痕EF (F 在x 轴上),再展开还原沿EF 剪开得到四边形BCFE ,然后把四边形BCFE 从E 点开始沿射线EA 平移,至B 点到达A 点停止.设平移时间为t (s ),移动速度为每秒1个单位长度,平移中四边形BCFE 与△AEF 重叠的面积为S. (1)求折痕EF 的长; (2)是否存在某一时刻t 使平移中直角顶点C 经过抛物线243y x x =++的顶点?若存在, 求出t 值;若不存在,请说明理由; (3)直接写出....S 与t 的函数关系式及自变量t 25.145101ABC BE EA FE EA Rt AC BC CAB EF EA A OA OE AE EF ∴⊥=∴∠=?∴=∴===∴=()折叠后与所在直线重合又中(,) ,折痕 ∥BA 交Y 轴于P , 2()存在.设CP 413 POC C CP AC OA OC OP ==∴==则为等腰直角三角形,直角顶点在射线上移动 ,

二次函数(存在性问题)

函数图象中点的存在性问题(强化训练) 切入点一:利用基本图形来作图(充分利用图形的特殊性质),并描述作图方法 切入点二:做好数据准备,计算尽量利用相似、数形结合(交轨法) 切入点三:紧扣不变量,善于使用前题所采用的方法或结论 切入点四:在题目中寻找多解的信息(不重不漏) 1.1因动点产生的平行四边形问题 1. 如图1,直线L:y=-x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线G:y=ax2+bx+c 与x轴的另一交点为A,顶点为P,且对称轴是直线x=2. (1)该抛物线G的解析式为; (2)将直线L沿y轴向下平移个单位长度,能使它与抛物线G只有一个公共点; (3)若点E在抛物线G的对称轴上,点F在该抛物线上,且以点A、B、E、F为顶点的四边形为平行四边形,求点E与点F坐标并直接写出平行四边形的周长. (4)连接AC,得△ABC.若点Q在x轴上,且以点P、B、Q为顶点的三角形与△ABC相似,求点Q 的坐标.

2. 在平面直角坐标系xOy中,已知二次函数y=ax2-2ax+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),AB=4,与y轴交于点C,且过点(2,3). (1)求此二次函数的表达式; (2)若抛物线的顶点为D,连接CD、CB,问抛物线上是否存在点P,使得∠PBC+∠BDC=90°?若存在,求出点P的坐标;若不存在,请说明理由; (3)点K为抛物线上C关于对称轴的对称点,点G抛物线上的动点,在x轴上是否存在点F,使A、K、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.

-几何图形在二次函数中的存在性问题探解

---几何图形在二次函数中的存在性问题探解 二次函数是初中数学的重要内容,更是中考的重要考点之一,它以丰富的知识内涵,深远的知识综合,深厚的数学思想,灵活的解题方法,奇趣的知识背景等深深吸引着命题老师,更深刻启迪着每位同学.下面就把几何图形在二次函数中的存在性问题介绍给大家,供学习时借鉴. 一、.三角形的存在性 1.1 等腰三角形的存在性 例1 (2017年淮安)如图1-1,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=2x +bx+c 与x 轴的另一个交点为A ,顶点为P . (1)求该抛物线的解析式; (2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由; (3)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值(图1-2、1-3供画图探究). 分析: 第一问考查的是待定系数法确定函数的解析式,思路有几个待定系数,解答时就需要确定几个点的坐标; 第二问探析等腰三角形的存在性,解答时,要做到一先一后,先清楚动点的位置与特点,后对等腰三角形进行科学分类,一是按边分类,一是按角分类; 第三问探求三角形面积的最大值,这是二次函数的看家本领,只需将三角形的面积适当分割,恰当表示,最后将三角形面积最大问题转化为二次函数的最值问题求解即可. 解: (1)因为直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,所以B (3,0),C (0,3), 所以{c =39a+3b+c =0,解得{c =3b =4-,所以抛物线解析式为y=2x ﹣4x+3; (2)因为y=2x ﹣4x+3=2(x 2)-﹣1,所以抛物线对称轴为x=2,顶点P (2,﹣1), 设M (2,t ),因为△CPM 为等腰三角形,如图2所示, ①当MC=PC 时,过C 作CQ ⊥对称轴,垂足为Q ,则Q(2,3),所以QP=MQ=3-(-1)=4,所以M 到x 轴的距离8-1=7,所以1M 的坐标(2,7); ②当MP=MC 时,作PC 的垂直平分线交对称轴于点M ,所以222(t+1)2+(t-3)=,解得t=32,所以2M 的坐标(2, 32 );

二次函数存在性问题总结

已知,抛物线322 --=x x y 交x 轴于点A 、B ,交y 轴于点C. 1、线段最值 ①线段和最小 点P 是抛物线对称轴上一动点,当点P 坐标为多少时,PA+PC 值最小. A B C O x y ②线段差最大 点Q 是抛物线对称轴上一动点,当点Q 坐标为多少时,|QA -QC|值最大. A B C O x y ③线段最值 连接BC,点M 是线段BC 上一动点,过点M 作MN//y 轴,交抛物线于点N,求线段MN 的最大值及点N 的坐标. A B C O x y N M 变式① 点N 是第四象限内抛物线上一动点,连接BN 、CN,求BCN S ?的最大值及点N的坐标 A B C O x y N

变式② 点N是第四象限内抛物线上一动点,求点N到线段BC 的最大距离及点N的坐标 A B C O x y N M 2、等腰三角形的存在性问题 点D 为抛物线322 --=x x y 的顶点,连接BC ,点P 是直线B C上一动点,是否存在点P,使△PAD 为等腰三角形,若存在,求出点P 的坐标,若不存在,说明理由. A B C O x y D 3、菱形的存在性问题 点D为抛物线322 --=x x y 的顶点,连接BC 点P 是直线BC 上一动点,点Q 为坐标平面内一点,是否存在以A 、D、P、Q 为顶点的四边形是菱形,若存在,求出点P 坐标,若不存在,说明理由. A B C O x y D 4、平行四边形的存在性问题 点D 为抛物线322 --=x x y 的顶点,点M 是抛物线上一动点,点N 为直线BC 上一动点,是否存在以O 、D 、M、N 为顶点的四边形是平行四边形,若存在,求出点M 坐标,若不存在,说明理由. A B C O x y D 5、直角三角形的存在性问题

中考数学二次函数存在性问题及参考答案

中考数学二次函数存在性问题及参考答案 一、二次函数中相似三角形的存在性问题 1.如图,把抛物线2 =向左平移1个单位,再向下平移4个单位,得到抛物线2 y x =-+. y x h k () 所得抛物线与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D. (1)写出h k 、的值;(2)判断△ACD的形状,并说明理由; (3)在线段AC上是否存在点M,使△AOM∽△ABC若存在,求出点M的坐标;若不存在,说明理由. 2.如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C. (1)求抛物线的解析式; (2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标; (3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似若存在,求出点P的坐标;若不存在,请说明理由. 二、二次函数中面积的存在性问题

3.如图,抛物线()20y ax bx a >=+与双曲线k y x = 相交于点A ,B .已知点B 的坐标为(-2,-2),点A 在第一象限内,且tan ∠AOX =4.过点A 作直线AC ∥x 轴,交抛物线于另一点C . (1)求双曲线和抛物线的解析式; (2)计算△ABC 的面积; (3)在抛物线上是否存在点D ,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点D 的坐标;若不存在,请你说明理由. 4.如图,抛物线y =ax 2+c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上, 其中A (-2,0),B (-1, -3). (1)求抛物线的解析式;(3分) (2)点M 为y 轴上任意一点,当点M 到A 、B 两点的距离之和为最小时,求此时点M 的坐标;(2分) (3)在第(2)问的结论下,抛物线上的点P 使S △PAD =4S △ABM 成立,求点P 的坐标.(4分) (4)在抛物线的BD 段上是否存在点Q 使三角形BDQ 的面积最大,若有,求出点Q 的坐标,若没有,请说明理由。 三、二次函数中直角三角形的存在性问题 5.如图,△ABC 是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线2y x bx c =++经过A ,B 两点, 抛物线的顶点为D . (1)求b ,c 的值;

答案 二次函数-矩形的存在性问题

参考答案 1. (2015 黑龙江省龙东地区) 如图,四边形OABC 是矩形,点A 、C 在坐标轴上,△ODE 是△OCB 绕点O 顺 时针旋转90°得到的,点D 在x 轴上,直线BD 交y 轴于点F ,交OE 于点H ,线段BC 、OC 的长是方程x 2﹣6x+8=0的两个根,且OC >BC . (1)求直线BD 的解析式; (2)求△OFH 的面积; (3)点M 在坐标轴上,平面内是否存在点N ,使以点 D 、F 、M 、N 为顶点的四边形是矩形?若存在, 请直接写出点N 的坐标;若不存在,请说明理由. 1. 分析: (1)解方程可求得OC 、BC 的长,可求得B 、D 的坐标, 利用待定系数法可求得直线BD 的解析式; (2)可求得E 点坐标,求出直线OE 的解析式,联立直线BD 、OE 解析式可求得H 点的横坐标,可求得△OFH 的面积; (3)当△MFD 为直角三角形时,可找到满足条件的点N ,分∠MFD=90°、∠MDF=90°和∠FMD=90°三种情况,分别求得M 点的坐标,可分别求得矩形对角线的交点坐标,再利用中点坐标公式可求得N 点坐标. 解答: 解:(1)解方程x 2﹣6x+8=0可得x=2或x=4,∵BC 、OC 的长是方程x 2 ﹣6x+8=0的两个根,且OC >BC , ∴BC=2,OC=4,∴B (﹣2,4),∵△ODE 是△OCB 绕点O 顺时针旋转90°得到的, ∴OD=OC=4,DE=BC=2,∴D (4,0),设直线BD 解析式为y=kx+b , 把B 、D 坐标代入可得,解得,∴直线BD 的解析式为y=﹣x+; (2)由(1)可知E (4,2),设直线OE 解析式为y=mx , 把E 点坐标代入可求得m=, ∴直线OE 解析式为y=x ,令﹣x+=x , 解得x=,∴H 点到y 轴的距离为, 又由(1)可得F (0,),∴OF=,∴S △OFH =××=; (3)∵以点D 、F 、M 、N 为顶点的四边形是矩形, ∴△DFM 为直角三角形, ①当∠MFD=90°时,则M 只能在x 轴上,连接FN 交MD 于点G ,如图1, 由(2)可知OF=,OD=4,则有△MOF ∽△FOD , ∴=,即=,解得OM=,∴M (﹣,0),且D (4,0),∴G (,0), 设N 点坐标为(x ,y ),则=,=0,解得x=,y=﹣,此时N 点坐标为(,﹣); ②当∠MDF=90°时,则M 只能在y 轴上,连接DN 交MF 于点G ,如图2, 则有△FOD ∽△DOM , ∴=,即=,解得OM=6, ∴M (0,﹣6),且F (0,), ∴MG=MF=,则OG=OM ﹣MG=6﹣=, ∴G (0,﹣), 设N 点坐标为(x ,y ),则=0,=﹣, 解得x=﹣4,y=﹣,此时N (﹣4,﹣); ③当∠FMD=90°时,则可知M 点为O 点,如图3, ∵四边形MFND 为矩形, ∴NF=OD=4,ND=OF=,可求得N (4,); 综上可知存在满足条件的N 点,其坐标为(,﹣)或(﹣4,﹣)或(4,). 2. (2015 重庆市綦江县) 如图,抛物线2 23y x x =-++与x 轴交与A ,B 两点(点A 在点B 的左侧),与

二次函数存在性问题总结

已知,抛物线322 --=x x y 交x 轴于点A、B,交y 轴于点C. 1、线段最值 ①线段和最小 点P 是抛物线对称轴上一动点,当点P 坐标为多少时,PA+PC值最小. A B C O x y ②线段差最大 点Q 是抛物线对称轴上一动点,当点Q 坐标为多少时,|Q A-QC |值最大. A B C O x y ③线段最值 连接B C,点M是线段BC 上一动点,过点M 作M N//y 轴,交抛物线于点N ,求线段MN 的最大值及点N 的坐标. A B C O x y N M 变式① 点N是第四象限内抛物线上一动点,连接BN、CN,求BCN S ?的最大值及点N 的坐标 A B C O x y N

变式② 点N 是第四象限内抛物线上一动点,求点N 到线段BC 的最大距离及点N 的坐标 A B C O x y N M 2、等腰三角形的存在性问题 点D为抛物线322 --=x x y 的顶点,连接BC ,点P 是直线BC 上一动点,是否存在点P ,使△PAD 为等腰三角形,若存在,求出点P 的坐标,若不存在,说明理由. A B C O x y D 3、菱形的存在性问题 点D为抛物线322 --=x x y 的顶点,连接BC 点P 是直线B C上一动点,点Q 为坐标平面内一点,是否存在以A 、D 、P 、Q 为顶点的四边形是菱形,若存在,求出点P坐标,若不存在,说明理由. A B C O x y D 4、平行四边形的存在性问题 点D 为抛物线322 --=x x y 的顶点,点M是抛物线上一动点,点N 为直线B C上一动点,是否存在以O、D、M 、N 为顶点的四边形是平行四边形,若存在,求出点M 坐标,若不存在,说明理由. A B C O x y D 5、直角三角形的存在性问题

二次函数中的存在性问题(等腰三角形的存在性问题)

二次函数中的存在性问题(等腰三角形) 1.如图,抛物线254y ax ax =-+经过ABC △的三个顶点, 已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =. (1)求抛物线的对称轴; (2)写出A B C ,,三点的坐标并求抛物线的解析式; (3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点, 是否存在PAB △是等腰三角形.若存在,求出所有符合条 件的点P 坐标;不存在,请说明理由.

2如图,已知抛物线224 233 y x x =- ++的图象与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴与x 轴交于点D . 点M 从O 点出发,以每秒1个单位长度 的速度向B 运动,过M 作x 轴的垂线,交抛物线于点P ,交BC 于(1)求点B 和点C 的坐标; (2)设当点M 运动了x (秒)时,四边形OBPC 的面积为S , 求S 与x 的函数关系式,并指出自变量x 的取值范围. (3)在线段BC 上是否存在点Q ,使得△DBQ 成为以BQ 等腰三角形?若存在,求出点Q 的坐标,若不存在,说明理由.

3.已知:如图,抛物线2y ax bx c =++经过(1,0)A 、(5,0)B 、(0,5)C 三点. (1)求抛物线的函数关系式; (2)若过点C 的直线y kx b =+与抛物线相交于点E (4,m ), 请求出△CBE 的面积S 的值; (3)在抛物线上求一点0P 使得△ABP 0为等腰三角形并 写出0P 点的坐标; (4)除(3)中所求的0P 点外,在抛物线上是否还存在其它的点P 使得△ABP 为等腰三角形?若存在,请求出一共有几个满足条件的点P (要求简要说明理由,但不证明);若不存在这样的点P ,请说明理由.

二次函数存在性问题及解答

初中数学二次函数存在性问题 总复习试题及解答 1.(10广东深圳)如图,抛物线y =ax 2+c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上,其中A (-2,0),B (-1, -3). (1)求抛物线的解析式; (2)点M 为y 轴上任意一点,当点M 到A 、B 两点的距离之和为最小时,求此时点M 的坐标; (3)在第(2)问的结论下,抛物线上的点P 使S △P AD =4S △ABM 成立,求点P 的坐标. 答案:(1)、因为点A 、B 均在抛物线上,故点A 、B 的坐标适合抛物线方程 ∴403a c a c +=??+=-? 解之得:14 a c =??=-?;故24y x =-为所求 (2)如图2,连接BD ,交y 轴于点M ,则点M 就是所求作的点 设BD 的解析式为y kx b =+,则有203k b k b +=?? -+=-?,1 2 k b =??=-?, 故BD 的解析式为2y x =-;令0,x =则2y =-,故(0,2)M - (3)、如图3,连接AM ,BC 交y 轴于点N ,由(2)知,OM=OA=OD=2,90AMB ∠=? 易知BN=MN=1, 易求AM BM == 122ABM S =?=;设2(,4)P x x -, 依题意有:214422AD x -=?,即:2 144422x ?-= ? 解之得:x =±,0x = ,故 符合条件的P 点有三个: 123((0,4)P P P -- 图2

2. (10北京)在平面直角坐标系xOy 中,抛物线y = - 41-m x 2+4 5m x +m 2-3m + 与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上。 (1) 求点B 的坐标; (2) 点P 在线段OA 上,从O 点出发向点运动,过P 点作x 轴的 垂线,与直线OB 交于点E 。延长PE 到点D 。使得ED =PE 。 以PD 为斜边在PD 右侧作等腰直角三角形PCD (当P 点运动 时,C 点、D 点也随之运动) 当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求 OP 的长; 若P 点从O 点出发向A 点作匀速运动,速度为每秒1一点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止 运动,P 点也同时停止运动)。过Q 点作x 轴的垂线,与直线AB 交于点F 。延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当Q 点运动时,M 点,N 点也随之运动)。若P 点运动到t 秒时,两个等腰直角三角形分别有一条直角边恰好落在同一条直线上,求此刻t 的值。 答案:解:(1) ∵拋物线y = -41-m x 2+4 5m x +m 2-3m +2经过原点, ∴m 2 -3m +2=0,解得m 1=1,m 2=2, 由题意知m ≠1,∴m =2, ∴拋物线的解析式为y = -41x 2+25 x , ∵点B (2,n )在拋物线 y = -41x 2+2 5 x 上, ∴n =4,∴B 点的坐标为(2,4)。 (2) 设直线OB 的解析式为y =k 1x ,求得直线OB 的解析式为 y =2x , ∵A 点是拋物线与x 轴的一个交点, 可求得A 点的坐标为(10,0), 设P 点的坐标为(a ,0),则E 点的坐标为(a ,2a ), 根据题意作等腰直角三角形PCD ,如图1。 可求得点C 的坐标为(3a ,2a ), 由C 点在拋物线上,得2a = -41?(3a )2+2 5 ?3a , 即49a 2-211a =0,解得a 1=9 22,a 2=0 (舍去), ∴OP =9 22 。 依题意作等腰直角三角形QMN ,设直线AB 的解析式为y =k 2x +b , 由点A (10,0),点B (2,4), 求得直线AB 的解析式为y = -2 1 x +5, 当P 点运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上, 有以下三种情况: 第一种情况:CD 与NQ 在同一条直线上。如图2所示。可证△DPQ 为等腰直角三角形。 此时OP 、DP 、AQ 的长可依次表示为t 、4t 、2t 个单位。 ∴PQ =DP =4t ,∴t +4t +2t =10,∴t =7 10 。 第二种情况:PC 与MN 在同一条直线上。如图3所示。可证△PQM 为等腰直角三角形。 此时OP 、AQ 的长可依次表示为t 、2t 个单位。∴OQ =10-2t ,

二次函数中的存在性问题

二次函数中的存在性问题 一、二次函数中相似三角形的存在性问题 1.如图,把抛物线向左平移1个单位,再向下平移4个单位,得到抛物线. 所得抛物线与轴交于A,B两点(点A在点B的左边),与轴交于点C,顶点为D. (1)写出的值; (2)判断△ACD的形状,并说明理由; (3)在线段AC上是否存在点M,使△AOM∽△ABC?若存在,求出点M的坐标;若不存在,说明理由. 1、解:(1)∵由平移的性质知,的顶点坐标为D(-1,-4),∴。

(2)由(1)得.当时,. 解之,得。∴. 又当时,,∴C点坐标为(0,-3)。 又抛物线顶点坐标D(-1,-4), 作抛物线的对称轴交轴于点E,DF⊥轴于点F。 易知,在Rt△AED中,AD2=22+42=20,在Rt△AOC中,AC2=32+32=18, 在Rt△CFD中,CD2=12+12=2, ∴AC2+ CD2=AD2。∴△ACD是直角三角形。 (3)存在.作OM∥BC交AC于M,M点即为所求点。 由(2)知,△AOC为等腰直角三角形,∠BAC=450,AC。 由△AOM∽△ABC,得。即。 过M点作MG⊥AB于点G,则AG=MG=, OG=AO-AG=3-。又点M在第三象限,所以M(-,-)。 2.如图,抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C. (1)求抛物线的解析式; (2)若点D在抛物线上,点E在抛物线的对称轴上, A、O、D、E为顶点的四边形是平行四边形,求点D的坐标; (3)P是抛物线上的第一象限内的动点,过点P作PMx轴于M, 是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?

若存在,求出点P的坐标;若不存在,请说明理由. 2、解:(1)设抛物线的解析式为, ∵抛物线过A(﹣2,0),B(﹣3,3),O(0,0)可得,解得。 ∴抛物线的解析式为。 (2)①当AE为边时,∵A、O、D、E为顶点的四边形是平行四边形,∴DE=AO=2, 则D在轴下方不可能,∴D在轴上方且DE=2,则D1(1,3),D2(﹣3,3)。 ②当AO为对角线时,则DE与AO互相平分。 ∵点E在对称轴上,且线段AO的中点横坐标为﹣1, 由对称性知,符合条件的点D只有一个,与点C重合,即C(﹣1,﹣1)。 故符合条件的点D有三个, 分别是D1(1,3),D2(﹣3,3),C(﹣1,﹣1)。 (3)存在,如图:∵B(﹣3,3),C(﹣1,﹣1), 根据勾股定理得:BO2=18,CO2=2,BC2=20,∴BO2+CO2=BC2. ∴△BOC是直角三角形。 假设存在点P,使以P,M,A为顶点的 三角形与△BOC相似, 设P(,),由题意知>0,>0,且, ①若△AMP∽△BOC,则。即 +2=3(2+2)得:1=,2=﹣2(舍去). 当=时,=,即P(,)。

二次函数中点的存在性问题

二次函数中的存在性问题 1.已知抛物线y=﹣x2+x﹣3与x轴交于A,B两点,与y轴交于点C.在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,请说明理由. 2.已知y=ax2+bx+c(a≠0)图象与直线y=kx+4相交于A(1,m),B(4,8)两点,与x轴交于原点及点C.(1)求直线和抛物线解析式; (2)在x轴上方的抛物线上是否存在点D,使S△OCD=2S△OAB?如果存在,求出点D坐标,如果不存在,说明理由. 3.已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C. (1)求此抛物线的解析式; (2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.

4.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),过点A的直线y=kx+1交抛物线于点C(2,3). (1)求直线AC及抛物线的解析式; (2)若直线y=kx+1与抛物线的对称轴交于点E,以点E为中心将直线y=kx+1顺时针旋转90°得到直线l,设直线l与y轴的交点为P,求△APE的面积; (3)若G为抛物线上一点,是否存在x轴上的点F,使以B、E、F、G为顶点的四边形为平行四边形?若存在,直接写出点F的坐标;若不存在,请说明理由. 5.如图,在平面直角坐标系中,抛物线交x轴于A,B两点(A在B的左侧),交y轴于点C. (1)求直线BC的解析式; (2)求抛物线的顶点及对称轴; (3)若点Q是抛物线对称轴上的一动点,线段AQ+CQ是否存在最小值?若存在,求出点Q的坐标;若不存在,说明理由; (4)若点P是直线BC上方的一个动点,△PBC的面积是否存在最大值?若存在,求出点P的坐标及此时△PBC 的面积;若不存在,说明理由.

二次函数的存在性问题(相似三角形的存在性问题)

二次函数的存在性问题(相似三角形) 1、已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一交点为B 。 (1)求抛物线的解析式; (2)若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标; (3)连接OA 、AB ,如图②,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。 2、设抛物线2 2y ax bx =+-与x 轴交于两个不同的点A(一1,0)、B(m ,0),与y 轴交于点C .且∠ACB=90°.

x y F - 2 -4 -6 A C E P D B 5 2 1 2 4 6 G (1)求m 的值和抛物线的解析式;(2)已知点D(1,n )在抛物线上,过点A 的直线1y x =+交抛物线于另一点E .若点P 在x 轴上,以点P 、B 、D 为顶点的三角形与△AEB 相似,求点P 的坐标.(3)在(2)的条件下,△BDP 的外接圆半径等于________________. 解:(1)令x=0,得y=-2 ∴C(0,一2).∵ACB=90°,CO ⊥AB,.∴ △AOC ∽△COB,. ∴OA ·OB=OC 2 ;∴OB= 22 241 OC OA == ∴m=4. 3、已知抛物线2y ax bx c =++经过点A (5,0)、B (6,-6)和原点.(1)求抛物线的函数关系式; (2)若过点B 的直线y k x b '=+与抛物线相交于点C (2,m ) ,请求出?OBC 的面积S 的值. (3)过点C 作平行于x 轴的直线交y 轴于点D ,在抛物线对称轴右侧位于直线DC 下方的抛物线上,任取一点P ,过点P 作直线PF 平行于y 轴交x 轴于点F ,交直线DC 于点E . 直线PF 与直线DC 及两坐标轴围成矩形OFED (如图),是否存在点P ,使得?OCD 与?CPE 相似?若存在,求出点P 的坐标;若不存在,请说明理由. 解:(1)由题意得:255036600a b c a b c c ++=??++=??=? 解得1 50a b c =-??=??=?故抛物线的函数关系式为2 5y x x =-+ (2)C 在抛物线上,2 252,6m m ∴-+?=∴= C ∴点坐标为(2,6), B 、 C 在直线y kx b '=+上

二次函数中的存在性问题(相似三角形的存在性问题)

二次函数的存在性问题(相似三角形) 1、已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一交点为B 。 (1)求抛物线的解析式; (2)若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标; (3)连接OA 、AB ,如图②,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。 A A B B O O x x y y

x y F - 2 -4 -6 A C E P D B 5 2 1 2 4 6 G 2、设抛物线2 2y ax bx =+-与x 轴交于两个不同的点A(一1,0)、B(m ,0),与y 轴交于点C .且∠ACB=90°. (1)求m 的值和抛物线的解析式;(2)已知点D(1,n )在抛物线上,过点A 的直线1y x =+交抛物线于另一点E .若点P 在x 轴上,以点P 、B 、D 为顶点的三角形与△AEB 相似,求点P 的坐标.(3)在(2)的条件下,△BDP 的外接圆半径等于________________. 解:(1)令x=0,得y=-2 ∴C(0,一2).∵ACB=90°,CO ⊥AB,.∴ △AOC ∽△COB,. ∴OA ·OB=OC 2;∴OB= 22 241 OC OA == ∴m=4. 3、已知抛物线2y ax bx c =++经过点A (5,0)、B (6,-6)和原点.(1)求抛物线的函数关系式; (2)若过点B 的直线y kx b '=+与抛物线相交于点C (2,m ),请求出?OBC 的面积S 的值. (3)过点C 作平行于x 轴的直线交y 轴于点D ,在抛物线对称轴右侧位于直线DC 下方的抛物线上,任取一点P ,过点P 作直线PF 平行于y 轴交x 轴于点F ,交直线DC 于点E . 直线PF 与直线DC 及两坐标轴围成矩形OFED (如图),是否存在点P ,使得?OCD 与?CPE 相似?若存在,求出点P 的坐标;若不存在,请说明理由.

相关文档
最新文档