2.5.2 离散型随机变量的方差和标准差(1)

2.5.2 离散型随机变量的方差和标准差(1)
2.5.2 离散型随机变量的方差和标准差(1)

第二章 概率 2.5.2 离散型随机变量的方差和标准差(1)

学习目标

(1)理解随机变量的方差和标准差的含义;

(2)会求随机变量的方差和标准差,并能解决一些实际问题. 学习过程: 一、预习:

(一)问题:甲、乙两个工人生产同一种产品,在相同的条件下,他们生产100件产品所出的不合格品数分别用12,X X 表示,12,X X 的概率分布如下.

我们知道,当样本平均值相差不大时,可以利用样本方差考察样本数据与样本平均值的偏离程度.能否用一个类似于样本方差的量来刻画随机变量的波动程度呢? (二)总结归纳:

1.

则2()(())i x E X μμ-=描述了(1,2,...,)i x i n =相对于均值μ的偏离程度,故 2221122()()...()n n x p x p x p μμμ-+-++-,

(其中 120,1,2,...,,...1i n p i n p p p ≥=+++=)刻画了随机变量X 与其均值μ的平均偏离

程度,我们将其称为离散型随机变量X 的方差,记为()V X 或2

σ. 2.方差公式也可用公式2

21

()n

i

i i V X x

p μ==

-∑计算.

3.随机变量X 的方差也称为X 的概率分布的方差,X 的方差()V X 的算术平方根称为X

的标准差,即σ=

思考:随机变量的方差和样本方差有何区别和联系? 练习:解答(一)中的问题。

二、课堂训练:

例1.若随机变量X 的分布如表所示:求方差()V X

例2.高三(1)班的联欢会上设计了一项游戏,在一个口袋中装有10个红球,20个白球,这些球除颜色外完全相同.某学生一次从中摸出5个球,其中红球的个数为X,求X 的数学期望.方差和标准差.(超几何分布H(5,10,30))

例3.从批量较大的成品中随机取出10件产品进行质量检查,若这批产品的不合格品率为0.05,随机变量X 表示这10件产品中的不合格品数,求随机变量X 的方差和标准差。(二项分布B(10,0.5))

说明:一般地,由定义可求出超几何分布和二项分布的方差的计算公式:

当~(,,)X H n M N 时,2()()

()(1)

nM N M N n V X N N --=

-,

当~(,)X B n p 时,()(1)V X np p =-.

例4.有甲、乙两名学生,经统计,他们字解答同一份数学试卷时,各自的成绩在80分、90分、100分的概率分布大致如下表所示:

练习:

1、设X ~B( n, p ),如果E X= 12,V X= 4,求n, p

( )

A. E(2X-1)=2np

B. V(2X+1)=4np(1-p)+1 . E(2X+1)=4np +1

D. V(2X-1)=4np(1-p)

3、设X是一个离散型随机变量,其分布列如

三、课后巩固:

1、X~B(n,p),E(X)=0.8,V(X)=0.64,则n=____________,p=______________

2、某班学生有20名,其中女生3名,如果从全班选出4名学生去参观,则被选出的女学生人数X的期望、方差分别为___________、_________________

3、随机变量X、Y满足Y=3X+2则,E(Y)、V(Y)用E(X)、E(Y)表示为______________、E(Y)=______________,Y=aX+B时呢?___________________

4、设X为投掷两枚骰子所得的点数之和,求E(X)、V(X)

5.

求V(ξ)

ξ的概率分布为

6. 已知离散型随机变量

1

离散型随机变量

2

7、甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.24用击中环数的期望与方差比较两名射手的射击水平

方差与标准差

.方差与标准差

————————————————————————————————作者:————————————————————————————————日期:

§2、1 方差与标准差审核人:戴蔚 【目标导航】 1.经历刻画数据离散程度的探索过程,感受表示数据离散程度的必要性. 2.掌握方差和标准差的概念,卉计算方差和标准差,理解它们的统计意义. 3.经历探索极差、方差的应用过程,体会数据波动中的极差、方差的求法时以及区别,积累统计经验. 【要点梳理】 1.我们知道极差只能反映一组数据中两个之间的大小情况,而对其他数据的波动情况不敏感. 2.描述一组数据的离散程度可以采取许多方法,在统计中常采用先求这组数据的,再求这组数据与的差的的平均数,用这个平均数来衡量这组数据的波动性大小 3.设在一组数据X1,X2,X3,X4,……X N中,各数据与它们的平均数的差的平方分别是(X1- )2,(X2- )2,(X3- )2,……,(X n- )2,,那么我们求它们的平均数,即用S2= . 4.一组数据方差的算术平方根叫做这组数据的。 5.方差是描述一组数据的特征数,可通过比较其大小判断波动的大小,方差说明数据越稳定,6.为什么要这样定义方差? 7.为什么要除以数据的个数n? 8.标准差与方差的区别和联系? 【问题探究】 知识点1.探究计算数据方差和标准差的必要性 例1.质检部门从A、B两厂生产的乒乓球中各抽取了10只,对这些乒乓球的直径进行了检测,结果如下(单位:mm)A厂:40.0 ,39.9 ,40.0 ,40.1 ,40.2 ,39.8 ,40.0 ,39.9 ,40.0 ,40.1 B厂:39.8 ,40.2 ,39.8 ,40.2 ,39.9 ,40.1 ,39.8 ,40.2 ,39.8 ,40.2 思考探索:1、请你算一算它们的平均数和极差? 2、根据它们的平均数和极差,你能断定这两个厂生产的乒乓球直径同样标准吗? 3、观察根据上面数据绘制成的下图,你能发现哪组数据较稳定吗? 直径/mm 直径/mm

方差与标准差测试题及答案

1.数据8,10,9,11,12的方差是 ( ) A .2 C. 10 D .50 2.如果一组数据1x , 2x ,… n x 的方差是2,那么另一组数据13x , 23x ,… 3n x 的方差是 ( )A. 2 B. 18 C. 12 D. 6 3.(2003?四川)某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为甲=82分,乙=82分,S 甲2=245,S 乙2 =190,那么成绩较为整齐的是( ) A .甲班 B .乙班 C .两班一样整齐 D .无法确定 4.若一组数据a 1,a 2,…,a n 的方差是5,则一组新数据2a 1,2a 2,…,2a n 的方差是( ) A .5 B .10 C .20 D .50 5.小明与小华本学期都参加了5次数学考试(总分均为100分),数学老师想判断这两位同学的数学成绩谁更稳定,在作统计分析时,老师需比较这两人5次数学成绩的( ). A.平均数; B.方差; C.众数; D.中位数. 二、填空题 1.(2006?浙江)甲、乙两台机器分别罐装每瓶质量为500克的矿泉水.从甲、乙罐装的矿 泉水中分别随机抽取了30瓶,测算得它们实际质量的方差是:S 甲2=4.8,S 乙2=3.6.那么 _________ 罐装的矿泉水质量比较稳定. 2.(2002?宁夏)已知一个样本1,4,2,5,3,那么这个样本的标准差是 _________ . 3.已知一个样本1,2,3,x ,5,它的平均数是3,则这个样本的极差是 _________ ;方差是 ________ . 4.(2007?贵阳)如图所示是甲、乙两地某十天的日平均气温统计图,则甲、乙两地这10 天的日平均气温的方差大小关系为:S 甲2 _________ S 乙2(用>,=,<填空). 5. 如果一组数据 1x , 2x ,… n x 的平均数是x ,方差为2S ,那么 (1)新数据 1ax , 2ax ,… n ax 的平均数是 ,方差为 ; (2)新数据 1x b +, 2x b +,… n x b +的平均数是 ,方差为 ; (3)新数据 1ax b +, 2ax b +,… n ax b +的平均数是 ,方差为 .

知识讲解离散型随机变量的均值与方差(理)(基础)

离散型随机变量的均值与方差 【学习目标】 1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题; 2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题; 【要点梳理】 要点一、离散型随机变量的期望 1.定义: 一般地,若离散型随机变量ξ的概率分布为 则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 要点诠释: (1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平. (2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p … n p n 1= =,=ξE +1(x +2x …n x n 1 )?+,所以ξ的数学期望又称为平均数、均值。 (3)随机变量的均值与随机变量本身具有相同的单位. 2.性质: ①()E E E ξηξη+=+; ②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有b aE b a E +=+ξξ)(; b aE b a E +=+ξξ)(的推导过程如下:: η的分布列为 于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++… =+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ

∴b aE b a E +=+ξξ)(。 要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念: 已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数 [1 2n S = 21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。 2.离散型随机变量的方差: 一般地,若离散型随机变量ξ的概率分布为 则称ξD =121)(p E x ?-ξ+22 2)(p E x ?-ξ+…+2()n i x E p ξ-?+…称为随机变量ξ的方差,式中 的ξE 是随机变量ξ的期望. ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ. 要点诠释: ⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值). ⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。 3.期望和方差的关系: 22()()D E E ξξξ=- 4.方差的性质: 若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,2 ()D D a b a D ηξξ=+=; 要点三:常见分布的期望与方差 1、二点分布: 若离散型随机变量ξ服从参数为p 的二点分布,则 期望E p ξ= 方差(1).D p p ξ=-

高中数学教案必修三:2.3.2 方差与标准差(1)最新修正版

教学目标: 1.正确理解样本数据方差、标准差的意义和作用, 2.学会计算数据的方差、标准差; 3.会用样本的基本数字特征估计总体的基本数字特征. 教学方法: 引导发现、合作探究. 教学过程: 一、创设情景,揭示课题 有甲、乙两种钢筋,现从中各抽取一个标本(如表)检查它们的抗拉强度(单位:kg/mm2),通过计算发现,两个样本的平均数均为125. 提出问题:哪种钢筋的质量较好? 二、学生活动 由图可以看出,乙样本的最小值100低于甲样本的最小值100,最大值145高于甲样本的最大值135,这说明乙种钢筋没有甲种钢筋的抗拉强度稳定.

我们把一组数据的最大值与最小值的差称为极差(range ).由图可以看出,乙的极差较大,数据点较分散;甲的极差小,数据点较集中,这说明甲比乙稳定.运用极差对两组数据进行比较,操作简单方便,但如果两组数据的集中程度差异不大时,就不容易得出结论. 考察样本数据的分散程度的大小,最常用的统计量是方差和标准差. 三、建构数学 1.方差: 2.标准差:21 )(1-=-=∑x x n s n i i 标准差也可以刻画数据的稳定程度. 3.方差和标准差的意义: 描述一个样本和总体的波动大小的特征数,标准差大说明波动大. 四、数学运用 例1 甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm 2),试根据这组数据估计哪一种水稻品种的产量比较稳定. 解:甲品种的样本平均数为10,样本方差为 ÷5=0.02. 乙品种的样本平均数也为10,样本方差为 ÷5=0.24 因为0.24>0.02,所以,由这组数据可以认为甲种水稻的产量比较稳定. 例2 为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换.已知某校使用的100只日光灯在必须换掉前的使用天数如下,试估计这种日光灯的

方差和标准差 知识讲解

方差和标准差——知识讲解 责编:杜少波 【学习目标】 1. 了解方差和标准差的概念,会计算简单数据的方差,体会它们刻画数据离散程度的意义; 2. 知道可以通过样本的方差来推断总体的方差.能解释统计结果,根据结果作出简单的判断和预测; 3. 能综合运用统计知识解决一些简单的实际问题. 【要点梳理】 要点一、方差和标准差 1.方差 在一组数据12,,n x x x …,中,设它们的平均数是x ,各数据与平均数的差的平方的平均数()[] 222212 )(...)(1 x x x x x x n S n -++-+-= 叫做这组数据的方差. 方差越大,说明数据的波动越大,越不稳定. 要点诠释: (1)方差反映的是一组数据偏离平均值的情况. 方差越大,稳定性越差;反之,则稳定性越好. (2)一组数据的每一个数都加上(或减去)同一个常数,所得的一组新数据的方差不变. (3)一组数据的每一个数据都变为原来的k 倍,则所得的一组新数据的方差变为原来的2 k 倍. 2.标准差 一般地,一组数据的方差的算术平方根 称为这组数据的标准差. 要点诠释: (1)标准差的数量单位与原数据一致. (2)一组数据的方差或标准差越小,这组数据的离散程度越小,这组数据就越稳定. 要点二、方差和标准差的联系与区别 联系:方差和标准差都是用来衡量一组数据偏离平均数的大小(即波动大小)的指标,常用来比较两组数据的波动情况. 区别:方差是用“先平均,再求差,然后平方,最后再平均”的方法得到的结果,主要反映整组数据的波动情况,是反映一组数据与其平均值离散程度的一个重要指标,每个数据的变化都将影响方差的结果,是一个对整组数据波动情况更敏感的指标. 在实际使用时,往往计算一组数据的方差,来衡量一组数据的波动大小. 方差的单位是原数据单位的平方,而标准差的单位与原数据单位相同. 【典型例题】 类型一、方差和标准差 1. 一组数据-2,-1,0,1,2的方差是( ) A .1 B .2 C .3 D .4

方差 — 标准差

方差(Variance) [编辑] 什么是方差 方差和标准差是测度数据变异程度的最重要、最常用的指标。 方差是各个数据与其算术平均数的离差平方和的平均数,通常以σ2表示。方差的计量单位和量纲不便于从经济意义上进行解释,所以实际统计工作中多用方差的算术平方根——标准差来测度统计数据的差异程度。 标准差又称均方差,一般用σ表示。方差和标准差的计算也分为简单平均法和加权平均法,另外,对于总体数据和样本数据,公式略有不同。 [编辑] 方差的计算公式 设总体方差为σ2,对于未经分组整理的原始数据,方差的计算公式为: 对于分组数据,方差的计算公式为: 方差的平方根即为标准差,其相应的计算公式为: 未分组数据: 分组数据: [编辑]

样本方差和标准差 样本方差与总体方差在计算上的区别是:总体方差是用数据个数或总频数去除离差平方和,而样本方差则是用样本数据个数或总频数减1去除离差平方和,其中样本数据个数减1即n-1 称为自由度。设样本方差为,根据未分组数据和分组数据计算样本方差的公式分别为: 未分组数据: 分组数据: 未分组数据: 分组数据: 例:考察一台机器的生产能力,利用抽样程序来检验生产出来的产品质量,假设搜集的数据如下: 根据该行业通用法则:如果一个样本中的14个数据项的方差大于0.005,则该机器必须关闭待修。问此时的机器是否必须关闭? 解:根据已知数据,计算

因此,该机器工作正常。 方差和标准差也是根据全部数据计算的,它反映了每个数据与其均值相比平均相差的数值,因此它能准确地反映出数据的离散程度。方差和标准差是实际中应用最广泛的离散程度测度值。 ?函数VAR假设其参数是样本总体中的一个样本。如果数据为整个样本总体,则应使用函数VARP来计算方差。 ?参数可以是数字或者是包含数字的名称、数组或引用。 ?逻辑值和直接键入到参数列表中代表数字的文本被计算在内。 ?如果参数是一个数组或引用,则只计算其中的数字。数组或引用中的空白单元格、逻辑值、文本或错误值将被忽略。 ?如果参数为错误值或为不能转换为数字的文本,将会导致错误。 ?如果要使计算包含引用中的逻辑值和代表数字的文本,请使用VARA 函数。 ?函数VAR 的计算公式如下: 其中x 为样本平均值AVERAGE(number1,number2,…),n 为样本大小。 示例 假设有10 件工具在制造过程中是由同一台机器制造出来的,并取样为随机样本进行抗断强度检验。 如果将示例复制到一个空白工作表中,可能会更容易理解该示例。 STDEV(number1,number2,...) Number1,number2,...为对应于总体样本的 1 到255 个参数。也可以不使用这种用逗号分隔参数的形式,而用单个数组或对数组的引用。 注解 ?函数STDEV 假设其参数是总体中的样本。如果数据代表全部样本总体,则应该使用函数STDEVP来计算标准偏差。 ?此处标准偏差的计算使用“n-1”方法。

计算全距 平均差 方差和标准差

计算全距、平均差、方差和标准差 一、全距 R(range) 全距是一组数据中的最大值(maximum)与该组数据中最小值(minimum)之差,又称极差。 R=Xmax-Xmin 一般用于研究的预备阶段,用它检查数据的分布范围,以便确定如何进行统计分析 原始数据计算公式 三、四分位差(Quartile) 四分位差是第一个四分位数与第三个四分位数之差计算公式为 Q=Q 3-Q 1 四、方差与标准差 方差:又称为变异数、均方,是每个数据与该组数据平均数之差乘方后的均值,是表示一组数据离散程度的统计指标。 样本的方差用表示,总体的方差用表示。 标准差是方差的算术平方根。一般样本的标准差用 S 表示,总体的标准差用表示。 标准差和方差是描述数据离散程度的最常用的差异量。 分组数据方差与标准差的计算公式 方差与标准差的性质 ?方差是对一组数据中各种变异的总和的测量,具有可加性和可分解性特点。 ?标准差是一组数据方差的算术平方根,它不可以进行代数计算,但有以下特性: 总体方差、标准差或者方差、标准才差的合成 ?方差具有可加性的特点。当已知几个小组数据的方差或标准差时,可

以计算几个小组联合在一起的总的方差或标准差。 ?需要注意的是,只有在应用同一种观测手段,测量的是同一种特质,只是样本不同的数据时,才能计算合成方差或标准差。 方差和标准差的优点: 方差与标准差是表示一组数据离散程度的最好指标,其值越大,离散程度越大。 应用方差和标准差表示一组数据的离散程度,须注意必须是同一类数据(即同一种测量工具的测量结果),而且被比较样本的水平比较接近。 优点: ?反应灵敏。每个数据发生变化,方差与标准差也随之变化 ?有一定计算公式的严密确定 ?容易计算 ?受抽样变动的影响小 ?简单明了 ?方差具有可加性(区分变异源,组间/组内) 五、差异系数(coefficient of variation) 差异系数指标准差与其算术平均数的百分比,它是没有单位的相对数。用CV表示。 何种情况下运用差异系数: ?两个或两个以上样本所测特质不同,即所使用的观测工具不同,如何比较两者的离散程度? ?即使使用同一种观测量具,但样本水平相差较大,如何比较其离散程度? 差异系数的作用 ?比较不同单位资料的差异程度 ?比较单位相同而平均数相差较大的两组资料的差异程度 ?可判断特殊差异情况

《方差与标准差》教案

2.2 方差与标准差(教案) 学习目标: 1、了解方差的定义和计算公式。 2. 理解方差概念的产生和形成的过程。 3. 会用方差计算公式来比较两组数据的波动大小。 4. 经历探索极差、方差的应用过程,体会数据波动中的极差、方差的求法时以及区别,积累统计经验。 学习重、难点 重点:方差产生的必要性和应用方差公式解决实际问题。掌握其求法, 难点:理解方差公式,应用方差对数据波动情况的比较、判断。 学习过程 一、情景创设: 乒乓球的标准直径为40mm ,质检部门从A 、B 两厂生产的乒乓球中各抽取了10只,对这些乒乓球的直径了进行检测。结果如下(单位:mm ): A 厂:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1; B 厂:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2. 你认为哪厂生产的乒乓球的直径与标准的误差更小呢? (1) 请你算一算它们的平均数和极差。 (2) 是否由此就断定两厂生产的乒乓球直径同样标准? 今天我们一起来探索这个问题。 探索活动 通过计算发现极差只能反映一组数据中两个极值之间的大小情况,而对其他数据的波动情况不敏感。让我们一起来做下列的数学活动 算一算 把所有差相加,把所有差取绝对值相加,把这些差的平方相加。 想一想 你认为哪种方法更能明显反映数据的波动情况? 二、新知讲授: 讲授新知: (一)方差 定义:设有n 个数据n x x x ,,, 21,各数据与它们的平均数的差的平方分别是 2221)()(x x x x --,,…,, , 2)(x x n -我们用它们的平均数,即用 ])()()[(1222212x x x x x x n x n -++-+-= 来衡量这组数据的波动大小,并把它叫做这组数据的方差(variance ),记作2s 。 意义:用来衡量一批数据的波动大小 在样本容量相同的情况下,方差越大,说明数据的波动越大, 越不稳定 归纳:(1)研究离散程度可用2S (2)方差应用更广泛衡量一组数据的波动大小 (3)方差主要应用在平均数相等或接近时

方差、标准差 的区别

方差、标准差有什么区别 为什么要每个数与平均相减再取平方,取它们的差的绝对值不也可以吗?? 比如一组数据: 7.5,7.5,10,10,10 另一组数据: 6,9,10,10,10 两组数据的平均数显然都是9 他们与平均数的差的绝对值都为6 第一组数据的方差=7.5 第二组数据的方差=12 不相等了吧~~~方差把数据中数值的拨动给扩大了~~ 使得一些很难从其他数据中看到的给显示了出来~~ 方差(V ariance)是实际值与期望值之差的平方平均数, 而标准差(Standard deviation)是方差的算术平方根. 样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。 方差和标准差。方差和标准差是测算离散趋势最重要、最常用的指标。方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法。标准差为方差的算术平方根,用S表示。方差相应的计算公式为标准差与方差不同的是,标准差和变量的计算单位相同,比方差清楚,因此很多时候我们分析的时候更多的使用的是标准差。 DSTDEV() 操作目标是样本总体的部分样本。此值是估算全局标准偏差。 DSTDEVP()如果数据库中的数据为样本总体,则此值是真实标准偏差。

这根统计学有关。前者是利用部分数据推测全局样本的标准偏差。内部使用的统计公式不一样你就不要纠结了。有兴趣你必须找一本统计学看看。或者到百度上看看标准偏差词条。 后者是全局的实际标准偏差。 应用范围不一样。 一般来说做样本调查都没办法调查样本总体。只能随机在总体中抽取有代表性的样本构成研究对象。 因此此时你得到的数据都是部分样本。此时应该使用dstdev() ,来估算全局样本偏差。 如果你使用的是dstdevp(),那么得到的结果只是采样样本的偏差。

(完整版)方差和标准差教案

方差和标准差 教材分析本节课选自浙教版八年级数学上册第四章第四节,主要内容是方差和标准差。是在学习了如何抽样与抽样调查中所涉及到的概念,和用平均数,中位数,众数来表示数据集中程度的统计量后的另一种反映数据离散程度的统计量。节课是七年纪上册“数据与图表”内容的延续,用统计量来反映数据的特征和变化,在日常生活和实际生产中有着广泛的应用。 学情分析本节课的授课对象是八年级学生,他们正处于形象思维向抽象思维的过渡阶段,注意力水平不高,在教学中需要采用启发式教学。在知识上,我们已经接触过统计方面的知识,有助于本节课的学习。 教学目标 知识与技能: 1、了解方差,标准差的公式的产生过程。 2、掌握方差和标准差的计算方法及其运用。 3、能通过实例学会用样本方差分析总体方差,用方差公式来分析数据离散程度。情感态度价值观: 1、通过合作交流,以面对面的互动形式,培养良好的团队合作精神,感受集体的力量。 2、以具体的例子出发,体会数学来源于生活,生活离不开数学,从来增加学习数学的兴趣。 教学重难点 重点:方差和标准差的概念、计算及其运用。 难点:方差和标准差的计算及运用。方差是各变量值相对于平均数的离差平方的平均数。 教学方法 采用情景探究、小组合作,实施启发式教学。 教学手段 以“教师为主导,学生为主体,探索为主线,思维为核心”的教学思路,采用矛盾冲突教学方法,加以多媒体的使用,充实了教学内容,通过师生合作,生生合作以及学生自身的独立思考,探索获得方差的公式和标准差的合理出现。 教学过程 一、创设情景引出课题 师:同学们,谁看过射击实况转播? 相信绝大多数同学都看过,今天老师要让你们自己想办法解决有关射击的问题。

离散型随机变量的方差教案教学内容

精品文档 精品文档 离散型随机变量的方差 一、三维目标: 1、知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 2、过程与方法:了解方差公式“D (aξ+b )=a 2Dξ”,以及“若ξ~Β(n ,p ),则Dξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。 3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。 二、教学重点:离散型随机变量的方差、标准差 三、教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题 四、教学过程: (一)、复习引入: 1..数学期望 则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望. 2. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平 3. 期望的一个性质: b aE b a E +=+ξξ)( 5、如果随机变量X 服从二项分布,即X ~ B (n,p ),则EX=np (二)、讲解新课: 1、(探究1) 某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则所得的平均环数是多少? (探究2) 某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则这组数据的方差是多少? 2、离散型随机变量取值的方差的定义: 设离散型随机变量X 的分布为: 则(x i -EX)2描述了x i (i=1,2,…n)相对于均值EX 的偏离程度,而 DX 为这些偏离程度的加权平均,刻画了随机变量X 与其均值EX 的平均偏离程度。我们称DX 为随机变量X 的方差,其算术平方根DX 叫做随机变量X 的标准差. 随机变量的方差与标准差都反映了随机变量偏离于均值的平均程度的平均程度,它们的值越小,则随机变量偏离于均值的平均程度越小,即越集中于均值。 (三)、基础训练 求DX 和 解:00.110.220.430.240.12EX =?+?+?+?+?= 104332221111+++++++++=X 2101 4102310321041=?+?+?+?=] )()()[(122212x x x x x x n s n i -++-++-=ΛΛ1 ])24()23()23()22()22()22()21()21()21()21[(10 1 22222222222=-+-+-+-+-+-+-+-+-+-=s 2 2222)24(101)23(102)22(103)21(104-?+-?+-?+-?=s ∑=-=n i i i p EX x 1 2)(DX

离散型随机变量的方差()

离散型随机变量的方差(一) 白河一中 邓启超 教学目标: 1、知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 2、过程与方法:会利用离散型随机变量的均值(期望)和方差对所给信息进行整合和分析,得出相应结论。 3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。 二、教学重点:离散型随机变量的方差、标准差 三、教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题 四、教学过程: (一)、复习引入: 1..数学期望 则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望. 2. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,也称为随机变量的均值。 3. 期望的一个性质: b aE b a E +=+ξξ)( 4、常见特殊分布的变量的均值(期望) (1)如果随机变量X 服从二项分布(包括两点分布),即X ~ B (n,p ),则 E ξ=np (2)如果随机变量X 服从超几何分布,即X ~H (N ,M ,n ),则 E ξ= N M n (二)、讲解新课: 1、(探究1):A ,B 两种不同品牌的手表,它们的“日走时误差”分别为X ,Y (单位: S ),X A 型手表 B 型手表 np EX =

问题:(1)分别计算X,Y 的均值,并进行比较; (2)这两个随机变量的分布有什么不同,如何刻画这种不同 分析:EX=EY,也就是说这两种表的平均日走时误差都是0. 因此,仅仅根据平均误差,不能判断出哪一种品牌的表更好。 进一步观察,发现A品牌表的误差只有01.0±而B品牌的误差为±0.05 结论:A品牌的表要好一些。 探究(2):甲、乙两名射手在同一条件下射击,所得环数X1, X2分布列 2 8 9 10 0.4 0.2 0.4 分析: 甲和乙射击环数均值相等,甲的极差为2,乙的极差也为2,该如何比较? 思考:怎样定量刻画随机变量的取值与其均值的偏离程度呢? 样本方差: 类似的,随机变量X 的方差: 222221)(......)......()()(EX X EX X EX X EX X DX n i -+-+-+-= =2)(EX X E i - 思考:离散型随机变量的期望、方差与样本的期望、方差的区别和联系是什 9 ,921==EX EX ? ? ????-++-+-=---2 n 22212)x (x )x (x )x (x n 1s ...n 1)x (x n 1)x (x n 1)x (x s 2n 22212? -++?-+?-=---...

平均值、方差、标准差

平均值(Mean)、方差(Variance)、标准差(Standard Deviation) 对于一维数据的分析,最常见的就是计算平均值(Mean)、方差(Variance)和标准差(Standard Deviation)。 平均值 平均值的概念很简单:所有数据之和除以数据点的个数,以此表示数据集的平均大小;其数学定义为: 以下面10个点的CPU使用率数据为例,其平均值为。 14 31 16 19 26 14 14 14 11 13 方差、标准差 方差这一概念的目的是为了表示数据集中数据点的离散程度;其数学定义为: 标准差与方差一样,表示的也是数据点的离散程度;其在数学上定义为方差的平方根: 为什么使用标准差? 与方差相比,使用标准差来表示数据点的离散程度有3个好处: 表示离散程度的数字与样本数据点的数量级一致,更适合对数据样本形成感性认知。依然以上述10个点的CPU使用率数据为例,其方差约为41,而标准差则为;两者相比较,标准差更适合人理解。 表示离散程度的数字单位与样本数据的单位一致,更方便做后续的分析运算。 在样本数据大致符合正态分布的情况下,标准差具有方便估算的特性:%的数据点落在平均值前后1个标准差的范围内、95%的数据点落在平均值前后2个标准差的范围内,而99%的数据点将会落在平均值前后3个标准差的范围内。 贝赛尔修正 在上面的方差公式和标准差公式中,存在一个值为N的分母,其作用为将计算得到的累积偏差进行平均,从而消除数据集大小对计算数据离散程度所产生的影响。不过,使用N 所计算得到的方差及标准差只能用来表示该数据集本身(population)的离散程度;如果数据集是某个更大的研究对象的样本(sample),那么在计算该研究对象的离散程度时,就需要对上述方差公式和标准差公式进行贝塞尔修正,将N替换为N-1: 经过贝塞尔修正后的方差公式: 经过贝塞尔修正后的标准差公式: 公式的选择 是否使用贝塞尔修正,是由数据集的性质来决定的:如果只想计算数据集本身的离散程度(population),那么就使用未经修正的公式;如果数据集是一个样本(sample),而想要计算的则是样本所表达对象的离散程度,那么就使用贝塞尔修正后的公式。在特殊情况下,如果该数据集相较总体而言是一个极大的样本 (比如一分钟内采集了十万次的IO数据) ——在这种情况下,该样本数据集不可能错过任何的异常值(outlier),此时可以使用未经修正的公式来计算总体数据的离散程度。 R中平均值、方差与标准差的计算 在R中,平均值是通过mean()函数来计算的: x <- c(14, 31, 16, 19, 26, 14, 14, 14, 11, 13) mean(x)

极差方差标准差(整理)

北京四中 撰稿:张扬责编:姚一民 数据的波动 一.基本知识点讲解: 1.极差:是指一组数据中最大数据与最小数据的差。 极差=数据中的最大数-数据中的最小数 2. 方差与标准差: S^2=[(x1-x的平均数)^2+(x2-x的平均数)^2+...+(xn-x的平均数)^2] 设在一组数据x1 x2 x3……x n中各数据与它们的平均数的差的平方分别是 (x1-)2, (x2-)2……(x n-)2,则他们的平均数: 方差可以用来衡量这组数据的波动的大小,一组数据的方差越大,就说明这组数据的波动也越大,这波动的大小是指偏离平均数的大小。 3. 标准差: 一组数据的方差的算术平方根叫做这组数据的标准差,用S来表示,即: 标准差也只是来衡量一组数据波动大小的量,它虽然比计算方差多开一次平方,但它的度量单位与原数据的度量单位是一致的,所以有时用标准差比较方便。 4. 计算方差的三个公式 公式①是方差的定义,一组数据的每个数都减去它们的平均数的平方,再求这些平方的和,比较麻烦,因此可用公式②以使计算过程较为简单,当不是整数时尤为简单。

接近这组数据的平均数的一个常数。 二.例题解析: (1)应用公式① 例1. 计算数据9.9、9.7、10.3、9.8、9.8、10、10.1、10.4的方差与标准差。 解: 例2. 甲乙两组进行投篮比赛,每组选派10名队员参加,每人投10次,每次投中的人数如下: 甲组:7、6、8、8、5、9、7、7、6、7 乙组:6、7、8、4、10、9、7、6、6、7 求:甲、乙两组哪一组的投篮情况比较稳定 解:

∴甲乙两组的平均命中率相同,但甲组的投篮比较稳定,所以甲组的投篮情况较好。 (2)应用公式② 例3. 甲、乙两人在相同条件下各射靶10次,各次命中环数如下: 甲:4、7、10、9、5、6、8、6、8、8 乙:7、8、6、6、7、8、7、8、5、9 求甲、乙两人谁的射击成绩比较稳定 解: (3)应用公式③ 例4. 求以下数据的方差(精确到0.1) 10、13、9、11、8、10、11、12、8、14、10、9 解:设a=10,每个数都减去10,有

方差、标准差、均方差、均方误差的区别及意义

一、百度百科上方差是这样定义的: (variance)是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。 看这么一段文字可能有些绕,那就先从公式入手, 对于一组随机变量或者统计数据,其期望值我们由E(X)表示,即随机变量或统计数据的均值, 然后对各个数据与均值的差的平方求和,最后对它们再求期望值就得到了方差公式。 这个公式描述了随机变量或统计数据与均值的偏离程度。 二、方差与标准差之间的关系就比较简单了

根号里的内容就是我们刚提到的 那么问题来了,既然有了方差来描述变量与均值的偏离程度,那又搞出来个标准差干什么呢? 发现没有,方差与我们要处理的数据的量纲是不一致的,虽然能很好的描述数据与均值的偏离程度,但是处理结果是不符合我们的直观思维的。 举个例子:一个班级里有60个学生,平均成绩是70分,标准差是9,方差是81,成绩服从正态分布,那么我们通过方差不能直观的确定班级学生与均值到底偏离了多少分,通过标准差我们就很直观的得到学生成绩分布在[61,79]范围的概率为0.6826,即约等于下图中的34.2%*2 三、均方差、均方误差又是什么? 标准差(Standard Deviation),中文环境中又常称均方差,但不同于均方误差(mean

squared error,均方误差是各数据偏离真实值的距离平方和的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。 从上面定义我们可以得到以下几点: 1、均方差就是标准差,标准差就是均方差 2、均方误差不同于均方误差 3、均方误差是各数据偏离真实值的距离平方和的平均数 举个例子:我们要测量房间里的温度,很遗憾我们的温度计精度不高,所以就需要测量5次,得到一组数据[x1,x2,x3,x4,x5],假设温度的真实值是x,数据与真实值的误差 e=x-xi 那么均方误差MSE= 总的来说,均方差是数据序列与均值的关系,而均方误差是数据序列与真实值之间的关系,所以我们只需要搞清楚真实值和均值之间的关系就行了。

方差与标准差

浙教版八年级(下) 方差和标准差 一、教学目标 1、了解方差、标准差的概念 2、会求一组数据的方差、标准差,并会用它们表示数据的离散程度 3、能用样本的方差来估计总体的方差 二、教学重难点 1、重点:方差的概念和计算 2、难点:方差如何表示数据的离散程度 三、教学过程 环节一、合作学习,情境引入 A、B两人近五次数学测试(满分10分)成绩统计如下: (播放第一张幻灯片) 问(一):现要从这两人中挑选一个人参加比赛,你们觉得选哪个人比较合适?为什么? (引导学生发现从平均数、中位数角度无法作出判断,众数角度也不够有说服力,需要寻找新的数据作出判断。) (播放第二张幻灯片) 问(二):把A和B的成绩绘制成折线统计图,你发现了什么? (引导学生感受B的成绩波动比较大,不够稳定,A的成绩波动比较小,比较稳定。)追问:如果想要最稳定的状态的话,每次测试成绩最好怎样呢? (引导学生选择平均数8作基准)

环节二、方差公式的探究 问(三):在描述事物的时候,我们希望能够量化,而不是我感觉A的成绩比较稳定所以选A比较合适。现在用数据来说话,我们来研究A、B的成绩与平均成绩8分的偏差情况。 黑板板书: 追问1:将偏差相加得0,发现各自都抵消了,看不出A、B的波动程度的区别。怎么避免这种相互抵消的情况? (引导学生发现负偏差影响了结果,从而想办法使负偏差转化成正偏差:取绝对值或平方。) 黑板板书(绝对值): A:相加为2;B:相加为8 黑板板书(平方): A:相加为2;B:相加为16 追问2:绝对值也可以体现出A、B的差别,为什么我们最终是选择了用平方来量化A、B的区别的呢? (学生回答:“平方能够使差距变大”,教师补充:网上关于选用平方的原因是“程序员在对于数据处理,要编写程序的时候,平方更加方便处理”。) 追问3:我们从这五个数据与其平均数的偏差的平方和可以看出,A偏差平方和小于B,

浙教版初中数学3.3 方差和标准差 教案

《方差和标准差》教案 教学目标 1、知识目标:了解方差、标准差的概念 2、能力目标:会求一组数据的方差、标准差,并会用他们表示数据的离散程度. 能用样本的方差来估计总体的方差. 3、情感目标:通过实际情景,提出问题,并寻求解决问题的方法,培养学生应用数学的意识和能力. 教学重点 理解记忆方差和标准差公式,能灵活地运用方差和标准差公式解题. 教学难点 灵活地运用方差和标准差公式解决实际问题. 教学设计 一、创设情景,提出问题 甲、乙两名射击手的测试成绩统计如下表: 1. 2.请根据这两名射击手的成绩在图中画出折线图; 3.现要挑选一名射击手参加比赛,若你是教练,你认为挑选哪一位比较适宜?为什么?(各小组讨论) 二、合作交流,感知问题 请根据统计图,思考问题: ①、甲、乙两名射击手他们每次射击成绩与他们的平均成绩比较,哪一个偏离程度较低?(甲射击成绩与平均成绩的偏差的和:(7-8)+(8-8)+(8-8)+(8-8)+(9-8)=0;乙射击成绩与平均成绩的偏差的和:(10-8)+(6-8)+(10-8)+(6-8)+(8-8)=0) ②、射击成绩偏离平均数的程度与数据的离散程度与折线的波动情况有怎样的联系?(甲射击成绩与平均成绩的偏差的平方和:(7-8)×2+(8-8)×2+(8-8)×2+(8-8)×2+(9-8)×2=2;乙射击成绩与平均成绩的偏差的平方和:(10-8)×2+(6-8)×2+(10-8)×2+(6-8)×2+(8-8)×2=16) 上述各偏差的平方和的大小还与什么有关?——与射击次数有关! ③、用怎样的特征数来表示数据的偏离程度?可否用各个数据与平均的差的累计数来表示数据的偏离程度?

离散型随机变量的方差与标准差

希尔伯特(D. Hilbert) 强调说,“数学知识终究要依赖于某种类型的直觉洞察力。 ” 班级 姓名 日期 自我评价 教师评价 课题:离散型随机变量的方差与标准差.doc 学习目标 1. 会求离散型随机变量的方差和标准差; 2. 理解离散型随机变量的方差与标准差的意义; 3. 掌握0-1分布、超几何分布、二项分布的方差和标准差的计算方法. 重点与难点 重点:0-1分布、超几何分布、二项分布的方差和标准差的计算; 难点:理解离散型随机变量的方差与标准差的意义。 诵读预热 回顾与思考 ()()()()2 2 2 21122n n V X x p x p x p σμμμ==-+-+ +- 其中0i p ≥,1,2, ,i n =,121n p p p +++= 方差也可用公式()221 n i i i V X x p μ== -∑计算. 随机变量X 的方差也称为X 的概率分布的方差.X 的方差()V X 的算术平方根称为X 的标准差.即()V X σ= 展示导入 情境:甲、乙两名工人生产同一种产品,在相同的条件下,他们生产100件产品所出的不合格品数分别用1X ,2X 表示,1X ,2X 的概率分布如表所示. 1X 0 1 2 3 k p 0.6 0.2 0.1 0.1 2X 0 1 2 3 k p 0.5 0.3 0.2 思考:如何比较甲、乙两名工人的技术? 计算:()1E X = ;()2E X = .

问题:当样本平均值相差不大时,可以利用样本方差考察样本数据与样本平均值的偏离程度.能否用一个类似于样本方差的量来刻画随机变量的波动程度呢? 探究准备 一般地,若离散型随机变量X 的概率分布如表所示, 则() 2 i x μ-()()E X μ=描述了()1,2, ,i x i n =相对于均值μ的偏离 程度,故()()()2 2 2 1122n n x p x p x p μμμ-+-++-(其中0i p ≥, 1,2, ,i n =,121n p p p +++=)刻画了随机变量X 与其均值μ的 平均偏离程度,我们将其称为离散型随机变量X 的方差.记为()V X 或 2σ.即 ()()()()2 2 2 21122n n V X x p x p x p σμμμ==-+-+ +- 其中0i p ≥,1,2, ,i n =,121n p p p +++= 方差也可用公式()221 n i i i V X x p μ== -∑计算. 随机变量X 的方差也称为X 的概率分布的方差.X 的方差()V X 的算术平方根称为X 的标准差.即()V X σ= 思考:随机变量的方差和样本方差有何区别和联系? 随机变量的方差和标准差都反映了随机变垦的取值偏离于均值的平均程度.方差或标准差越小.随机变量偏离于均值的平均程度就越小. X 1x 2x n x P 1p 2p n p

3.3 方差和标准差 参考教案

3.3 方差和标准差教案 一、教案背景 1、面向学生:√中学□小学 2、学科:数学 3、课时:1 4、学生课前准备: ①预习课本知识和导学案 ②各小组组织好课堂合作 ③查询百度网站相关资料 二、课题名称 浙教版八年级数学下册第3章3.3《方差和标准差》 三、教学目标 1、了解方差,标准差的公式的产生过程 2、熟练掌握方差和标准差的计算方法及其运用。 3、能通过实例学会用样本方差分析数据的离散程度。 四、教材分析 《方差和标准差》这节课是选自浙教版八年级数学下册第3章第三节,是在学生学习了平均数、中位数和众数三个基本知识点后,学习的对数据进行分析的另外两个重要指标。计算方差、标准差时,首先要求平均数。因此,求方差、标准差也是求平均数的练习和巩固的过程。但平均数与方差的最本质的区别是:平均数是反映一组数据的集中程度的统计量,而方差是反映一组数据的离散程度的统计量。学好本节课,不仅为进一步学好数据分析打好基础,而且在日常生活和实际生产中有着广泛的应用。 【教学重点】 方差、标准差的概念、计算及其运用,这既是本节的重点,又是本章的重点。【教学难点】 1、方差和标准差的计算及运用。我们的学生普遍存在的问题是对概念都能记的很熟,但是不知如何用,本次课通过公式推导、练习来解决这个问题。 2、方差为什么是各变量值相对于平均数的离差平方的平均数,这既是教学难点,

又是教学的关键,只要把这一关键问题解决好,学生就会更好的理解方差和标准差的概念。 五、教学方法 新课导入(设计选拔方案)→新知识产生的必要性(矛盾无法解决)→新知识的产生过程→知识的应用(探究题的解答)→新知识的的巩固应用(练习及小结)→练习拔高→作业布置” 六、教学过程 (一)、新课导入 思考:选拔射击手参加比赛时,我们应该挑选测试成绩中曾达到最好成绩的选手,还是成绩最稳定的选手? (二)、探索新知 甲、乙两名射击手的测试成绩统计如下: 第一次第二次第三次第四次第五次 甲命中环数7 8 8 8 9 乙命中环数10 6 10 6 8 (1)甲、乙两名射击手的极差分别是多少? (2)请分别计算两名射击手的平均成绩; (3)请分别计算两名射击手的成绩与平均数的差(即偏差)。 (4)甲、乙两人成绩的偏差的平均数是多少? (5)现要挑选一名射击手参加比赛,若你是教练,你能根据偏差的平均数挑选射击手参加比赛吗?为什么? 设计意图:从一个学生认为可以很容易解决的问题入手,不停的制造矛盾,而且矛盾是确实客观存在和可接受的。但即便如此,设计的问题还要让学生看得到解决的希望,数据的变化要有特点:即:水平的差距是能让学生显而易见看得到的。 (三)、概念初成 由上面的方法,无法判断选择谁合适,由此引出方差的定义。 (四)、考考你 甲、乙两名射击手的测试成绩统计如下:

相关文档
最新文档