磁滞回线

磁滞回线
磁滞回线

磁滞回线

[引言]

磁性材料应用很广,从常用的永久磁铁、变压器铁芯、到录音、录像、计算机存储用的磁带、磁盘等都采用。磁滞回线和磁化曲线反映了磁性材料的主要特征。

用示波器法测量铁磁处理的磁特性是磁测量的基本方法之一,它具有直观、方便、迅速以及能够在不同的磁化状态下(交变磁化及脉冲磁化等)测量的优点,适用于一般工厂快速检测和对成品进行分类。通过实验研究这些性质不仅能掌握用示波器观察磁化曲线和磁滞回线的基本测绘方法,而且能从理论和实际应用上加深对材料磁特性的认识。

[实验目的]

1.掌握用感应法测量磁参量的原理、方法和技术

2.了解应力、样品形状、测量频率等因素对磁性的影响

3.了解交流磁化曲线的定义和测试方法

[实验内容]

1.观测样品形状对磁化的影响

2.观测应力对磁滞回线的影响,估算磁致伸缩系数

3.观测磁滞回线随外加磁场的变化,作换向磁化曲线

4.观测磁滞损耗功率随磁场频率的变化

[实验原理]

一.原理及仪器结构

磁滞回线是表达铁磁材料在磁场下磁化和反磁化行为,即描述磁感应强度(B)或磁化强

度(M)与外加磁场强度(H)关系的闭

合曲线,反映材料的基本磁特性,是

M S

应用磁性材料的基本依据。图1是直

流磁场下的磁化曲线和磁滞回线。图

中标出了磁性材料的三个重要参数

Mr(Br)、Hc、Ms (饱和磁化强度,即

当磁化到饱和时M的值)。在交变磁

场中表现出的磁特性—交流磁特性

或称动态磁特性和在直流场下的磁

特性— 静态磁性有很大不同。它不仅与材料本征特性有关,而且与测试频率、磁场波形等测试条件有关。

图2表示在相同频率下外磁场幅值大小对磁滞回线的影响。随磁场变化,磁滞回线大小、形状都在变化。连接各回线的幅值(图中的Hm 、Bm )点得到一条通过原点的曲线,称换向磁化曲线或交流磁化曲线。由图3可以看到,频率对磁滞回线形状有很大影响,矫顽力(H C )随频率增大而增大。

感应法是一种最基本和常用的磁参量测量方法。依据法拉第电磁感应定律,在环绕试样的探测线圈内的感应电动势与其中磁通量随时间的变化率成正比,即为

dt

dB S N ???=ε (1) 其中N 为探测线圈的匝数,S 为样品的截面积,根据(1)式,将试样放在变化的磁场内磁化,则在探测线圈内有与dt

dB 成正比的电动势产生。这信号经线性放大后再馈入积分器中积分,即可得到与磁感强度B 成正比的、幅度较大且易于测量的信号。线性放大器和积分器的装置常数经标定后,就可用作定量计测。

实验装置如图4所示,包括测量和校准两部分。低频信号发生器是磁化线圈和标准互感器的初级线圈的交变功率源,通过转换开关K 选择。探测线圈或标准互感器的次级线圈的插头插入放大器的输入孔,则它所接受的信号先经放大而后进行积分和调相之后馈入示波器,观察和采集处理数据。X 轴显示的是与磁化线圈串联的取样电阻R (2.2?)两端的电压U ,可由此计算磁化电流0

R U I =。

二.样品的M-H 和B-H 测量

磁滞回线的获得原理如图5所示。对样品施加正弦交流磁场,样品被磁化产生非正弦交变磁通,从而得到图5的磁滞回线。

本装置可测试磁体的磁化强度M 和磁感应强度B 。根据B 和M 的关系:

)(0M H B +=μ (2)

利用图6的探测装置可分别测出B 和M 的值,式中70104?×=πμ亨/米,为真空磁导率。

由于B 和M 对H 的非线性关系,B 、M 和H 常产生相位差而导致磁滞回线的畸变,畸变形式有两类,如图7所示,畸变的产生极大的影响测试结果的准确性,因而测试时首先要消除这个畸变。为此设置RC 移相器如图8所示。测试信号经调相后再馈入示波器显示,可

根据显示的回线调节移相量。通过调节电位器R 可补偿正或负的相移量即

2)()

(tan 21222121++?=?R R c R R R c ωω? (3)

使相位角0=?而呈现正常的磁滞回线(如图1)。

对于非晶薄带卷成圆环形样品的B-H 曲线测量,在圆环形样品上绕初级线圈N 1匝,次级线圈N 2匝。初级线圈通过取样电阻R 0接低频信号发生器,调节信号源电压输出幅度改变初级电流i(t),以改变试样的磁化强度H(t)。磁场强度与初级电流成正比:

112()2()/()(/)H t N i t d d A m π=+ (2a )

其中1d 和2d 分别为内径和外径。探测线圈上的感应电动势ε与样品的磁感应强度B 对时间的微分B t d d 成正比,由(1)式确定。(1)式中的N 应取绕在样品上次级线圈匝数N 2 ,

21()/2S d d h =?为样品的横截面。这信号经放大积分变为与B 成正比的信号,经调相后馈入示波器的Y 输入端,作为示波器Y 的扫描信号。

三.用标准互感器校准积分放大器的装置常数

测试得出的磁滞回线Y 轴的电压值U 应与B 或M 的值成正比,为计算B 或M 值,需要测定其比例常数0K ,它与仪器的放大积分器的放大率、次级线圈的输入输出阻抗、相移器的分压比以及显示示波器的电参量等相关,称为装置常数。本实验用标准互感器测定装置常数。

标准互感器的初级线圈接低频信号发生器,次级线圈接放大积分器。初级线圈内的电流)sin()(0?ω+=t i t i 时,次级线圈内的感应电动势为

)cos()(000?ωε+?=?=t i M dt

t di M M (4) 其中0M 为标准互感器的互感系数,本仪器为501009.5?×=M (亨)

,ω为工作角频率,f πω2=(f 为工作频率,在发生器面板上有数字显示工作频率)

。 感应信号M ε经过放大积分后,馈入示波器的Y 输入端,作为垂直扫描信号。扫描线的长度为经放大积分后电压)(t U 的峰值0U 的2倍。根据(4)式有:

0000i M K U = (5)

其中0K 为放大积分器的装置常数,与放大积分器放大率、次级线圈的输入输出阻抗、相移器的分压比以及显示示波器的电参量等相关。该装置常数0K 可根据(5)式求得,即

()韦伯伏/00

0000?U i M U K == (6)

其中()

韦伯=000i M ?为互感器初级线圈磁通量的峰值。从示波器y 轴得出任意一时刻电压值()t U 和测得0K 可计算B 和M 的值。

(6)式给出的装置常数0K 不仅给出积分放大输出电压峰值与次级线圈磁通量峰值的关系,而且给出任何时刻这一对参量瞬时值之间的关系。除此之外,更重要的是,任一线圈内的感应信号经此仪器放大和积分后的输出电压与其中磁通量之比,都可应用这个比例常数。本实验就是用这常数计测磁感强度B 。

上述环形样品任意时刻磁感应强度的瞬时值为 S

N K t U t B 20)()(=

(7) 四.条形样品的M-H 回线测量 条形样品的探测线圈通常不绕在样品上,而是绕在一个线圈架上。例如本实验中线圈绕在玻璃管上,样品捆在其中即可,用这种形式的探测线圈,更换样品非常方便。但应引起注意的是探测线圈的截面积远大与试样的截面积。在此情况下,探测线圈内的磁通量为

)(])([210222102MS HS N BS S S H N +=+?=μμφ (8)

其中1S 和2S 分别表示探测线圈和样品的截面积,0μ为真空磁导率,

(8)式中与两截面积

之差相关的磁通量对感应电势的贡献不可忽略,为此特设置补偿线圈,其匝数和截面积与探测线圈完全相同,将这补偿线圈与探测线圈反向串联,则无样品在探测线圈中时,总感应电动势等于零。探测线圈内插入样品后,总感应电动势为

dt

dM S N ???=220με (9) 其中M 为样品的磁化强度,与磁感应强度和磁场强度H 的关系为

H B M ?=0/μ (10)

计算M 仍可利用上述由互感器校准的装置常数0K

0022

()()U t M t K N S μ=

(11) 五.应力对磁化的影响 选用条形非晶薄带样品,夹其一端悬吊起来,把砝码托盘固定在此非晶薄带样品的另一端。如图9所示。

(1) 磁致伸缩现象

磁体当被磁化后,其长度尺寸、体积会发生变

化,或者变大、或者变小,这种现象称磁致伸

缩现象。

设长度为l 的磁体在长度方向上线伸缩伸长

l ?,定义l

l ?=λ,为磁致伸缩系数 (2) 磁弹性能

磁体由于被磁化产生应变,从而产生应力,具

有磁弹性能,其逆过程,在外加磁场中,由于

有了外加应力→σ,从而导致→s M 改变,就是应力为磁化的影响。

设→σ和→s M 夹角为θ,可以证明,磁弹性能为θλσσ2cos 2

3?

=E (3)→σ对→s M 取向的影响

根据σE 要取最小值这一原理,可得0>λσ时,o o 18001cos 2、,==θθ,→s M ||→σ

0<λσ时,o o 270900cos 2、,==θθ,→s M ⊥→σ

六.功率损耗测量

磁化体单位体积试样一周期损耗的电磁能量等于磁滞回线的面积,损耗功率则是一秒内损耗的电磁能,即应该是磁滞回线面积的f (频率)倍。

[实验步骤及数据处理]

实验材料:FeCoVSiB 非晶合金薄带,带宽b=1.55mm ,带厚b=40μm

校准仪器常数用标准互感:互感系数501009.5?×=M (亨)

1. 观察材料形状对磁化的影响

样品:条形,1#长3cm ,2#长6.5cm ;

磁化螺线管磁场强度:03/1055.4R U H ×=(U 为示波器X 轴读数)

; 探测线圈匝数:1502=N 匝(附补偿线圈)

。 用示波器观察两样品在同一频率和最大磁场下磁滞回线,记录相当于各样品的矫顽力c H 、饱和磁化强度Ms 、剩余磁化强度r M 和最大磁化强度m M 的读数,比较两样品的矩形度

s r M M /。测完每个样品,将1K 接校准一方(即接通标准互感)

,记录示波器显示图形X,Y 的峰值,用式(6)计算仪器常数0K ,用公式(11)计算相应的m M 、r M ,用以上磁场(H )

公式计算矫顽力(c H )

。 2. 观测外加应力对磁化的影响:

样品:条形,上端固定,下端吊有秤盘;

磁化螺线管的磁场强度:R U H /1047.14×=(附补偿线圈)

在秤盘上加不同重力砝码(不加、加50克、加100克),在同一频率和最大磁场下用示波器观察各自的磁滞回线,记录m M 、c H 、r M 的值,2002=N 匝,用公式(11)计算m M 、r M ,用本组磁场强度公式计算c H 。

校准仪器常数

3. 环形样品的磁滞回线随外加磁场的变化和交流磁化曲线

样品尺寸:内径mm d 54.71=,外径mm d 66.72=,mm h 55.1=;

磁化线圈:1501=N 匝;探测线圈:202=N 匝

测试:在固定频率下,用示波器观察磁场从零开始变化对磁滞回线的影响,记录各回线的最大点x ,y 值,分别用公式(2a )、(7)计算磁场H 和磁感应强度B 值,并绘制B-H 曲线(换向磁化曲线),由B-H 曲线计算最大磁导率max 0)/(H B m μμ=,0μ为真空磁导率。

4. 观察频率对功耗的影响

环形样品:在相同磁场幅值下测四个同频率(300-600Hz )的磁滞回线的面积,用计算机采样,计算、记录面积。参照思考题3讨论频率f 对功耗的影响。

注:每个磁滞回线在读数前先把磁场调到最大,参照图7调节仪器上标有?的电位器以消除H 与B 或M 的相位差。

[应注意和思考的问题]

1. 放大积分器的装置常数与哪些因素有关?调相移、磁场、外加应力以及更换样品,什么

情况下必须重新校准?这问题在实验中要特别注意。

2. 为什么样品形状对磁滞回线和磁参量有影响?什么参量与形状无关?为什么?

3. 磁滞损耗功率随频率增大,是否与频率成正比?为什么?

4. 为什么把交流磁化曲线上任意一点的B 和H 的比值称为振幅磁导率?如果测试频率变

大或变小,磁化曲线将发生什么变化?

2016磁滞回线的测量(实验报告材料)

实验名称: 用示波器观测铁磁材料的动态磁滞回线 姓 名 学 号 班 级 桌 号 教 室 基础教学楼1101 实验日期 2016年 月 日 节 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。 3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs 、剩磁Br 和矫顽力Hc 的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1. 双踪示波器 2. DH4516C 型磁滞回线测量仪 评 分 此实验项目教材没有相应内容,请做实验前仔细阅读本实验报告!并携带计算器,否则实验无法按时完成!

3、基本磁化曲线 对于同一铁磁材料,设开始时呈去磁状态,依次选取磁化电流I1、I2、….I n,则相应的磁场强度为H1、H2、….H3,在每一磁化电流下反复交换电流方向(称为磁锻炼),即在每一个选定的磁场值下,使其方向反复发生几次变化(如H1→- H1→H1→- H1….),这样操作的结果,是在每一个电流下都将得到一条磁滞回线,最后,可得一组逐渐增大的磁滞回线。我们把原点O和各个磁滞回线的顶点a1、a2、….所连成的曲线称为铁磁材料的基本磁化曲线,如图3所示。 图3基本磁化曲线 (二)利用示波器观测铁磁材料动态磁滞回线测量原理 1、示波器显示B—H曲线原理线路 由上述磁滞现象可知,要观测磁介质磁滞现象及相应的物理量,需要根据磁化过程测定材料部的磁场强度和磁感应强度。因此,测量装置必须具备三个功能: ①提供使样品磁化的可调强度的磁场(磁化场) ②可跟踪测量与磁化场有一一对应关系的样品的磁感应强度 ③可定量显示样品的磁化过程 图4 磁滞回线的测量原理图 图4是利用示波器观测铁磁材料动态磁滞回线测量装置原理图:首先将待测的铁磁物质制成一个环形样品,在样品上绕有原线圈即励磁线圈N1匝,由它提供磁化场;在样品上再绕副线圈即测量线圈N2匝,由它来跟踪测量与磁化场有一一对应关系的样品的磁感应强度;由示波器

用示波器观察铁磁材料的动态磁滞回线_实验报告

图1 起始磁化曲线和磁滞回线 用示波器观察铁磁材料动态磁滞回线 【摘要】铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性。软磁材料的矫顽力H c 小于100A/m ,常用做电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。磁滞回线是反映铁磁材料磁性的重要特征曲线。矫顽力和饱和磁感应强度B s 、剩磁B r P 等参数均可以从磁滞回线上获得.这些参数是铁磁材料研制、生产、应用是的重要依据。 【关键词】磁滞回线 示波器 电容 电阻 Bm Hm Br H 【引言】铁磁物质的磁滞回线能够反映该物质的很多重要性质。本实验主要运用示波器的X 输入端和Y 输入端在屏幕上显示的图形以及相关 数据,来分析形象磁滞回线的一些因素,并根据 数据的处理得出动态磁滞回线的大致图线。 【实验目的】 1. 认识铁磁物质的磁化规律,比较两种典 型的铁磁物质的动态磁化特性。 2. 测定样品的H D 、B r 、B S 和(H m ·B m )等参 数。 3. 测绘样品的磁滞回线,估算其磁滞损耗。 【实验仪器】 电阻箱(两个),电容(3-5微法),数字万用表,示波器,交流电源,互感器。 【实验原理】 铁磁物质是一种性能特异,用途广泛的材 料。铁、钴、镍及其众多合金以及含铁的氧化物 (铁氧体)均属铁磁物质。其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B 与磁化场强度H 之间的关系曲线。 图中的原点O 表示磁化之前铁磁物质处于磁中性状态,即B =H =O ,当磁场H 从零开始增加时,磁感应强度B 随之缓慢上升,如线段oa 所示,继之B 随H 迅速增长,如ab 所示,其后B 的增长又趋缓慢,并当H 增至H S 时,B 到达饱和值B S ,oabs 称为起始磁化曲线。图1表明,当磁场从H S 逐渐减小至零,磁感应强度B 并不沿起始磁化曲线恢复到“O ”点,而是沿另一条新的曲线SR 下降,比较线段OS 和SR 可知,H 减小B 相应也减小,但B 的变化滞后于H 的变化,这现象称为磁滞,磁滞的明显特征是当H =O 时,B 不为零,而保留剩磁Br 。 当磁场反向从O 逐渐变至-H D 时,磁感应强度B 消失,说明要消除剩磁,必须施加反向磁场,H D 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD 称为退磁曲线。 图1还表明,当磁场按H S →O →H D →-H S →O →H D ′→H S 次序变化,相应的磁感应强度B 则沿闭合曲线S S RD 'S D R ''变化,这闭合曲线称为磁滞回线。所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。

磁化曲线和磁滞回线测量

实验C 磁化曲线和磁滞回线测量 磁性材料应用广泛,扬声器永久磁铁、变压器铁芯、计算机磁盘等都采用磁性材料。铁磁材料分为硬磁和软磁两大类。硬磁材料的剩磁和矫顽力大(102 ~2?104 A/m),可做永久磁铁。软磁材料的剩磁和矫顽力小(102 A/m以下),容易磁化和去磁,广泛用于电机和仪表制造业。磁化曲线和磁滞回线是磁材料的重要特性,是变压器等设备设计的重要依据。 磁滞回线测量可分静态法和动态法。静态法是用直流来磁化材料,得到的B—H曲线称为静态磁磁滞回线。动态法是用交变来磁化材料,得到的B—H曲线称为动态磁滞回线。静态磁滞回线只与磁化磁场的大小有关,磁样品中只有磁滞损耗;而动态磁滞回线不仅与磁化磁场的大小有关,还与磁化场的频率有关,磁样品中不仅有磁滞损耗,还有涡流损耗。因此,同一磁材料在相同大小磁化场下,动态磁滞回线的面积比静态磁滞回线大,损耗大。 本实验采用动态法测量软磁样品的动态磁滞回线和磁化曲线,测量曲线可连续或逐点显示在LCD(液晶)屏上,直观、简便、物理过程清晰。 【实验目的】 1.了解磁滞回线和磁化曲线概念,加深对磁材料矫顽力、剩磁等参数的理解。 2.掌握磁材料磁化曲线和磁滞回线的测量方法,确定B s、B r和H c等参数。 3.探讨励磁电流频率对动态磁滞回线的影响。 【预备问题】 1.为什么测磁化曲线先要退磁? 2.为什么测量磁化曲线要进行磁锻炼? 3.为什么动态磁滞回线的面积比静态磁滞回线大,损耗大? 【实验仪器】 FC10-II型智能磁滞回线实验仪。 【实验原理】 1.铁磁材料的磁化规律 (1) 初始磁化曲线 在强度为H的磁场中放入铁磁物质,则铁磁物质被磁化, 其磁感应强度B与H的关系为:B = μ H,μ为磁导率。对于 铁磁物质,μ不是常数,而是H的函数。如图1所示,当铁 磁材料从H=0开始磁化时,B随H逐步增大,当H增加到 H s时,B趋于饱和值B s,H s称为饱和磁场强度。从未磁化到 饱和磁化的这段磁化曲线OS,称为初始磁化曲线。 图1初始磁化曲线 (2) 磁滞回线

用示波器观察铁磁材料的动态磁滞回线-实验报告

用示波器观察铁磁材料的动态磁滞回线-实验报告

2 B a B B s c a' b' H H m o B r H c 图1 起始磁化曲线和磁滞回线 用示波器观察铁磁材料动态磁滞回线 【摘要】铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性。软磁材料的矫顽力H c 小于100A/m ,常用做电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。磁滞回线是反映铁磁材料磁性的重要特征曲线。矫顽力和饱和磁感应强度B s 、剩磁B r P 等参数均可以从磁滞回线上获得.这些参数是铁磁材料研制、生产、应用是的重要依据。 【关键词】磁滞回线 示波器 电容 电阻 Bm Hm Br H 【引言】铁磁物质的磁滞回线能够反映该物质的很多重要性质。本实验主要运用示波器的X 输入端和Y 输入端在屏幕上显示的图形以及相关 数据,来分析形象磁滞回线的一些因素,并根据 数据的处理得出动态磁滞回线的大致图线。 【实验目的】 1. 认识铁磁物质的磁化规律,比较两种典 型的铁磁物质的动态磁化特性。 2. 测定样品的H D 、B r 、B S 和(H m ·B m )等参 数。 3. 测绘样品的磁滞回线,估算其磁滞损耗。 【实验仪器】 电阻箱(两个),电容(3-5微法),数字万用表,示波器,交流电源,互感器。 【实验原理】 铁磁物质是一种性能特异,用途广泛的材 料。铁、钴、镍及其众多合金以及含铁的氧化物 (铁氧体)均属铁磁物质。其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B 与磁化场强度H 之间的关系曲线。 图中的原点O 表示磁化之前铁磁物质处于磁中性状态,即B =H =O ,当磁场H 从零开始增加时,磁感应强度B 随之缓慢上升,如线段oa 所示,继之B 随H 迅速增长,如ab 所示,其后B 的增长又趋缓慢,并当H 增至H S 时,B 到达饱和值B S ,oabs 称为起始磁化曲线。图1表明,当磁场从H S 逐渐减小至零,磁感应强度B 并不沿起始磁化曲线恢复到“O ”点,而是沿另一条新的曲线SR 下降,比较线段OS 和SR 可知,H 减小B 相应也减小,但B 的变化滞后于H 的变化,这现象称为磁滞,磁滞的明显特征是当H =O 时,B 不为零,而保留剩磁Br 。 当磁场反向从O 逐渐变至-H D 时,磁感应强度B 消失,说明要消除剩磁,必须施加反向磁场,H D 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD 称为退磁曲线。 图1还表明,当磁场按H S →O →H D →-H S →O →H D ′→H S 次序变化,相应的磁感应强度B 则沿闭合曲线S SRD 'S D R ''变化,这闭合曲线称为磁滞回线。所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。

示波器观测动态磁滞回线

示波器观测动态磁滞回线 一、用示波器观测动态磁滞回线简介: 1. 实验原理。 参照《新编基础物理实验》实验四十三《磁滞回线的测量》的实验原理。 2. 测量电路。 3. 相关公式 1R 1 1N H R u =l 2C 2R C B N S u = l ,铁磁样品的磁路长度;S ,铁磁样品磁路的横截面积;N 1,N 2,初级、次级绕组匝数。 对样品1(铁氧体):l = 0.130m ,S = 1.24×10-4 m 2 ,N 1 = N 2 = N 3 = 150匝。 对样品2(硅钢片):l = 0.075m ,S = 1.20×10-4 m 2 ,N 1 = N 2 = N 3 = 150匝。 4. 名词术语: 1) 磁中性状态:磁化场H 为零时磁感应强度B 也为零的状态,称为磁中性状态。 对铁磁样品加一个振幅足够大的交变磁场,并逐渐将振幅减小到零,铁磁样品即可被磁中性化。 2) 磁滞回线:磁化场H 循环变化时(-H 0H + )B 的变化轨迹称为磁滞回

线。它是相对于原点对称的闭合曲线。(样品测量前需要先磁中性化) 3) 饱和磁滞回线:磁化场H 在循环变化过程中可以达到足够大,使铁磁材料的磁化强度0B M H μ=?随H 的增大不再增大,由这样的循环变化磁化场得到的 磁滞回线称为饱和磁滞回线。 饱和磁滞回线上磁感应强度最大的值称为饱和磁感强度,用B S 表示。 饱和磁滞回线上B=0所对应的磁化场称为矫顽力,用H C 表示。 饱和磁滞回线上H=0所对应的磁感应强度称为剩余磁感应强度,用B r 表示。 4) 基本磁化曲线:将振幅不同的循环变化磁化场下所得到的磁滞回线的顶点连接 起来的曲线。(样品测量前需要先磁中性化) 5) 起始磁导率i μ:磁导率μ定义为0B H μμ=,通常铁磁材料的μ是温度T 、磁化场H 、频率f 的函数。在很低的磁化场下,磁化是可逆的,H 和B 之间呈线性关系,没有滞后现象,在此区域中,磁导率为常数,该磁导率称为起始磁导率,即i H 00 B lim H μμ→=。 6) 可逆磁导率r μ:当一个直流磁场H 和一个很弱的交变磁场h 同时作用在铁磁材料上时,直流磁场H (也称为直流偏磁场)使铁磁材料偏离磁中性化状态,h 引起磁感应强度B 的交流变化b 。当h 0→ 时,由h 产生的退化磁滞回线(即一条斜线)的斜率与0μ的比值称为可逆磁导率r μ,即00 lim r h b h μμΔ→Δ=Δ,其中h Δ和b Δ分别是h 和b 的变化范围。r μ是H 的函数,一般H 越大,r μ越小。 二、实验内容: 1. 观测样品1(铁氧体)的饱和磁滞回线。 1) 取1R 2.0=Ω,2R =50k Ω,C 10.0F μ=,100Hz f =,调节励磁电流大小 及示波器的垂直、水平位移旋钮,在示波器显示屏上调出一个相对于坐标原点对称的饱和磁滞回线。在回线的上半支上,从-B S 到B S 选取9个以上测量点(其中必须包括S B ,B 0=,H 0=三个点),测量各点的H 和B 。根据测量的数据在坐标纸上画出饱和磁滞回线。给出S B ,r B ,C H 的测量值。 2) 保持1R ,R 2C 不变,测量并比较f =50Hz 和150Hz 时的r B 和C H 。

铁磁材料磁滞回线和基本磁化曲线的测量数据处理.

I/mA B/mT H/ A/m 29.3 5.5207.729272.91 6.2500.175102.125.4682.5583140.340.7899.5292171.955.41065.47520 2.471.11215.629250.195.71450.154301.41231696.792350.3148.41936.017384.2165.221 0 7.217416.1180.72270.36345 8.72002497.5495.3215.42700.475535.322 9.92937.7465572 36.83072.867 581.1243.93226.663600.9249.13357.213620.72543489.75627.7255.33539.471I/mA B/mT H/ A/m 628.7257.93528.43612.6256.43404.213597.92553291566.5252.23047.907538249.3 2829.643

510.4246.22620.207458.6240.12229.003403.7231.51828.55363.2223.81542.127309 .9210.51186.183266.8196.7918.5567231.3183713.6189.8164.4491.1467138.6138.8234.2 93383.4109-28.03335794-148.533 4385.9-211.47 30.178.4-269.2217.270.9-326.97 9.766.5-360.283 4.561.3-369.123初始磁化曲线测量 磁滞回线测量 060.5-401.317 -3042.3-530.59 -131.5-19.1-969.137 -165.4-39-1119.63 -202.6-61.4-1281.05 -245-86.7-1466.56 -421.1-182.8-2296.59 -464.5-202.7-2526.26 -515.8-223.2-2817.77 -542.1-238.8-2933.46 -591.9-245.9-3301.36 -611.8-250.7-3435.36 -625-253.6-3526.12 -625.9-253.8-3532.29 -609.5-255.4-3385.01 -574.2-252.3-3111.41 -515.5-246.5-2660.72 -457.7-239.6-2224.82 -415.1-233.2-1912.27 -307-209.5-1168.65 -247.9-189.4-809.48 -202.7-170.3-559.51 -147.3-143.3-276.943

2016磁滞回线的测量

实验名称:用示波器观测铁磁材料的动态磁滞回线姓名学号班级 桌号教室基础教学楼1101 实验日期 2016年月日节 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。 3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs、剩磁Br和矫顽力Hc 的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1.双踪示波器 2.DH4516C型磁滞回线测量仪 评 分 此实验项目教材没有相应内容,请做实验前仔细阅读 本实验报告!并携带计算器,否则实验无法按时完成!

三、实验原理 (一)铁磁物质的磁滞现象 铁磁性物质除了具有高的磁导率外,另一重要的特点就是磁滞。以下是关于磁滞的几 个重要概念 1、饱和磁感应强度B S 、饱和磁场强度H S 和磁化曲线 铁磁材料未被磁化时,H 和B 均为零。这时若在铁磁材料上加一个由小到大的磁化场,则铁磁材料内部的磁场强度H 与磁感应强度B 也随之变大,其B-H 变化曲线如图1(OS )曲线所示。到S 后,B 几乎不随H 的增大而增大,此时,介质的磁化达到饱和。与S 对应的H S 称饱和磁场强度,相应的B S 称饱和磁感应强度。我们称曲线OS 为磁性材料的磁化曲线。 图1 磁性材料的磁化曲线 图2 磁滞回线和磁化曲线 2、磁滞现象、剩磁、矫顽力、磁滞回线 当铁磁质磁化达到饱和后,如果使H 逐步退到零,B 也逐渐减小,但B 的减小“跟不上”H 的减小(B 滞后于H )。即:其轨迹并不沿原曲线SO ,而是沿另一曲线Sb 下降。当H 下降为零时,B 不为零,而是等于B r ,说明铁磁物质中,当磁化场退为零后仍保留一定的磁性。这种现象叫磁滞现象,B r 叫剩磁。若要完全消除剩磁B r ,必须加反向磁场,当B =0时磁场的值 H c 为铁磁质的矫顽力。 当反向磁场继续增加,铁磁质的磁化达到反向饱和。反向磁场减小到零,同样出现剩磁现象。不断地正向或反向缓慢改变磁场,磁化曲线成为一闭合曲线,这个闭合曲线称为磁滞 B H B ~H H μ B ~H S f d e

磁滞回线

【实验内容与数据处理】 实验材料:FeCoVSiB非晶合金薄带,带宽b=1.55mm,带厚b=40μm 校准仪器常数用标准互感:互感系数(亨)M0=5.09×10?5 1.观察材料形状对磁化的影响 样品:条形,1#长3cm,2#长6.5cm; 磁化螺线管磁场强度:(U为示波器X轴读数);H=4.55×103 U/R0 探测线圈匝数:N2=150匝(附补偿线圈)。 用示波器观察两样品在同一频率和最大磁场下磁滞回线,记录相当于各样品的矫顽力Hc、饱和磁化强度Ms、剩余磁化强度Mr和最大磁化强度的读数Mm,比较两样品的矩形度Mr/M s。测完每个样品,将K1接校准一方(即接通标准互感),记录示波器显示图形X,Y的峰值,用式(6)计算仪器常数K0,用公式(11)计算相应的Mm、Mr,用以上磁场(H)公式计算矫顽力(H c)。 数据如下:单位(V) 由K0=U0 M0i0=U y M0 R U x 得短样品K0=6.17×104 V/Wb 长样品K0=5.40×104 V/Wb 又由M(t)=U(t) μ0K0N2S 其中μ0=4π×10?7H/m N2=150 匝 S = bd = 6.2×10?9m2 3 由以上数据对比可知,样品的长度会影响样品的磁性。 2. 观测外加应力对磁化的影响: 样品:条形,上端固定,下端吊有秤盘; 磁化螺线管的磁场强度:(附补偿线圈)H=1.47×104U.R 在秤盘上加不同重力砝码(不加、加50克、加100克),在同一频率和最大磁场下用示波器观察各自的磁滞回线,记录Mm、Hc、M r的值,N2=200匝,用公式(11)计算Mm、Mr,用本组磁场强度公式计算Hc。

磁滞回线的测量(实验报告记录)()

磁滞回线的测量(实验报告记录)()

————————————————————————————————作者:————————————————————————————————日期: 2

实验名称:用示波器观测铁磁材料的动态磁滞回线 姓名学号班级 桌号教室基础教学楼1101 实验日期2016年月日节 此实验项目教材没有相应内容,请做实验前仔细阅读本实验报告!并携带计算器,否则实验无法按时完成! 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。 3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs、剩磁Br和矫顽力Hc 的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1.双踪示波器 2.DH4516C型磁滞回线测量仪 石家庄铁道大学物理实验中心第3页共15页

三、实验原理 (一)铁磁物质的磁滞现象 铁磁性物质除了具有高的磁导率外,另一重要的特点就是磁滞。以下是关于磁滞的几个重要概念 1、饱和磁感应强度B S、饱和磁场强度H S和磁化曲线 石家庄铁道大学物理实验中心第4页共15页

石家庄 铁道大学物理实验中心 第5页 共15页 铁磁材料未被磁化时,H 和B 均为零。这时若在铁磁材料上加一个由小到大的磁化场,则铁磁材料内部的磁场强度H 与磁感应强度B 也随之变大,其B-H 变化曲线如图1(OS )曲线所示。到S 后,B 几乎不随H 的增大而增大,此时,介质的磁化达到饱和。与S 对应的H S 称饱和磁场强度,相应的B S 称饱和磁感应强度。我们称曲线OS 为磁性材料的磁化曲线。 图1 磁性材料的磁化曲线 图2 磁滞回线和磁化曲线 2、磁滞现象、剩磁、矫顽力、磁滞回线 当铁磁质磁化达到饱和后,如果使H 逐步退到零,B 也逐渐减小,但B 的减小“跟不上”H 的减小(B 滞后于H )。即:其轨迹并不沿原曲线SO ,而是沿另一曲线Sb 下降。当H 下降为零时,B 不为零,而是等于B r ,说明铁磁物质中,当磁化场退为零后仍保留一定的磁性。这种现象叫磁滞现象,B r 叫剩磁。若要完全消除剩磁B r ,必须加反向磁场,当B =0时磁场的值H c 为铁磁质的矫顽力。 当反向磁场继续增加,铁磁质的磁化达到反向饱和。反向磁场减小到零,同样出现B H B ~H H μB ~H S f d e

磁滞回线

在线测试 测试总体情况 满分分数100.0分您的得 分 100.0分 参加人数您的排名 教师批语 一不定项选择题 试题1满分值:5.0分状态:已答实际得分:5.0分 什么是磁滞现象()磁性材料中外界磁场H的变化总是落后于磁感应强度B的变化 磁性材料中外界磁场H的变化总是同步于磁感应强度B的变化 磁性材料中外界磁场H的变化总是超前于磁感应强度B的变化 磁性材料中磁感应强度B的变化总是超前于外界磁场H的变化 磁性材料中磁感应强度B的变化总是落后于外界磁场H的变化 磁性材料中磁感应强度B的变化总是同步于外界磁场H的变化 [参考答案] 磁性材料中磁感应强度B的变化总是落后于外界磁场H的变化 试题2满分值:5.0分状态:已答实际得分:5.0分 磁滞回线实验正式测量前为什么要退磁()消除剩磁 确保样品磁化前处于磁中性状态 确保磁滞回线是一条稳定对称闭合的曲线 减小测量数据的实验误差

[参考答案] 消除剩磁 确保样品磁化前处于磁中性状态 确保磁滞回线是一条稳定对称闭合的曲线 减小测量数据的实验误差 试题3满分值:5.0分状态:已答实际得分:5.0分 如果用示波器观测磁滞回线需要注意什么()首先要对示波器进行校准 连线时注意GND要接地 示波器的水平灵敏度与垂直灵敏度选择要合适,以便磁滞回线能够全屏显示励磁电压的选取要合适,否则容易引起磁滞回线的变形 [参考答案] 首先要对示波器进行校准 连线时注意GND要接地 示波器的水平灵敏度与垂直灵敏度选择要合适,以便磁滞回线能够全屏显示 励磁电压的选取要合适,否则容易引起磁滞回线的变形 试题4满分值:5.0分状态:已答实际得分:5.0分 磁滞回线实验基本的原理公式为() A B C D [参考答案] B D 试题5满分值:5.0分状态:已答实际得分:5.0分 如何理解磁滞回线()

大学物理实验报告-磁滞回线研究

磁滞回线研究 班级 姓名 学号 一、 实验目的:a. 研究磁性材料的动态磁滞回线; a) b.了解采用示波器测动态磁滞回线的原理; b) c. 利用作图法测定磁性材料的饱和磁感应强度B,磁场强度H 二、 实验仪器:普通型磁滞回线实验仪DH 4516。 实验原理:当材料磁化时,磁感应强度B 不仅与当时的磁场强度H 有关,而且决定于磁化的历史情况,如图2.3.2-1所示。曲线OA 表示铁磁材料从没有磁性开始磁化,磁感应强度B 随H 的增加而增加,称为磁化曲线。当H 增加到某一值H S 时,B 几乎不再增加,说明磁化已达到饱和。材料磁化后,如使H 减小,B 将不沿原路返回,而是沿另一条曲线ACA 下降。当H 从-H S 增加时,B 将沿A ’C ’A 曲线到达A ,形成一闭合曲线称为磁滞回线,其中H=0时,r B B ,B r 称为剩余磁感应强度。要使磁感应强度B 为零,就必须加一反向磁场-H c , H c 称为矫顽力。为了使样品的磁特性能重复出现,也就是指所测得的基本磁化曲线都是由原始状态(H=0,B=0)开始,在测量前必须进行退磁,以消除样品中的剩余磁性。 1 .示波器测量磁滞回线的原理 图2.3.2-2所示为示波器测动态磁滞回线的原理电路。将样品制 成闭合的环形,然后均匀地绕以磁化线圈N 1及副线圈N 2,即所

谓的罗兰环。交流电压u 加在磁化线圈上,R 1为取样电阻,其两端的电压u 1加到示波器的x 轴输入端上。副线圈N 2与电阻R 2和电容串联成一回路。电容C 两端的电压u 加到示波器的y 输入端上。 (1)u x (x 轴输入)与磁场强度H 成正比,若样品的品均周长为l , 磁化线圈的匝数为N 1,磁化电流为i 1(瞬时值),根据安培环路定理,有H l =N 1 i 1,而11i R u =,所以 H N l R u 111= (1) 由于式中R 1、l 和N 1皆为常数,因此,该式清楚地表明示波器荧光屏上电子束水平偏转的大小(u 1)与样品中的磁场强度(H )成正比。 (2)u C (y 轴输入)在一定条件下与磁感应强度B 成正比 设样品的截面积为S ,根据电磁感应定律,在匝数为N 2的副线圈中,感应电动势应为 dt dB S N E 22-= (2) 此外,在副线圈回路中的电流为i 2且电容C 上的电量为q 时,又有 C q i R E +=222 (3) 考虑到副线圈匝数N 2较小,因而自感电动势未加以考虑,同时,R 2与C 都做成足够大,使电容C 上的电压降(u c =q/C )比起电阻上的电压降R 2i 2小到可以忽略不计。于是式(3)可

磁性材料磁滞回线测定数据记录表及数据处理

磁性材料磁滞回线测定数据记录表及数据处理(供参考) 数据记录表 表一:实验给定的常数值 R 1(Ω) R 2(Ω) D 外 (mm) D 内 (mm) h(mm) C(μF) N 1(匝) N 2(匝) 10 52 38 13 1 86 86 表二:测量饱和磁滞曲线 B r —U c (V) △m (V) H c —U 1(V) △m (V) 1 表三:测量基本磁化曲线 序号 22U 1(V) 22U c (V) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 数据处理方法: 被测样品的平均周长= +?=?=2D D D L ) (内外ππ ; 被测样品的横截面积= -?=2D D h S )(内外 ; 1.剩磁r B 的数据处理

电压c u 的A 类不确定度: 0=A u 电压c u 的B 类不确定度: = ?= 3 c u m B u 电压c u 的合成不确定 : = +=2 2 u c B A u u u 电压c u 的相对不确定度:= ?= %100c u c u u u E c 剩磁r B 的最佳值: =???= C 22r u S N C R B 剩磁r B 的相对不确定度:= =c r u B E E 剩磁r B 的不确定度:=?=r B B B E u r r 2. 矫顽力c H 的数据处理 电压1u 的A 类不确定度: 0=A u 电压1u 的B 类不确定度: = ?= 3 1 u m B u 电压1u 的合成不确定 : = +=2 2 u 1B A u u u 电压1u 的相对不确定度: = ?= %1001 u 11u u E u 矫顽力c H 的最佳值: = ??=111 c u R N H L 矫顽力c H 的相对不确定度: = =1u H E E c 矫顽力c H 的不确定度:=?=c H H H E u c c 3. 求基本磁化曲线的坐标点 由表三数据可知,

磁滞回线的测量实验报告

磁滞回线的测量实验报 告 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-

石家庄铁道大学物理实验中心 第1页 共10页 实验名称: 用示波器观测铁磁材料的动态磁滞回线 姓 名 学 号 班 级 桌 号 教 室 基础教学楼1101 实验日期 2016年 月 日 节 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。 3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs 、剩磁Br 和矫顽力Hc 的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1. 双踪示波器 2. DH4516C 型磁滞回线测量仪 评 分 此实验项目教材没有相应内容,请做实验前仔细阅读本实验报告!并携带计算器,否则实验无法按时完成!

图1 磁性材料的磁化曲线图2 磁滞回线和磁化曲 线 2、磁滞现象、剩磁、矫顽力、磁滞回线 当铁磁质磁化达到饱和后,如果使H逐步退到零,B也逐渐减小,但B 的减小“跟不上”H的减小(B滞后于H)。即:其轨迹并不沿原曲线SO, 而是沿另一曲线Sb下降。当H下降为零时,B不为零,而是等于B r ,说明铁磁物质中,当磁化场退为零后仍保留一定的磁性。这种现象叫磁滞现象, B r 叫剩磁。若要完全消除剩磁B r ,必须加反向磁场,当B=0时磁场的值H c 为铁磁质的矫顽力。 当反向磁场继续增加,铁磁质的磁化达到反向饱和。反向磁场减小到零,同样出现剩磁现象。不断地正向或反向缓慢改变磁场,磁化曲线成为一闭合曲线,这个闭合曲线称为磁滞回线,如图2所示。 3、基本磁化曲线 对于同一铁磁材料,设开始时呈去磁状态,依次选取磁化电流I 1 、 I 2、….I n ,则相应的磁场强度为H 1 、H 2 、….H 3 ,在每一磁化电流下反复交换 电流方向(称为磁锻炼),即在每一个选定的磁场值下,使其方向反复发生 几次变化(如H 1→- H 1 →H 1 →- H 1 ….),这样操作的结果,是在每一个电流

磁滞回线的测量实验报告

石家庄铁道大学物理实验中心 第1页 共14页 实验名称: 用示波器观测铁磁材料的动态磁滞回线 姓 名 学 号 班 级 桌 号 教 室 基础教学楼1101 实验日期 2016年 月 日 节 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。 3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs 、剩磁Br 和矫顽力Hc 的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1. 双踪示波器 2. DH4516C 型磁滞回线测量仪 评 分 此实验项目教材没有相应内容,请做实验前仔细阅读本实验报告!并携带计算器,否则实验无法按时完成!

图1 磁性材料的磁化曲线图2 磁滞回线和磁化曲 线 2、磁滞现象、剩磁、矫顽力、磁滞回线 当铁磁质磁化达到饱和后,如果使H逐步退到零,B也逐渐减小,但B 的减小“跟不上”H的减小(B滞后于H)。即:其轨迹并不沿原曲线SO,而 是沿另一曲线Sb下降。当H下降为零时,B不为零,而是等于B r ,说明铁 磁物质中,当磁化场退为零后仍保留一定的磁性。这种现象叫磁滞现象,B r 叫剩磁。若要完全消除剩磁B r ,必须加反向磁场,当B=0时磁场的值H c为铁磁质的矫顽力。 当反向磁场继续增加,铁磁质的磁化达到反向饱和。反向磁场减小到零,同样出现剩磁现象。不断地正向或反向缓慢改变磁场,磁化曲线成为一闭合曲线,这个闭合曲线称为磁滞回线,如图2所示。 3、基本磁化曲线 对于同一铁磁材料,设开始时呈去磁状态,依次选取磁化电流I 1 、 I 2、….I n ,则相应的磁场强度为H 1 、H 2 、….H 3 ,在每一磁化电流下反复交换 电流方向(称为磁锻炼),即在每一个选定的磁场值下,使其方向反复发生 几次变化(如H 1→- H 1 →H 1 →- H 1 ….),这样操作的结果,是在每一个电流

磁滞回线实验数据表格

X/mm B/mT X/mm B/mT X/mm B/mT X/mm B/mT X/mm B/mT X/mm B/mT -10.0 125.4-6.0 297.7-2.0 298.7 2.0 298.6 6.0 29810.0 295.4 -9.0 170.7-5.0 298.3-1.0 298.7 3.0 298.57.0 297.911.0 283.6 -8.0 238.4-4.0 298.50.0 298.6 4.0 298.48.0 297.512.0 223.3 -7.0 288.4-3.0 298.6 1.0 298.6 5.0 298.39.0 297.213.0 134.4 励磁电流I= 500 mA 气隙中磁场分布测量数据 气隙中磁场分布曲线 B/mT X/mm 初始磁化曲线测量数据 I/mA H/(A/m) B/mT I/mA H/(A/m) B/mT 00.00 0350.22917.17 218.5 50416.50 16.94003332.00 245.4 100.1833.83 43.44503748.50 267.9 150.21251.17 74.0 5004165.00 286.9 200.41669.33 106.9550.14582.33 303.1 250.12083.33 147.9600.35000.50 316.8 300.22500.67 186.1 平均磁路长度L= 0.240m,总匝数= 2000匝,单位长度匝数n= 8.33匝/mm. B/mT

磁滞回线测量数据 I/mA H/(A/m)B/mT I/mA H/(A/m)B/mT 600.65003.00 326.0 600.45001.33 327.8 550.14582.33 320.6 5504581.50 314.6 5004165.00 314.5 500.34167.50 298.9 4503748.50 307.6 450.43751.83 279.5 400.43335.33 299.4 400.33334.50 254.8 350.22917.17 289.3 3502915.50 223.6 300.12499.83 276.6 3002499.00 186.6 250.12083.33 260.2 250.32085.00 144.8 200.31668.50 238.9 200.11666.83 98.9 1501249.50 211.8 1501249.50 51.2 100.2834.67 178.5 100.1833.83 2.5 50416.50 138.9 50416.50 -45.8 00.00 94.2 00.00 -93.1 -50.2-418.17 47.5 -50.2-418.17 -139.0 -100.1-833.83 0.2 -100.1-833.83 -179.3 -150.1-1250.33 -46.6 -150.1-1250.33 -214.0 -200.3-1668.50 -93.9 -200-1666.00 -242.1 -250-2082.50 -139.3 -250-2082.50 -264.3 -300.1-2499.83 -181.9 -300.1-2499.83 -281.3 -350.1-2916.33 -219.6 -350.5-2919.67 -294.3 -400.3-3334.50 -251.5 -400.3-3334.50 -304.5 -450.4-3751.83 -277.0 -450-3748.50 -312.7 -501.6-4178.33 -297.7 -500-4165.00 -319.6 -550-4581.50 -313.2 -550-4581.50 -325.8 -600.3-5000.50 -326.6 -600-4998.00 -326.6 实验所得磁滞回线 B/mT

磁滞回线测量

物理实验报告 实验名称:动态磁滞回线的测量 学院:安全与应急管理工程学院专业班级:安全工程1801 学号:2018003921 学生姓名:马晶晶 实验成绩

实验预习题成绩: 一、选择题 1、当材料磁化的时候,磁感应强度B和磁场强度H之间的关系因为磁滞的原因,B和H并不是一一对应的关系。但是当H足够大的时候,H继续增大,B 几乎不变此时用Bs表示,称为(A )。 A.饱和的磁感应强度 B.剩余磁感应强度 C.测量磁感应强度 2、当磁化饱和之后,若去掉磁场,材料仍保留一定的磁性,此时用Br表示,称为(B )。 A.饱和的磁感应强度 B.剩余磁感应强度 C.测量磁感应强度 3、加足够反向磁场,材料才完全退磁,使材料完全退磁所需的反向磁场,用Hc表示,称为(A )。 A.矫顽力 B.临界磁场强度 C.磁导率 4、不断地(C )增加磁场,磁化曲线成为一闭合曲线,这个闭合曲线称为磁滞回线。 A.正向 B.反向 C.正向或反向交替 5、示波器测量磁滞回线的原理中,Ux(x轴输入)与磁场强度H成(A ),Uy (y轴输入)与磁感应强度B成(A )。 A.正比;正比 B.反比;反比 C.正比;反比 二、判断题 1、静态测量的损耗较动态测量要大。(×) 2、测量动态磁滞回线的时候,铁磁材料中不仅有磁滞损耗,还有电流和磁场的变化造成的涡流电流产生的损耗。(√) 3、磁滞回线的形状和大小只与铁磁材料的种类有关。(×) 4、当正向磁场持续增加,铁磁质的磁化可达到反向饱和。反向磁场减小到零,同样出现剩磁现象。(√) 5、软磁材料的磁滞回线窄,矫顽磁力小(一般小于120安/米),但它的磁导率和饱和磁感应强度大,容易磁化和去磁,故常用于制造电机、变压器和电磁铁。(√)

铁磁材料磁滞回线及基本磁化曲线的测量

实验26 铁磁材料磁滞回线和基本磁化曲线的测量 铁磁性材料分为硬磁材料和软磁材料。软磁材料的矫顽力小于100A/m ,常用于电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。铁磁材料的磁化过程和退磁过程中磁感应强度和磁场强度是非线性变化的,磁滞回线和基本磁化曲线是反映软磁材料磁性的重要特性曲线。矫顽力、饱和磁感应强度、剩余磁感应强度、初始磁导率、最大磁导率、磁滞损耗等参数均可以从磁滞回线和基本磁化曲线上获得,这些参数是磁性材料研制、生产和应用的总要依据。采用直流励磁电流产生磁化场对材料样品反复磁化测出的磁滞回线称为静态磁滞回线;采用交变励磁电流产生磁化场对材料样品反复磁化测出的磁滞回线称为动态磁滞回线。本实验利用交变励磁电流产生磁场对不同性能的铁磁材料进行磁化,测绘基本磁化曲线和动态磁滞回线。 【实验目的】 ①了解用示波器显示和观察动态磁滞回线的原理和方法。 ②掌握测绘铁磁材料动态磁滞回线和基本磁化曲线的原理和方法,加深对铁磁材料磁化规律的理解。 ③学会根据磁滞回线确定矫顽力 、剩余磁感应强度 、饱和磁感应强度 、磁滞损耗等磁化参数。 【实验仪器与用具】 FB310型动态磁滞回线实验仪,双踪示波器,导线。 【实验原理】 1.磁性材料的磁化特性及磁滞回线 研究磁性材料的磁化规律时,一般是通过测量磁化场的磁场强度H 与磁感应强度B 之间的关系来进行的。铁磁性材料磁化时,它的磁感应强度B 要随磁场强度H 变化而变化。但是B 与H 之间的函数关系是非常复杂的。主要特点如下: (1)当磁性材料从未磁化状态(H =0且B =0)开始磁化时,B 随H 的增加而非线性增加由此画出的H B 曲线称为起始磁化曲线,如图3.26.1(O-a )段曲线。起始磁化曲线大致分为三个阶段,第一阶段曲线平缓,第二阶段曲线较陡,第三阶段曲线又趋于平缓。最后当H 增大到一定值m H 后,B 增加十分缓慢或基本不再增加,这时磁化达到饱和状态,称为磁饱和。达到磁饱和时的m H 和s B 分别称为饱和磁场强度和饱和磁感应强度,对应图3.26.1中的a 点。

铁磁材料的磁滞回线及基本磁化曲线-实验报告

铁磁材料的磁滞回线和基本磁化曲线 【实验目的】 1. 认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。 2. 测定样品的基本磁化曲线,作μ-H曲线。 3. 测定样品的H D、B r、B S和(H m·B m)等参数。 4. 测绘样品的磁滞回线,估算其磁滞损耗。 【实验仪器】 DH4516型磁滞回线实验仪,数字万用表,示波器。 【实验原理】 铁磁物质是一种性能特异,用途广泛的材料。铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。 图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=O,当磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段oa所示,继之B随H迅速增长,如ab所示,其后B的增长又趋缓慢,并当H增至H S时,B到达饱和值B S,oabs称为起始磁化曲线。图1表明,当磁场从H S逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到“O”点,而是沿另一条新的曲线SR下降,比较线段OS和SR可知,H减小B相应也减小,但B的变化滞后于H的变化,这现象称为磁滞,磁滞的明显特征是当H=O时,B不为零,而保留剩磁Br。 当磁场反向从O逐渐变至-H D时,磁感应强度B消失,说明要消除剩磁,必须施加反向磁场,H D称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD称为退磁曲线。 图1还表明,当磁场按H S→O→H D→-H S→O→H D′→H S次序变化,相应的磁感应强度B则沿闭合曲线'变化,这闭合曲线称为磁滞回线。所以,当铁磁材料处于交变磁场中时(如变压器中的铁S R' D SRD'S 心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。

相关文档
最新文档