伺服系统介绍

伺服系统介绍
伺服系统介绍

一、相关概念

伺服系统(servomechanism)又称随动系统,是用来精确地跟随或复现某个过程的反馈控制系统。伺服系统使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。它的主要任务是按控制命令的要求、对功率进行放大、变换与调控等处理,使驱动装置输出的力矩、速度和位置控制非常灵活方便。

在机器人中,伺服驱动器控制电机的运转。驱动器采用速度环,位置环,电流环三环闭环电路,内部还设有错误检出和保护电路。驱动器通过通信连接器,控制连接器,编码连接器跟外部输入信号和输出信号相连。通信连接器主要用于跟电脑或控制器通信。控制连接器用于跟伺服控制器联接,驱动器所需的输入信号、输出信号、控制信号和一些方式选择信号都通过该控制连接器传输,它是驱动器最为关键的连接器。编码连接器跟电机编码器连接,用于接收编码器闭环反馈信号,即速度反馈和换向信号。

伺服电机主要用于驱动机器人的关节。关节越多,机器人的柔性和精准度越高,所需要使用的伺服电机的数量就越多。机器人对伺服电机的要求非常高,必须满足快速响应、高起动转矩、动转矩惯量比大、调速范围宽,要适应机器人的形体做到体积小、重量轻,还必须经受频繁的正反向和加减速运行等苛刻的条件,做到高可靠性和稳定性。伺服电机分为直流、交流和步进,工业机器人用的较多的是交流。

机器人用伺服电机

二、伺服系统的技术现状

2.1视觉伺服系统

随着机器人技术的迅猛发展,机器人承担的任务更加复杂多样,传统的检测手段往往面临着检测范围的局限性和检测手段的单一性.视觉伺服控制利用视觉信息作为反馈,对环境进行非接触式的测量,具有更大的信息量,提高了机器人系统的灵活性和精确性,在机器人控制中具有不可替代的作用。

视觉系统由图像获取和视觉处理两部分组成,图像的获取是利用相机模型将三维空间投影到二维图像空间的过程,而视觉处理则是利用获取的图像信息得到视觉反馈的过程。基本的相机模型主要包括针孔模型和球面投影模型,统一化模型是对球面模型的推广,将各种相机的图像映射到归一化的球面上。视觉伺服中的视觉反馈主要有基于位置、图像特征和多视图几何的方法。

其中,基于位置的方法将视觉系统动态隐含在了目标识别和定位中,从而简化了控制器的设计,但是一般需要已知目标物体的模型,且对图像噪声和相机标定误差较为敏感。基于图像特征的视觉反馈构造方法,其中基于特征点的方法在以往的视觉伺服中应用较为广泛,研究较为成熟,但是容易受到图像噪声和物体遮挡的影响,并且现有的特征提取方法在发生尺度和旋转变化时的重复性和精度都不是太好,在实际应用中存在较大的问题。因此,学者们提出了基于全局图像特征的视觉反馈方法,利用更多的图像信息对任务进行描述,从而增强视觉系统的鲁棒性,但是模型较为复杂,控制器的设计较为困难,且可能陷入局部极小点。目前针对这一类系统的控制器设计的研究还比较少,一般利用局部线性化模型进行控制,只能保证局部的稳定性。多视图几何描述了物体多幅图像之间的关系,间接反映了相机之间的几何关系。相比于基于图像特征的方法,多视图几何与笛卡尔空间的关系较为直接,简化了控制器的设计。常用的多视图几何包括单应性、对极几何以及三焦张量。

2.2伺服系统控制技术

现代的机器人伺服系统多采用交流伺服驱动系统,而且正在逐渐向数字化方向转变。数字控制技术已经五孔不入,如信号处理技术中的数字滤波、数字控制器,把功能更加强大的控制器芯片已经各种智能处理模块应用到工业机器人交流伺服系统中,可以实现更好的控制性能。

最近几十年,由于微电子技术的进步,各种方便用户开发的微控制器与数字信号处理器件大量涌现市场,为各种先进的智能控制算法在控制系统中的应用提供了可能。如今,各种新型的伺服控制策略大量涌现,大有与传统控制策略一较高低的趋势下面简单介绍几种:

1)矢量控制矢量控制技术的提出,为交流伺服驱动系统的快速进步提供了理论支持。矢量控制技术的主要原理为:以转子旋转磁场作为参考系,将电动机定子矢量电流经过两次坐标变换分解为直轴电流和交轴电流分量,且使两电流分量相互正交,同时对交直轴电流分量的

幅值和相位进行控制,可以获得像直流电机一样优越、甚至更好的动态控制性能。

2)直接转矩控制德国专家提出“直接自控制”的高性能交流电动机控制策略,此种控制策略不需要像矢量控制那样对电动机定子矢量电流进行大量而复杂的解耦变换,再通过控制解耦获得的交流电流分量来间接的控制电动机电磁转矩,它采用定子磁场定向的控制方式,对交流电机的电磁转矩进行直接控制。此方式只受电动机定子绕组阻值的影响,对其他参数的变动稳态性好,解决了矢量控制受电动机本体参数影响大的缺点。开始有部分专家学者通过深入研究把直接转矩控制理论引入到交流同步电动机当中,完成了直接转矩控制技术在交流同步电动机伺服驱动领域的最大突破。

3)智能控制智能控制理论是最近几十年的新兴学科,它的迅速发展为交流永磁伺服控制技术的进步注入了新鲜的血液。智能控制技术由于其自身的理论特点,在非线性控制领域中比经典控制理论更具优势

三、伺服系统市场现状

3.1行业规模

由于我国在伺服系统相关技术发展较晚难以与国外品牌竞争,直到2000年,中国加入WTO,中国企业在吸取国外先进技术经验的前提下,开始自主研发伺服系统。至此,中国的伺服系统的市场份额有所提高。到了2011年市场容量60多亿元,比上年增长22.0%。2012年,由于国际经济的影响以及国内供求问题导致伺服市场下滑14.9%。直到2013年下半年,伺服市场才开始逐步回暖,上升幅度在5%左右。现在中国的伺服系统市场仍由国外企业占据大半壁江山。

2011年我国伺服电机市场容量23多亿元,比上年增长10.2%,伺服市场增长恢复稳定,这得益于国家相关的经济政策。2012年伺服电机市场受国际经济疲软和国内需求不足、产能过剩影响,市场下滑5.56%,近6年来首次出现下滑,且下滑幅度较大。2013年中国伺服电机市场上半年仍缓慢下滑,下半年触底回温,全年涨幅约8%。分析当前国内用户的购买因素,占前三位的是稳定可靠性、价格和服务。这也说明目前国内伺服电机市场还处在较低级的阶段,对性能和功能的充分利用没有摆在重要位置。从长远来看,伺服厂商的关键成功因素应该是产品的性价比、可靠性、技术含量、以及市场份额和品牌影响力。一批国内企业也在激烈的市场竞争中逐渐成长起来。

伺服电机市场竞争激烈,品牌众多,日资和欧美品牌市场份额约75%。其中安川、三菱、松下等日系品牌性能低于欧系,但可靠性和稳定性强,性价比高,最适合国内客户需求,约占50%的份额;西门子、伦茨、博世力士乐等欧系品牌过载能力、动态响应、驱动器开放性好,但价格昂贵,约有30%的份额;台系品牌使用简单,性能接近日系,在中低端发展较快。

国产伺服电机技术落后,集中在低端。国产伺服电机起步较晚,2000 年以后开始研发,在功能、性能和工艺方面和国外产品仍有较大的差距,尤其是没有完全掌握自适应机械共振抑制技术、自适应低频震动技术和惯量动态前馈技术等关键技术。国产伺服电机以小功率的低端产品为主,以性价比的优势满足中小型和经济型用户的需求,高精度伺服电机还在技术攻关阶段。

分析当前国内用户的购买因素,占前三位的是稳定可靠性、价格和服务。这也说明目前国内伺服电机市场还处在较低级的阶段,对性能和功能的充分利用没有摆在重要位置。从长远来看,伺服厂商的关键成功因素应该是产品的性价比、可靠性、技术含量、以及市场份额和品牌影响力。展望未来,随着伺服价格的不断下降、伺服市场接受度不断上升,中低端市场有非常大的增长空间,因此本土厂商仍将有很大作为。

随着需求的扩大和价格下行,性价比和满足定制化需求越来越重要,高端品牌的市场份额逐渐下降,中低端市场快速增长,国产伺服电机面临比较好的发展机遇。国内近年来也开展了大功率交流永磁同步电机及驱动部分基础研究和产业化,且具备了一点的生产能力,但其动态性能、开放性和可靠性还需要更多的实际机器人项目应用进行验证。国产品牌包括华中数控、兰州电机、和时利电机、广州数控、南京苏强电机、深圳雷赛电机等。汇川技术、埃斯顿等国内运动控制厂商尚处于小批量试用阶段。但伺服电机需要在高动态的环境中经过长期大量的验证,稳定性没有经过验证的国产伺服电机难以获得客户认可。

3.2国内伺服系统标杆企业北超伺服简介

北超伺服专注于制造电机与驱动、驱动与控制结合的机电一体化伺服系统,是国内最大的主轴电机生产商之一。公司主要产品包括伺服电机和控制器等,2014 年收入占比26%和60%。客户主要集中在高端装备制造和新能源汽车领域,2014 年收入占比分别为65%和20%,此外,工业机器人也是公司未来发展的重点领域。

2014 年公司收入为1.31 亿元,同比增长39.8%,净利润2752.95 万元,同比增长144.1%,

毛利率和净利率维持在30%以上,且有向好的趋势,得益于行业较高的技术水平。

北超伺服分产品收入北超伺服近年分产品毛利率

北超伺服近年毛利率和净利率

3.3伺服系统行业壁垒分析:技术、客户认可和资金

伺服行业属于技术密集型行业。伺服系统整合了多项关键技术,包括自动化控制技术、微电子技术、机电一体化技术和电机控制技术等,而且随着下游行业的发展,需求者对伺服系统的要求也越来越高,伺服企业必须具备一定的技术优势才能在该行业生存下去。

客户特别看重产品稳定性和售后服务。伺服系统直接影响整个工业设备的正常运转,因此对其稳定性的要求非常高,客户通常会对伺服生产厂家进行长期考察,才会确定合作关系。然

而,对于新进入者而言,获得客户认可的难度很高。除了产品稳定性之外,售后服务也是客户非常看重的一点,所以良好的售后服务也是伺服行业内的企业必须去关注的。

伺服系统的生产需要大规模的资金。在生产伺服系统的前期,企业需要投入大量资金,而且设备和生产工艺的磨合耗时较长,通常需要好几年才能形成生产能力,再加上赢得客户认可也需要耗费一定的时间,企业必须要有足够的资金来支撑项目的运转。

四、伺服系统未来发展趋势

数字化交流伺服系统的应用越来越广,用户对伺服驱动技术的要求越来越高。总的来说,伺服系统的发展趋势可以概括为以下几个方面:

1)集成化目前,伺服控制系统的输出器件越来越多地采用开关频率很高的新型功率半导体器件,这种器件将输入隔离、能耗制动、过温、过压、过流保护及故障诊断等功能全部集成于一个不大的模块之中。同一个控制单元,只要通过软件设置系统参数,就可以改变其性能,既可以使用电机本身配置的传感器构成半闭环调节系统,又可以外接外部传感器如位置、速度、力矩传感器等,构成高精度的全闭环调节系统。高度的集成化显著地缩小了整个控制系统的体积。

2) 智能化目前伺服内部控制核心大都采用新型高速微处理器和专用数字信号处理机(DSP),从而实现完全数字化的伺服系统。伺服系统数字化是其实现智能化的前提条件。伺服系统的智能化表现在以下几个方面:系统的所有运行参数都可以通过人机对话的方式由软件来设置;其次它们都具有故障自诊断与分析功能;以及参数自整定的功能等。众所周知,闭环调节系统的参数整定是保证系统性能指标的重要环节,也是需要耗费较多时间与精力的工作。带有自整定功能的伺服单元可以通过几次试运行,自动将系统的参数整定出来,并自动实现其最优化。

3) 网络化伺服系统网络化是综合自动化技术发展的必然趋势,是控制技术、计算机技术和通信技术相结合的产物,现场总线是一种应用于生产现场,在现场设备之间、现场设备和控制装置之间实行双向、串形、多结点的数字通信技术。现场总线现已被广泛应用在伺服系统之间、伺服系统和其它外围设备如人机界面HMI、可编程控制器PLC等信息交互传输。现场总线有如下几个类型FF;ProfiBus、WorldFIP、ControlNet/DeviveNet、CAN等。这些通讯协议都为多轴实时同步控制提供了可能性,也被一些高端伺服驱动器集成进去,从而使伺服系统达到了分布、开放、互联以及高可靠性。

4)简易化这里所说的“简”不是简单而是精简,是根据用户情况,将用户使用的伺服功能予以强化,使之专而精,而将不使用的一些功能予以精简,从而降低了伺服系统成本,为客户创造更多的收益,且通过精简一些元器件,减少了资源的浪费从而利于环保。这里所说的“易”是指,伺服系统的软件编程及操作是从用户角度出发开发设计,力求简单易行,使用户调试时只需简单。

五、机器人伺服系统未来发展动力

未来几年,中国工业机器人市场将大幅度增长,而服务型机器人在世界各地各掀起热浪,扫地机器人,擦玻璃机器市场如火如荼,预测服务机器人市场将超工业机器人。面对巨大的机器人市场,机器人伺服电机的需求量也将水涨船高。

国务院《中国制造2025》中指出,为了推进信息化与工业化深度融合,应加快发展智能制造装备和产品。组织研发具有深度感知、智慧决策、自动执行功能的高档数控机床、工业机器人、增材制造装备等智能制造装备以及智能化生产线,突破新型传感器、智能测量仪表、工业控制系统、伺服电机及驱动器和减速器等智能核心装置,推进工程化和产业化。报告中提出的大力推动的重点发展领域,其中包括机器人本体、减速器、伺服电机、控制器、传感器与驱动器等关键零部件及系统集成设计制造等技术瓶颈。

液压伺服系统工作原理

液压伺服系统工作原理 1.1 液压伺服系统工作原理 液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。 电液伺服系统通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。 液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。液压伺服系统的工作原理可由图1来说明。 图1所示为一个对管道流量进行连续控制的电液伺服系统。在大口径流体管道1中,阀板2的转角θ变化会产生节流作用而起到调节流量qT的作用。阀板转动由液压缸带动齿轮、齿条来实现。这个系统的输入量是电位器5的给定值x i。对应给定值x i,有一定的电压输给放大器7,放大器将电压信号转换为电流信号加到伺服阀的电磁线圈上,使阀芯相应地产生一定的开口量x v。阀开口x v使液压油进入液压缸上腔,推动液压缸向下移动。液压缸下腔的油液则经伺服阀流回油箱。液压缸的向下移动,使齿轮、齿条带动阀板产生偏转。同时,液压缸活塞杆也带动电位器6的触点下移x p。当x p所对应的电压与x i所对应的电压相等时,两电压之差为零。这时,放大器的输出电流亦为零,伺服阀关闭,液压缸带动的阀板停在相应的qT位置。 图1 管道流量(或静压力)的电液伺服系统 1—流体管道;2—阀板;3—齿轮、齿条;4—液压缸;5—给定电位器;6—流量传感电位器;7—放大器;8—电液伺服 阀 在控制系统中,将被控制对象的输出信号回输到系统的输入端,并与给定值进行比较而形成偏差信号以产生对被控对象的控制作用,这种控制形式称之为反馈控制。反馈信号与给定信号符号相反,即总是形成差值,这种反馈称之为负反馈。用负反馈产生的偏差信号进行调节,是反馈控制的基本特征。而对图1所示的实例中,电位器6就是反馈装置,偏差信号就是给定信号电压与反馈信号电压在放大器输入端产生的△u。 图2 给出对应图1实例的方框图。控制系统常用方框图表示系统各元件之间的联系。上图方框中用文字表示了各元件,后面将介绍方框图采用数学公式的表达形式。 液压伺服系统的组成 液压伺服系统的组成 由上面举例可见,液压伺服系统是由以下一些基本元件组成;

伺服控制系统(设计)

第一章伺服系统概述 伺服系统是以机械参数为控制对象的自动控制系统。在伺服系统中,输出量能够自动、快速、准确地跟随输入量的变化,因此又称之为随动系统或自动跟踪系统。机械参数主要包括位移、角度、力、转矩、速度和加速度。 近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及电机制造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步电机、感应电机为伺服电机的新一代交流伺服系统。 目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路制造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性制造系统以及自动化生产线等领域中的应用也迅速发展。 1.1伺服系统的基本概念 1.1.1伺服系统的定义 “伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行停止。 伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵活方便的控制。

1.1.2伺服系统的组成 伺服系统是具有反馈的闭环自动控制系统。它由检测部分、误差放大部分、部分及被控对象组成。 1.1.3伺服系统性能的基本要求 1)精度高。伺服系统的精度是指输出量能复现出输入量的精确程度。 2)稳定性好。稳定是指系统在给定输入或外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。 3)快速响应。响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。 4)调速范围宽。调速范围是指生产机械要求电机能提供的最高转速和最低转速之比。 5)低速大转矩。在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。 6)能够频繁的启动、制动以及正反转切换。 1.1.4 伺服系统的种类 伺服系统按照伺服驱动机的不同可分为电气式、液压式和气动式三种;按照功能的不同可分为计量伺服和功率伺服系统,模拟伺服和功率伺服系统,位置

伺服系统复习题

《运动控制系统》复习题 第一章伺服系统的作用及组成 1.在伺服控制系统中,使输出量能够以一定跟随输入量的变换而变换的系统称为,亦称为伺服系统。(准确度、随动系统) 2.伺服系统按调节理论分类可分为:开环伺服系统、闭环伺服系统、半闭环伺服系统。 3.伺服系统按使用的驱动元件分类可分为:步进伺服系统、直流伺服系统、交流伺服系统。 第二章伺服控制基础知识 GTR/MOSFET/IGBT各自的特点及应用范围。 。 第三章步进电动机的控制 1.简述反应式步进电机的工作原理。 2.一台无相步进电动机,工作在十拍方式,转子齿数为48,在单相绕组中测得的电流频率为500Hz,试求电动机的齿距角、步距角和转速。 ;

3.三相步进电动机工作在双三拍方式,已知步距角为3°,最大转矩T max =,转动部分的转动惯量J=×,试求该步进电动机的自由振荡频率和周期。 ! 4.若一台BF 系列四相反应式步进电动机,其步距角为°/°。试问:(1) °/°表示什么意思(2)写出四相八拍运行方式的一个通电顺序。(4)在A 相测得电源频率为400Hz 时,每分钟的转速为多少 / 5.正常情况下步进电机的转速取决于( ) A.控制绕组通电频率 B.绕组通电方式 C.负载大小 D.绕组的电流 # 6.某三相反应式步进电机的转子齿数为50,其齿距角为( ) ° °电角度 °电角度 7.某四相反应式步进电机的转子齿数为60,其步距角为( ) °电角度 °电角度 8.某三相反应式步进电机的初始通电顺序为C B A →→,下列可使电机反转的通电顺序为(A ) A.A B C →→ B.A C B →→ C.B C A →→ D.C A B →→

液压伺服系统(DOC)

液压伺服系统 液压伺服系统是以高压液体作为驱动源的伺服系统,是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。 一、液压伺服系统的基本组成 液压伺服系统无论多么复杂,都是由一些基本元件组成的。如图就是一个典型的伺服系统,该图表示了各元件在系统中的位置和相互间的关系。 (1)外界能源—为了能用作用力很小的输入信号获得作用力很大的输出信号,就需要外加能源,这样就可以得到力或功率的放大作用。外界能源可以是机械的、电气的、液压的或它们的组合形式。 (2)液压伺服阀—用以接收输入信号,并控制执行元件的动作。它具有放大、比较等几种功能,如滑阀等。 (3)执行元件—接收伺服阀传来的信号,产生与输入信号相适应的输出信号,并作用于控制对象上,如液压缸等。 (4)反馈装置—将执行元件的输出信号反过来输入给伺服阀,以便消除原来的误差信号,它构成闭环控制系统。 (5)控制对象—伺服系统所要操纵的对象,它的输出量即为系统的被调量(或被控制量),如机床的工作台、刀架等。 二、液压伺服系统的分类 液压伺服系统是由液压动力机构和反馈机构组成的闭环控制系统,分为机械液压伺服系统和电气液压伺服系统(简称电液伺服系统)两类。 电液伺服系统 电液伺服系统是一种由电信号处理装置和液压动力机构组成的反馈控制系统。最常见的有电液位置伺服系统、电液速度控制系统和电液力(或力矩)控制系统。 如图是一个典型的电液位置伺服控制系统。图中反馈电位器与指令电位器接成桥式电路。反馈电位器滑臂与控制对象相连,其作用是把控制对象位置的变化转换成电压的变化。反馈电位器与指令电位器滑臂间的电位差(反映控制对象位置与指令位置的偏差)经放大器放大后,加于电液伺服阀转换为液压信号,以推动液压缸活塞,驱动控制对象向消除偏差方向运动。当偏差为零时,停止驱动,因而使控制对象的位置总是按指令电位器给定的规律变化。 电液伺服系统中常用的位置检测元件有自整角机、旋转变压器、感应同步器和差动变压器等。伺服放大器为伺服阀提供所需要的驱动电流。电液伺服阀的作用是将小功率的电信号转换为阀的运动,以控制流向液压动力机构的流量和压力。因此,电液伺服阀既是电液转换元件又是功率放大元件,它的性能对系统的特性影响很大,是电液伺服系统中的关键元件。液压动力机构由液压控制元件、执行机构和控制对象组成。液压控制元件常采用液压控制阀或伺服变量泵。常用的液压执行机构有液压缸和液压马达。液压动力机构的动态特性在很大程度上决定了电液伺服系统的性能。 为改善系统性能,电液伺服系统常采用串联滞后校正来提高低频增益,降低系统的稳态误差。此外,采用加速度或压力负反馈校正则是提高阻尼性能而又不降低效率的有效办法。

伺服驱动系统的原理与种类

机电一体化系统设计基础课程教学辅导 第四章:伺服驱动系统的原理与种类 一、教学建议 ●通过文字教材掌握伺服驱动的基本原理,了解机电一体化伺服驱动系统的种类及其 特性。 ●流媒体课件第15讲介绍了机电一体化系统伺服驱动的基本原理、种类及其特性; ●在学习的过程中,如果有学习的心得和体会,请在课程论坛上和大家分享;如果有 什么疑惑,也可以在课程论坛寻找帮助。 二、教学要求 1.掌握伺服驱动的基本原理 一般来说,伺服系统组成框图如图1所示。 图1 伺服系统组成框图 (1)控制器:伺服系统中控制器的主要任务是根据输入信号和反馈信号决定控制策略,控制器通常由电子线路或计算机组成。 (2)功率放大器:伺服系统中功率放大器的作用是将信号进行放大,并用来驱动执行机构完成某种操作,功率放大装置主要由各种电力电子器件组成。 (3)执行机构:执行机构主要由伺服电动机或液压伺服机构和机械传动装置等组成。 (4)检测装置:检测装置的任务是测量被控制量,实现反馈控制。无论采用何种控制方案,系统的控制精度总是低于检测装置的精度,因此要求检测装置精度高、线性度好、可靠性高、响应快。 2.了解机电一体化伺服驱动系统的种类及其特性 (1)根据使用能量的不同,可以分为电气式、液压式和气压式等几种类型,特性如表1所示。 表1 伺服驱动系统的特点及优缺点 种类特点优点缺点 电 气 式 可使用普通电源;信号与动力 的传送方向相同;有交流和直 流之别,须注意电压之大小 操作简便;编程容易;能实现定 位伺服;响应快、易与CPU接 口;体积小,动力较大;无污染 瞬时输出功率大,但过载能力差,由于某 种原因而卡住时,会引起烧毁事故,易受 外部噪声影响 气 压 式 空气压力源的压力为(5~7) ×105Pa;要求操作人员技术 熟练 气源方便、成本低;无泄漏污染; 速度快、操作比较简单 功率小,体积大,动作不够平稳;不易小 型化;远距离传输困难;工作噪声大、难 于伺服 液 压 式 要求操作人员技术熟练;液压 源的压力为(20~80)×105Pa 输出功率大,速度快,动作平 稳,可实现定位伺服 设备难于小型化;液压源或液压油要求(杂 质、温度、测量、质量)严格;易泄漏且 有污染

伺服电机和步进电机有什么区别【解析】

伺服电机和步进电机有什么区别? 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 机器让人们解放了劳动力,现在的很多工厂都实现了自动化,不再需要人力。自动化的实现离不开电机,电机是机器的动力来源。从1820年发现电流的磁效应到现在将近200年的创新发展,科学家们制造了各种各样的电机。今天就分析一下伺服电机与步进电机的区别。 各种电机 什么是伺服电机和步进电机呢? 伺服电机是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以控制驱动对象。私服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中用作执行元件,且具有机电时间常数小、线性高度、始动电圧等特性,可把所收到的电信号转化成电动机轴上的角位移或角速度输出。 伺服电机 伺服电机的工作原理:伺服系统是使物体的位置、方位、状态等输出被控制量能够跟随输入目标的任意变化的自动控制系统。伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到一个脉冲就会旋转一个脉冲相对应的角度从而实现位移,因为伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度就会发出对应数量的脉冲,这样和伺服电机接收的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道多少脉冲给伺服电机,同时就收了多少脉冲回来,这样就能够很精准的控制电机的转动,从而实现很精确的定位,可以达到0.001mm。直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护但维护不方便,产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。无刷电机体积小,重量轻,出力大,相应快,速度高,惯量小,转动平滑,力矩稳定。控制复杂,容易实现智能化,其电子换相方式

液压伺服系统

第十章液压伺服系统 一、名词解释 1、伺服控制 2、液压伺服控制系统 3、滑阀的压力-流量特性 4、滑阀的流量放大系数 5、滑阀的压力放大系数 二、问答题 1、液压伺服系统有由哪几部分组成?各部分的功能是什么? 2、伺服系统的基本类型有哪些? 3、为什么说伺服阀是液压伺服系统的最关键元件? 4、液压伺服阀有哪几种?滑阀式液压伺服阀与换向滑阀有什么本质区别? 5、滑阀式液压伺服阀的阀口与换向阀的阀口有什么不同? 6、电液伺服阀由哪几部分组成(以二级放大式为例)?各部分的作用是什么 7、液压仿形刀架的液压伺服系统为何将伺服滑阀的阀体和液压缸的缸体固连成一体?若将它们分成 两部分,仿形刀架能否工作?为什么? 8、何为伺服阀的零位特性?为什么零位阀系数对液压伺服系统的稳定性是至关重要的? 9、在力反馈电液伺服阀中,什么叫力反馈?力反馈是通过什么元件实现的? 三、计算题 1、已知一电液伺服阀在线性区内工作,当输入电流为20mA、伺服阀的压降为5Mpa时,输出的负载流量为60L/min,则当输入电流为100mA、伺服阀的压降为10Mpa时,其输出流量为多少? 2、如图所示的电液位置控制系统为轧机辊缝调节控制系统,它由辊缝调节螺钉1、支撑辊2、轧辊 3、板材 4、电液伺服阀 5、调整油缸 6、伺服放大器 7、同位素测厚仪8等组成。板材经轧机连轧后由厚板变为薄板,轧后板材的厚度由测厚仪检测出来,若加工后板材的厚度与要求不符,则由电液伺服阀控制调整油缸驱动支撑辊和轧辊,调节轧辊间的距离。写出其控制原理方块图,标明控制信号的传递过程,并说明系统工作原理。如图所示的电液位置控制系统为轧机辊缝调节控制系统,它由辊缝调节螺钉1、支撑辊2、轧辊3、板材4、电液伺服阀5、调整油缸6、伺服放大器7、同位素测厚仪8等组成。板材经轧机连轧后由厚板变为薄板,轧后板材厚度由测厚仪检测出来,若加工后板材的厚度与要求不符,则由电液伺服阀控制调整油缸驱动支撑辊和轧辊,调节轧辊间的距离。写出 其控制原理方块图,标明控制信号的传递过程,并说明系统工作原理。速度均为0.075m/s,工作进 - 1 -

伺服电机内部结构及其工作原理

创作编号:BG7531400019813488897SX 创作者:别如克* 伺服电机内部结构

伺服电机工作原理

伺服电机原理 一、交流伺服电动机 交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。所以交流伺服电动机又称两个伺服电动机。 交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。 交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: 1、起动转矩大 由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。 2、运行范围较广 3、无自转现象 正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线)交流伺服电动机的输出功率一般是0.1-100W。当电源频率为50Hz,电压有36V、110V、220、380V;当电源频率为400Hz,电压有20V、2 6V、36V、115V等多种。

第九章 液压伺服系统.

第九章液压伺服系统 第一节概述 伺服系统又称随机系统或跟踪系统,是一种自动控制系统。在这种系统中,执行元件能以一定的精度自动地按照输入信号的变化规律动作。液压伺服系统是以液压为动力的自动控制系统,由液压控制和执行机构所组成。 一、液压伺服系统的工作原理 图9-1为一简单的机液位置伺服系统的原理图。 当伺服滑阀处于中间位置(xv=0)时,各阀口均关闭,阀没有流量输出,液压缸不动,系统处于静止状态。给伺服滑阀阀芯一个输入位移xi,阀口a、b便有一个相应的开口量xv,使压力油经阀口b进入液压缸的右腔,其左腔油液经阀口a回油池,液压缸在液压力的作用下右移x0,由于滑阀阀体与液压缸体固连在一起,因而阀体也右移x0,则阀口a、b的开口量减小(xv=xi-x0),直到x0=xi时,xv=0,阀口关闭,液压缸停止运动,从而完成液压缸输出位移对伺服滑阀输入位移的跟随运动。若伺服滑阀反向运动,液压缸也作反向跟随运动。由上可知,只要给伺服滑阀以某一规律的输入信号,执行元件就自动地、准确地跟随滑阀按照这个规律运动。 图9-1机液位置伺服系统原理图 1-溢流阀 2-泵 3-阀芯 4-阀体(缸体) 由此可以看出,液压伺服系统有如下特点: 1.跟踪系统的输出量能够自动地、快速而准确地跟踪输入量的变化规律。 2.放大移动阀芯所需的力很小,只需要几牛顿到几十牛顿,但液压缸输出的力却很大,可达数千到数万牛顿。功率放大所需要的能量是由液压泵供给的。 3.反馈把输出量的一部分或全部按一定方式回送到输入端,和输入信号作比较,这就是反馈。回送的信号称为反馈信号。若反馈信号不断地抵消输入信号的作用,则称为负反馈。负反馈是自动控制系统具有的主要特征。图9-1中的负反馈是通过阀体和缸体的刚性连接来实现的,液压缸的输出位移y连续不断地回送到阀体上,与阀芯的输入位移x相比较,其结果使阀的开口减小。此例中的反馈是一种机械反馈。反馈

数控机床伺服系统

第6章 数控机床伺服系统 进给伺服系统就是数控系统主要的子系统。如果说CNC 装置就是数控系统的“大脑”,就是发 布“命令”的“指挥所”,那么进给伺服系统则就是数控系统的“四肢”,就是一种“执行机构”。它忠 实地执行由CNC 装置发来的运动命令,精确控制执行部件的运动方向,进给速度与位移量。 第一节 概述 、 进给伺服系统的定义及组成 、 定义:进给伺服系统(Feed Servo System)——以移动部件的位置与速度作为控制量的自动 控制系统。 一、进给伺服系统的定义及组成 组成: 进给伺服系统主要由以下几个部分组成:位置控制单元;速度控制单元;驱动元件(电 机);检测与反馈单元;机械执行部件。 3、进给伺服驱动系统由进给伺服系统中的 驱动电机及其控制与驱动装置组成。 4、驱动电机就是进给系统的动力部件,它提供执行部分运动所需的动力,在数控机床上常用 的电机有: 步进电机 直流伺服电机 交流伺服电机 直线电机。 5 、速度单元就是上述驱动电机及其控制与驱动装置,通常驱动电机与速度控制单元就是 相互配套供应的,其性能参数都就是进行了相互匹配,这样才能获得高性能的系统指标。 6、速度控制单元主要作用:接受来自位置控制单元的速度指令信号,对其进行适当的调节运 算(目的就是稳速),将其变换成电机转速的控制量(频率,电压等),再经功率放大部件将其变换 成电机的驱动电量,使驱动电机按要求运行。简言之:调节、变换、功放。 7、进给驱动系统的特点(与主运动(主轴)系统比较): ? 功率相对较小; ? 控制精度要求高; ? 控制性能要求高,尤其就是动态性能。 二、NC 机床对数控进给伺服系统的要求 1、调速范围要宽且要有良好的稳定性(在调速范围内) 调速范围: 一般要求: 稳定性:指输出速度的波动要少,尤其就是在低速时的平稳性显得特别重要。 调速范围: 一般要求: 2、稳定性:指输出速度的波动要少,尤其就是在低速时的平稳性显得特别重要。 输出位置精度要高 静态:定位精度与重复定位精度要高,即定位误差与重复定位误差要小。(尺寸精度) 动态:跟随精度,这就是动态性能指标,用跟随误差表示。 (轮廓精度) 灵敏度要高,有足够高的分辩率。 3、负载特性要硬 在系统负载范围内,当负载变化时,输出速度应基本不变。即△F 尽可能小;当负载突变时,要 求速度的恢复时间短且无振荡。即△t 尽可能短; 应有足够的过载能力,以满足低速大转矩的要求。(高速恒功率,低速恒转矩) 这就是要求伺服系统有良好的静态与动态刚度。 4、 响应速度快且无超调 这就是对伺服系统动态性能的要求,即在无超调的前提下,执行部件的运动速度的建立时间 tp 应尽可能短。 通常要求从 0→Fmax(Fmax →0),其时间应小于200ms,且不能有超调,否则 对机械部件不利,有害于加工质量。 min max F F R N =m in 1m in 1.010000min mm F mm R N <≤>且

液压伺服系统设计

液压伺服系统设计 液压伺服系统设计 在液压伺服系统中采用液压伺服阀作为输入信号的转换与放大元件。液压伺服系统能以小功率的电信号输入,控制大功率的液压能(流量与压力)输出,并能获得很高的控制精度和很快的响应速度。位置控制、速度控制、力控制三类液压伺服系统一般的设计步骤如下: 1)明确设计要求:充分了解设计任务提出的工艺、结构及时系统各项性能的要求,并应详细分析负载条件。 2)拟定控制方案,画出系统原理图。 3)静态计算:确定动力元件参数,选择反馈元件及其它电气元件。 4)动态计算:确定系统的传递函数,绘制开环波德图,分析稳定性,计算动态性能指标。 5)校核精度和性能指标,选择校正方式和设计校正元件。 6)选择液压能源及相应的附属元件。 7)完成执行元件及液压能源施工设计。 本章的内容主要是依照上述设计步骤,进一步说明液压伺服系统的设计原则和介绍具体设计计算方法。由于位置控制系统是最基本和应用最广的系统,所以介绍将以阀控液压缸位置系统为主。 4.1 全面理解设计要求 4.1.1 全面了解被控对象 液压伺服控制系统是被控对象—主机的一个组成部分,它必须满足主机在工艺上和结构上对其提出的要求。例如轧钢机液压压下位置控制系统,除了应能够承受最大轧制负载,满足轧钢机轧辊辊缝调节最大行程,调节速度和控制精度等要求外,执行机构—压下液压缸在外形尺寸上还受轧钢机牌坊窗口尺寸的约束,结构上还必须保证满足更换轧辊方便等要求。要设计一个好的控制系统,必须充分重视这些问题的解决。所以设计师应全面了解被控对象的工况,并综合运用电气、机械、液压、工艺等方面的理论知识,使设计的控制系统满足被控对象的各项要求。 4.1.2 明角设计系统的性能要求 1)被控对象的物理量:位置、速度或是力。 2)静态极限:最大行程、最大速度、最大力或力矩、最大功率。 3)要求的控制精度:由给定信号、负载力、干扰信号、伺服阀及电控系统零飘、非线性环节(如摩擦力、死区等)以及传感器引起的系统误差,定位精度,分辨率以及允许的飘移量等。 4)动态特性:相对稳定性可用相位裕量和增益裕量、谐振峰值和超调量等来规定,响应的快速性可用载止频率或阶跃响应的上升时间和调整时间来规定; 5)工作环境:主机的工作温度、工作介质的冷却、振动与冲击、电气的噪声干扰以及相应的耐高温、防水防腐蚀、防振等要求; 6)特殊要求;设备重量、安全保护、工作的可靠性以及其它工艺要求。 4.1.3 负载特性分析 正确确定系统的外负载是设计控制系统的一个基本问题。它直接影响系统的组成和动力元件参数的选择,所以分析负载特性应尽量反映客观实际。液压伺服系统的负载类型有

我司液压伺服控制系统的控制原理

概述 随着国内经济的高速发展,塑料制品行业对高速,高精密注塑机的需 求量与日剧增,而液压机高速,精密成型的保证,就是一必须拥有合 理而高刚性的锁模和射胶机构,二它必须拥有强劲的动力和反应灵敏 而精确的液控系统。其中,液压伺服控制系统是使执行元件以一定的 精度自动地按照输入信号的变化规律而动作的一种自动控制系统。其 可从不同的角度加以分类,按输出的物理量分类,有位置伺服系统, 速度伺服系统,力(或压力)伺服系统等;按控制信号分类,有机液 伺服系统,电液伺服系统,气液伺服系统;按控制元件分类,有阀控 系统和泵控系统两大类。下面,我们讨论阀控伺服系统。阀控伺服系 统主要由压力传感器,位置传感器,控制器和伺服阀等构成一个闭环 的系统,按系统的需求来分别做到或按序做到速度伺服控制,位置伺 服控制和压力伺服控制。最终,达到系统的要求和重复精度。 如图,传感器与控制卡(也可集成在塑机工控电脑中),伺服阀的有 机组合,就形成了一个闭环控制系统,随着系统工作情况要求的不同,来实现不同的伺服控制。在注射过程,注射到终点前,注射速度较为 重要,则此系统以速度闭环控制为主,控制器对位置传感器高频采样,测出活塞的瞬时速度与塑机电脑要求的速度对比,再发出调整后的信 号给伺服阀。最终,使活塞的运动速度达到塑机电脑要求的速度。进 入快到射胶终点,保压和熔胶背压阶段,这时压力较为重要,则此系 统以压力闭环控制为主,装在射胶油缸两侧的压力传感器传回的信号 起主要作用,控制卡将其与塑机电脑给出的压力信号对比,来调整给 伺服阀的信号,最终,使注射腔的压力值与设定值相同。在塑机电脑

没有发出任何指令的情况下,此时位置保持就比较重要,所以,系统 这时会主要进行位置闭环的控制。同理,在锁模油缸伺服控制的情形下,也是如此按顺序控制,锁模开始,快速移模可作速度闭环控制, 模具快合上时,切换到位置控制,有快速锁模到锁模油缸活塞停止的 位置之间的转换也是可控的,最后,模具合上时,切换的压力控制。 上述只是某种工艺要求下的伺服控制逻辑,随着不同的要求,控制的 逻辑,种类也都不尽相同,但是,其控制理念,是相同的。最终的目的,都是为了精确,迅速的达到塑机电脑的指令要求和保证动作的重 复精度。 下面对伺服闭环控制系统各组成部分作简单介绍。 传感器 任何好的系统,都必须具有迅捷,准确的感知部件,只有及时,准确 的监测执行机构当前所处的状态,控制器才能主动地发出新的指令, 来调整执行机构的运动,使之接近控制电脑所要求的运动状态。因此,全方位的了解执行机构,是伺服系统的必备条件。主要由压力,位置 等传感器来共同构成准确,及时的跟踪监测系统。传感器的固有特性,包括线性,最大采样频率,抗干扰能力等都对准确,及时地感知有重 要影响。 伺服阀 伺服系统中最重要,最基本的组成部分,它起着信号转换,功率放大 及反馈等控制作用。常见的伺服阀有直动式阀(滑阀),射流管先导 级伺服比例阀喷嘴挡板阀伺服电磁阀等。下面简单介绍它们的结构原 理及特点。 *直动式阀 将一与所期望的阀芯位移成正比的电信号输入阀内放大电路,此信号 将转换成一个脉宽调制电流作用在线性马达上,力马达产生推力推动 阀芯产生一定的位移。同时激励器激励阀芯位移传感器产生一个与阀 芯实际位移成正比的电信号,解调后的阀芯位移信号与输入指令信号 进行比较,比较后得到的偏差信号将改变输入至力马达的电流大小; 直到阀芯位移达到所需值。阀芯位移的偏差信号为零。最后得到的阀

伺服系统工作原理解读

第一部分:伺服系统的工作原理伺服系统(servo system)亦称随动系统,属于自动控制系统中的一种,它用来控制被控对象的转角(或位移),使其能自动地、连续地、精确地复规输入指令的变化规律。它通常是具有负反馈的闭环控制系统,有的场合也可以用开环控制来实现其功能。在实际应用中一般以机械位置或角度作为控制对象的自动控制系统,例如数控机床等。使用在伺服系统中的驱动电机要求具有响应速度快、定位准确、转动惯量较大等特点,这类专用的电机称为伺服电机。其基本工作原理和普通的交直流电机没有什么不同。该类电机的专用驱动单元称为伺服驱动单元,有时简称为伺服,一般其内部包括转矩(电流)、速度和/或位置闭环。其工作原理简单的说就是在开环控制的交直流电机的基础上将速度和位置信号通过旋转编码器、旋转变压器等反馈给驱动器做闭环负反馈的PID调节控制。再加上驱动器内部的电流闭环,通过这3个闭环调节,使电机的输出对设定值追随的准确性和时间响应特性都提高很多。伺服系统是个动态的随动系统,达到的稳态平衡也是动态的平衡。全数字伺服系统一般采用位置控制、速度控制和力矩控制的三环结构。系统硬件大致由以下几部分组成:电源单元;功率逆变和保护单元;检测器单元;数字控制器单元;接口单元。相对应伺服系统由外到内的"位置"、"速度"、"转矩" 三个闭环,伺服系统一般分为三种控制方式。

在使用位置控制方式时,伺服完成所有的三个闭环的控制。在使用速度控制方式时,伺服完成速度和扭矩(电流)两个闭环的控制。一般来讲,我们的需要位置控制的系统,既可以使用伺服的位置控制方式,也可以使用速度控制方式,只是上位机的处理不同。另外,有人认为位置控制方式容易受到干扰。而扭矩控制方式是伺服系统只进行扭矩的闭环控制,即电流控制,只需要发送给伺服单元一个目标扭矩值,多用在单一的扭矩控制场合,比如在小角度裁断机中,一个电机用速度或位置控制方式,用来向前传送材料,另一个电机用作扭矩控制方式,用来形成恒定的张力。『伺服机构系统』源自servomechanism system,系指经由闭回路控制方式达到一个机械系统位置、速度、或加速度控制的系统。一个伺服系统的构成通常包含受控体(plant)、致动器(actuator)、控制器(controller)等几个部分,受控体系指被控制的物件,例如一格机械手臂,或是一个机械工作平台。致动器的功能在於主要提供受控体的动力,可能以气压、油压、或是电力驱动的方式呈现,若是采用油压驱动方式,一般称之为油压伺服系统。目前绝大多数的伺服系统采用电力驱动方式,致动器包含了马达与功率放大器,特别设计应用於伺服系统的马达称之为伺服马达(servo motor),通常内含位置回授装置,如光电编码器(optical encoder)或是解角器(resolver),目前主要应用於工业界的

伺服电机内部结构及其工作原理

伺服电机内部结构 伺服电机工作原理 伺服电机原理 一、交流伺服电动机 交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似?其定子上装有两个位置互差90。的绕组,一个是励磁绕组Rf,它始终接在交流电

压Uf上;另一个是控制绕组L,联接控制信号电压Uc。所以交流伺服电动机 又称两个伺服电动机。 交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的 调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2- 0.3mm ,为了减小磁路的磁阻,要在空心 杯形转子内放置固定的内定子?空心杯形转子的转动惯量很小,反应迅速,而且 运转平稳,因此被广泛采用。 交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁 场,转子静止不动。当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著 特点: 1、起动转矩大 由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0 > 1,这样不 仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。

伺服电机的组成及使用

伺服电机的组成及使用 本文转载于湘电集团有限公司https://www.360docs.net/doc/449690131.html, 摘要:伺服电机作为高端精密装备的必备装置,在自动化生产过程中的地位也非常重要的,今天我们来简单谈谈数控机床中的伺服系统。 伺服电机(servomotor)是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。 数控机床伺服系统的作用在于接受来自数控装置的指令信号,驱动机床移动部件跟随指令脉冲运动,并保证动作的快速和准确,这就要求高质量的速度和位置伺服。以上指的主要是进给伺服控制,另外还有对主运动的伺服控制,不过控制要求不如前者高。数控机床的精度和速度等技术指标往往主要取决于伺服系统。 一、伺服系统的基本要求和特点 1.对伺服系统的基本要求 (1)稳定性好:稳定是指系统在给定输入或外界干扰作用下,能在短暂的调节过程后到达新的或者回复到原有平衡状态。 (2)精度高:伺服系统的精度是指输出量能跟随输入量的精确程度。作为精密加工的数控机床,要求的定位精度或轮廓加工精度通常都比较高,允许的偏差一般都在0.01~0.00lmm之间。 (3)快速响应性好:快速响应性是伺服系统动态品质的标志之一,即要求跟踪指令信号

数控机床伺服系统概述

教案 章节 课题 数控机床伺服系统概述 课型新课课时 2 教具学具 电教设施 无 教学目标 知识 教学点 1、伺服系统的概念与组成。 2、伺服系统的分类。 3、数控机床对伺服系统的要求。 4、进给伺服系统的组成及工作原理。能力 培养点 1、增强对理性知识的学习。 2、培养学生严谨的工作和学习作风。德育 渗透点 提高学生学习兴趣,增强学生责任心。 教 学重点难点重点伺服系统的相关知识 难点进给伺服系统的工作原理 学法引导 1、讨论法(积极参与,总结规律) 2、引导法(举一反三) 3、例举法 4、归纳法 5、图解法 教学内容 更新、补 充、删节 补充:进给伺服系统的工作原理 参考资料《数控原理》、《数控技术》、《先进制造技术》等课后体会

导入新课 下面我们来复习以下上节课所学的内容: 1、什么叫逐点比较法?它的四个工作节拍分别是什 么? 2、叙述逐点比较法有哪些优点? 讲授新课 一、伺服系统的概念与组成 ?主要采用图解法、讨论法、引导法。 1、概念 2、作用 3、组成 注意 (1)伺服系统直接影响数控机床的精度和速度 等技术指标。 (2)半闭环控制精度介于开环和全闭环之间。 (3)速度环常用检测元件:测速发电机、高分 辨率脉冲编码器 位置环常用检测元件:光栅、码盘等。二、伺服系统的分类 ?主要采用讲解法、图解法和归纳法。 1、主轴伺服系统 伺服系统 进给伺服系统 2、通过用练习的方式 检测学生掌握情况 通过分析图解使学 生思考伺服系统的 组成及各部分的作 用 采用图解法,学生 认真听讲,参与讨 论 6分 25 分 5分 15 分 12 分

3、根据反馈控制方式分类 三、数控机床对伺服系统的要求 ?主要采用讲解法和引导法。 四、进给伺服系统的组成及工作原理 ?主要采用讨论法、图解法和归纳法。 1、开环伺服系统 2、闭环伺服系统 课堂总结 1、伺服系统的概念与组成; 2、伺服系统的分类; 3、数控机床对伺服系统的要求; 4、进给伺服系统的组成及工作原理。 布置作业和辅导答疑 1、伺服系统的概念、分类和作用分别是什么? 2、数控机床对伺服系统的要求有哪些? 3、简单叙述开环、闭环伺服系统的工作原理和精度决定 因素分别是什么?学生通过思考,理 解开环与闭环原理 10 分 15 分 5分 3分

永磁同步电机伺服驱动系统概述

文献综述 ——永磁同步电机伺服驱动系统 一.前言 自上世纪八十年代以来,随着微电子技术、电力电子技术、传感器技术、电机制造技术以及先进的控制理论等支撑技术的飞速发展,以交流伺服电动机为控制对象的交流伺服系统逐步取代直流伺服系统,在机电一体化、工业自动化、数控机床、大规模集成电路制造、航空航天、雷达和各种军用武器随动系统等方面得到广泛应用。以永磁同步电机作为执行电机的数字交流伺服系统在高精度运动控制和驱动领域得到了越来越广泛的应用。 永磁材料的选择对电机的结构和性能影响很大。目前广泛应用于永磁体主要有铁氧体、稀土钴以及钕铁硼三类永磁材料。其中钕铁硼是近年来出现的一种新型永磁材料,其矫顽力和剩磁密度都高于其他两类永磁材料,且成本比稀土钴低得多,是目前应用最为广泛的永磁材料。永磁材料的发展也对永磁同步电机的应用起着至关重要的作用。 二.正文 1. 交流伺服系统的概念及分类 1.1 概念 伺服来自英文单词Servo,指系统跟随外部指令进行人们所期望的运动,运动要素包括位置、速度和力矩。伺服系统的发展经历了从液压、气动到电气的过程,而电气伺服系统包括伺服电机、反馈装置和控制器。在20世纪60年代,最早是直流电机作为主要执行部件,在70年代以后,交流伺服电机的性价比不断提高,逐渐取代直流电机成为伺服系统的主导执行电机。控制器的功能是完成伺服系统的闭环控制,包括力矩、速度和位置等。 在交流伺服系统中,电动机的类型有永磁同步交流伺服电机(PMSM)和感应异步交流伺服电机(IM),其中,永磁同步电机具备十分优良的低速性能、可以实现弱磁高速控制,调速范围宽广、动态特性和效率都很高,已经成为伺服系统的主流之选。普遍应用的永磁伺服电机有两大类:一类称为无刷直流电机(BLDC),另一类称为三相永磁同步电机(PMSM)。永磁同步电机的特点是用永磁体取代绕线式同步电机转子中的励磁绕组,从而省去了励磁线圈、滑环和电刷,因此具有转子转动惯量小、响应速度快、效率高、功率密度高等优点,在要求高性能的伺服领域得到了广泛的应用。永磁同步电机的定子与绕线式同步电机基本相同,要求输入定子的电流仍然是三相正弦的,所以称为三相永磁同步电机。而异步伺服电机虽然结构坚固、制造简单、价格低廉,但是在特性上和效率上存在差距,只在大功率场合得到重视。 1.2 分类 交流伺服系统根据其处理信号的方式不同,可以分为模拟式伺服、数字模拟混合式伺服和 全数字式伺服。如果按照使用的伺服电动机的种类不同,又可分为两种:一种是用永磁同步 伺服电动机构成的伺服系统;另一种是用鼠笼型异步电动机构成的伺服系统。二者的不同之处

第一章 液压伺服系统概述

第一章液压伺服系统概述 液压伺服控制是一门新兴的科学技术。它不但是液压技术的一个重要分支,而且也是控制领域中的一个重要组成部分。 早在第一次世界大战前,液压伺服控制已开始应用于海军舰艇中,作为操舵装置。到第二次世界大战期间及以后,由于军事的刺激,自动控制特别是武器和飞行器控制系统的研究得到进一步的发展。液压伺服控制因响应快,精度高和功率一重量比大等特点而受到特别的重视。特别是近几十年,由于整个工业技术的发展,尤其是军事和航空航天技术的发展,促使液压伺服控制得到迅速发展。使这门技术无论在元件和系统方面,还是在理论与应用方面都日趋完善和成熟,形成一门新兴的科学技术。 机械液压伺服控制出现较早,用在飞机上作为液压助力器,操纵飞机舵面。40年代,首先在飞机上出现了电液伺服系统。但该系统中的滑阀由伺服电动机驱动,作为电液转换器。由于伺服电动机时间常数较大,限制了电液伺服系统的响应速度。随着超音速飞机的发展,要求伺服系统反应速度越来越高,特别是像导弹控制,这就促进了快速电液伺服控制系统的产生与发展。50年代初,出现了快速响应的永磁力矩马达,力矩马达与滑阀结合,形成了电液伺服阀。50年代末,又出现了以喷嘴挡板阀作为第一级的电液伺服阀,进一步提高了电液伺服阀的快速性。60年代,各种结构的电液伺服阀相继出现,其性能Et趋完善。由于电液伺服阀和电子技术的发展,使电液伺服系统得到迅速的发展。 目前,液压伺服系统特别是电液伺服系统已成为武器自动化和工业自动化的一个重要方面。凡是需要大功率、快速、精确反应的控制系统,都已经有了应用。在国防工业中,如飞机的操纵系统、导弹的自动控制系统、火炮操纵系统、坦克火炮稳定装置、雷达跟踪系统和舰艇的操舵装置等系统中。在一般工业中,用于机床、冶炼、轧钢、铸锻、动力、工程机械、矿山机械、建筑机械、拖拉机、船舶等系统中。

伺服控制系统- 概述

伺服控制系统- 概述 第六章伺服控制系统 第一节概述 伺服控制系统是一种能够跟踪输入的指令信号进行动作,从而获得精确的位置、速度及动力输出的自动控制系统。如防空雷达控制就是一个典型的伺服控制过程,它是以空中的目标为输入指令要求,雷达天线要一直跟踪目标,为地面炮台提供目标方位;加工中心的机械制造过程也是伺服控制过程,位移传感器不断地将刀具进给的位移传送给计算机,通过与加工位置目标比较,计算机输出继续加工或停止加工的控制信号。绝大部分机电一体化系统都具有伺服功能,机电一体化系统中的伺服控制是为执行机构按设计要求实现运动而提供控制和动力的重要环节。 一、伺服系统的结构组成 机电一体化的伺服控制系统的结构、类型繁多,但从自动控制理论的角度来分析,伺服控制系统一般包括控制器、被控对象、执行环节、检测环节、比较环节等五部分。如图6-1给出了系统组成原理框图。 1、比较环节是将输入的指令信号与系 统的反馈信号进行比较,以获得输出与输入间 的偏差信号的环节,通常由专门的电路或计算 机来实现。 2、控制器通常是计算机或PID控制电图6-1伺服系统组成原理框图路,主要任务是对比较元件输出的偏差信号进行变换处理,以控制执行元件按要求动作。

3、执行元件作用是按控制信号的要求,将输入的各种形式的能量转化成机械能,驱动被控对象工作。机电一体化系统中的执行元件一般指各种电机或液压、气动伺服机构等。 4、被控对象是指被控制的机构或装置,是直接完成系统目的的主体。一般包括传动系统、执行装置和负载。 5、检测环节是指能够对输出进行测量,并转换成比较环节所需要的量纲的装置。一般包括传感器和转换电路。 在实际的伺服控制系统中,上述的每个环节在硬件特征上并不独立,可能几个环节在一个硬件中,如测速直流电机即是执行元件又是检测元件。 二、伺服系统的分类 伺服系统的分类方法很多,常见的分类方法有: 1、按被控量参数特性分类按被控量不同,机电一体化系统可分为位移、速度、力矩等各种伺服系统。其它系统还有温度、湿度、磁场、光等各种参数的伺服系统 2、按驱动元件的类型分类按驱动元件的不同可分为电气伺服系统、液压伺服系统、气动伺服系统。电气伺服系统根据电机类型的不同又可分为直流伺服系统、交流伺服系统和步进电机控制伺服系统。 3、按控制原理分类按自动控制原理,伺服系统又可分为开环控制伺服系统、闭环控制伺服系统和半闭环控制伺服系统。 开环控制伺服系统结构简单、成本低廉、易于维护,但由于没有检测环节,系统精度低、抗干扰能力差。闭环控制伺服系统能及时对输出进行检测,并根据输出与输入的偏差,实时调整执行过程,因此系统精度高,但成本也大幅提高。半闭环控制伺服系统的检测反馈环节位于执行机 1

相关文档
最新文档