基于指纹的室内定位技术

基于指纹的室内定位技术
基于指纹的室内定位技术

网络出版时间:2015-10-29 10:15:33

网络出版地址:https://www.360docs.net/doc/4c9955180.html,/kcms/detail/34.1228.TN.20151029.1015.006.html

基于指纹的室内定位技术

Techniques for Fingerprint based Indoor Localization

李冬/LI dong

张宝贤/ZHANG Baoxian

(中国科学院大学泛在与传感网研究中心,北京100049)

(Research Center of Ubiquitous Sensor Networks, University of Chinese Academy of Sciences,

Beijing 100049, China)

基金项目:国家自然科学基金项目(61471339、61173158)

摘要:基于指纹的室内定位技术是近期研究的一个热点。指纹定位拥有无需额外基础设施、

成本低且定位精度较高等优势。本文综述了现有的指纹定位系统,包括指纹定位的核心思想、

基础假设和定位流程。在此基础上,丛机器学习与分类器的角度出发,对现有指纹定位系统

进行了分类并介绍了典型定位系统的核心思想、性能及优缺点。最后,本文对典型定位系统

进行了比较,并给出了指纹定位技术的一些发展趋势。

关键词:

指纹;室内定位;WiFi信号强度;分类器;无线信号

Abstract:Fingerprint based indoor localization has become a research focus due to its advantages

such aslow cost, no need for deploying extra infrastructure, and high accuracy. This

articleprovides a survey of existing fingerprint based indoor localization systems. We introduce

the keyidea, basic assumptions, and generic working processes of fingerprint based localization.

We classify existingindoor localization systems froma machine learning and

classificationperspective and introduce the ideas and keycharacteristics of typicalsystems and

discuss their merits and deficiencies. Finally, we conclude this article with some future directions

in this area.

Key words:

Fingerprint; indoor localization; WiFiradio signal strength; classifier; wireless signal

1.简介

近年来,基于无线信号的室内定位技术在学术界和工业界越来越受到重视。这是因为位置信息是移动智群感知和物联网应用的基础要素之一,且在室内环境中具有广泛的应用场景,

例如机场/火车站/商场的人员导航、特殊贵重物品跟踪、基于位置的服务推送、安全和入侵

检测与防范等。然而,室内环境复杂,无线信号传播容易受到人员流动、家具、墙壁等障碍

物的影响。同时,室内定位应用对位置精度提出了很高的要求。因此大量的研究工作[1-4]

已经针对室内定位技术展开。

基于无线信号指纹的定位技术是当前室内定位技术研究的重点。与基于测距和基于接近度(Proximity)的定位技术相比较,指纹定位技术的优势在于基站侧和移动终端侧都不需

要特殊设备,且具有较高的定位精度(平均定位误差1-3米)。特别是随着智能手机和WLAN

基础设施的快速普及,基于WiFi信号强度指纹的定位技术已经成为研究和应用的主要方向。

本文从指纹定位的核心思想和基础假设出发,分析了指纹定位系统误差产生的主要根源,介绍了指纹定位的基本工作流程,并以机器学习中分类器的角度将已有指纹定位技术分为两

个方向:1)基于WiFi信号强度的分类模型研究;2)结合其它物理信号特征的指纹定位研究。

本文介绍了典型定位系统的主要思想,分析了其主要特点,并从不同角度对典型定位系统进

行了比较,最后给出了指纹定位技术的一些发展趋势。

2.基于指纹的室内定位技术理论基础和工作流程

为了更好地理解指纹定位技术的特点,本节介绍指纹定位系统的核心思想、基础假设和基本工作流程。

2.1.指纹定位系统的核心思想和基础假设

基于指纹的定位系统,其核心思想是将不易测量的位置信息映射为容易测量的无线信号特征。这种思想主要基于以下两个基本假设:

●第一:无线信号特征与地理位置相关。理想情况下,目标环境中每一个地理位置都拥有

唯一的可区分的无线信号特征,作为该位置的指纹信息。指纹的区分度越高,指纹定位系统的精度也越高。这个假设隐含的意思是无线信号特征仅与地理位置相关,不易受到其它因素(例如:人员运动、信号采样的方向、采样设备的硬件差异和采集时间的变化等)的影响。

●第二:不同指纹的相似度程度和它们之间的物理距离具有强相关性。由于训练阶段(也

称离线阶段)的参考指纹位置数量有限,在线阶段,待定位的位置一般与参考位置不重合,这就需要利用临近的参考位置来进行位置估计。在大尺度上,无线信号的衰减规律保证了这种相关性,但是在小尺度上,尤其是室内环境,受多径效应和快衰落的影响,物理位置相近的两个指纹,也可能出现相关度较小的情况。

指纹定位系统产生误差的主要根源在于无线信号特征很难完全满足上述两个假设。 2.2.指纹定位技术的工作流程

下面介绍的指纹定位流程将以WiFi信号强度(RSS,Radio Signal Strength)为信号特征。同时,这一流程也适合基于其它物理信号的指纹定位。

基于指纹的定位流程可以分为两个阶段:离线训练阶段和在线定位阶段。

●离线训练阶段:训练人员手持移动设备(例如带WiFi通信接口的智能手机)在目标环

境的多个位置上分别采集来自不同基站(AP,access point)的WiFi信号强度信息。具体来说,在目标环境中,人工标定出一些特定的位置,这些位置坐标已知(这些位置被称作参考点(RP,reference point)。一个位置的坐标记做(x,y)。在每一个参考点上,移动设备采样来自多个临近WiFi基站的信号强度,形成一个一维向量,并与该参考点的坐标相关联,形成该参考点的指纹(fingerprint),形式如式(1),其中n表示所检测到的WiFi基站数量,RSS k表示第k个基站的信号强度值。将所有参考点的指纹存储于一个数据库中,形成一个二维矩阵,称作radio map。

??x,y?,? , ,…, ??(1) ●在线定位阶段:待定位的移动端设备采集WiFi信号强度,形成该位置上的指纹向量并

上传到服务器端。服务器端通过指纹相似度匹配算法,将上报的指纹向量与数据库中每一条指纹记录相匹配,最终确定待定位设备的估计位置,并回传给移动设备。指纹相似度匹配相关算法包括确定性算法、概率算法和基于人工神经网络的算法等几种。

3.指纹定位系统分类

本节首先介绍指纹定位系统分类方法,然后介绍每类的典型系统,最后比较分析各指纹定位系统的主要特征。

3.1.分类的方法

基于指纹的定位过程可以看成一个对无线信号特征进行分类的过程:离线阶段就是训练一个分类器模型,将采集的指纹信息作为分类器的输入,参考点的位置作为分类器的输出,从而训练出符合目标无线环境的分类器模型;在线阶段就是应用分类器进行定位,将新采样的指纹信息输入到训练好的分类器,对应的输出即为参考点的坐标,并以此作为待定位设备的估计坐标。本文以机器学习中分类器的角度,将已有指纹定位系统分为以下两类(如图1

所示)。

主要机制及其性能和特点。

3.2.1.分类器模型的选择

分类器按照其训练过程的不同可以分为三类:确定性分类器、概率型分类器和基于人工神经网络的分类器。

3.2.1.1.确定性分类器

确定性分类器代表为k近邻算法(kNN,k nearest neighbors)。该算法是文献[5]中微软亚洲研究院的Bahl等人于2000年提出的,相关定位系统称作RADAR系统。该系统是第一个基于指纹的室内定位系统。在实现方面,训练阶段,该系统以每个参考点上采样的多个WiFi基站的信号强度的平均值作为指纹,指纹所形成的数据库即为分类器模型。在线阶段,该系统采用kNN算法,以欧氏距离估计信号相似度,并以相似度最高的k个指纹的位置平均值作为估计位置。文献[5]中实验结果显示,k=1时,该系统平均定位误差为2.94米。当在

线指纹和训练指纹的信号采样方向相反时,由于信号采集人员身体遮挡效应,平均定位误差降低到4.9米。kNN算法的主要不足在于:信号强度的平均值无法充分表征目标环境的无线信号传播特征。

3.2.1.2.概率型分类器

概率型分类器的代表性工作是贝叶斯分类器(NBC,Na?ve Bayes Classifier)[6]。在文献[6]中,马里兰大学的Youssef 等人提出了Horus室内定位系统,该系统的核心是以概率方式推测指纹匹配度。在实现方面,训练阶段,他们首先采样每个参考点的信号强度,然后以直方图的形式记录各参考点坐标的信号强度概率分布,即已知坐标的条件下信号强度的概率分布。在线阶段,根据贝叶斯定理计算上报的信号强度指纹向量在每个参考点的概率,并以概率最大的参考点的坐标做为待定位设备的估计坐标。实验结果显示,Horus定位系统的平均定位误差为1.52米。相比RADAR系统,Horus系统从目标环境中获得了更为丰富的无线信号特征,进而提高了系统的定位精度。这种方法的代价是在每个参考点需要更多的采样次数,例如RADAR大约为20次,而Horus约为100次。

3.2.1.3.人工神经网络分类器

文献[7]中,特伦托大学的Battiti等人提出了基于人工神经网络分类器的指纹定位算法。该定位系统的特点在于利用多层感知器架构(MLP,multi-layer perceptron network)来表征信号强度和坐标之间的关系。在实现方面,离线阶段将采样的指纹数据库作为训练集输入到神经网络模型,通过一步正切算法(OSS, one-step secant)来学习隐藏单元的系数。离线阶段,每次将上报的信号强度向量带入训练好的模型即可得到该向量的对应估计坐标。ANN算法的优势在于对训练集的个数要求不高。实验结果说明,在5次采样的情况下该定位系统的平均误差不大于3米,当增加采样量后,平均误差可以降到1.5米。

3.2.2.引入其它物理信号特征的定位系统

由于WiFi信号的频率(2.4GHz和5.8GHz)特点,WiFi信号强度常常无法完全满足指纹定位的两条基础假设。一些研究工作开始探索引入其它物理信号作为WiFi的替代或者补充进行指纹定位,这方面的工作主要包括三类:采用WiFi信号物理层特征的系统、WiFi信号强度和其它无线信号(如FM、GSM等)特征相结合的系统、仅采用其它物理信号(如地磁、声波等)特征的指纹定位系统。下面将一一介绍相关的典型机制和系统,并讨论其优缺点。

3.2.2.1.采用WiFi信号物理层特征的定位系统

由于WiFi信号强度信息经过平均化处理,丢失了一些重要特征信息,故可以采用特征更丰富的WiFi信号物理层特征,例如:WiFi子载波的频率响应特征。在文献[8]中,杜克大学的Sen等人提出了PinLoc指纹定位系统。该系统的特点是采用了WiFi信号子载波特征作为指纹信息。他们通过实验验证了WiFi信号的OFDM子载波的频率响应在给定位置上随时间变化,但变化满足一定的模式,同时在不同位置上的频率响应是不同的,且可以提供1m×1m 范围(记为spot点)分辨率。该文作者在多种环境中验证了该定位系统,在100个spot 定位中,准确率达到了89%。

3.2.2.2.WiFi信号强度和其它无线信号特征相结合的定位系统

通过将WiFi信号强度信息与其它无线信号特征相结合,可以有效地提升定位系统性能,相关的无线信号包括调频FM信号强度[9]和GSM信号强度[10]等。

FM信号优势包括以下几个方面:FM基站分布广泛、手机接收端不需要引入特殊设备、FM信号频率较低(87.8-108MHz)不易受人类活动和采样方向的影响、随时间波动小、且穿墙性能较好、FM信号采样能耗更低。在文献[9]中,霍普金斯大学的Chen等人提出了基于WiFi信号和FM信号相混合的指纹定位系统。在实现方面,离线阶段,该系统通过手机终端同时采样WiFi信号和FM信号,并采用归一化方式,将两种不同的物理信号统一成一个混合指纹向量;在线阶段,他们采用曼哈顿距离估测信号相似度,并用kNN算法估计待定位节点

的坐标。实验结果表明,该系统房间粒度的定位准确率达98%。

GSM信号的优势在于GSM信号覆盖更加广泛、移动端不需要额外的设备、采样更加省电。在文献[10]中,塔图大学的Otsason等人提出了引入GSM信号的指纹室内定位系统。通过实验表明,GSM信号比WiFi信号具有更好的时间稳定性,且在同一参考点上GSM信号比WiFi 信号可以检测到更多的基站。在实现方面,他们采用欧氏距离和k近邻算法进行位置估计。该文实验结果表明,在GSM和WiFi混合定位情况下,平均定位误差为4米。

3.2.2.3.采用其它物理信号特征的指纹定位系统

一些研究显示,采用非射频的物理信号(例如地磁信号[11]和背景声波信号[12])特征作为指纹,可以有效地实现室内定位功能。

地磁信号优势在于移动端不需要额外的设备、不易受人体干扰。在文献[11]中,MIT的Chung等人提出了基于地球磁场的指纹定位系统。他们发现:现代建筑物中的钢结构成分对

表1: 各种指纹定位系统的比较表.

4.结论及展望

本文综述了当前指纹定位的研究现状,介绍了指纹定位系统的核心思想、基础假设和工

作流程,给出了基于指纹定位系统产生定位误差的主要原因。本文介绍了基于不同分方法、不同物理信号的典型指纹定位系统,介绍了它们的主要思想、典型特征、及其优缺点。

基于指纹的室内定位还有很多方面需要进一步深入研究,例如:1)如何采用众包方式训练指纹地图,降低专门训练指纹数据库的开销和成本,并提供稳定的定位性能[14];2)随着智能手机性能的增强和更多的传感器(如近场通信NFC、压力传感器等)的引入,如何以手机为载体并融合多传感器输出信号特征的指纹定位技术将成为未来的一个研究方向;3)如何实现基于指纹的室内定位和室外定位服务的无缝融合。

最后,需要指出,不存在最精确的室内定位系统,只有最合适的定位系统。象GPS和导航软件的关系一样,室内定位的关键在于找出它的杀手级应用,完成从学术到市场的转变。参考文献:

[12]S. P.Tarzia, P. A.Dinda,R. P.Dick,and G.Memik, “Indoor localization without infrastructure

using the acoustic background spectrum,”in Proc. of ACM MobiSys'11,pp.155-168, Jun.

2011.

[13]Microsoft Indoor Localization Competition - IPSN 2015, Available at:

https://www.360docs.net/doc/4c9955180.html,/en-us/events/indoorloccompetition2015/default.aspx.

[14]G. Shen, Z. Chen, P. Zhang, T.Moscribroda, and Y. Zhang, “Walkie-Markie: indoor pathway

mapping made easy”, in Proc. of USENIX NSDI’13, pp. 85-98, Apr. 2013.

室内定位追踪系统—MoteTrack

Mote Track A Robust, Decentralized Approach to RF-Based Location Tracking Introduction Wireless sensor networks deployed throughput an indoor environment offer the opportunity for accurate location tracking of mobile users. Using radio signal information alone, it is possible to determine the location of a roaming node at close to meter-level accuracy . We are particularly concerned with applications in which the robustness of the location-tracking infrastructure is at stake. For example, firefighters and rescuers entering a building can use a heads-up display to track their location and monitor safe exit routes. Likewise, an incident commander could track the location of multiple rescuers in the building from the command post. We are developing a robust, decentralized approach to RF-based location tracking. Our system, called MoteTrack, is based on low-power radio transceivers coupled with a modest amount of computation and storage capabilities. MoteTrack does not rely upon any back-end server or network infrastructure: the location of each mobile node is computed using a received radio signal strength signature from numerous beacon nodes to a database of signatures that is replicated across the beacon nodes themselves. This design allows the system to function despite significant failures of the radio beacon infrastructure. In our deployment of MoteTrack, consisting of 25 beacon nodes distributed across our Computer Science building, we achieve a 50th-percentile and 80th-percentile location-tracking accuracy of 1 meter and 1.7 meters respectively when diversifying the radio signal over 16 frequencies. In addition, MoteTrack can tolerate the failure of up to 60% of the beacon nodes without severely degrading accuracy, making the system suitable for deployment in highly volatile conditions. We investigate in detail MoteTrack's performance under a wide range of conditions, including variance in the number of obstructions, beacon node failure, radio signature perturbations, receiver sensitivity, and beacon node density.

室内定位技术汇总教学内容

室内定位技术调研 随着数据业务和多媒体业务的快速增加,人们对定位与导航的需求日益增大,尤其在复杂的室内环境,如机场大厅、展厅、仓库、超市、图书馆、地下停车场、矿井等环境中,常常需要确定移动终端或其持有者、设施与物品在室内的位置信息。但是受定位时间、定位精度以及复杂室内环境等条件的限制,GPS和北斗导航定位系统在室内都很难定位,原因是定位系统星座发射的微波信号过于微弱,并且频率很高,即要沿着直线传播,且难以穿过墙壁,所以在室内就收不到信号了。只有在室外,天空中没有什么阻挡时可以接受。 图1 室内定位的方式 因此,专家学者提出了许多室内定位技术解决方案,如A-GPS定位技术、超声波定位技术、蓝牙技术、红外线技术、射频识别技术、超宽带技术、无线局域网络、光跟踪定位技术,以及图像分析、信标定位、计算机视觉定位技术等等。这些室内定位技术从总体上可归纳为几类,即GNSS技术(如伪卫星等),无线定位技术(无线通信信号、射频无线标签、超声波、光跟踪、无线传感器定位技

术等),其它定位技术(计算机视觉、航位推算等),以及GNSS和无线定位组合的定位技术(A-GPS或A-GNSS)。除了以上提及的定位技术,还有基于计算机视觉、光跟踪定位、基于图像分析、磁场以及信标定位等。此外,还有基于图像分析的定位技术、信标定位、三角定位等。目前很多技术还处于研究试验阶段,如基于磁场压力感应进行定位的技术。如图1所示,能够满足米级定位精度的定位技术,从规模上推广角度来看由易到难,依次为 Wi-Fi、LED、RFID、ZiBee、超声波、蓝牙、计算机视觉、激光、超宽带等。实现室内定位技术上可以采取以下一种或多种混合:北斗定位、基站定位、wifi定位、IP定位、RFID/二维码等标签识别定位、蓝牙定位、声波定位、场景识别定位. Wi-Fi定位 Wi-Fi定位相比于北斗、GPS、基站定位方式的优势在于室内定位精度高。由于Wi-Fi热点廉价、布设容易,很容易通过增加Wi-Fi热点来提高室内定位精度。若用于LBS,Wi-Fi定位可作为一定室内区域(如博物馆内部、校园内各建筑内部)的定位手段,而在室外仍用北斗定位等方式。当前比较流行的Wi-Fi 定位是无线局域网络系列标准之IEEE802.11的一种定位解决方案。该系统采用经验测试和信号传播模型相结合的方式,易于安装,需要很少基站,能采用相同的底层无线网络结构,系统总精度高。Wi-Fi绘图的精确度大约在1米至20米的范围内,总体而言,它比蜂窝网络三角测量定位方法更精确。但是,如果定位的测算仅仅依赖于哪个Wi-Fi的接入点最近,而不是依赖于合成的信号强度图,那么在楼层定位上很容易出错。目前,它应用于小范围的室内定位,成本较低。但无论是用于室内还是室外定位,Wi-Fi收发器都只能覆盖半径90米以内的区域,而且很容易受到其他信号的干扰,从而影响其精度,定位器的能耗也较高。利用 Wi-Fi 可以覆盖一个十万平米的商场,费用几十万元,在这个商场中不仅可以做到米级的定位,还可以满足上网需求(在商场中用户的需求中,上网的需求远远大于室内定位导航的需求)。Wi-Fi 定位并不是不能做亚米级乃至分米级的定位,英国的研究机构就用 Wi-Fi 技术来探测墙后恐怖分子的肢体活动,当然这个成本目前也不是大众消费市场所能负担的。Wi-Fi需要60~140m配置基站继续覆盖。

室内定位常用算法概述

室内定位常用算法概述 一.室内定位目的和意义 随着数据业务和多媒体业务的快速增加,人们对定位与导航的需求日益增大,尤其在复杂的室内环境,如机场大厅、展厅、仓库、超市、图书馆、地下停车场、矿井等环境中,常常需要确定移动终端或其持有者、设施与物品在室内的位置信息。但是受定位时间、定位精度以及复杂室内环境等条件的限制,比较完善的定位技术目前还无法很好地利用。因此,专家学者提出了许多室内定位技术解决方案,如A-GPS定位技术、超声波定位技术、蓝牙技术、红外线技术、射频识别技术、超宽带技术、无线局域网络、光跟踪定位技术,以及图像分析、信标定位、计算机视觉定位技术等等。这些室内定位技术从总体上可归纳为几类,即GNSS 技术(如伪卫星等),无线定位技术(无线通信信号、射频无线标签、超声波、光跟踪、无线传感器定位技术等),其它定位技术(计算机视觉、航位推算等),以及GNSS和无线定位组合的定位技术(A-GPS或A-GNSS)。 由于在室内环境下对于不同的建筑物而言,室内布置,材料结构,建筑物尺度的不同导致了信号的路径损耗很大,与此同时,建筑物的内在结构会引起信号的反射,绕射,折射和散射,形成多径现象,使得接收信号的幅度,相位和到达时间发生变化,造成信号的损失,定位的难度大。虽然室内定位是定位技术的一种,和室外的无线定位技术相比有一定的共性,但是室内环境的复杂性和对定位精度和安全性的特殊要求,使得室内无线定位技术有着不同于普通定位系统的鲜明特点,而且这些特点是户外定位技术所不具备的。因此,两者区域的标识和划分标准是不同的。基于室内定位的诸多特点,室内定位技术和定位算法已成为各国科技工作者研究的热点。如何提高定位精度仍将是今后研究的重点。 二. 室内定位技术的国内外发展趋势 室内GPS定位技术 GPS是目前应用最为广泛的定位技术。当GPS接收机在室内工作时,由于信号受建筑物的影响而大大衰减,定位精度也很低,要想达到室外一样直接从卫星广播中提取导航数据和时

室内定位系统

无线私人网络的室内定位系统的研究 援引:A Survey Of Indoor Positioning System For Wireless Personal Networks 摘要: 近来,室内定位系统(IPSs)被设计来为个人和设备提供位置信息。私人网络(PNs)被设计来满足用户的需求并且使用户的装备了不同交流软件且在不同地点的设备进行交流并组建一个网络。PNs中的位置可获取服务需要被发展来提供流畅且可获得的私人服务并且提高生活的质量。本篇论文给出了一个易于理解关于多个IPSs的调查。我们以一个PN中的用户的角度比较现存的IPSs和这些系统的大纲轮廓。 1.介绍 准确可靠且实时的室内定位和基于定位的协议和服务在未来通信网络中是不可或缺的。定位系统使得设备的位置信息对于导航,跟踪,监控之类的服务是可获得的。一些基于定位的室内追踪系统已经被应用于医院中的贵重设备上,以免设备被偷盗。 在迅速发展的综合网络和PNs的服务中极为强调用户的需求。人们很多的注意力被放在个人使用的智能情境感知服务上,这使得人们的行为举止更为方便简单。动态和室内环境的不断变化带来的不确定性被定位信息的实用性减小。GPS 是应用最为广泛的卫星定位系统。然而GPS不能在室内使用。相较于室外,室内环境更为复杂,室内有着各种干扰因素。例如气压,噪声,其他的的无线网络信号...... IR,RFID,WLAN,UWB基于这些基本技术,很多公司,大学发展出了很多新的技术。在这篇论文中,我们介绍了很多实用的和科研的IPSs。本篇论文给出了17个现存的17IPSs并且分成了6个标准。我们同样给出了他们各自优点和缺点。 2.个人网络室内定位系统的概述 这一节我们介绍了IPSs和私人网络PNs。我们强调为什么PNs需要位置信息以及现存的IPSs分类。提出了不同的评价标准来比较PNs中的用户需求。

基于RSSI的室内定位算法研究

基于RSSI的室内定位算法研究 摘要:近年来,随着无线网络的迅速发展,室内定位技术在诸多领域中得到了广泛应用,成为重要的研究对象之一。室内定位技术的核心要素是定位算法。优秀的定位算法,可以有效地降低无线信道的影响,并利用较少的网络资源获取较高的定位精度。论文在研究了基于RSSI测距的无线定位算法后,重点研究了基于泰勒级数展开的RSSI测距定位算法,针对传统算法的缺点提出了改进方案。 关键词:室内定位 RSSI 泰勒级数 1.引言 现代社会,基于信息技术的发展,导航、定位等信息在人们纷繁庞杂的信息要求中,占据了越来越大的比重。比如航海、军事、智能公交、煤矿等领域均要求室外或者室内导航定位技术。进入二十一世纪以来,由于传统局域网己经不能满足人们的需求,加上无线网络的组网成本大幅下降,无线网络呈现出蓬勃发展的趋势,而人们在使用的同时也越来越不满足于现状,开始对其有了更多更深层次的要求。 目前,世界上正在运行的卫星导航定位系统主要是美国的全球定位系统(Global Positioning System GPS) ,但GPS这种定位方法是在室外使用得较多的定位方法,它不适用于室内。针对GPS的室内定位精确度偏低、成本较高等缺点,具备低成本、较高定位精度的诸多室内定位技术便应运而生,并在诸多领域正越来越发挥着重要的作用。例如:煤矿企业要实现对井下作业人员的实时跟踪与定位、方便企业对员工的管理与调度,要用到室内定位技术,营救被困人员,室内定位技术可以提供被困人员位置信息,为营救节省大量的时间;在超市等购物中心,室内定位技术可以实现对商品定位、消费者定位、广告发布、地图导航等功能。所以若能实现低成本且高精度的室内定位系统,具有非常重要的现实意义。 未来的发展趋势是室内定位技术与卫星导航技术和通信技术有机结合,发挥各项技术自身的优点,不仅可以提供较高的定位精度和响应速度,还可以覆盖较广的范围,真正实现无缝的、精确的定位。 2 室内定位方法简介 所谓室内定位技术是指在室内环境下确定某一时刻接收终端在某种参考系中的位置。在室内环境下,大多采用无线局域网来估计接收终端的位置。一般典型的无线局域网架构中接入点(AP,Acess Point)类似于无线通信网络中的基站,大部分无线局域网都使用RF(Radio Frequency)射频信号来进行通信,因为无线电波可穿越大部分的室内墙壁或其它障碍物,已提供更大的覆盖范围。常见的室内定位方法有: (1) ZigBee定位技术ZigBee是一种新兴的短距离、低速率、低功耗、低成本及网络扩展性强的无线网络技术,它的信号传播距离介于射频识别和蓝牙之间,工作频段有三个——2.4GHz (ISM国际免费频段)和858/91 SMHz,除了可以应用于室内定位,还可以应用于智能

基于RSSI测距的室内定位技术

基于RSSI测距的室内定位技术 2012-08-14 12:19:45 摘要搭建了基于ZigBee技术的室内定位实验平台,以实验室楼道为室内场景进行了接收信号强度(RSSI)测距和定位实验研究。首先对测距实验采集到的数据使用线性回归分析拟合出当前环境的具体测距模型,并对信标和未知节点进行软件开发,实现了基于RSSI的定位算法。经过定位实验精度评估,文中算法的平均定位误差为2.3 m,满足大多室内场景要求。 关键词室内定位;无线传感器网络;RSSI测距;线性回归分析 随着现代通信、网络、全球定位系统(Global PositionSystem,GPS)、普适计算、分布式信息处理等技术的迅速发展,位置感知计算和基于位置的服务(Location Based Setvices,LBS)在实际应用中越来越重要。GPS是目前应用最广泛和成功的定位技术。由于微波易被浓密树林、建筑物、金属遮盖物等吸收,因此GPS 只适合在户外使用,在室内场合,由于信道环境复杂、微波信号衰减厉害、测量误差大,GPS并不适用。近年来基于低成本、低功耗、白组织的无线传感器网络(Wireless Sensor Network,WSN)定位技术得到了科研人员的重视和研究,具有广泛地应用前景。根据定位过程中是否实际测量节点间的距离,可将定位算法分为基于测距(Range-based)的定位和距离无关(range-free)的定位。基于测距的定位先由未知节点硬件接收外部信标节点发射的无线信号并记录下TOA(Time of Arrival)、AOA(Angle of Arrival)、TDOA(Time Difference of Arrival)、RSSI(Received Signal strength Indicator)等测距度量值,然后将测距度量值转为未知节点到信标节点的距离或方位,然后再采用相关算法如三边测量法、三角测量法、极大似然估计法等来计算未知节点的位置。由于RSSI检测设备和机制简单,硬件成本低,实现简单,可通过多次测量平均获得较准确的信号强度值,降低多径和遮蔽效应影响,因此基于RSSI测距的定位技术成为近年来室内定位研究的热点。 1 RSSI测距原理 无线信号传输中普遍采用的理论模型为渐变模型(Shadowing Model)。 式中,p(d)表示距离发射机为d时接收端接收到的信号强度,即RSSI值;p(d0)表示距离发射机为d0时接收端接收到的信号功率;d0为参考距离;n是路径损耗(Pass Loss)指数,通常是由实际测量得到,障碍物越多,n值越大,从而接收到的平均能量下降的速度会随着距离的增加而变得越来越快:X是一个以dBm为单位,平均值为0的高斯随机变量,反映了当距离一定时,接收到的能量的变化。 实际应用中一般采用简化的渐变模型 为便于表达和计算,通常取d0为1 m。于是可得 [p(d)]dBm=A-10nlg(d) (3) 把[p(d)dBm写成RSSI的形式得到 RSSI=A-10nlg(d) (4) 其中,A为无线收发节点相距1 m时接收节点接收到的无线信号强度RSSI值。式(4)就是RSSI测距的经典模型,给出了RSSI和d的函数关系,所以已知接收机接收到的RSSI值就可以算出它和发射机之间的距离。A和n都是经验值,和具体使用的硬件节点和无线信号传播的环境密切相关,因此在不同的实际环境下A 和n参数不同,其测距模型不同。

室内定位应用及解决方案详解

室内定位应用及解决方案详解 一、什么是室内定位?如何实现室内位置定位? 在室内环境无法使用卫星定位时,使用室内定位技术作为卫星定位的辅助定位,解决卫星信号到达地面时较弱、不能穿透建筑物的问题。最终定位物体当前所处的位置。 室内定位是指在室内环境中实现位置定位,主要采用无线通讯、基站定位、惯导定位等多种技术集成形成一套室内位置定位体系,从而实现人员、物体等在 室内空间中的位置监控。 二、做室内定位比较好的公司有哪些? 近几年做室内定位的创业公司比较多,怎么选择做室内定位比较好的公司?要看该企业是否能够做到满足室内定位用户需求,同时优化成本也是至关重要的一个方面。 例如恒高科技提出从方案设计、安装、运维三方面来优化产品成本投入。 1.方案设计 方案设计的目标是针对不同应用场景设计产品,降低成本投入。能想象到,水电站、化工厂中的室内定位技术部署方式和博物馆、自动驾驶中的部署方式一 定有区别,如果设计方案不适合所应用场景,必然将影响研发、生产等一系列环节,增加时间或人才投入,进而增加成本投入。 当然,并不是说不同应用场景的部署方式一定不同。对于做室内定位服务方案的企业来说,要做的便是归纳用户实际需要,找到共性之后将用户需求分门别类,从而快速完成方案设计。

谈到用户需求的分类方法,按照定位制式可分为两类:跟踪定位(被动定位)和导航定位(主动定位);按照TDOA定位方法也可分两类:下行TDOA和上行TDOA 两者在定位标签容量、定位动态、定位标签功耗、定位基站功耗方面各有优势,如下图所示。 下IfTPOA与上行TPOA定位方法对比 宦位标签容量 F 行TDOA>上行eoA 定位动态下行TPOA<上行TPOA 定位标签功耗下行丁DOA>上行TPOA 方仿总站功择T 行丁DQA卜irTDHA 以上四种方式自由组合,即能应用在不同场景之中。例如建筑工地、火电厂、水电站、化工厂等通常需要跟踪、导航定位兼得,上/下行TDOA兼得;监狱、港口码头、养老院/疗养院等只需跟踪室内定位与上行TDOA而机器人、无人机、自动驾驶汽车、景区导航等只需导航室内定位与下行TDO A总的来说,方案设 计必须依据应用场景与用户需求来定,不可改变。 2.安装

室内定位技术的发展现状及前景分析

室内定位技术的发展现状及前景分析 摘要:从室内定位的角度出发,以GPS定位技术作为比较,分析了我国北斗系统定位技术的发展现状及前景。介绍了GPS系统和北斗系统现有的多种定位方式与解算算法,并总结出北斗系统的优势。北斗卫星导航系统正式提供服务以来.,地基增强系统的建设在我国陆续展开,多个地区的地基增强系统已经建立完成,借助于地基增强系统能够实现更好的室内定位,达到优于厘米级的高精度服务。分析了现有的室内定位技术、存在的问题以及近期的研究热点。 关键词:GPS;北斗系统;地基增强系统;室内定位 引言现如今,GPS定位技术已经应用到生活的各个领域,作为国内正在发展的北斗系统,也需要进一步提高定位精度,尤其是在室内环境的精确定位。 一.北斗简介 北斗,即北斗卫星导航系统,是中国正在实施的自主发展、独立运行的全球卫星导航系统。主要目的是位全球用户提供高质量的定位、导航、授时服务,并能向有更高要求的授权用户提供进一步服务,军用与民用目的兼具。中国的北斗导航系统和美国GPS、俄罗斯格罗纳斯、欧盟伽利略系统并称为全球四大卫星导航系统。 二.GPS和北斗的定位方式 2.1 GPS定位方式 GPS定位是结合了GPS技术、无线通信技术、图像处理技术及GIS技术的定位技术,主要可实现如下功能:1.跟踪定位2.轨迹回放3.报警(报告) 4.地图制作功能5.里程统计GPS 定位的方法是多种多样的,用户可以根据不同的用途采用不同的定位方法。 (1)根据定位所采用的观测值 伪距GPS定位,伪距定位所采用的观测值为GPS伪距观测值,所采用的伪距观测值既可以是C/A码伪距,也可以是P码伪距。伪距定位的优点是数据处理简单,对定位条件的要求低,不存在整周模糊度的问题,可以非常容易地实现实时定位;其缺点是观测值精度低,C/A 码伪距观测值的精度一般为3米,而P码伪距观测值的精度一般也在30个厘米左右,从而导致定位成果精度低,另外,若采用精度较高的P码伪距观测值,还存在AS的问题。 载波相位GPS定位,载波相位定位所采用的观测值为GPS的载波相位观测值,即L1、L2或它们的某种线性组合。载波相位定位的优点是观测值的精度高,一般优于2个毫米;其缺点是数据处理过程复杂,存在整周模糊度的问题。 (2)根据定位的模式 绝对GPS定位,绝对定位又称为单点定位,这是一种采用一台接收机进行定位的模式,它所确定的是接收机天线的绝对坐标。这种定位模式的特点是作业方式简单,可以单机作业。绝对定位一般用于导航和精度要求不高的应用中。 相对GPS定位,相对定位又称为差分定位,这种定位模式采用两台以上的接收机,同时对一组相同的卫星进行观测,以确定接收机天线间的相互位置关系。 2.2 北斗定位方式 北斗定位方式分单点定位和相对(差分)定位。单点定位就是根据一台接收机的观测数据来确定接收机位置的方式,它只能采用伪距观测量,可用于车船等的概略导航定位。相对(差分)定位是根据两台以上接收机的观测数据来确定观测点之间的相对位置的方法,它既可采用伪距观测量也可采用相位观测量,大地测量或工程测量均应采用相位观测值进行相对定位。

信号指纹定位算法

信号指纹定位算法: 利用事先已经测好的先验指纹信息进行定位的算法,指纹信息的建立和利用指纹信息进行定位时都只需要简单的硬件即可实现。 信号指纹定位算法利用了复杂环境的多径效应,可以在NLOS环境下进行精确定位,算法本身不需要硬件的额外支持,依靠已经建立好的离线数据库,只要在接收端获得超宽带信号对应的信息,即可得到定位结果。 根据定位阶段匹配函数的不同,信号指纹定位算法一般可以分为确定性的定位算法、概率性的定位算法和神经网络法三类。 确定性定位算法是利用已有的信号指纹推算出目标节点的位置信息。 基于概率的定位算法是通过条件概率为指纹建立模型,然后通过贝叶斯法则来推算出目标节点的位置信息; 神经网络法是一种最有效反映非线性输入-输出映射的方法。 定位过程: 一、建立指纹数据库; 二、训练(整理)指纹数据库; 三、利用实时测得的信号和已有的指纹信息进行定位。 指纹定位算法中,主要有两种方法可以进行TOA的估计: 一、基于匹配滤波的的相关接收技术。 匹配滤波是最佳滤波的一种,当输入信号具有某种特殊波形时,其输出达到最大,对信号的匹配滤波相当于对信号进行自相关运算。此时,接收机具有较高的采样速率,精度较高。利用发射信号的模板与接收信号进行互相关即可得到精度较高的TOA估计,但是受到Nyquist采样定理的限制,使得其很难匹配接收到的众多的多径分量;匹配滤波必须具有接收信号的先验信息(模板信号),但是,此模板信号在不同的环境下是不同的,甚至受到多径的影响而不同。所以此法,在环境复杂的室内环境或NLOS环境下不适用。 二、基于能量探测的接收技术。 是一种低采样速率、低复杂度的接收技术,是一种非相关(Non-coherent)的TOA估计技术,通常采用适当的门限与接收信号比较,选择最先超过门限的能量块作为TOA估计值。

七大室内定位技术PK

七大室内定位技术PK

七大室内定位技术PK 随着LBS和O2O搅得火热,定位技术近年来也备受关注且发展迅速。虽然室外定位技术已经非常成熟并开始被广泛使用,但是作为定位技术的末端,室内定位技术发展一直相对缓慢。而随着现代人类生活越来越多的时间都处在室内,室内定位技术的前景也非常广阔。 但虽然作为LBS最后一米的室内定位饱受关注,但技术的不够成熟依然是不争的事实。不同于GPS,AGPS等室外定位系统,室内定位系统依然没有形成一个有力的组织来制定统一的技术规范,现行的技术手段都是在各个企业各自定义的私有协议和方案下发展,也致使各种室内定位技术相映生辉。 下面我们就从精确度,穿透性,抗干扰性,布局复杂程度,成本5个方面全方位来比较一下市面上流行的几种室内定位手段。 红外线定位技术

超声波室内定位系统是基于超声波测距系统而开发,由若干个应答器和主测距器组成:主测距器放置在被测物体上,向位置固定的应答器发射同无线电信号,应答器在收到信号后向主测距器发射超声波信号,利用反射式测距法和三角定位等算法确定物体的位置。 超声波室内定位整体精度很高,达到了厘米级,结构相对简单,有一定的穿透性而且超声波本身具有很强的抗干扰能力,但是超声波在空气中的衰减较大,不适用于大型场合,加上反射测距时受多径效应和非视距传播影响很大,造成需要精确分析计算的底层硬件设施投资,成本太高。 超声波定位技术在数码笔上已经被广泛利用,而海上探矿也用到了此类技术,室内定位技术还主要用于无人车间的物品定位。 射频识别(RFID)室内定位技术 精确度:★★★★★ 穿透性:★★★☆☆ 抗干扰性:★★☆☆☆ 布局复杂程度★★☆☆☆ 成本:★★☆☆☆ 射频识别室内定位技术利用射频方式,固定天线把无线电信号调成电磁场,附着于物品的标签进过磁场后感应电流生成把数据传送出去,以多对双向通信交换数据以达到识别和三角定位的目的。(感应门禁卡和商场防盗系统用的就是这种技术) 射频识别室内定位技术作用距离很近,但它可以在几毫秒内得到厘米级定位精度的信息,且由于电磁场非视距等优点,传输范围很大,而且标识的体积比较小,造价比较低。但其不具有通信能力,抗干扰能力较差,不便于整合到其他系统之中,且用户的安全隐私保障和国际标准化都不够完善。 射频识别室内定位已经被仓库、工厂、商场广泛使用在货物、商品流转定位上。

各种室内定位技术

室内GPS定位技术 GPS是目前应用最为广泛的定位技术。当GPS接收机在室内工作时,由于信号受建筑物的影响而大大衰减,定位精度也很低,要想达到室外一样直接从卫星广播中提取导航数据和时间信息是不可能的。为了得到较高的信号灵敏度,就需要延长在每个码延迟上的停留时间,A-GPS技术为这个问题的解决提供了可能性。室内GPS技术采用大量的相关器并行地搜索可能的延迟码,同时也有助于实现快速定位。 利用GPS进行定位的优势是卫星有效覆盖范围大,且定位导航信号免费。缺点是定位信号到达地面时较弱,不能穿透建筑物,而且定位器终端的成本较高。 室内无线定位技术 随着无线通信技术的发展,新兴的无线网络技术,例如WiFi、ZigBee、蓝牙和超宽带等,在办公室、家庭、工厂等得到了广泛应用。 ——红外线室内定位技术。红外线室内定位技术定位的原理是,红外线IR标识发射调制的红外射线,通过安装在室内的光学传感器接收进行定位。虽然红外线具有相对较高的室内定位精度,但是由于光线不能穿过障碍物,使得红外射线仅能视距传播。直线视距和传输距离较短这两大主要缺点使其室内定位的效果很差。当标识放在口袋里或者有墙壁及其他遮挡时就不能正常工作,需要在每个房间、走廊安装接收天线,造价较高。因此,红外线只适合短距离传播,而且容易被荧光灯或者房间内的灯光干扰,在精确定位上有局限性。 ——超声波定位技术。超声波测距主要采用反射式测距法,通过三角定位等算法确定物体的位置,即发射超声波并接收由被测物产生的回波,根据回波与发射波的时间差计算出待测距离,有的则采用单向测距法。超声波定位系统可由若干个应答器和一个主测距器组成,主测距器放置在被测物体上,在微机指令信号的作用下向位置固定的应答器发射同频率的无线电信号,应答器在收到无线电信号后同时向主测距器发射超声波信号,得到主测距器与各个应答器之间的距离。当同时有3个或3个以上不在同一直线上的应答器做出回应时,可以根据相关计算确定出被测物体所在的二维坐标系下的位置。 超声波定位整体定位精度较高,结构简单,但超声波受多径效应和非视距传播影响很大,同时需要大量的底层硬件设施投资,成本太高。 ——蓝牙技术。蓝牙技术通过测量信号强度进行定位。这是一种短距离低功耗的无线传输技术,在室内安装适当的蓝牙局域网接入点,把网络配置成基于多用户的基础网络连接模式,并保证蓝牙局域网接入点始终是这个微微网(piconet)的主设备,就可以获得用户的位置信息。蓝牙技术主要应用于小范围定位,例如单层大厅或仓库。 蓝牙室内定位技术最大的优点是设备体积小、易于集成在PDA、PC以及手机中,因此很容易推广普及。理论上,对于持有集成了蓝牙功能移动终端设备的用户,只要设备的蓝牙功能开启,蓝牙室内定位系统就能够对其进行位置判断。采用该技术作室内短距离定位时容易发现设备且信号传输不受视距的影响。其不足在于蓝牙器件和设备的价格比较昂贵,而且对于复杂的空间环境,蓝牙系统的稳定性稍差,受噪声信号干扰大。 ——射频识别技术。射频识别技术利用射频方式进行非接触式双向通信交换数据以达到识别和定位的目的。这种技术作用距离短,一般最长为几十米。但它可以在几毫秒内得到厘米级定位精度的信息,且传输范围很大,成本较低。同时由于其非接触和非视距等优点,可望成为优选的室内定位技术。目前,射频识别研究的热点和难点在于理论传播模型的建立、用户的安全隐私和国际标准化等问题。优点是标识的体积比较小,造价比较低,但是作用距离近,不具有通信能力,而且不便于整合到其他系统之中。 ——超宽带技术。超宽带技术是一种全新的、与传统通信技术有极大差异的通信新技术。它不需要使用传统通信体制中的载波,而是通过发送和接收具有纳秒或纳秒级以下的极窄脉冲来传输数据,从而具有GHz量级的带宽。超宽带可用于室内精确定位,例如战场士

室内定位技术发展与应用研究

第 40卷第6期 测绘与空间地理信息 V 〇L40,N 〇.62017 年 6 月 GEOMATICS & SPATIAL INFORMATION TECHNOLOGY Jim.,2017 室内定位技术发展与应用研究 周源,刘禹鑫,林富明 (国家测绘地理信息局黑龙江基础地理信息中心,黑龙江哈尔滨150081) 摘 要 :目前,全球卫星导航系统是获取室外环境位置信息最常用的技术手段,但由于卫星信号易被遮挡,并不 适用于室内或者高楼林立的复杂场合,因此,室内定位技术作为室外定位的有力补充迅速发展。本文通过介绍 目前主流室内定位方式及关键技术,结合室内定位技术的研究现状,深入挖掘了室内定位技术的潜在价值及广 阔前景,并提出具体创新应用方向,力求构建深层面的智慧位置平台。 关键词:室内定位;WI - F I ;定位数据;关键技术;应用前景;位置服务中图分类号:P 236 文献标识码:A 文章编号:1672 -5867(2017)06 -0054 -04 Research on the Development and Application of Indoor Positioning Technology ZHOU Yuan , LIU Yu -xin , LIN Fu - ming (Heilongjiang Geomatics Center of NASMG, Harbin 150081, China) Abstract : At present , the Global Navigation Satellite System (GNSS ) is the most commonly used technical means accessing to outdoor environment location information , but the satellite signal is easily blocked and does not apply to the complex situations , such as indoor or high - rise buildings , so as the powerful supplement of outdoor positioning , indoor positioning technology is rapidly developing . Through the introduction of the method and key technology of current mainstream indoor positioning and combined with the research status of indoor positioning technology , the paper deeply digs the potential value and broad prospects of the indoor positioning technolo -gy , puts forward the specific innovation application , and strives to build the Smart Location Platform .Key words : indoor positioning ; WI - FI ; location data ; key technology ; application prospect ; LBS 〇引言 随着人类社会的进步,人们越来越关注自身的精确 位置信息,以及兴趣点的定位与导航。GNSS 提供了有效 的室外定位手段,成为很多人的必备工具。但是卫星导 航也有它的不足:在高楼林立的城市区域以及大型场馆 的室内环境,卫星定位的精度会大幅降低,甚至无法定 位。随着人们对精准性和速度的要求越来越高,对室内 定位的需求也十分迫切,定位与位置服务“最后一公里”问题日益突出,室内定位凸显了其作用与价值。 常规的室内定位技术手段是:通过在室内有效布置 基站,用户凭借手机等工具在基站中产生包括距离和信 号强度等指纹特征,再根据多个基站的指纹交叉确定用 户的位置。目前,已经投入应用的基站类型包括Wi - Fi 、 收稿日期=2016 -08 -29 基金项目=2016年国家基础测绘科技计划项目测绘新技术系统开发与示范应用子课题室内外高精度无缝定位技术研究与智慧位置 示范系统构建(2016 KJ 0102)资助 作者简介:周源(1981 -),男,吉林省吉林市人,工程师,硕士 ,2007年毕业于东北林业大学森林经理学专业,主要从事地理信息系 统研发、位置服务应用研究工作。 蓝牙、室内LED 灯、有源RFID 、UW B 等多种方式。此外, 有研究机构正积极开展基于多媒体的室内定位技术研 究,并获得初步成果。完善的室内定位技术,将是整合Wi -Fi 、蓝牙等基站数据的解算,配合手机或平板设备的陀 螺仪、摄像头、麦克风等自身硬件姿态参数,得出最终用 户位置,通过多种途径,实现室内条件下的精准定位。 1室内定位及应用关键技术 1.1主要室内定位方法 目前,室内定位技术百花齐放,除主流的Wi - Fi 、蓝 牙定位技术,还有红外线定位技术、超声波室内定位技 术、射频识别(RFID )室内定位技术、ZigBee 室内定位技 术、超宽带室内定位技术[1]。另外,基于计算机视觉、图 像、磁场以及信标等定位方式也已处于开发研究试验阶

室内定位几种算法概述

室内定位几种算法概述 一.室内定位目的和意义 随着数据业务和多媒体业务的快速增加,人们对定位与导航的需求日益增大,尤其在复杂的室内环境,如机场大厅、展厅、仓库、超市、图书馆、地下停车场、矿井等环境中,常常需要确定移动终端或其持有者、设施与物品在室内的位置信息。但是受定位时间、定位精度以及复杂室内环境等条件的限制,比较完善的定位技术目前还无法很好地利用。因此,专家学者提出了许多室内定位技术解决方案,如A-GPS定位技术、超声波定位技术、蓝牙技术、红外线技术、射频识别技术、超宽带技术、无线局域网络、光跟踪定位技术,以及图像分析、信标定位、计算机视觉定位技术等等。这些室内定位技术从总体上可归纳为几类,即GNSS技术(如伪卫星等),无线定位技术(无线通信信号、射频无线标签、超声波、光跟踪、无线传感器定位技术等),其它定位技术(计算机视觉、航位推算等),以及GNSS 和无线定位组合的定位技术(A-GPS或A-GNSS)。 由于在室内环境下对于不同的建筑物而言,室内布置,材料结构,建筑物尺度的不同导致了信号的路径损耗很大,与此同时,建筑物的内在结构会引起信号的反射,绕射,折射和散射,形成多径现象,使得接收信号的幅度,相位和到达时间发生变化,造成信号的损失,定位的难度大。虽然室内定位是定位技术的一种,和室外的无线定位技术相比有一定的共性,但是室内环境的复杂性和对定位精度和安全性的特殊要求,使得室内无线定位技术有着不同于普通定位系统的鲜明特点,而且这些特点是户外定位技术所不具备的。因此,两者区域的标识和划分标准是不同的。基于室内定位的诸多特点,室内定位技术和定位算法已成为各国科技工作者研究的热点。如何提高定位精度仍将是今后研究的重点。 二.室内定位技术的国内外发展趋势 室内GPS定位技术 GPS是目前应用最为广泛的定位技术。当GPS接收机在室内工作时,由于信号受建筑物的影响而大大衰减,定位精度也很低,要想达到室外一样直接从卫星广播中提取导航数据和时间信息是不可能的。为了得到较高的信号灵敏度,就需要延长在每个码延迟上的停留时间,A-GPS技术为这个问题的解决提供了可能性[7]。室内GPS技术采用大量的相关器并行地搜索可能的延迟码,同时也有助于实现快速定位。 利用GPS进行定位的优势是卫星有效覆盖范围大,且定位导航信号免费。缺点是定位信号到达地面时较弱,不能穿透建筑物,而且定位器终端的成本较高。 室内无线定位技术 随着无线通信技术的发展,新兴的无线网络技术,例如WiFi、ZigBee、蓝牙和超宽带等,在办公室、家庭、工厂等得到了广泛应用。 ——红外线室内定位技术。红外线室内定位技术定位的原理是,红外线IR标识发射调制的红外射线,通过安装在室内的光学传感器接收进行定位。虽然红外线具有相对较高的室内定位精度,但是由于光线不能穿过障碍物,使得红外射线仅能视距传播。直线视距和传输距离较短这两大主要缺点使其室内定位的效果很差。当标识放在口袋里或者有墙壁及其他遮挡时就不能正常工作,需要在每个房间、走廊安装接收天线,造价较高。因此,红外线只适合短距离传播,而且容易被荧光灯或者房间内的灯光干扰,在精确定位上有局限性。 ——超声波定位技术。超声波测距主要采用反射式测距法,通过三角定位等算法确定物体的位置,即发射超声波并接收由被测物产生的回波,根据回波与发射波的时间差计算出待测距离,有的则采用单向测距法。超声波定位系统可由若干个应答器和一个主测距器组成,主测距器放置在被测物体上,在微机指令信号的作用下向位置固定的应答器发射同频率的无线电信号,应答器在收到无线电信号后同时向主测距器发射超声波信号,得到主测距器与各个应答器之间的距离。当同时有3个或3个以上不在同一直线上的应答器做出回应时,可以根据相关计算确定出被测物体所在的二维坐标系下的位置。超声波定位整体定位精度较高,结构简单,但超声波受多径效应和非视距传播影响很大,同时需要大量的底层硬件设施投资,成本太高。 ——蓝牙技术。蓝牙技术通过测量信号强度进行定位。这是一种短距离低功耗的无线传输技术,在室内安装适当的蓝牙局域网接入点,把网络配置成基于多用户的基础网络连接模式,并保证蓝牙局域网接入点始终是这个微微网

七大室内定位技术PK

七大室内定位技术P K Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

七大室内定位技术PK 随着LBS和O2O搅得火热,定位技术近年来也备受关注且发展迅速。虽然室外定位技术已经非常成熟并开始被广泛使用,但是作为定位技术的末端,室内定位技术发展一直相对缓慢。而随着现代人类生活越来越多的时间都处在室内,室内定位技术的前景也非常广阔。 但虽然作为LBS最后一米的室内定位饱受关注,但技术的不够成熟依然是不争的事实。不同于GPS,AGPS等室外定位系统,室内定位系统依然没有形成一个有力的组织来制定统一的技术规范,现行的技术手段都是在各个企业各自定义的私有协议和方案下发展,也致使各种室内定位技术相映生辉。 下面我们就从精确度,穿透性,抗干扰性,布局复杂程度,成本5个方面全方位来比较一下市面上流行的几种室内定位手段。 红外线定位技术 精确度:★★★★☆ 穿透性:☆☆☆☆☆ 抗干扰性:☆☆☆☆☆ 布局复杂程度★★★★★ 成本:★★☆☆☆ 红外线室内定位有两种,第一种是被定位目标使用红外线IR标识作为移动点,发射调制的红外射线,通过安装在室内的光学传感器接收进行定位;第二种是通过多对发射器和接收器织红外线网覆盖待测空间,直接对运动目标进行定位。 红外线的技术已经非常成熟,用于室内定位精度相对较高,但是由于红外线只能视距传播,穿透性极差(可以参考家里的电视遥控器),当标识被遮挡时就无法正常工作,也极易受灯光、烟雾等环境因素影响明显。加上红外线的传输距离不长,使其在布局上,无论哪种方式,都需要在每个遮挡背后、甚至转角都安装接收端,布局复杂,使得成本提升,而定位效果有限。 红外线室内定位技术比较适用于实验室对简单物体的轨迹精确定位记录以 及室内自走机器人的位置定位。 超声波室内定位技术 精确度:★★★★★ 穿透性:★☆☆☆☆ 抗干扰性:★★★☆☆

相关文档
最新文档