“亿点”点云处理软件-UIUA

“亿点”点云处理软件-UIUA
“亿点”点云处理软件-UIUA

“亿点”点云数据处理软件-UiUA 随着三维激光扫描技术的发展和普及,一些高校、研究所和企业相继投入很多精力,为地面三维激光扫描仪研发配套软件。目前市场上的很多软件有一个共同缺点,就是点云读取速度慢,读取的数据量非常有限。

UiUA软件不仅将设备的控制控制与解算集为一体,而且在数据读取速度和数据量方面优于大多数的国外软件。UiUA是由北科天绘公司针对其所研制的地面三维激光扫描仪U-Arm开发出的一套具有完全自主知识产权的配套软件(见图1)。

图1.UiUA主界面

UiUA综合考虑了地面三维激光扫描仪的工作原理及数据处理的需要,从数据获取到数据预处理、点云滤波、点云拼接再到点云与影像融合形成了一套完整数据处理方案。UiUA功能齐全,性能稳定,操作便捷,包括了设备控制、数据解算、点云显示、点云分类、点云拼接等多个功能。具体包括:(1)设备控制。根据不同行业和应用场景的需求,可在UiUA任务面板对地

面三维激光扫描仪的工作参数(包括激光功率、激光频率、扫描线速、转台速度、测距、相机曝光参数等)进行自由设置和调整,控制设备的运行并实时获取设备工作状态及环境条件。

图2.参数设置界面

U-Arm激光扫描系统可对周围环境进行300°(垂直)x 360°(水平)环绕扫描,真正达到高效率、全方位的获取目标空间及方位的三维点云数据,高精度地反映地物细节并可量测任意点间距、地物面积和体积。具体扫描情况如下图所示:

(2)数据解算。在UiUA的激光数据解算-预处理面板中对解算参数(包括距离滤波、角度滤波、高度滤波、数据输出格式、抽稀比例、回波次数等)进行设置。设置完成后即开始数据解算,解算完成可以从中间视图窗口显示出各种格式的(主要有:LAS,xyzi,PTX等标准格式)的含有坐标信息、回波层次信息和反射强度信息的点云数据文件。UiUA与其他软件相比,具有读取速度快(1.5G大小的文件仅需要0.5min),读取数据量大(可读取近1亿个点)的优点。

图3.数据解算参数选择

(3)点云分类。地面三维激光扫描仪的点云一般都是手动分类,UiUA也是采用了目视手动分类的方法,分类准确,便于后续的信息提取或剔除冗余信息,大大提高了数据处理的效率。

图4.UiUA点云分类效果(黄色:电力线;绿色:植被;蓝色:塔架)

(4)点云拼接。由于实际测量时,往往需要多站才能完成地物的扫描测量,因此需要把不同站点的数据拼接到一起。UiUA通过鼠标选择同名点或者直接输入同名点坐标进行拼接。当用户对精度要求不高时可以通过鼠标选择同名点进行拼接,如果对精度要求较高可以直接输入同名点坐标进行拼接。

图5.点云拼接

总的看来,UiUA软件界面友好,参数设置灵活,适应性强,集设备控制与解算集为一体,不仅可进行点云的拼接和分类,而且数据读取速度快,可读取近“亿点”的数据量,功能优于大多数的国外软件。

三维点云处理软件需求说明资料讲解

三维激光扫描仪点云数据处理软件需求说明 点云数据处理软件是专用扫描软件、数据处理软件、CAD软件接口及应用于检测监测、对比分析的软件。 基本描述 点云数据处理软件能够用于海量点云数据的处理(点云数量无限制,先进内存管理)及三维模型的制作。支持模型的对整、整合、编辑、测量、检测监测、压缩和纹理映射等点云数据全套处理流程。能够基于点云进行建模,拥有规则组建智能自动建模功能(一键自动建模)要求能够精细再现还原现场。具有真彩色配准模块,扫描物体点云的颜色即为物体真实的颜色。相机彩色图片可以配准贴图到三维模型。 1.可直接操作激光扫描仪进行数据采集、输入及输出。可接受多种数据格式,如AutoCAD dxf、obj、asc、dgn、pds、pdms等,可接受自定义格式的文本文件输入。 2.软件应具高精度和高可靠性,能够进行点云数据拼接、纹理贴图、特征线的提取、具有点云数据渲染、点云数据压缩、三角网模型生成、几何体建模等功能,软件快速、准确、易操作性。 3.可以智能地自动提取出特征线,同时也可提供人工方式进行特征线的提取。 4.能够提供多种断面生成方式,可以方便地生成一系列的断面线。生成的断面可以方便的导出到CAD及其它软件中做进一步加工处理和应用。应能够提供非常精确的量测物体尺寸的方法。 5.需要一体化软件且具备完整功能1). Registration模块:多种点云拼接模式、导线平差、引入地理参考、目标识别2). Office Survey模块:任意点云导入导出;点云的裁剪、取样、过滤;提取线形地物;在办公室任意量测数据;任意纵横断面;点云矢量化;3D等高线及标注;三角格网生成;任意形体建模;隧道及道路;任意体积面积计算;点云着色;纹理贴图;连续正射影像3).Modeling模块:

点云数据处理

c++对txt文件的读取与写入/* 这是自己写程序时突然用到这方面的技术,在网上搜了一下,特存此以备后用~ */ #include #include #include using namespace std; i nt main(){ char buffer[256]; ifstream myfile ("c:\\a.txt"); ofstream outfile("c:\\b.txt"); if(!myfile){ cout << "Unable to open myfile"; exit(1); // terminate with error } if(!outfile){ cout << "Unable to open otfile"; exit(1); // terminate with error } int a,b; int i=0,j=0; int data[6][2]; while (! my() ) { my (buffer,10); sscanf(buffer,"%d %d",&a,&b); cout<头文件读:从外部文件中将数据读到程序中来处理对于程序来说,是从外部读入数据,因此定义输入流,即定义输入流对象:ifsteam in就是输入流对象。这个对象当中存放即将从文件读入的数据流。假设有名字为my的文件,存有两行数字数据,具体方法:int a,b; ifstream infile; in("my"); //注意文件的路径infile>>a>>b; //两行数据可以连续读出到变量里in() 如果是个很大的多行存储的文本型文件可以这么读:char buf[1024]; //临时保存读取出来的文件内容string message; ifstream infile; in("my"); if(in()) //文件打开成功,说明曾经写入过东西{ while(in() && !in()) { memset(buf,0,1024); in(buf,1204); message = buf; ...... //这里可能对message做一些操作cout< #i nclude #i nclude using namespace std; //////////////从键盘上读取字符的函数void read_save(){ char c[80]; ofstream outfile("f1.dat");//以输出方工打开文件if(!outfile){ cerr<<"open error!"<=65&&c[i]<=90||c[i]>=97&&c[i]<=122){//保证输入的字符是字符out(c[i]);//将字母字符存入磁盘文件

三维激光扫描分类及工作操作规范

三维激光扫描分类及工作 操作规范 Revised by Hanlin on 10 January 2021

一、地面激光扫描系统 1、概述 地面激光扫描仪系统类似于传统测量中的全站仪,它由一个激光扫描仪和一个内置或外置的数码相机,以及软件控制系统组成。二者的不同之处在于激光扫描仪采集的不是离散的单点三维坐标,而是一系列的“点云”数据。这些点云数据可以直接用来进行三维建模,而数码相机的功能就是提供对应模型的纹理信息。 2、工作原理 三维激光扫描仪发射器发出一个激光脉冲信号,经物体表面漫反射后,沿几乎相同的路径反向传回到接收器,可以计算日标点P与扫描仪距离S,控制编码器同步测量每个激光脉冲横向扫描角度观测值α和纵向扫描角度观测值β。三维激光扫描测量一般为仪器自定义坐标系。X轴在横向扫描面内,Y轴在横向扫描面内与X轴垂直,Z轴与横向扫描面垂直。获得P的坐标。进而转 换成绝对坐标系中的三维空间位置坐标或三维模型。 3、作业流程 整个系统由地面三维激光扫描仪、数码相机、后处理软件、电源以及附属设备构成,它采用非接触式高速激光测量方式,获取地形或者复杂物体的几何图形数据和影像数据。最终由后处理软件对采集的点云数据和影像数据进行处理转换成绝对坐标系中的空间位置坐标或模型,以多种不同的格式输出,满足空间信息数据库的数据源和不同应用的需要。(1)、数据获取 利用软件平台控制三维激光扫描仪对特定的实体和反射参照点进行扫描,尽可能多的获取实体相关信息。三维激光扫描仪最终获取的是空间实体的几何位置信息,点云的发射密度值,以及内置或外置相机获取的影像信息。这些原始数据一并存储在特定的工程文件

三维点云数据处理的技术研究

三维点云数据处理的技术研究 中国供求网 【摘要】本文分析了大数据领域的现状、数据点云处理技术的方法,希望能够对数据的技术应用提供一些参考。 【关键词】大数据;云数据处理;应用 一、前言 随着计算机技术的发展,三维点云数据技术得到广泛的应用。但是,受到设备的影响,数据获得存在一些问题。 二、大数据领域现状 数据就像货币、黄金以及矿藏一样,已经成为一种新的资产类别,大数据战略也已上升为一种国家意志,大数据的运用与服务能力已成为国家综合国力的重要组成部分。当大数据纳入到很多国家的战略层面时,其对于业界发展的影响那是不言而喻的。国家层面上,发达国家已经启动了大数据布局。2012年3月,美国政府发布《大数据研究和发展倡议》,把应对大数据技术革命带来的机遇和挑战提高到国家战略层面,投资2亿美元发展大数据,用以强化国土安全、转变教育学习模式、加速科学和工程领域的创新速度和水平;2012年7月,日本提出以电子政府、电子医疗、防灾等为中心制定新ICT(信息通讯技术)战略,发布“新ICT计划”,重点关注大数据研究和应用;2013年1月,英国政府宣布将在对地观测、医疗卫生等大数据和节能计算技术方面投资1(89亿英镑。 同时,欧盟也启动“未来投资计划”,总投资3500亿欧元推动大数据等尖端技术领域创新。市场层面上,美通社发布的《大数据市场:2012至2018年全球形势、发展趋势、产业

分析、规模、份额和预测》报告指出,2012年全球大数据市场产值为63亿美元,预计2018年该产值将达483亿。国际企业巨头们纷纷嗅到了“大数据时代”的商机,传统数据分析企业天睿公司(Teradata)、赛仕软件(SAS)、海波龙(Hy-perion)、思爱普(SAP)等在大数据技术或市场方面都占有一席之地;谷歌(Google)、脸谱(Facebook)、亚马逊(Amazon)等大数据资源企业优势显现;IBM、甲骨文(Oracle)、微软(Microsoft)、英特尔(Intel)、EMC、SYBASE等企业陆续推出大数据产品和方案抢占市场,比如IBM公司就先后收购了SPSS、发布了IBMCognosExpress和InfoSphereBigInsights 数据分析平台,甲骨文公司的OracleNoSQL数据库,微软公司WindowsAzure 上的HDInsight大数据解决方案,EMC公司的 GreenplumUAP(UnifiedAnalyticsPlat-form)大数据引擎等等。 在中国,政府和科研机构均开始高度关注大数据。工信部发布的物联网“十二五”规划上,把信息处理技术作为四项关键技术创新工程之一提出,其中包括了海量数据存储、数据挖掘、图像视频智能分析,这都是大数据的重要组成部分,而另外三项:信息感知技术、信息传输技术、信息安全技术,也都与大数据密切相 关;2012年12月,国家发改委把数据分析软件开发和服务列入专项指南;2013年科技部将大数据列入973基础研究计划;2013年度国家自然基金指南中,管理学部、信息学部和数理学部都将大数据列入其中。2012年12月,广东省启了《广东省实施大数据战略工作方案》;北京成立“中关村大数据产业联盟”;此外,中国科学院、清华大学、复旦大学、北京航空航天大学、华东师范大学等相继成立了近十个从事数据科学研究的专门机构。中国互联网数据中心(IDC)对中国大数据技术和服务市场2012,2016年的预测与分析指出:该市场规模将会从2011年的7760万美元增长到2016年的6。17亿美元,未来5年的复合增长率达51(4%,市场规模增长近7倍。数据价值链和产业链初显端倪,阿里巴巴、百度、腾

数据处理点云处理

非接触三维扫描测量数据的处理研究 1 点云数据的处理 1.1 噪声点的剔除和失真点的查找.在非接触三维扫描测量过程中,受测量方式、被测量物体材料性质、外界干扰等因素的影响,不可避免地会产生误差很大的点(噪声点)和失真点(跳点).因此在数据处理的第一步,就应利用相关专用软件所提供的去噪声点功能除去那些误差大的噪声点和找出可能存在的失真点[3].失真点的查找需要一定的技巧和经验,下面介绍3种方法供大家参考:①直观检查法.通过图形显示终端,用肉眼直接将与截面数据点集偏离较大的点或存在于屏幕上的孤点剔除.这种方法适合于数据的初步检查,可从数据点集中筛选出一些比较大的异常点.②曲线检查法.通过截面的首末数据点,用最小二乘法拟合得到一条样条曲线,曲线的阶次可根据曲面截面的形状决定,通常为3~4阶,然后分别计算中间数据点pi到样条曲线的距离‖e‖,如果‖e‖大于等于[ε]([ε]为给定的允差),则认为pi是坏点,应予以剔除(见图1).③弦高差方法.连接检查点的前后2点,计算中间数据点pi到弦的距离‖e‖,如果‖e‖ [ε]([ε]为给定的允差),则认为pi是坏点,应予以剔除.这种方法适合于测量点均匀且较密集的场合,特别是在曲率变化较大的位置(见图2). 图1 曲线检查法剔除坏点 图2 弦高差方法 1.2 数据精简.非接触三维扫描测量的突出特点是点云十分密集,数据量极其庞大(在1m2的范围内有数十万个点).若将如此庞大的数据量直接用于曲面构建不仅需要巨大的计算机资源(普通微机可能无法胜任)和很长的计算时间,而且整个处理过程也将变得难以控制,更何况并非所有的测试数据对曲面的构建都有用.因此,有必要在保证一定精度的前提下,对测试数据进行精简.数据精简的原则是在扫描曲率较大的地方保持较多的数据点,在曲率变化较小的地方保持较少的数据点.不同类型的点云采用不同的精简方式.散乱点云可通过随机采样的方法来精简,而对于扫描线点云和多边形点云可采用等间距、倍率、等量及弦偏差等方法进行精减.此外均匀网格法与非均匀网格法也可用来精减点云数据.其中均匀网格法只需选取其中的某些点,无需改变点的位置,可以很好地保留原始数据,特别适合简单零件表面瑕点的快速剔除.由于均匀网格法没有考虑被测物体的表面形状特征,因此它不适合对形状复杂的重要工程部件测试数据的处理.与之相反,非均匀网格法可以根据被测工程部件外部形状特征的实际需要来确定网格的疏密,因此它可在保证后继曲面构建精度的前提下减少数据量,这在处理尺寸变化较大的自由形体方面显得十分有效. 1.3 数据的平滑处理.点云数据中的随机误差将影响到后续曲面的构建及生成三维实体模

三维激光扫描数据处理操作说明

三维激光扫描数据处理操作说明 中国地质大学三峡中心 钟成 2015年12月

1. 配置要求 扫描要求:密度高,扫描全面,站间重叠度高。 系统配置:XP系统,32位,有D盘盘符。 软件安装: ILIRS-3D软件包(绿色) polyworks_10_0_3_32bit.exe, chanzhuang.exe和配套库, Geomagic Studio10, TexCapture1.1。 Matlab 10.0 2. 数据预处理 2.1. 数据转换 2.1.1. 数据导入 打开ILIRS-3D软件包中Parser 5.0.1.4中Parser.exe,界面如图2.1.1: 图2.1.1 点击Add找到笔记本中存储扫描数据的文件夹:

出现以下界面: 图2.1.3 工具栏中放大缩小按钮可用于观察扫描范围。 2.1.2. 基本设置 然后点击setting对解压过程进行设置,出现如2.1.4界面。

图2.1.4 其中,Outputfile界面,主要设置输出路径和格式。默认路径在保存点云文件夹下,不用改。默认选择PIF格式,24-bit texture,也就是有颜色信息的点云,如果是8-bit scaled 则是点云强度信息。PIF格式是polyworks支持的格式。如果选择XYZ格式,则以ASCII码形式输出,也可以定义是否需要输出颜色信息。该格式可直接被Geomagic打开。 图2.1.5 2.1. 3. 颜色设置 然后,在最左边列表里选择Color Channel,出现如下界面:

选中, 默认的在会出现相应的照片信息,如果没有,则检查存储扫描数据的文件夹里是否有照片文件。 在里,默认是没有文件内容的,点击,到“ILIRS-3D”软件包,找到文件“10384 CameraCalParam.txt”即可。 2.1.4. 平移参数设置 然后在最左边列表里选择Pan tilt Transform,出现如下界面:

点云滤波方法

点云滤波方法-CAL-FENGHAI.-(YICAI)-Company One1

激光雷达点云数据滤波算法综述 滤波对象及目的:通过机载激光雷达快速获取高精度三维地理数据,对它所获取的点云数据的滤波过程就是将LIDAR点云数据中的地面点和非地面点分离的过程。 滤波方法:对数学形态学的滤波算法、基于坡度的滤波法、基于TIN的LIDAR点云过滤算法、基于伪扫描线的滤波算法、基于多分辨率方向预测的LIDAR点云滤波方法。 (一)LIDAR数据形态学滤波算法: (1)离散点云腐蚀处理。遍历LIDAR点云数据,以任意一点为中心开w×w大小的窗口,比较窗口内各点的高程,取窗口内最小高程值为腐蚀后的高程(2)离散点膨胀处理。再次遍历LIDAR点云数据,对经过腐蚀后的数据用同样大小的结构窗口做膨胀。即以任意一点为中心开w×w大小的窗口,此时,用腐 蚀后的高程值代替原始高程值,比较窗口内各点的高程,取窗口内最大高程值 为膨胀后的高程 (3)地面点提取。设Z p是p点的原始高程,t为阈值,在每点膨胀操作结束时,对该点是否是地面点作出判断。如果p点膨胀后的高程值和其原始高程值Z p 之差的绝对值小于或等于阈值t,则认为p点为地面点,否则为非地面点 该算法有两种滤波方式:一种是按离散点进行滤波,一种是按格网滤波。(1)按离散点滤波:是对每个激光点进行腐蚀和膨胀操作各一次,结构窗口内数据的选取按距离来量度。 (2)按格网滤波:指将每个格网看成一个“像素”,按照数字图像处理中取邻域的方法来开取结构窗口。腐蚀时,格网的“像素值”即为w×w邻域所包含格网的最小高程值;膨胀时,格网的“像素值”即为w×w邻域所包含格网的最大高程值。 优缺点:总体上,数学形态学算法存在的主要问题是坡度阈值的人工选取和细节地形的方块效应。如果阈值设定太大,可能保留一些低矮的地物目标,设定太小,则可能削平地形特征。现在各种阈值的选取一般根据研究者的经验设定,或者根据地形特征设定的,没有考虑全局的特征因素,不具有普适性。解决这些问题的方法是根据地形的起伏大小和高程变化自适应的进行滤波窗口调整。但此方法在大范围地区及地形变化强烈山区的有效性还有待进一步 研究。 实际应用:从应用上,Lindenberger将数字形态学方法引人到机载激光雷达数据滤波中,首先采用水平结构单元对机载激光测高数据进行开运算,过滤剖面式激光扫描数据,然后利用自回归过程改善了开运算结果。 (二)基于坡度变化的滤波算法 滤波基本思想:基于坡度变化的滤波算法是根据地形坡度变化确定最优滤波函数,对于给定的高差值,随着两点间距离的减小,高程值大的激光脚点属于地面点的可能性就越小。

【WO2019216707A1】使用点云数据处理三维物体图像的方法和设备【专利】

( 1 (51)International Patent Classification:(81)Designated States(unless otherwise indicated,for every G06T15/10(2006.01)G06T15/08(2011.01)kind o f national protection av ailable).AE,AG,AL,AM, AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ, (21)International Application Number: CA,CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM,DO, PCT/KR2019/005655 DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN, (22)International Filing Date:HR,HU,ID,IL,IN,IR,IS,JO,JP,KE,KG,KH,KN,KP, 10May2019(10.05.2019)KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME, MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ, (25)Filing Language:English OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW, SA, (26)Publication Language:English SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN, TR,TT,TZ,UA,UG,US,UZ,VC,VN,ZA,ZM,ZW. (30)Priority Data: 20184101767910May2018(10.05.2018)IN(84)Designated States(unless otherwise indicated,for every 20184101767930April2019(30.04.2019)IN kind o f regional protection available).ARIPO(BW,GH, GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ, (71)Applicant:SAMSUNG ELECTRONICS CO.,LTD.UG,ZM,ZW),Eurasian(AM,AZ,BY,KG,KZ,RU,TJ, [KR/KR];129,Samsung-ro,Yeongtong-Gu,Suwon-Si,TM),European(AL,AT,BE,BG,CH,CY,CZ,DE,DK, Gyeonggi-do16677(KR).EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV, (72)Inventors:VELAPPAN,Raghavan;A204,Rajini Ashish MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM, Apartments,Tuberahalli,Varthur Road,Bangalore,Kar?TR),OAPI(BF,BJ,CF,CG,Cl,CM,GA,GN,GQ,GW, nataka,560066(IN).VETTUKUZHYPARAMBHIL,KM,ML,MR,NE,SN,TD,TG). Suresh Kumar KrishnanKutty;VettuKuzhiParambhil, Kottamuri P O,Throkkodithanam Changanacherry,Kerala,Published: 686105(IN).DUSI,Pavan Kumar;202,Shivaganga Com?—with international search report(Art.21(3)) plex,Kaggadasapura Main road,Bangalore,Karnataka, 560065(IN).HOLLA,Raghavendra;28/180,15th Main Road,J C Nagar,Bengalur,Karnataka,560086(IN).YA- DAV,Amit;Flat002,Pragathi Corel,K.G.F.Munireddy Layout,B Narayanapura,Mahadevapura,Bangalore,Kar? nataka,560048(IN).DAS,Nachiketa;F6,Chennu homes, 1st cross,Kaggadasapura main road,Bangalore,Karnata? ka,560093(IN).CHUCHRA,Divyanshu;A-302,Nagar- juna Greenwoods Apts,Kadubeesnahalli,Outer Ring Road, Bangalore,Karnataka,560103(IN). (74)Agent:Y.P.LEE,MOCK&PARTNERS;12F Daelim Acrotel,13Eonju-ro30-gil,Gangnam-Gu,Seoul06292 (KR). (54)Title:METHOD AND APPARATUS FOR PROCESSING THREE DIMENSIONAL OBJECT IMAGE USING POINT CLOUD DATA (57)Abstract:An apparatus and method are provided for compressing a three-dimensional(3D)object image represented by point cloud data.The method includes positioning the3D object image into a plurality of equi-sized cubes for compression;determining3D local coordinates in each of the plurality of equi-sized cubes and a cube index for each point of the3D object image positioned in the plurality of equi-sized cubes;generating two-dimensional(2D)image data based on the3D local coordinates and the cube indexes;and storing the2D image data in a memory.The2D image data includes at least one of2D geometry data,2D meta data,or2D color data.

点云数据处理

点云数据处理 ICP点云配准就是我们非常熟悉的点云处理算法之一。实际上点云数据在形状检测和分类、立体视觉、运动恢复结构、多视图重建中都有广泛的使用。点云的存储、压缩、渲染等问题也是研究的热点。随着点云采集设备的普及、双目立体视觉技术、VR和AR的发展,点云数据处理技术正成为最有前景的技术之一。PCL是三维点云数据处理领域必备的工具和基本技能,这篇博客也将粗略介绍。 三维点云数据处理方法 1. 点云滤波(数据预处理) 1. 点云滤波(数据预处理) 点云滤波,顾名思义,就是滤掉噪声。原始采集的点云数据往往包含大量散列点、孤立点,比如下图为滤波前后的点云效果对比。 点云滤波的主要方法有:双边滤波、高斯滤波、条件滤波、直通滤波、随机采样一致滤波、VoxelGrid滤波等,这些算法都被封装在了PCL点云库中。 2. 点云关键点 我们都知道在二维图像上,有Harris、SIFT、SURF、KAZE这样的关键点提取算法,这种特征点的思想可以推广到三维空间。从技术上来说,关键点的数量相比于原始点云或图像的数据量减小很多,与局部特征描述子结合在一起,组成关键点描述子常用来形成原始数据的表示,而且不失代表性和描述性,从而加快了后续的识别,追踪等对数据的处理了速度,故而,关键点技术成为在2D和3D 信息处理中非常关键的技术。

常见的三维点云关键点提取算法有一下几种:ISS3D、Harris3D、NARF、SIFT3D 这些算法在PCL库中都有实现,其中NARF算法是博主见过用的比较多的。 3. 特征和特征描述 如果要对一个三维点云进行描述,光有点云的位置是不够的,常常需要计算一些额外的参数,比如法线方向、曲率、文理特征等等。如同图像的特征一样,我们需要使用类似的方式来描述三维点云的特征。 常用的特征描述算法有:法线和曲率计算、特征值分析、PFH、FPFH、3D Shape Context、Spin Image等。 PFH:点特征直方图描述子,FPFH:跨苏点特征直方图描述子,FPFH是PFH的简化形式。这里不提供具体描述了,具体细节去谷歌吧。 4. 点云配准 点云配准的概念也可以类比于二维图像中的配准,只不过二维图像配准获取得到的是x,y,alpha,beta等放射变化参数,二三维点云配准可以模拟三维点云的移动和对其,也就是会获得一个旋转矩阵和一个平移向量,通常表达为一个4×3的矩阵,其中3×3是旋转矩阵,1*3是平移向量。严格说来是6个参数,因为旋转矩阵也可以通过罗格里德斯变换转变成1*3的旋转向量。 常用的点云配准算法有两种:正太分布变换和著名的ICP点云配准,此外还有许多其它算法,列举如下: ICP:稳健ICP、point to plane ICP、point to line ICP、MBICP、GICP NDT 3D、Multil-Layer NDT

三维激光扫描仪点云数据处理与建模

三维激光扫描仪点云数据处理与建模点云的预处理由于三维激光扫描仪在扫描过程中,外界环境因素对扫描目标的阻挡和遮掩,如移动的车辆、行人树木的遮挡,及实体本身的反射特性不均匀,需要对点云经行过滤,剔除点云数据内含有的不稳定点和错误点。实际操作中,需要选择合适的过滤算法来配合这一过程自动完成。 点云配准使用控制点配准,将点云配准到控制网坐标系下;靶标缺失的点云,利用公共区域寻找同名点对其进行两两配准,当同名点对不能找到时,利用人工配准法。后两种方法均为两两配准,为了将所有点云转换到统一的控制网坐标系下与控制点配准法得到点云配在一起,两两配准时要求其中一站必须为已经配到控制网坐标系下的点云。 点云拼接外业采集的数据导入至软件时会根据坐标点自动拼接,但由于人为操作和角架的误差,一些点云接合处不太理想,这时需要进行手动拼接,对一些无坐标补扫面的拼接也需手动处理。手动拼接时对点云应适当压缩,选择突出、尖角、不同平面的特征点,以降低操作误差。如采用1cm激光间隔扫描时拼接后的误差在3mm以下较为理想。 建立三维模型当建筑物数字化为大量离散的空间点云数据后,在此基础上来构造建筑物的三维模型。

点云的漏洞修复由于点云本身的离散性,会导致模型存在一定缺陷,需要在多边形阶段对其进行修补、调整等操作后,才能得到准确的实物数字模型。由于建筑物形状复杂多样,所以目前网格的修补难以实现全自动化。三维激光扫描仪点云数据的漏洞修复主要采用两种方法:当空洞出现在平面区域内,比如窗户或者墙面上的洞,可采用线性插值的方法填补空洞数据;当空洞出现在非平面区域,如圆柱上出现的漏洞,可采取二次曲面插值方法。

点云数据实现三维实体建模方法探索

第43卷第15期山西建筑Vol.43No.15 2 0 1 7 年 5 月SHANXI ARCHITECTURE May.2017 ? 257 ??计算机技术及应用? 文章编号:1009-6825 (2017)15-0257-02 点云数据实现三维实体建模方法探索 赵吉潘永刚陈佳慧 (新疆大学建筑工程学院,新疆乌鲁木齐830000) 摘要:介绍了三维激光扫描技术的特点,以奇台县半截沟镇镇大门为研究对象,阐述了基于三维激光扫描数据的镇大门三维建 模流程与方法,指出利用该技术创建的模型精度符合测量要求。 关键词:三维激光扫描,点云数据,三维建模,纹理贴图 中图分类号:TP319 文献标识码:A 〇引言 三维激光扫描技术又被称为实景复制技术,它是测绘技术领 域内继G P S技术之后的又一次技术革命。它不同于传统的单次 单点测绘方法,而是使用激光束进行整条线上的扫描,一次获取 目标物上一整条的数据信息,具有效率高、精度高的特点。利用 这种线式的高速扫描测量方法,结合激光扫描仪自身配备的C D D 专业相机,可以在很大范围内快速获取对象表面具有高分辨率的 点云数据,这种新的结合模式为外业测绘提供了一种全新的技术 手段。 近年来,国内外学者将地面三维激光扫描系统用于物质文化 遗产的研究、保护和文化旅游综合服务中。Pesci等[1]对将三维 激光扫描技术应用于比萨斜塔的研究之中;Teza等[2]利用点云 数据监测了意大利倾斜钟楼情况;Hinzen等[3]利用点云数据分析 了古罗马大剧场看台石阶的倾斜特征。在国内,赵煦等[4]在研究 云冈石窟时使用了三维激光扫描技术;李德仁等研究的敦煌石窟 项目,采用双目立体相机与激光扫描相结合进行三维建模[5];王 茹[6]采用三维激光扫描结合人工作业和照片的形式完成古建筑 3D模型重建。 1点云数据三维建模基本流程 通过野外现场数据采集过程得到了镇大门建筑表面的原始 点云数据。要对原始的多站点数据进行配准拼接、去噪简化等处 理,才能获得完整的镇大门点云数据。然后进行镇大门的三维实 体重建,具体包括基本几何体创建、平面创建和纹理贴图三个部 分(见图1)。三维实体重建利用3ds M a x建模软件,对镇大门的 所有部分进行建模。 |原始点云@ 点云数据处理 |配准拼接噪简化 实体点云数据| I模型三维实体重建 | !|几何体创建|—?|平面创建P{纹理贴图| ! 1r————: J I实体模型生成1 图1基于三维激光扫描数据的镇大门三维建模流程本文着重讲解建筑物基本几何体的创建、平面创建和纹理贴 图部分。对于点云数据的处理,包括配准拼接和去噪简化不加以介绍。 2点云数据的三维实体建模过程 2.1 点云数据导入 我们所使用的建模软件版本是Autodesk 3ds Max 2017,在新 版本中,创建面板增加了对点云系统的支持。通过三维激光扫描 仪扫描出来的点云数据生成格式为.res的数据库文件,将该种格 式的文件导人到3ds M a x中进行建模。 在界面右上方呈“十”字形的“创建”面板中点击“几何体”按 钮,在下拉栏中点击“加载点云”按钮。在弹出的对话框中找到镇 大门点云文件并将其打开。在m a x任意视窗中创建点云对象。 2_ 2模型三维实体重建 本文以奇台县某镇的镇大门为例,经过实地调研以及使用三 维激光扫描仪扫描测量后。得到了该大门格式为.res的点云数 据文件(见图2)。 图2镇大门点云数据 点云数据只包含物体表面测点的空间坐标信息,经过对点云 数据的处理后,便可对镇大门进行三维实体重建,使其具有实体 三维造型。三维重建包括基本几何体创建、平面创建和纹理贴图三个步骤。 2.2.1 基本几何体创建 由实地调研可知,该大门的主要构成部分可分为下部左右两 边的梯形台、4根长立柱、若干横长柱以及大门上部的斗拱和房 顶等。 首先,我们可以看到大门下部主体为左右两个大致对称的梯 形台,在m a x中没有可以直接使用的标准几何体,所以我们选择 先建立一个长方体,然后对长方体使用修改器列表中的F F D2 x 2 x2工具。选中建立的长方体体块,点击右侧命令面板F F D2 x 2 x2工具下的控制点按钮。我们会发现长方体的8个顶点处于 可移动的状态,接下来分别将各个顶点移动至对应位置,在移动 的过程中要将捕捉开关打开,方便选取点云顶点。对该长方体的 顶点进行位置变化后,便得到了我们所需要的梯形台。这里需要 收稿日期:2017-03-13 作者简介:赵吉(1991-),男,在读硕士;潘永刚(1966-),男,硕士生导师,副教授;陈佳慧(1992-),女,在读硕士

城市建模中三维激光点云数据的运用

城市建模中三维激光点云数据的运用 随着三维激光扫描技术水平的不断提高,逐渐成为了城市建模中不可缺少的一个重要技术组成部分。基于此,本文通过介绍HDS2500激光扫描系统在城市建模中的应用实例,分析了城市建模中三维激光点云数据的具体运用情况。 标签:城市建模三维激光扫描点云数据 现阶段在建立虚拟城市时,通常都是通过城市数据地图、建筑设计图纸、航空摄影以及三维激光扫描数据等方式来取得所需数据。而当中的三维激光扫描技术系统作为一种先进的测量技术手段,正在随着仪器价格的不断下降逐渐在各大技术领域例如三维建模、空间分析以及形态测量中发挥着非常重要的作用。 1三维激光扫描技术分类 通常我们会按照激光测距原理把三维激光扫描技术分为三大类,主要包括激光三角法、脉冲测距法以及基于相位测距法等。激光扫描技术采用的是仪器内部坐标系统,如图1所示,X轴、Y轴均在横向扫描面内并相互垂直,而Z 轴垂直于横向扫描面,同时还通过X轴和Y轴的交点。 2城市建模中三维激光点云数据的实际运用 2.1HDS2500三维激光扫描系统简介 HDS2500三维激光扫描系统主要包括两个部分,一部分为HDS2500三维激光扫描仪,扫描仪中有一个激光脉冲发射体,在运行过程中同时有两个反光镜不断的按照一定的顺序快速旋转,并将激光脉冲发射体发出的窄束激光脉冲全部扫过被检测区域。该扫描仪在计算距离时的依据就是激光脉冲从发出到返回所花费的时间,与此同时该扫描仪还可以利用编码器测量每个脉冲的角度大小,以此来获得被测物体的坐标,并将这些坐标显示在电脑屏幕上,就可以形成被测物体相对应的点云图。如下图1所示为某建筑大楼的点云图。而HDS2500三维激光扫描系统中的另一部分则为Cy-clone软件,通过采用Cy-clone软件,将点云图按照一定的原理转换为断面图、等高线图、三维模型等。人们可以从Auto-CAD软件平台更快捷的获得所需数据,同时也可以采用Cyclone软件在点云图的基础上进行三维交互式可视化检测等操作,快速的完成相关概念的设计工作。 2.2实体扫描 如上文所述的某建筑三维激光点云图,本文将该建筑物作为扫描实体作为说明案例,通过采用HDS2500三维激光扫描仪以及Cyclone5.0扫描软件,完成整个实体扫描工作。在扫描过程中,由于在水平方向上进行扫描时只能达到40°的视野,而且可以在1~50m的范围获得较高的精度,所以本案例在距离建筑物30m 左右的四个方向上分别设立站点,分别进行10次分景扫描,并把各个扫描点之

点云数据三维网格化

将雷射点云数据三维网格化以分面之研究 黄国彦R92521109 一﹒前言 激光技术(Light Amplification by Stimulated Emission of Radiation, Laser)发明于1960 年,顾名思义,雷射运作的原理即是以辐射激发光线的能量,因此也称为激光[赖志恒,2003]。雷射扫瞄到目标点反射后可由其时间差得知之间的距离,若是配合GPS等……定位仪器,便能更进一步自扫瞄时的位置推出目标点的坐标,故对于量测或重建物空间信息之应用越趋重要。 要以点的方式表现一件物体的外形需要数量繁多且密集的点群方能忠实呈现,因此要如何处理庞大的雷射点云数据即是一门重要的课题,除了大量的点数外,另一个要面对的即是点云数据为不规则散布的问题,此时最常见的方式即是以规则网格使点云数据结构化,其后再内插求得点云数据的范围与信息。然而内插后的规则网格皆会丧失空间信息,对三维分布的扫瞄点资料而言,以2.5D维度的表示法将扫瞄数据结构化,难以完整展现出扫瞄点精确描述地物的特性[赖志恒,2003]。因此本次研究的主题即着重在不破坏或是干扰原始数据的前提之下,以三维网格的结构找出点云所提供之面信息。 光达点云数据三维网格化的概念是,将每笔点云数据的集合看成是一张三维的影像,而为了利用影像处理的技术,则必须在点云所处的坐标系内进行规则的三维网格切割,且网格切割的坐标系三轴与物空间坐标系的三轴一样同为右旋坐标系统[陈英鸿,2004]。 此次研究中,每一个网格可提供的信息为: 1.网格之间的位相关系及其范围与编号 2.各网格所包含的点数及其坐标值、反射强度(Intensity) 在下一章的部份将说明要如何利用这些信息,有效的搜寻哪些光达点群为同一个平面并找出平面法向量。

Pointools点云数据处理软件

https://www.360docs.net/doc/4b10140338.html,/ Pointools点云数据处理软件Bentley Pointools点云数据处理软件在单一工作流中,能快速实现可视化、 操作、动画和点云编辑。这种简化的流程可以帮助您减少生产时间,提高整体准确度。 1、高性能点云引擎 2、快速进行详图制作、以层为基础的编辑和数据细分 3、专业质量的图片、动画和影片 4、碰撞检测 Bentley Pointools 由点云引擎Pointools Vortex 提供支持,可支持大型点云。用户可以处理包含数十亿点的大型数据集,以交互方式管理场景参数并快速加载和卸载本地格式点云POD 模型。您将体验到高性能传输与点云密度、清晰度和细节的最大视觉。 拥有Bentley Pointools,您可以轻松导入和查看三种类型的对象: 1、点云,可从大范围的扫描仪导入 2、纹理三维模型,可从大量常用模型格式中导入 3、二维CAD 制图,可从DXF,DWG 和SHP 文件格式导入 生成专业品质的图片、动画和电影,或高分辨率平剖图和透视图,满足您的项目需求 Bentley Pointools点云数据处理软件功能介绍 创建动画、视频和漫游场景:通过呈现任何大小的快照,生成高分辨率的平剖图和透视图。使用输出标尺、刻度和定位来设置图像大小和刻度,以便能够准确重复利用。充分利用基于时间的、直观逼真的漫游场景和对象动画系统,轻松快速地生成电影。

https://www.360docs.net/doc/4b10140338.html,/ 从点云中检测冲突:将点云数据值扩展至您的设计流程中。无论您是在使用Bentley 的Navigator,还是Descartes 产品,均可在决策流程中利用现实世界数据和建议设计之间的冲突检测。 区分点云:自动标识对象之间的差异。您可以比较同一区域中的两个点云,并标识数据中出现的任何增减。使用差异工具可检测更改,并随时监控建筑工地的进度和其他管理项目。 编辑点云:使用点层技术编辑点云的大型数据集,实现无与伦比的编辑速度。在128 个层之间移动点,隔离要详细编辑的区域。操作、清理或细分点云模型,以便清洁和丰富点云模型,使其更易于重复利用。 从点云中为几何图形建模:从点云中提取断线、绘图线、表面、平面、圆柱和圆柱中心线。有效剪辑和切割点云,从点云中简化矢量提取流程。 处理与可视化大规模点云数据:利用高性能显示技术,处理并可视化具有数以亿计的庞大数据点集。可视化点云通过多种细微渐变选项,使视觉诠释更加简便。 对点云进行批注:向点云添加注释,确保项目的每位参与者拥有最新信息,能够远程审查现场,并且可以准备现场操作。

采空区三维激光扫描点云数据处理方法

采空区三维激光扫描点云数据处理方法 发表时间:2018-07-12T16:27:08.477Z 来源:《防护工程》2018年第6期作者:邹霞 [导读] 激光扫描技术在中国的小型模具制造,森林形态研究,防洪减灾,城市规划,工程建设和三维激光扫描技术等各个领域得到了迅速发展。 四川中水成勘院测绘工程有限责任公司四川成都 610072 摘要:为了获得非接触模式下物体的点云数据,该模型能够真实还原物体的原始特征,从而保护城市建设中的文物。它对农业和制造业有很大的影响。本文阐述了空间索引,点云数据,注册,去噪,流线,分割和处理过程的建立以及适用性原则。分析了不同加工方法的缺点。 关键词:点云数据;数据处理;造型 1、前言 在全球数字时代,3D建模已经成为数字建筑不可或缺的一部分。三维激光扫描仪具有精度高,速度快,抗干扰能力强,物体激光等特点,我们获得了大量的点云数据,点云数据处理,真实的造型面貌,可以快速恢复物体,相比以前的建模方式,逆向工程建模手术时间的成本模型要短得多。激光扫描技术在中国的小型模具制造,森林形态研究,防洪减灾,城市规划,工程建设和三维激光扫描技术等各个领域得到了迅速发展。 2、工作原则 三维激光扫描仪在被测物体上发射大量激光束,接收反射信号,计算被测物体表面的三维坐标,记录反射率和纹理信息,并获得点云数据。不同的仪器制造商有不同的物体表面三维坐标计算方法,分为以下两种:脉冲距离测量,根据激光束与接收时间的时间差计算仪器到测量点的距离。精密时钟控制编码器记录垂直和水平角度角度值,并计算每个点的XJ坐标值。相位差测距方法用于通过获得调制光传输与接收器之间的相位差来获得范围值。记录水平和纵向角度值并计算xy和z坐标的值。 3、数据预处理 3.1数据注册 点云数据注册,也称为点云数据拼接。由于激光扫描仪只能从一个角度扫描部分点云数据,因此无法覆盖整个空间目标。因此,对于大型物体(如大型建筑物或大树)的激光扫描,您需要从多个角度进行扫描,并且您需要设置多个测试点,然后才能进行对象扫描。每个站点都有自己的一组坐标,并且必须将完整的数据转换为相同的坐标系。 在使用点云时,应直接在扫描对象之间存在一定程度的重叠。在两站之间,一般都在30%以上,扫描完成后必须有更明显的特征点,这种方法中重叠区域特征点的识别直接关系到注册结果的质量,所以重叠的部分应该清晰,并且有更多的特征点和特征线。 控制点的拼接是三维激光扫描仪和定位系统的结合。首先确定公共区域的控制点。同时扫描控制点,并通过定位技术确定控制点的坐标。然后根据控制点对点云数据进行注册。这种方法的优点是配准精度高,缺点很复杂。 3.2数据去噪 在利用三维激光扫描仪获取点云数据的过程中,数据会受到扫描设备,环境,人体干扰甚至扫描物体表面材质的影响,数据或多或少都是噪点。数据无法指示扫描的正确空间位置。噪声点分为三类:第一类噪声是由物体表面或光环境产生的噪声点。第二种是仪器和扫描对象通过的噪声点,即随机噪声,系统误差和测量系统本身引起的随机误差。例如,扫描仪精度和相机分辨率。数据去噪方法根据不同的条件可以分为不同的方法,即基于有序点云数据的去噪和基于散乱点云的噪声。 目前高斯滤波器,均值滤波器和中值滤波器主要用于基于有序点云数据的数据平滑滤波,属于线性平滑滤波器,属于指定区域的加权平均数据。去除高频信息的好处是可以在保证质量的前提下保留点云数据的特征信息。平均滤波器也称为平均滤波器,它是一个典型的线性滤波器。计算平均值而不是原始数据点在一定范围内的原理简单,易于去除噪声,但缺点是相对平均。中值滤波器是一种非线性平滑滤波器,它基于与数据中的三个或更多值的点数据相邻的原理,并且结果不是原始值。它的优点是它具有消除毛刺噪声的良好效果,可以很好地保护数据边缘特征信息。 3.3数据减少 数据减少是为了减少点云数据的数据量并提取有效的信息。一般来说,数据缩减有两种类型:消除冗余和稀释简化数据。 冗余数据是指注册后重复的数据。这部分数据很大,几乎没有用处,对建模的速度和质量影响很大。对于这部分数据将被删除。烟雾稀释意味着扫描数据密度过高,过多,为后期建模提供了一些有用的数据,因此在满足一定精度和几何特性的前提下,被测物体的数据被简化[5],计算速度,提高数据的建模效率和模型精度。 最常用的方法是采样方法,即根据一定的规则对点云数据进行采样,保留采样点,忽略其他点,该方法的优点是简单,简单,快速,缺点是简化的点云数据分布相对均匀。边缘特征点的数据点不能完全保留。 3.4数据分割 对于更复杂的扫描对象,直接利用全点云数据进行建模非常困难,这将使拟合方法更加困难,并且3D模型的数学表达式将变得非常复杂,因此有必要将点云数据在建模复杂对象之前,然后在建模之后分别完成组合。在建模过程中,“拼接前”,复杂的数据简化,大量的数据分化。 Kuang Siu-lin 等人认为点云数据的分割应该遵循以下标准:块区域的特征是单一的,同一区域中没有法向矢量和曲率的变化。分割后,可以尽可能容易地拼接共同的边缘。如果块的数量尽可能小,则后续拼接的复杂度可以降低。分割后,很容易重建几何模型。 有三种主要的数据分割方法:基于边缘的分割,表面分割和聚类分割。目前,最常用的特征点提取方法是基于曲率和法向量。最后,从相邻曲面的边界面出发,基于聚类的方法是将相似的几何特征参数分组到数据点分类中,然后根据高斯曲率和平均曲率得到几何特征聚类,然后根据到下属班。 MapGIS和ArcGIS数据的转换 ⑴MapGIS转ArcGIS数据,图件和属性数据是分别转。以保证图形的完整性,然后把属性数据转换成dbf格式,这样就有两个属性数据

相关文档
最新文档