Western_Blot详解(原理、分类、试剂、步骤及问题解答)

Western_Blot详解(原理、分类、试剂、步骤及问题解答)
Western_Blot详解(原理、分类、试剂、步骤及问题解答)

四、WEST BLOTTING

Western Blot详解(原理、分类、试剂、步骤及问题解答)

、作者:佚名文章来源:本站原创点击数:12403 更新时间:2009-9-30 9:50:44

Western免疫印迹(Western Blot)是将蛋白质转移到膜上,然后利用抗体进行检测。对已知表达蛋白,可用相应抗体作为一抗进行检测,对新基因的表达产物,可通过融合部分的抗体检测。

本文主要通过以下几个方面来详细地介绍一下Western Blot技术:

一、原理

二、分类

i.放射自显影

ii.底物化学发光ECL

ECF

iv.底物DAB呈色

三、主要试剂

四、主要步骤

五、实验常见的问题指南

1.参考书推荐

2.针对样品的常见问题

3.抗体

4.滤纸、胶和膜的问题

5.Marker的相关疑问

6.染色的选择

7.参照的疑问

8.缓冲液配方的常见问题

9.条件的摸索

10.方法的介绍

11.结果分析

一、原理

与Southern或Northern杂交方法类似,但Western Blot采用的是聚丙烯酰胺凝胶电泳,被检测物是蛋白质,“探针”是抗体,“显色”用标记的二抗。经过PAGE分离的蛋白质样品,转移到固相载体(例如硝酸纤维素薄膜)上,固相载体以非共价键形式吸附蛋白质,且能保持电泳分离的多肽类型及其生物学活性不变。以固相载体上的蛋白质或多肽作为抗原,与对应的抗体起免疫反应,再与酶或同位素标记的第二抗体起反应,经过底物显色或放射自显影以检测电泳分离的特异性目的基因表达的蛋白成分。该技术也广泛应用于检测蛋白水平的表达。

二、分类

现常用的有底物化学发光ECL和底物DAB呈色,体同水平和实验条件的是用第一种方法,目前发表文章通常是用底物化学发光ECL。只要买现成的试剂盒就行,操作也比较简单,原理如下(二抗用HRP标记):反应底物为过氧化物+鲁米诺,如遇到HRP,即发光,可使胶片曝光,就可洗出条带。

三、主要试剂

1、丙烯酰胺和N,N’-亚甲双丙烯酰胺,应以温热(以利于溶解双丙稀酰胺)的去离子水配制含有29%(w/v)丙稀酰胺和1%(w/v)N,N’-亚甲双丙烯酰胺储存液丙稀酰胺29g,N,N-亚甲叉双丙稀酰胺1g,加H2O至100ml。)储于棕色瓶,4℃避光保存。严格核实PH不得超过7.0,因可以发生脱氨基反应是光催化或碱催化的。使用期不得超过两个月,隔几个月须重新配制。如有沉淀,可以过滤。

2、十二烷基硫酸钠SDS溶液:10%(w/v)0.1gSDS,1mlH2O去离子水配制,室温保存。

3、分离胶缓冲液:1.5mmol/LTris-HCL(pH8.8):18.15gTris和48ml1mol/LHCL混合,加水稀释到100ml终体积。过滤后40C保存。

4、浓缩胶缓冲液:0.5mmol/LTris-HCL(pH6.8):6.05gTris溶于40mlH2O中,用约48ml 1mol/L HCL调至pH6.8加水稀释到100ml终体积。过滤后40C保存。这两种缓冲液必须使用Tris碱制备,再用HCL调节PH值,而不用Tris.CL。

5、 TEMED原溶液N,N,N’N’四甲基乙二胺催化过硫酸铵形成自由基而加速两种丙稀酰胺的聚合。PH 太低时,聚合反应受到抑制。10%(w/v)过硫酸胺溶液。提供两种丙稀酰胺聚合所必须的自由基。去离子水配制数ml,临用前配制.

6、 SDS-PAGE加样缓冲液:pH6.8 0.5mol/L Tris缓冲液8ml,甘油6.4ml,10%SDS 12.8ml,巯基乙醇3.2ml,

0.05%溴酚蓝1.6ml,H2O 32ml混匀备用。按1:1或1:2比例与蛋白质样品混合,在沸水终煮3min混匀后再上样,一般为20-25ul,总蛋白量100μg。

7、 Tris-甘氨酸电泳缓冲液:30.3gTris,188g甘氨酸,10gSDS,用蒸馏水溶解至1000ml,得0.25mol/L

Tris-1.92mol/L甘氨酸电极缓冲液。临用前稀释10倍。

8、转移缓冲液:配制1L转移缓冲液,需称取2.9g甘氨酸、5.8gTris碱、0.37g SDS,并加入200ml甲醇,加水至总量1L。

9、丽春红染液储存液:丽春红S 2g 三氯乙酸30g 磺基水杨酸30g 加水至100ml 用时上述储存液稀释10倍即成丽春红S使用液。使用后应予以废弃。

10、脱脂奶粉5%(w/v)。

11、 NaN3 0.02% 叠氮钠(有毒,戴手套操作),溶于磷酸缓冲盐溶液(PBS)。

12、 Tris缓冲盐溶液(TBS):20mmol/LTris/HCL(pH7.5),500mmol/LnaCl。

13、 Tween20(15)鼠抗人-MMP-9(16)鼠抗人-TIMP-1。

14、过氧化物酶标记的第二抗体。

15、 NBT(溶于70%二甲基甲酰胺,75mg/ml)。

16、 BCIP(溶于100%二甲基甲酰胺,50mg/ml)。

17、 100mmol/LTris-HCL(pH9.5)。

18、 100mmol/L NaCl。

19、 50mmol/LTris-HCL(pH7.5),5mmol/L EDTA。

(可以参看分子克隆)

四、主要步骤

主要包括以下4个基本步骤

1.样品制备

原始样品可为细胞、组织、培养上清、免疫沉淀或亲和纯化的蛋白,以下为定性检测目的蛋白时细胞样品的处理方法,其余的样品制备方法参阅相关文献。

1.培养细胞或药物处理。

2.弃培养基,用1X PBS漂洗细胞2次,去尽残留培养基。

3.加入1X SDS样品缓冲液(6-well plate, 100 μl /w或75 cm2 plate, 500-1000 μl/瓶),刮落细胞,转移到Ep 管。注意:冰上操作。

4.超声10~15秒剪切DNA以减低样品粘性。

5.煮沸样品5 minutes。

6.离心12000g, 5 min,取上清。

7.电泳分离:上样15μl~20 μl 至SDS-PAGE 胶( 10 cm x 10 cm)电泳。

如要定量检测某蛋白的表达水平,应用RIPA裂解液(1 ml per 107 cells/ 100 mm dish/ 150 cm2 flask)裂解细胞,收集裂解液至离心管中,在振荡器上混匀4~15min,14000g离心15min(4℃),弃沉淀,用Bradford 法或其它蛋白质测定方法测定上清中蛋白浓度以调整上样体积和上样量,进行Western杂交时还需设置内或外参照,通常用beta-actin。

注意:一般上样20~30 μg已足够,如待检蛋白为低丰度蛋白,可加大上样量至100μg,但电泳条带易拖尾,可制备亚细胞组份或采用更敏感的检测方法。

2.电泳分离(参照SDS-PAGE电泳方法)

3.转膜

杂交膜的选择是决定Western blot成败的重要环节。应根据杂交方案、被转移蛋白的特性以及分子大小等因素,选择合适材质、孔径和规格的杂交膜。用于Western blot的膜主要有两种:硝酸纤维素膜(NC) 和PVDF 膜。NC膜是蛋白印迹实验的标准固相支持物,在低离子转移缓冲液的环境下,大多数带负电荷的蛋白质会与膜发生疏水作用而高亲和力的结合在一起,但在非离子型的去污剂作用下,结合的蛋白还可以被洗脱下来。根据被转移的蛋白分子量大小,选择不同孔径的NC膜。因为随着膜孔径的不断减小,膜对低分子量蛋白的结合就越牢固。通常用0.45μm和0.2μm两种规格的NC膜。大于20kD的蛋白可用0.45μm的膜,小于20kD的蛋白就要用0.2μm的膜了,如用0.45μm的膜就会发生“Blowthrough”的现象。PVDF膜灵敏度、分辨率和蛋白亲和力比常规的膜要高,非常适合于低分子量蛋白的检测。但PVDF膜在使用之前必需用纯甲醇浸泡饱和1-5秒钟。

蛋白质常用的转移方法主要有两种:槽式湿转和半干转移。前者操作容易,转移效率高;而后者适用于大

胶的蛋白转移,所用缓冲液少。以下为槽式湿转的操作步骤。

1. 将胶浸于转移缓冲液中平衡10min。

注意:如检测小分子蛋白,可省略此步,因小分子蛋白容易扩散出胶。

2. 依据胶的大小剪取膜和滤纸6片,放入转移缓冲液中平衡10min。如用PVDF膜需用纯甲醇浸泡饱和3-5秒钟。

3. 装配转移三明治:海绵?3层滤纸?胶?膜?3层滤纸?海绵,每层放好后,用试管赶去气泡。切记:胶放于负极面(黑色面)。

4. 将转移槽置于冰浴中,放入三明治(黑色面对黑色面),加转移缓冲液,插上电极,100V,1h(电流约为0.3A)。注意:应再次检查三明治和电极是否装配正确,电源是否接通。

5. 转膜结束后,切断电源,取出杂交膜

4.免疫杂交与显色

1.用25 ml TBS 洗膜5min,室温,摇动。

2.置膜于25 ml 封闭缓冲液中1h, 室温,摇动。

3.15ml TBS/T洗3次(5 min/T)。

4.加入合适稀释度的一抗,室温孵育1-2h或4°C过夜,缓慢摇动。

5.15 ml TBS/T洗3次(5 min/T)。

6.加入合适稀释度的碱性磷酸酶(AP)或辣根过氧化酶(HRP)标记的二抗,室温孵育1h,缓慢摇动。

7.15 ml TBS/T洗3次(5 min/T)。

8.15 ml TBS洗1次。

9.蛋白检测(显色法或发光法,按相应试剂说明操作)。

注意事项:

1.操作中戴手套,不要用手触膜。

2.PVDF膜在甲醇中浸泡时间不要超过5秒。

3.如检测小于20kD的蛋白应用0.2μm的膜,并可省略转移时的平衡步骤。

4.某些抗原和抗体可被Tween-20 洗脱,此时可用1.0% BSA代替Tween-20。

5.关于封闭剂的选择:5%脱脂奶/TBS or PBS: 能和某些抗原相互作用,掩盖抗体结合能力;0.3~3% BSA in PBS:低的内源性交叉反应性。

6.如用0. 1% Tween 20、0.02% NaN 3 in PBS or TBS作封闭剂和抗体稀释液,抗体检测后可进行蛋白染色。

如要同时检测大分子量和小分子蛋白,最好用梯度胶分离蛋白。

五、实验常见的问题指南

根据问题的类型主要分成以下几类(以下资料权作参考,请勿盲目模仿!):

1. 参考书推荐

A. 对初学者看什么资料比较好?

解答:《抗体技术实验指南》和Antibodies(a laboratory manual,wrote by Ed Harlow ,david lane)两本书不错。

2. 针对样品的常见问题

B. 做线粒体膜UCP2蛋白的Western Blot (以下简写成Western Blot),提取线粒体后冻存(未加蛋白酶抑制剂),用的博士德的一抗,开始还有点痕迹,现在越来越差,上样量已加到120μg,换了个santa cloz 的一抗仍不行。是什么原因?蛋白酶抑制剂单加PMSF行吗?

解答:怀疑是样品问题,可能是:1,样品不能反复冻融;2,样品未加蛋白酶抑制剂。同时,建议检查Western Blot过程,提高一抗浓度。对于加蛋白酶抑制剂来说,一般加PMSF就可以了,最好能多加几中种蛋白酶抑制剂。

E. 同一蛋白样品能同时进行两种因子的Western Blot检测吗?

解答:当然可以,有的甚至可以同时测几十种样品。

F. 如果目标蛋白是膜蛋白或是胞浆蛋白,操作需要注意什么?

解答:如果是膜蛋白和胞浆蛋白,所用的去垢剂就要温和得多,这时最好加上NaF去抑制磷酸化酶的活性。

G. 我的样品的蛋白含量很低,每微升不到1微克,但是在转膜时经常会发现只有一部分蛋白转到了膜上,就是在转膜后染胶发现有的孔所有的蛋白条带都在,只是颜色变淡了,有什么办法可以解决?

解答:你可以加大上样量,没有问题,还有转移时你可以用减少电流延长时间,多加5-10%甲醇。

H. 想分离的蛋白是分子量260kd的,SDS-PAGE电泳的分离胶浓度多大合适?积层胶的浓度又该用多少?这么大分子量的蛋白容易作Western Blot吗?

解答:260kd的蛋白不好做,分离胶用6%,Stacking Gel 3.5%。

I. 如果上样量超载,要用什么方法来增加上样量?如果需要加大上样量使原来弱的条带能看清楚。

解答:可以浓缩样品,也可以根据你的目标分子量透析掉一部分小分子蛋白。一般地,超载30%是不会有问题的。如果已经超了不少了,而且小分子量的也要,可以考虑加大胶的厚度,可以试试 1.5mm的comb。J. 蛋白变性后可以存放多久?

解答:-80℃,一两年没有问题。最关键两条:不要被蛋白酶水解掉;不要被细菌消化掉(也是被酶水解了)。

K. 我所测定的蛋白分子量是105KD,按理说分离胶应当采用7.5%,但我所查资料却要求分离胶和浓缩胶均采用11%的配方,不知为何?

解答:上述您提到的两种凝胶均可以使用,因为105KD的蛋白在上述两种胶的线性分辨范围内,但需注意条带位置。

L. 接下来我准备采用DAB显色技术,二抗是生物素化的多克隆抗体,三抗是亲和素生物素体系,不知采用这样的方案后,封闭液是否要作调整,能否再用5%的脱脂奶粉呢?好像有资料说脱脂奶粉会影响亲和素生物素的生成,是吗?

解答:不能使用脱脂奶粉,因为脱脂奶粉中含生物素,用BSA代替应该好一点.

M. 还有一问题,一般一次上样的蛋白总量是多少,跟目的蛋白的表达量有关系吗?

解答:Western Blot一般上样30-100微克不等,结果跟目的蛋白的丰度、上样量、一二抗的量和抚育时间都有关系,也与显色时间长短有关。开始摸条件时,为了拿到阳性结果,各个步骤都可以量多一点时间长一点,当然背景也就出来了。要拿到好的结果,如果抗体好的话比较容易,抗体不好的话就需要反复地试了,当然有的不适合Western Blot的怎样做也不行。所以拿到好的结果不容易。

N. 做组织样品的western的时候,处理样品有什么诀窍吗?还有,您用过大牛血清做封闭剂吗?浓度如何?效果是不是比BSA好一点?

解答:必须进行研磨、匀浆、超声处理,蛋白质溶解度会更好,离心要充分,膜蛋白需用更剧烈的方法抽提,低丰度膜蛋白可能还要分步抽提(超速离心)。还有一点就是组织中的蛋白酶活性更强,需要注意抑制蛋白酶的活性(加入PMSF和蛋白酶抑制剂cocktail),封闭剂一般5%脱脂奶粉较常用。如果一抗为多克隆抗体,使用BSA也是不错的选择。

O. 您是否可以介绍一下大分子量蛋白200KD,在做western要注意什么呢?

解答:做200kd蛋白的Western Blot时要注意,分离胶最好选择>7%的;剥胶时要小心;转移时间需要相应延长;要做分子量参照(否则出现杂带不知道如何分析)。

P. 有什么方法可以提高上样量?

解答:可以浓缩样品;增大上样体积来增大上样量。

Q. 我要检测的目的蛋白是分子量大概为42kd的膜蛋白,膜蛋白提取可不可以不用到超速离心机,有没有直接用低温高速离心机就可以的提到膜蛋白的方法,42kd的蛋白分子量算不算大?

解答:如是需要提取膜蛋白,(而不是只需要提取膜蛋白),可以用Ripa buffer提取膜蛋白和胞浆蛋白,用这个做Western Blot就可以了。如果是非要只提取膜蛋白就要用到超速离心机。42kd 不算大,也不算小,所以,可以按照一般的转移方法实施。

R. 蛋白的上样量有没有什么具体的要求?

解答:上样量要根据实验的要求来定,如果要求是定量和半定量的Western Blot 则上样量要均等,如果只是要定性,则没有太大的关系,尽量多上就行了,但是不要超过0.3μg/mm2。

S. 一抗,二抗的比例是否重要?

解答:比较重要,调整好一抗,二抗的比例,可以去掉部分非特异的本底。

3. 抗体

做细胞信号传导,要做磷酸化某因子Western Blot,其二抗有何要求?

解答:对二抗无要求,要看你实验条件来选择,一般推荐用HRP标记的二抗。

U. 同一公司的另外抗体用这个稀释度做出来效果很好,所以没做预试,怕费时间,用什么样的稀释度比较好呢?我用的ELL+plus试剂盒显色。转膜过夜,一抗孵育也是过夜的,若封闭也过夜的话就要四天才看的到结果了。

解答:不同抗体,即使是同一公司的抗体,其最佳的抗体稀释度也是不一样的,需要你实验摸索。我觉得转膜过夜好像没有必要吧,转膜的目的也就是将蛋白转到膜上就行啦,何必浪费时间呢。至于具体的转膜时间,还要看你的目的蛋白分子量的大小;转膜的设备,是半干式,还是湿式。一抗当然可以过夜,如果你想所短Western Blot时间的话,可以增高一抗的孵育温度,我们实验室一般37度,两小时就足够了;你可以参照抗体说明书。至于一抗和二抗得稀释度,你可以一抗1:1500;二抗1:20000试试。另外建议你洗膜时,多洗几次,最好是在封闭;一抗和二抗后至少是5x5min,跑一张好膜不容易,多尽点心吧,这样不会浪费你的时间,只会节省你的时间!

V. 免疫组化和Western Blot可以用同一种抗体吗?

解答:免疫组化时抗体识别的是未经变性处理的抗原决定簇(又称表位),有些表位是线性的,而有的属于构象型;线性表位不受蛋白变性的影响,天然蛋白和煮后的蛋白都含有;构象型表位由于受蛋白空间结构限制,煮后变性会消失。如果你所用的抗体识别的是蛋白上连续的几个氨基酸,也就是线性表位,那么这种抗体可同时用于免疫组化和Western,而如果抗体识别构象形表位,则只能用于免疫组化。一般抗体说明书上都有注明此种抗体识别的氨基酸区间。(限于单抗)

W. Western Blot 中抗体的重复应用问题

解答:抗体工作溶液一般不主张储存反复使用,但是如抗体比较珍贵,可反复使用2-3次。稀释后应在2-3天内使用,4度保存,避免反复冻融。

4. 滤纸、胶和膜的问题

X. NC膜\ PVDF膜\ 尼龙膜怎样鉴别?

解答:尼龙膜是较理想的核酸固相支持物,有多种类型;硝酸纤维素膜是目前应用最广的一种固相支持物,价格最便宜;PVDF膜介于二者之间。

就结合能力而言:尼龙膜结合DNA和RNA能力可达480-600μg/cm2,可结合短至10bp的核酸片段;硝酸纤维素膜结合DNA和RNA能力可达80-100μg/cm2,对于200bp的核酸片段结合能力不强;PVDF膜结合DNA和RNA能力可达125-300μg/cm2。

就温度适应性而言:尼龙膜经烘烤或紫外线照射后,核酸中的部分嘧啶碱基可与膜上的正电荷结合;硝酸纤维素膜依靠疏水性相互作用结合DNA,结合不牢固;PVDF膜结合牢固,耐高温,特别适合于蛋白印迹。就韧性而言:尼龙膜较强;硝酸纤维素膜较脆,易破碎;PVDF膜较强。

就重复性而言:尼龙膜可反复用于分子杂交,杂交后,探针分子可经碱变性被洗脱下来;硝酸纤维素膜不能重复使用;PVDF膜可以重复使用。

Y. 在做Western Blot时,PBDF膜用甲醇浸泡的目的?

解答:PVDF膜用甲醇泡的目的是为了活化PVDF膜上面的正电基团,使它更容易跟带负电的蛋白质结合,做小分子的蛋白转移时多加甲醇也是这个目的。

Z. 检测磷酸化的JNK 和非磷酸化的JNK可以在同一张膜上吗?

解答:可以。

AA. 转膜后经丽春红染色的条带,为什么大蛋白分子的一端(即点样空的一侧)的转膜好象不是很好,为什么?

解答:这是正常的,大分子的蛋白转移的慢,你延长转移时间和电流,大分子一端就会好的多,但是小分子的就有可能会变淡。

BB. 我想问您裂解细胞用三去污裂解法,还是用上样缓冲液?

解答:用上样缓冲液,这样有几个好处,可以提取总蛋白,同时又可以让磷酸化酶失活。

CC. 采用tank system有什么讲究?

解答:建议低电压,长时间,(一般tank System 用衡压好点),如28V 14-16hrs。

DD. 做HSP WESTEN定量,同样的抗体免疫组化能做出,而WESTEN却不能?

解答:这多半是抗体的问题,要看抗体的说明,是否能做Western Blot和IHC。

EE. 膜一般要如何处理?

解答:一般用甲醇泡泡就可以了。

FF. 如果是6×8转印膜,要加多少一抗?

解答:一抗的稀释度是有说明的,根据你的一抗看看就知道了,但是那么大的膜孵育体积一般最少为3-5ml。

GG. 上下槽缓冲液有何要求,怎样才能达到最佳效果。

解答:无要求。

HH. 跑电泳的时候配的胶总是“缩”是什么原因呢?是有的成分不对吗?

解答:没什么问题,就是你胶里的水分被蒸发了。过夜时拿保鲜膜包起来,在里面加点水保持湿度就可以了。如果过夜,胶里的水分被蒸发,采用保鲜膜包上也可以;也可能母液(30%聚丙酰胺)有问题,你可以重新配制一份观察;能够替换的试剂,尽量换一下,选用好的试剂,避免找问题麻烦。脱色液中甲醇的含量太高也会造成胶缩。

II. 膜、滤纸、胶大小有何讲究?

解答:如果是用的是半干转,顺序为:阴极-》滤纸-》胶-》膜-》滤纸。滤纸的长宽分别比胶小1-2mm,而膜的长宽分别比胶大1-2mm。绝对禁忌:上下两层滤纸因为过大而相互接触,这样会短路,电流不会通过胶和滤纸。

JJ. 蛋白质的分子量跨度很大,如要分离小21KD,中至66KD,大至170KD,可以一次做好吗?

解答:这么广的分布不好转移,一般建议:21kd和66kd可以一起转,12%SDS-PAge,湿转36V ,3-5hrs就可以了,可以根据你实验室的经验调节;170kd 用7%SDS-page,48V 10hrs-16hrs。

KK. 不能很好地将大分子量蛋白转移到膜上,转移效率低怎么样解决?

解答:可以考虑:转移缓冲液中加入20%甲醇(是指终浓度)(优化的转移缓冲液,可以参考《蛋白质技术手册》),因为甲醇可降低蛋白质洗脱效率,但可增加蛋白质和NC膜的结合能力,甲醇可以防止凝胶变形,甲醇对高分子量蛋白质可延长转移时间;转移缓冲液加入终浓度0.1%SDS,也是为了增加转移效率;用优质的转移膜,或使用小孔径的NC膜(0.2微米);使用戊二醛交联;低浓度胶,如低至6%。太大时还可以考虑用琼脂糖胶;提高转移电压/电流;增加转移时间。

LL. 如何选择最合适的蛋白杂交膜?

解答:蛋白质印迹杂交是分子生物学实验中极为常用的一门技术。选择质量上层、合乎要求、方便适用的杂交膜是决定这项实验成败的重要环节。根据杂交方案、被转移生物大分子的特性以及分子大小等等因素,我们要量体裁衣,从杂交膜的材质、孔径和规格上都要做出合理的选择。

硝酸纤维素膜:硝酸纤维素膜是蛋白印迹实验的标准固相支持物。在低离子转移缓冲液的环境下,大多数带负电荷的蛋白质会与硝酸纤维素膜发生疏水作用而高亲和力的结合在一起,虽然这其中的机制还不是十分清楚,但由于硝酸纤维素膜的这个特性,而且易于封闭非特异性结合,从而得到了广泛的应用。在非离子型的去污剂作用下,结合的蛋白还可以被洗脱下来。根据被转移的蛋白分子量大小,要选择不同孔径的硝酸纤维素膜。因为随着膜孔径的不断减小,膜对低分子量蛋白的结合就越牢固。但是膜孔径如果小于0.1mm,蛋白的转移就很难进行了。因此,我们通常用0.45μm和0.2μm两种规格的硝酸纤维素膜。大于20kD的蛋白就可以用0.45μm的膜,小于20kD的蛋白就要用0.2μm的膜了,如果用0.45μm的膜就会发生“Blowthroμgh”的现象。从膜的质地上来看,最重要的指标就是单位面积上能够结合的蛋白的量。硝酸纤维素膜的结合能力主要与膜的硝酸纤维素的纯度有关,市场上有些硝酸纤维素膜通常会还有大量的醋酸纤维素,因而降低了蛋白的结合量。S&S公司采用的是100%纯度的硝酸纤维素,保证了最大的蛋白结合量,可达80-150μg/cm2。由于100%的纯度,因而也大大减少了非特异性的结合,降低杂交背景,无需高严谨度的洗脱步骤。其次,膜的强度和韧性也是需要考虑的因素。常规的硝酸纤维素膜比较脆,漂洗一两次就会破损,不能反复使用。

PVDF转移膜:PVDF是一种高强度、耐腐蚀的物质,通常是用来制造水管的。PVDF膜可以结合蛋白质,而且可以分离小片段的蛋白质,最初是将它用于蛋白质的序列测定,因为硝酸纤维素膜在Edman试剂中会降解,所以就寻找了PDVF作为替代品,虽然PDVF膜结合蛋白的效率没有硝酸纤维素膜高,但由于它的稳定、耐腐蚀使它成为蛋白测序理想的用品,一直沿用至今。PVDF膜与硝酸纤维素膜一样,可以进行各种染色和化学发光检测,也有很广的适用范围。这种PVDF膜,灵敏度、分辨率和蛋白亲和力在精细工艺下比常规的膜都要高,非常适合于低分子量蛋白的检测。但PVDF膜在使用之前必需用纯甲醇进行浸泡饱

和1-5秒钟。

离子交换型转移膜:硝酸纤维素和PVDF膜是靠疏水作用结合蛋白的,还有一类膜是根据离子交换的方式结合生物大分子的。由DEAE(二乙氨乙基)修饰的纤维素制成的DEAE阴离子交换膜同样可以作为蛋白质印迹的固相支持物。DEAE可以有效的结合阴离子基团,包括那些高于其等电点的蛋白质。在pH10以下,DEAE基团都能带电荷,在低离子强度的转移液中结合蛋白分子。其最适的pH环境为5-7。DEAE膜可以用于蛋白多糖、病毒、酶以及血红蛋白的研究。这种0.45μm孔径的DEAE膜,除了可以做Western Blotting 外,还可以用于核酸结合研究。

还有一种离子交换型膜是羧甲基(CM)修饰的纤维素膜,它可以结合蛋白和多肽分子,以及其他的一些带正电荷的样品,最适结合pH范围在4-7。结合的多肽分子可以从CM膜上洗脱下来,用于氨基酸系列分析或微测序。

5. Marker的相关疑问

MM. 我用的是可视marker(BIO_RAD),但是电泳总跑不全8条带,请问什么原因?怎样改善?胶用过8%,10%,12%,都是这样。marker是新买的。

解答:一般来说,是小分子量Marker跑走了,增加胶浓度或减少电泳时间试试看。当然梯度胶也是不错的选择。

NN. 用的是Roche molecular Biochemicals公司的由100kd,75kd,45kd,30kd,20kd,10kd组成的marker。开始做Western Blot时还能够看到marker,当然也仅能看见其中最多三条带。用80V进行SDS-PAGE电泳,用恒压10V45min转印的。前几次做Western Blot时没有进行丽春红染色,但尽管用了此方法也仅能看到marker有一条大约是30KD的条带出现。再就是把70KD和130KD两个目的蛋白同时在一块胶上进行分析,用培养基样品进行分析,没有用间接法,而是直接用融合蛋白C端的V5表位的酶联抗体(Anti-V5-HRP)。但就是出不来结果,我很茫然。谢谢您过给予指点!

解答:1、“我用的是Roche molecular Biochemicals公司的由100kd,75kd,45kd,30kd,20kd,10kd组成的marker。开始做Western Blot时还能够看到marker,当然也仅能看见其中最多三条带。”有的时候,Prestained Marker 放久了效果就会变差,电泳是条带不清晰,扩散。但是你的问题可能还有其他的方面的问题,可能是蛋白跟膜结合的不紧密。转移是多加点甲醇。

2、“前几次做Western Blot时没有进行丽春红染色,但尽管用了此方法也仅能看到marker有一条大约是

30KD的条带出现。”转移时半干法建议用恒流,你这样的也就30kd-50kd的转移地比较好。

3、“再就是把70KD和130KD两个目的蛋白同时在一块胶上进行分析,用培养基样品进行分析,没有用间接法,而是直接用融合蛋白C端的V5表位的酶联抗体(Anti-V5-HRP)。”

是否检测了表达量,二抗是否是好的,你做了阳性对照?你要做这么大的蛋白最好转移时间延长到1.5hrs。

6. 染色的选择

OO. Western Blot哪种染色好?

解答:(1)阴离子染料是最常用的,特别是氨基黑,脱色快,背景低检测极限可达到1.5μg,考马虽然与氨基黑有相同的灵敏度,但脱色慢,背景高。丽春红S和快绿在检测后容易从蛋白质中除去,以便进行随后的氨基酸分析。缺点是:溶剂系统的甲醇会引起硝化纤维素膜的皱缩或破坏。不能用语正电贺的膜。灵敏度低。

(2)胶体金,灵敏度高,检测范围可到pg级,但染色比稳定。

(3)生物素化灵敏度位于1、2之间,可用于任何一种膜。

7. 参照的疑问

PP. 是否Western Blot实验半定量一定要加ACTIN内参?

解答:对于发表文章的实验最好加内参,实验严谨。

QQ. 用BANDSCAN分析结果行吗?

解答:分析一般的结果没问题。

RR. 核内抗原Western Blot内参选择什么合适?

解答:可以选用组蛋白,组蛋白在细胞核中的表达是很稳定的,有很多都可以当成内参,在网上查查就可以选出你要的内参。

SS. 转膜时采用电流是否比电压准确,是否根据0.8mA/cm2,一般1小时左右?

解答:不是的,半干法推荐用恒流,一般根据目的蛋白的大小来确定电流和时间。

TT. 做半定量人卵巢癌细胞系的Western Blot,内参B-actin,GAPDH,那个好?

解答:选用beta-actin就可以。

8. 缓冲液配方的常见问题

UU. 转膜后的脱脂奶粉封闭时,所用的防沫剂A是什么?还有Tris-HCl是不是就是用Tris和盐酸配出来的呢?

解答:转膜后的脱脂奶粉封闭液是5%的TBST脱脂奶粉。Tris-HCl就是Tris盐用HCl调ph值,配置而成。

VV. 准备做大鼠脑子的Western Blot,蛋白质位于细胞核中,请问此蛋白质的提取液及操作方法是?每一步都必须要低温吗?这种蛋白质是磷酸化的蛋白质,操作时如何防止去磷酸化的发生?

解答:可以用提取总蛋白的buffer提核蛋白,可以加NaF防止去磷酸化。

WW. 想问一下细胞裂解液选择蛋白酶抑制剂时有什么原则吗?受不受组织来源的影响?胞膜和胞浆有区

别吗?

解答:一般来说提取时加入光谱的蛋白酶抑制剂就可以了,操作时保持低温。除非有文献特别指明用特殊的方法,一般来说都没有区别。

XX. 最近作了两次Western Blot,不但没阳性结果,显色背景都没有,电泳和转膜都染过,有条带。底片和显色液及DAB显色液均试过,没问题。1、检测GAD--分子量67kd,提取液有蔗糖,其余同三去污裂解液。蔗糖不会有影响把?样本--20度放置一周内测。2、一抗放置2年,可能效价不高!用的是1:100。如果是一抗的原因,不会背景都没有把?3、第一次有不均匀背景,因为一抗过夜时密封袋不均匀。后两次无背景显色。4、封闭液用的是含15%脱脂奶粉TBST,漂洗液用的是含1%BSA的TBST液,TWEEN-20为0.1%,不会是封闭液的问题吧?

解答:可以在下面几个问题上找找原因。1. 封闭液用5%Milk,漂洗液(washing buffer 用TBST)2. 看看一抗是否能work,降到1:20。3. 看看二抗是否有问题。

YY. 加甲醇的目的是什么?

解答:加甲醇起着一定的固定作用,因为小分子蛋白质容易转出去.(特别是在硝酸纤维素膜上,因为NC膜结合蛋白质的能力较弱)。

ZZ. “转膜后的脱脂奶粉封闭液是5%的TBST脱脂奶粉”,其中TBST最后那个T是Tween吗,浓度多大?解答:是Tween,配方如下:Tris-Buffered Saline Tween-20 (TBST), Dissolve 8.8g of NaCl,0.2g of KCl,and 3g of Tris base in 800ml of distilled H2O, Add 500ul of Tween-20, Adjust the pH to 7.4 with HCl, Add distilled

H2O to 1L, Sterilize by autoclaving.

AAA. 封闭,一抗,二抗时的温度有没有什么规定呢,比如现在我就在室温里做,或者要在4度下?

解答:均可在室温进行,如果时间不够,一抗孵育可以先在室温进行一个小时,然后4度过夜。

BBB. 实验室暂无NP40我用sds可以吗?另外有过用尿素和硫脲提取膜蛋白吗?配方如下:7M 尿素,2M 硫脲,Triton-x-100 0.2ml,新鲜加入:65mM DTT

蛋白酶抑制剂:试剂盒HaltTM Protease inhibitor cocktail kit 1%(v/v)

是用于抽提双向电泳用蛋白的配方。不止用于抽提细胞全蛋白(主要是想得到其中的膜蛋白)是否可行?改良的RIPA裂解缓冲液(Tris.HCl,50 mmol/L,pH 7.5; NaCl,150 mmol/L; NP-40,1%; 脱氧胆酸钠,0.5%; SDS,0.1%; EDTA,1 mmol/L; PMSF,1 mmol/L; Leupeptin,2 μg/ml)不知对于膜蛋白效果如何?此外该方中的EDTA,是否用做蛋白酶抑制剂?

解答:做2-D绝对不推荐使用NP-40(因为即使进口的NP-40也不纯,,其中的杂质会影响质谱结果)。对于动物细胞,其蛋白酶活性较弱(相对于组织和大肠杆菌等),可以不使用cocktail,因为7M 尿素+2M硫脲+4%CHAPS构成的变性环境已经足以抑制大部分蛋白酶的活性,2M硫脲+4%CHAPS对于抽提膜蛋白有很大的帮助,不过如果您专职做膜蛋白建议采用分级抽提法。此外还可以采用梯度离心法和一些基于去垢剂的方法。EDTA用于灭活金属蛋白酶(主要是其鏊合作用)。加过多的蛋白酶抑制剂可以导致蛋白质的修饰,做WB无所谓,做MAILDI时会给正确鉴定带来麻烦。裂解缓冲液中少了两性电解质(在2-D裂解缓冲液中,两性电解质起的作用:提供连续的PH梯度,从很大程度上增加蛋白质的溶解性;还可以去除一部分核酸);也不推荐采用SDS,因SDS会与蛋白质结合导致其等电点发生改变,如果您实在要用,终浓度降到0.1%以下。

METHOD2

(50ml总量):?-mercaptoethanol 342 μl;20% SDS 5 ml;Tris-Cl pH 6.7 3.125 ml;加ddH2O至50 ml。方法:将用过的膜浸入stripping buffer中,置

50℃水浴箱中30min,间断振摇。之后用TTBS洗3*5min就好。此时你已经可以按新的转移好的膜来再次使用了。

该方法的优点:省事,省力,省钱,符合国际惯例。

METHOD3

1、beta-metaptoethanol 35ul

2、10%SDS 1ml

3、tris ( 0.5M,pH6.7) 625ul

4、dH2O 3.34ml

50 -55℃,30min。

METHOD4

stripping buffer应该是可以放置很久的。不过我习惯于现配——毕竟,加了β-mercaptoethanol 以后太难闻了,配了就用;而且,有了现成的Tris-HCl缓冲液和SDS的母液,现配还是很方便的。每次用量5ml少了点,我每次用50ml。

METHOD5

0.5M NaCl,0.5M HAc;室温摇床15min。

METHOD6

将用过的膜泡在1*TBS中室温振摇过夜,中间可以换液2-3次,然后封闭,加一抗,二抗(同第一次发光),实践证明方法完全可行。

不管用那种方法,洗脱后都要用PBS或TBS再洗几次。

9. 条件的摸索

DDD. 用的是Santa Cruz的抗体,也实验过一抗和二抗肯定能结合,二抗加DAB肯定能显色。电泳的胶用考马斯亮蓝染色没问题,但是不知道与Marker对应的条带是否是我要的(我目的蛋白的分子量分别是

55KD、29KD)。半干法2小时转膜后,丽春红染色发现大分子量蛋白转过去的较少。难道是裂解液出了问题?我用的是三去污剂,但没加叠氮钠和大概叫Apoptin的那种蛋白酶抑制剂。冰上裂解-80度冻存的细胞,4度12000g离心5分钟,取上清,与分子克隆(第二版)上的加样buffer混合,沸水变性5分钟,上样。不知道是哪里出了问题?

解答:建议:1、首先确定您提的蛋白质量如何?可用PIERCE公司的BCA试剂盒测蛋白的浓度,一般来讲,其浓度应该在几-20微克/微升。

2、若是蛋白没问题,哪就看是不是电泳的问题,首先要看胶的浓度,您目的蛋白的分子量分别是55KD、29KD,建议分别用10%和12%的胶。60-80V,1小时左右。跑过积层胶与分离胶的线时,换用100V,3-4

小时。

3、转膜,建议恒压,15V,不用转2小时,45分钟足以。您所说的大蛋白转过去的,并不是真正的少,而是因为在提的蛋白中大蛋白本身就很少。我曾经也转过2小时,但和45分钟的区别并不大。

4、根据MARKER的条带(我的是7条带:14、18、2

5、35、45、6

6、116KD),您根据MARKER的条带剪下25与35之间(29KD)的条带,45-66之间(50KD)的条带。这样第一,可以节省抗体,第二,您要的目的条带肯定在上面。

5、延长1抗、2抗孵育时间(我曾室温1小时,4度过夜),适当加大1抗浓度。

6、我买的也是Santa Cruz的抗体,我觉得质量还可以,我想您应该先找其他方面的原因。

EEE. 电泳用的是恒流,一块胶,20mA,100分钟左右。转膜也是恒流,38mA,100分钟。而且我用别人的细胞和一抗在我的整个反应体系下做出来了,当然彼此的目的蛋白不同。所以,我想问题应该出在抗原和一抗上,不知对不对。

解答:电泳的条件:样品的分子量决定了胶的浓度,一般使样品跑至胶的中部即可。正常条件下,电泳时溴酚蓝和10kd左右蛋白跑在一起。由此可以决定电泳的电压和时间。建议你用恒压80-100伏。

FFF. BIO-RAD的半干转运系统有一个很致命的弱点就是无法控温(我用的就是这种),当电流过高,而系统的散热又比较差,滤纸的吸水性比较差的情况下,就很容易烧胶。

就转膜时,是采取恒压还是恒流的问题,我想和大家探讨一下,我感觉我这个系统用恒流很容易烧胶,我的胶有68cm2,用50mA恒流来转膜,刚开始电压就很高,有20 v左右,而用恒压,开始电流有110mA,但15min后,电流就降到8OmA,30min后就稳定在40mA,不就相当于恒流吗?

解答:恒流时电压逐渐升高的原因是湿滤纸逐渐变干因而电阻逐渐增大的缘故,如果电压升得太快,可以使滤纸更湿一些以克服。就我的感觉,20V的电流30min以后20Kd以下的分子丢失很多,不过我用的是小胶40cm2,不知有无不同。

GGG. 我想尽量提高转膜的效率(我的实验要求转到膜上的蛋白越多越好,不管是什么大小蛋白)不知道有那些办法?

解答:不管怎么转都会存在蛋白转移不完全(电压过小时间过短)或过度转移(电压过大时间过长)的问题,鱼(小分子量蛋白)和熊掌(大分子量蛋白)不可得兼呵呵。建议把胶切成两半,比如以35KD为界,分别进行转膜,下半时间短,上半时间长一点,应该会好一些。

HHH. 请问一下PVDF膜和硝酸膜结合蛋白的原理是什么?

解答:一般而言,硝酸纤维素膜是通过疏水作用来和蛋白质相联,这样的话,反复洗几次后,蛋白容易掉下来,结果较差。尼龙膜主要通过它膜上的正电荷和蛋白接合(注:常用的PVDF即带正电荷的尼龙膜),同时也有疏水作用,但相对较弱。这样的话,PVDF膜和蛋白接合较牢,不易脱落,结果较好。

III. 1、煮好后的样品,若没有及时上样分离,应如何保存,可以保存多久?2、有没有人在用bio-rad的小型垂直电泳槽,有没有操作手册?3、湿式转移时是否必须要用bio-rad的专用滤纸?4、恒压转移的条件如何确定,因为我要分离小至21KD,中至66KD,大致170KD的蛋白质,转移条件能够相同吗?5、凝胶的浓度是不是可以用一个浓度?书上写不同的凝胶浓度分离的分子量范围不同,还给出了一个线形范围,是不是不在这个范围内也能分离,只是就不是线性范围了?

解答:1、煮好后的样品,放到-20,我们在一个月后此样品,效果一样。

2、bio-rad的小型垂直电泳槽的操作手册在他们的主页Bio-Rad USA上有。

3、转移时一般的WATERMEN滤纸就可以。

4、转移条件是和蛋白质大小有关的:以次确定电压和时间。具体可让ptglab帮你定夺。

5、凝胶的浓度也是和分离蛋白质大小有关。不是随心所欲选的,否则分离效果可能不是你所期望的。

JJJ. 怎样设计实验来确定最佳的条件?

解答:随便说一点,具体的还是需要自己想:

1、在每个上样孔里上同样的蛋白样品,量也一样,最好是组织样,(也可以跑1 个大well,不插梳子,多上样,)SDS-page;

2、转移,设定电流或电压;

3、每隔1(or n)小时,取一点膜染色,看转移效果。

KKK. 我要测两种抗体,一种为磷酸化的目的蛋白,一种为总的目的蛋白,不知道用什么方法strip最好,我用甘氨酸(PH2.9)漂洗15分钟,似乎没什么效果?

解答:你可以加巯基乙醇(loading buffer 一样的浓度),56度,30mins,看看。

LLL. 1、在用PBS洗涤抗原-抗体-ProteinA-Agarose复合物时,每次要重悬多长时间合适?2、最后用2xSDS 重悬抗原-抗体复合物离心后,由于2XSDS中已经加入了溴芬兰,因此下面的Agarose珠子几乎看不到,所以吸取上清加样时也不知道里面是否吸进了Agarose。不知有什么方法可以解决这个问题,或者即使吸进了一些Agarose也不要紧呢?

解答:1、不用重悬多久,重悬起来了就可以离心了。

2、加2X BUFFER前大体上已经知道有多少胶粒了,吸到那个位置时小心点就是了。我也试过一些次,首先离心稍微长一点,长20秒吧,希望胶粒能沉得结实点(我想象的),再吸取。如果感觉枪头不是很顺畅的时候可能就是碰到胶粒了。很难一点胶粒也吸取不上来的,尽力做好就是了。

MMM. 磷酸化抗体的检测样本制备时是否一定要加NaF等?

解答:NaF是一种广谱磷酸化酶的抑制剂,一般最好加。但是不加也可以,大部分时候是不用加的。我做的时候从未加过,都做出来了。

NNN. Western Blot中block的最短时间?

解答:每一步1小时足够了,中间换抗体要洗的话多换液几次,每次时间10分钟就够,洗3次只要半小时。跑胶1小时,转移1小时,block半小时就行,1抗1小时,洗半小时,2抗1小时,洗半小时,显色10分钟。一般跑两块胶,一块染色,一块western。一天肯定完事,一般不用等到第二天。

OOO. 想用Western检测基因转染后细胞培养上清中表达的目的蛋白(定性),分子量为20KD,浓度约为几百ng/ml。蛋白样品需浓缩、纯化吗?如何浓缩、纯化上清液中的目的蛋白?对小分子蛋白Western blot 时需特别注意哪些条件?

解答:按照你提供的浓度,如果做Western Blot,是不用浓缩样品的. 对于20kd的小分子的蛋白,Western Blot 中要注意的是:

1、转移时的时间,

2、转移时的电流或电压.

3、transfer buffer 中加20%的甲醇.

4、可以用13-15%的分离胶.

PPP. 蛋白分子量大小分别为21kd、28kd,用的是湿转,请问多大电流,多长时间比较合适?

解答:分子量比较小,最好是用干转,湿转效率太高,易转过了。干转的话,用 2.5 A/cm2,30min就应该够了。湿转,按照bio-rad的说明,用100mA,也得要半个多小时吧。

QQQ. 需要测同一种蛋白质的总量与磷酸化的量,但相互间干扰太大,怎么办?

解答:将膜放入stripping buffer(SDS 2%,Tris·Cl (PH=6.7) 62.5mM,beta-巯基乙醇100mM)中,50℃孵育30分钟,TTBS西三次,再重新加入一抗,进行另一种抗原的检测。

电机分类 结构和原理

电机知识学习总结 1基本知识介绍 1.1直流、单相交流、三相交流 1.2交流下有“同步和异步”的区别 同步异步指的是转子转速与定子旋转磁场转速是同步(相同)还是异步(滞后),因而只有交流能产生旋转磁场,只有交流电机有同步异步的概念。 同步电机——原理:靠“磁场总是沿着磁路最短的方向上走”实现转子磁极与定子旋转磁场磁极逐一对应,转子磁极转速与旋转磁场转速相同。特点:同步电机无论作为电动机还是发电机使用,其转速与交流电频率之间将严格不变。同步电机转速恒定,不受负载变化影响。 异步电机——原理:靠感应来实现运动,定子旋转磁场切割鼠笼,使鼠笼产生感应电流,感应电流受力使转子旋转。转子转速与定子旋转磁场转速必须有转速差才能形成磁场切割鼠笼,产生感应电流。 区别:(1)同步电机可以发出无功功率,也可以吸收;异步电机只能吸收无功。(2)同步电机的转速与交流工频50Hz电源同步,即2极电机3000转、4极1500、6极1000等。异步电机的转速则稍微滞后,即2极2880、4极1440、6极960等。(3)同步电动机的电流在相位上是超前于电压的,即同步电动机是一个容性负载。同步电动机可以用以改进供电系统的功率因素。 同步电机无法直接启动:刚通电一瞬间,通入直流电的转子励磁绕组是静止的,转子磁极静止;定子磁场立即具有高速。假设此瞬间正好定子磁极与转子磁极一一对应吸引,在定子磁极在极短的时间内旋转半周的时间之内,会对转子产生吸引力,半周之后将会产生排斥力。由于转子有转动惯量,转子不会转动起来,而是在接近于0的速度下左右震动。因此同步电机需要鼠笼绕组启动。转速差使其产生感应电流,而感应电流具有减小转速差的特性(四根金属棒搭成井形,内部磁场变密会减小面积,变疏会增加面积,阻止其变化趋势),因而会使转子转动起来,直到感应电流与转速差平衡(没有电流就不会有力,因而不会消除转速差,猜测与旋转阻力有关)。 1.3永磁、电磁、感磁(构成定子、转子) 永磁——永磁铁 电磁——通电线圈 感磁——无电闭合绕组、鼠笼 永磁和电磁大多数情况下可以互换,感磁需要有旋转磁场的场合才能用,在三相同步电机中经常作为启动与电磁/永磁共用于转子。 1.4有刷无刷 电机有刷和无刷对电机结构影响很大,刷指的是转子通电时的电刷换向器、或者滑环。

直流电动机分类

直流电动机分类 直流电动机按结构及工作原理可划分:(1)无刷直流电动机和(2)有刷直流电动机。 (1)无刷直流电动机:无刷直流电动机是将普通直流电动机的定子与转子进行了互换。其转子为永久磁铁产生气隙磁通:定子为电枢,由多相绕组组成。在结构上,它与永磁同步电动机类似。无刷直流电动机定子的结构与普通的同步电动机或感应电动机相同.在铁芯中嵌入多相绕组(三相、四相、五相不等).绕组可接成星形或三角形,并分别与逆变器的各功率管相连,以便进行合理换相。转子多采用钐钴或钕铁硼等高矫顽力、高剩磁密度的稀土料,由于磁极中磁性材料所放位置的不同.可以分为表面式磁极、嵌入式磁极和环形磁极。由于电动机本体为永磁电机,所以习惯上把无刷直流电动机也叫做永磁无刷直流电动机。 (2)有刷直流电动机可划分:(2、1)永磁直流电动机和(2、2)电磁直流电动机。 (2、1)永磁直流电动机划分:稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钴永磁直流电动机。 (2、1、1)稀土永磁直流电动机:体积小且性能更好,但价格昂贵,主要用于航天、计算机、井下仪器等。

(2、1、2)铁氧体永磁直流电动机:由铁氧体材料制成的磁极体,廉价,且性能良好,广泛用于家用电器、汽车、玩具、电动工具等领域。 (2、1、3)铝镍钴永磁直流电动机:需要消耗大量的贵重金属、价格较高,但对高温的适应性好,用于环境温度较高或对电动机的温度稳定性要求较高的场合。 (2、2)电磁直流电动机划分:串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。 (2、2、1)串励直流电动机:电流串联,分流,励磁绕组是和电枢串联的,所以这种电动机内磁场随着电枢电流的改变有显著的变化。为了使励磁绕组中不致引起大的损耗和电压降,励磁绕组的电阻越小越好,所以直流串励电动机通常用较粗的导线绕成,他的匝数较少。 (2、2、2)并励直流电动机:并励直流电机的励磁绕组与电枢绕组相并联,作为并励发电机来说,是电机本身发出来的端电压为励磁绕组供电;作为并励电动机来说,励磁绕组与电枢共用同一电源,从性能上讲与他励直流电动机相同。 (2、2、3)他励直流电动机:励磁绕组与电枢没有电的联系,励磁电路是由另外直流电源供给的。因此励磁电流不受电枢端电压或电枢电流的影响。

(机械)(焊接)焊接冶金学(基本原理)习题

焊接冶金学(基本原理)习题 绪论 1.试述焊接、钎焊和粘接在本质上有何区别? 2.怎样才能实现焊接,应有什么外界条件? 3.能实现焊接的能源大致哪几种?它们各自的特点是什么? 4.焊接电弧加热区的特点及其热分布? 5.焊接接头的形成及其经历的过程,它们对焊接质量有何影响? 6.试述提高焊缝金属强韧性的途径? 7.什么是焊接,其物理本质是什么? 8.焊接冶金研究的内容有哪些 第一章焊接化学冶金 1.焊接化学冶金与炼钢相比,在原材料方面和反应条件方面主要有哪些不同? 2.调控焊缝化学成分有哪两种手段?它们怎样影响焊缝化学成分? 3.焊接区内气体的主要来源是什么?它们是怎样产生的? 4为什么电弧焊时熔化金属的含氮量高于它的正常溶解度? 5.氮对焊接质量有哪些影响?控制焊缝含氮量的主要措施是什么? 6.手弧焊时,氢通过哪些途径向液态铁中溶解?写出溶解反应及规律? 7.氢对焊接质量有哪些影响? 8既然随着碱度的增加水蒸气在熔渣中的溶解度增大,为什么在低氢型焊条熔敷金属中的含氢量反而比酸性焊条少? 9. 综合分析各种因素对手工电弧焊时焊缝含氢量的影响。 10.今欲制造超低氢焊条([H]<1cm3/100g),问设计药皮配方时应采取什么措施? 11. 氧对焊接质量有哪些影响?应采取什么措施减少焊缝含氧量? 12.保护焊焊接低合金钢时,应采用什么焊丝?为什么? 13.在焊接过程中熔渣起哪些作用?设计焊条、焊剂时应主要调控熔渣的哪些物化性质?为什么? 14.测得熔渣的化学成分为:CaO41.94%、28.34%、23.76%、FeO5.78%、7.23%、3.57%、MnO3.74%、4.25%,计算熔渣的碱度和,并判断该渣的酸碱性。 15.已知在碱性渣和酸性渣中各含有15%的FeO,熔池的平均温度为1700℃,问在该温度下平衡时分配到熔池中的FeO量各为多少?为什么在两种情况下分配到熔池中的FeO量不同?为什么焊缝中实际含FeO量远小于平衡时的含量? 16.既然熔渣的碱度越高,其中的自由氧越多,为什么碱性焊条焊缝含氧量比酸性焊条焊缝含氧量低? 17.为什么焊接高铝钢时,即使焊条药皮中不含,只是由于用水玻璃作粘结剂,焊缝还会严重增硅? 18. 综合分析熔渣中的CaF2在焊接化学冶金过程是所起的作用。 19.综合分析熔渣的碱度对金属的氧化、脱氧、脱硫、脱磷、合金过渡的影响。 20.什么是焊接化学冶金过程,手工电弧焊冶金过程分几个阶段,各阶段反应条件有何不同,主要进行哪些物理 化学反应? 21.什么是熔合比,其影响因素有哪些,研究熔合比在实际生产中有什么意义?

常用电动机原理与结构

常用电动机原理与结构 电动机的分类 按电动机绕组结构可分为三相和单相电动机、笼型、绕线型。按电源可分为高压、低压电动机、交流和直流电动机。电动机又可分为同步和异步电动机。单相电动机又分为交流分相电动机、交直流两用串励电动为机和罩极电动机。还有按电动机使用环境、条件等可分为很多种类,不过大致可按下面几种方式归类:按电动机结构尺寸分为 大型(机座中心高H )630MM,或者定子铁心外径大于90MM者)、中型(机座中心高H为355-630MM,或者定子铁心外径在560—990MM之间者)、小型(机座中心高H为80-315MM,或者定子铁心外径在125—560MM之间者)。 例如Y112M-4 中的112的意思是代表电动机的机座中心高为112MM,小于315MM,属于小型电动机。 按防护型式分为 开启式(如IP11、IP22):电动机除必要的支撑结构外,对于转动及带电部分没有专门的保护。 封闭式(如IP44、IP54 ):电动机机壳内部的转动部分及带电部分有必要的机械保护,以防止意外的接触,但并不明显的防碍通风。防护式电动机按其通风防护结构不同,又分为: 网罩式:电动机的通风口用穿孔的遮盖物遮盖起来,使电动机的转动部分及带电部分不能与外物相接触。 防滴式:电动机通风口的结构能够防止垂直下落的液体或固体直接进入电动机内部。 防溅式:电动机通风口的结构可以防止与垂直接成100度角范围内任何方向的液体或固体进入电动机内部。 封闭式:电动机机壳的结构能够阻止机壳内外空气的自由交换,但并不要求完全的密封。 防水式:电动机机壳的结构能够阻止具有一定压力的水进入电动机内部。 水密式:当电动机浸在水中时,电动机机壳的结构能阻止水进入电动机内部。 潜水式:电动机在额定的水压下,能长期在水中运行。 隔爆式:电动机机壳的结构足以阻止电动机内部的气体爆炸传递到电动机外部,而引起电动机外部的燃烧性气体的爆炸。 例:IP44标志电动机能防护大于1MM的固体异物入内,同时能防溅水。 IP后面第一位数字的意义 0无防护,没有专门的防护 1能防止直径大于50MM的固体异物进入机壳内,能防止人体的大面积(如手)偶然触及壳内带电或运动部分,但不能防止有意识的接近这 些部分。 2能防止直径大于12MM的固体异物进入机壳内,能防止手指触及壳内带电或运动部分 3能防止直径大于2.5MM的固体异物进入机壳内,能防止厚度(或直径)大于2.5的工具、金属等触及壳内带电或运动部分。 4能防止直径大于1MM的固体异物进入机壳内,能防止厚度(或直径)

常见电动机分类及原理

一、原理 1、基本原理:通电导线在磁场中会受到力的作用。 2、方向判定:力左电右:左手定则,摊开左手,使大拇指与其余四指垂直且在同一平面内,让磁感线垂直穿过手心,四指指向电流方向,则大拇指所指为导体受力方向;右手定则,摊开右手,使大拇指与其余四指垂直且在同一平面内,让大拇指指向导体运动方向,则其余四指所指为感应电流方向。 二、分类 1、按工作电源分类:直流电动机 交流电动机:单相交流电动机、三相交流电动机 2、按结构原理分类:异步电动机 同步电动机(转子转速与磁场转速是否同步) 3、按用途分类:驱动用电动机 控制用电动机:步进电动机(开环控制)、伺服电动机(闭环控制,更精确) 4、按转子结构分类:鼠笼型电动机 绕线型电动机 三、直流电动机 1、分类 A、按励磁方式(主磁场):永磁励磁电动机 电磁励磁电动机:他励,主绕组与电枢绕组分别供电 自励:并励,串励,复励 B、按有无电刷:有刷直流电动机 无刷直流电动机:永磁体转动,不同于有刷的机械换向,无刷采用电子换向,控制器件通过控制输入定子线圈中的电流来产生旋转磁场。 2、原理: 有刷直流电动机产品转子结构图

四、单相交流电动机 1、分类:分类口诀:单相电机分三种,分类方式看起动 分相起动第一种,分相又分电阻和电容 电容裂相分三类,起动、运行、双电容 罩极起动第二种,凸极隐极两类型 串励起动第三种,交流直流都可用 2、电容分相起动单相电机:定子中有主副两根绕组,主绕组较粗,电阻一般为几欧,副绕组较细,电阻一般十几欧到几十欧。主绕组与副绕组在空间上呈九十度,且因为负绕组支路

中电容的作用,两绕组上的电流在相位上相差九十度,以此来产生一个旋转磁场起动电机。转子为鼠笼式。 结构图 电路图 不断开是为了提高功率因数,增加转矩,但最佳运行电容往往不是最佳起动电容,所以有下面的双电容形式。

何为洁净室 洁净室的分类

苏州鸿基洁净科技洁净室分享 何为洁净室?洁净室的分类 洁净室的定义 洁净室是指空气洁净度达到规定级别的可供人活动的空间。其功能是控制微粒的污染。 为了达到规定的洁净度级别,有效地控制微粒的污染,使人们在其中从事精密的生产和科学实验活动,洁净室绝不是仅限于“洁净”,而必须是一个对冷热、噪声、照度、静电、微振都有相当要求的多功能的综合体,是集建筑装饰、净化空调、纯水纯气、电气控制等多种专业技术于一体的产物。 洁净室的分类 一、按用途分类 按用途可分为两大类: (1)工业洁净室--以无生命的微粒作为控制对象。主要控制无生命微粒对工作对象的污染,内部一般保持正压。它适用于精密工业、电子工业、宇航工业、原子能工业、印刷工业、照相工业等部门。 (2)生物洁净室--以有生命的微粒为控制对象,又可分为: ①一般生物洁净室。主要控制有生命微粒对工作对象的污染。同时内部材料要经受各种灭菌剂侵蚀,内部一般保持正压。可用于制药工业、食品工业、医疗设施、实验设施等。 ②生物安全洁净室。主要控制工作对象的有生命微粒对外界和人的污染,内部需保持负压。用于实验设施、生物工程、医疗设施等。 二、按气流分类 按气流可分为四类: ⑴单向流洁净室 ⑵非单向流洁净室(乱流洁净室) ⑶矢角流洁净室 ⑷混合流洁净室(局部单向流洁净室) 三、单向流洁净室的原理和特性 ⑴定义 单向流洁净室是:气流以均匀的截面速度,沿着平行流线以单一方向在整个室截面上通过的洁净室。 ⑵原理 单向流洁净室靠送风气流“活塞”般的挤压作用,迅速把室内污染排出。

要保证活塞作用的实现,最重要一点是高效过滤器必须满布。当然,过滤器是有边框的,顶棚也有边框,不可能100%地满布过滤器。满布比来衡量过滤器的满布程度: 正常情况下满布比达到80%。垂直单向流满布比不应小于60%,水平单向流应小于40%,否则就是局部单向流了。 ⑶特征指标 ①流线平行度(流线平行性) 流线平行的作用性是保证尘源散发的尘粒不作垂直于流向的传播。要求流线之间既要平行(在0.5m距离内线间夹角不能小于15°),又要求流线尽可能垂直于送风面(其倾角最小不能小于65°)。 ②乱流度(速度不均匀度) 速度均匀的作用是保证流线之间质点的横向交换最小。乱流度是为了说明速度场的集中或离散程度而定义的。 ③下限风速 这是为了保证洁净室能控制以下四种污染的最小风速: a. 当污染气流多方位散布时,送风气流要能有效控制污染的范围; b. 当污染气流与送风气流同向时,送风气流要能有效控制污染气流到达下游的扩散范围; c. 当污染气流与送风气流逆向时,送风气流能把污染气流抑制在必要的距离之内; d. 在全室被污染的情况下,足以在合适的时间迅速使室内空气自净。 四、乱流洁净室的原理和特性 ⑴定义 乱流洁净室是:气流以不均匀的速度呈不平行流动,伴有回流或涡流的洁净室。 ⑵原理 乱流洁净室靠送风气流不断稀释室内空气,把室内污染逐渐排出,达到平衡。要想保证稀释作用很好实现,最重要一点是室内气流扩散得赶快越均匀越好。 ⑶特征指标 ①换气次数 换气次数的作用是保证有足够进行稀释的干净气流。 换气次数的多少应根据计算和经验确定。 ②气流组织 气流组织的作用是保证能均匀地送风和回风,充分发挥干净气流的稀释作用。因此要求单个风口有足够的扩散作用,全室回风布置均匀,数量多一些好,要尽量减少涡流和气流回旋。 ③自净时间

(完整word版)焊接冶金学(基本原理)习题总结

焊接冶金学(基本原理) 部分习题及答案 绪论 一、什么是焊接,其物理本质是什么? 1、定义:焊接通过加热或加压;或两者并用,使焊件达到原子结合,从而形成永久性连接工艺。 2、物理本质:焊接的物理本质是使两个独立的工件实现了原子间结合,对于金属而言,既实现了金属键结合。 二、怎样才能实现焊接,应有什么外界条件? 1、对被焊接的材质施加压力:目的是破坏接触表面的氧化膜,使结合处增加有效的接触面积,从而达到紧密接触。 2、对被焊材料加热(局部或整体):对金属来讲,使结合处达到塑性或熔化状态,此时接触面的氧化膜迅速破坏,降低金属变形的阻力,加热也会增加原于的振动能,促进扩散、再结晶、化学反应和结晶过程的进行。 三、试述熔焊、钎焊在本质上有何区别? 钎焊母材不溶化,熔焊母材溶化。 1. 温度场定义,分类及其影响因素。 1、定义:焊接接头上某一瞬间各点的温度分布状态。 2、分类: 1) 稳定温度场——温度场各点温度不随时间而变动; 2) 非稳定温度场——温度场各点随时间而变动; 3) 准稳定温度场——温度随时间暂时不变动,热饱和状态;或随热源一起移动。 3、影响因素: 1) 热源的性质 2) 焊接线能量 3) 被焊金属的热物理性质 a. 热导率 b. 比热容 c. 容积比热容 d. 热扩散率 e. 热焓 f. 表面散热系数 4) 焊件厚板及形状

第一章 二、焊接化学冶金分为哪几个反应区,各区有何特点? 1、药皮反应区:指焊条受热后,直到焊条药皮熔点前发生的一些反应。(100-1200℃) 1) 水分蒸发:100 ℃吸附水的蒸发,200-400 ℃结晶水的去除,化合水在更高温度下析出 2) 某些物质分解:形成Co ,CO2,H2O ,O2等气体 3) 铁合金氧化 :先期氧化,降低气相的氧化性 2、熔滴反应区:指熔滴形成、长大、脱离焊条、过渡到整个熔池 1) 温度高:1800-2400℃ 2) 与气体、熔渣的接触面积大 :1000-10000 cm2/kg 3) 时间短速度快:0.01-0.1s ;0.0001-0.001s 4) 熔渣和熔滴金属进行强烈的搅拌,混合. 3、熔池反应区 1) 反应速度低 熔池T 1600~1900℃低于熔滴T ;比表面积,接触面积小300~1300cm2/kg ;时间长,手工焊3~8秒埋弧焊6~25s 2) 熔池温度不均匀的突出特点 熔池前斗部分发生金属熔化和气体的吸收,利于吸热反应熔池后斗部分发生金属凝固和气体的析出,利于放热反应 3) 具有一定的搅拌作用 促进焊缝成分的均匀化,有助于加快反应速度,有益于气体和夹渣物的排除。然而,没有熔滴阶段激烈。 三、焊接区内有那些气体?它们是怎样产生的? 1、种类: 金属及熔渣蒸气 2、来源: 1) 焊接材料 2) 气体介质 3) 焊丝和母材表面上的油锈等杂质 4) 金属和熔渣的蒸发产生的气体 3、供给途径:一部分是直接输入或侵入的原始气体;另一部分是通过物化反应所生成的气体。 1) 有机物的分解和燃烧:纤维素的氧化分解 2) 碳酸盐和高价氧化物的分解 四、为什么电弧焊时熔化金属的含氮量高于它的正常溶解度? 电弧中受激的氮分子,特别是氮原子的溶解速度比没受激的氮分子要快得多;电弧中的氮离子N +在氧化性电弧气氛中形成NO ,遇到温度较低的液态金属它分解为N 和O ,N 迅速溶于金属。 五、氮对焊接质量有哪些影响?控制焊缝含氮量的主要措施是什么? 61052222()71210m C H O mO mCO mH +=+23lg (/)8920/7.54 p CO CaCO T =-+32CaCO CaO CO =+32MgCO MgO CO =+23lg (/)5785/ 6.27p CO MgCO T =-+22222N O O H H CO CO 、、、、、

空气洁净技术考点

1.什么是空气洁净度?什么是空气洁净技术? 空气洁净度是洁净环境中空气含尘(微粒)量多少的程度。空气洁净技术即洁净室(空间)污染控制技术。是空调工程中一种,它不仅对室内空气的温度、湿度、风速有一定的要求,而且对空气中的含尘粒数、细菌浓度等都有较高的要求。 2.洁净室空气洁净度级别状态有哪三种? 空态、静态、动态 3.洁净空调与一般空调的区别。 1)主要参数控制侧重控制室内空气的含尘量、风速和换气次数,生物洁净室还要控制含菌量。 2)空气过滤手段要求有粗、中、高效或粗、中、亚高效三级过滤,在有些洁净室中,还需设排风过滤或排风净化处理。 3)室内压力要求对不同洁净室(区)的压差有不同的要求。 4)避免外界污染 5)对系统气密性的要求 6)对土建及其他工种的要求 4.洁净建筑的特点

洁净厂房建筑设计要综合考虑产品生产工艺要求、生产设备特点、净化空调系统、室内气流流型及各类管线系统安排等。通常包括:洁净区、准洁净区和辅助区在满足工艺要求的情况下,洁净室净高应尽量降低建筑尽量具有大开间、无隔断、可以灵活改动的特点在工艺无特殊要求的情况下,洁净室应争取做成有窗建筑要特别考虑与洁净室安全有关的问题在不影响工作的情况下,尽量把洁净度要求相同的洁净室安排在一起工艺布置要使零件、半成品的运送距离最短,便于净化空调系统的合理布置洁净室之间如有物件传送的需要,则一定要通过传递窗洁净度要求高的工序应布置在上风侧,产生污染多的布置在靠近回、排风口处5.按微粒形成方式可以分为哪两大类?按微粒来源可以分为哪几大类? 按微粒大小可以分为哪几大类?微粒的通用分类方法分为哪几大类?按微粒的形成方式分类:分散性微粒和凝集性微粒按微粒来源方式分类:无机微粒有机微粒有生命微粒按微粒大小方式分类:可见微粒显微微粒超显微微粒按微粒的通用分类:灰尘烟雾烟雾 6.相对频率和累计频率描述了什么?有什么不同? 相对频率描述粒子集合体的粒径分布状况常用各粒子的数量百分数。表达式累计频率7.室外和室内的主要污染源各有哪些? 室外污染源:(1)大气尘(2)大气中的微生物 室内污染源:(1)大气中的含尘、含菌、洁净空调系统中新风带入的尘粒

焊接冶金学(基本原理)

绪论 一、焊接过程的物理本质 1.焊接:被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子问的结合而形成永久性连接的工艺过程称为焊接。 物理本质:1)宏观:焊接接头破坏需要外加能量和焊接的的不可拆卸性(永久性)2)微观:焊接是在焊件之间实现原子间结合。 2.怎样才能实现焊接,应有什么外界条件? 从理论来讲,就是当两个被焊好的固体金属表面接近到相距原子平衡距离时,就可以在接触表面上进行扩散、再结晶等物理化学过程,从而形成金属键,达到焊接的目的。然而,这只是理论上的条件,事实上即使是经过精细加工的表面,在微观上也会存在凹凸不平之处,更何况在一般金属的表面上还常常带有氮化膜、油污和水分等吸附层。这样,就会阻碍金属表面的紧密接触。 为了克服阻碍金属表面紧密接触的各种因素,在焊接工艺上采取以下两种措施: 1)对被焊接的材质施加压力目的是破坏接触表面的氧化膜,使结合处增加有效的接触面积,从而达到紧密接触。 2)对被焊材料加热(局部或整体) 对金属来讲,使结合处达到塑性或熔化状态,此时接触面的氧化膜迅速破坏,降低金属变形的阻力,加热也会增加原于的振动能,促进扩散、再结晶、化学反应和结晶过程的进行。 二、焊接热源的种类及其特征 1)电弧热:利用气体介质放电过程所产生的热能作为焊接热源。 2)化学热:利用可燃和助燃气体或铝、镁热剂进行化学反应时所产生的热能作为热源。3)电阻热:利用电流通过导体时产生的电阻热作为热源。 4)高频感应热:对于有磁性的金属材料可利用高频感应所产生的二次电流作为热源,在局部集中加热,实现高速焊接。如高频焊管等。 5)摩擦热:由机械摩擦而产生的热能作为热源。 6)等离子焰:电弧放电或高频放电产生高度电离的离子流,它本身携带大量的热能和动能,利用这种能量进行焊接。 7)电子束:利用高压高速运动的电子在真空中猛烈轰击金属局部表面,使这种动能转化为热能作为热源。 8)激光束:通过受激辐射而使放射增强的光即激光,经过聚焦产生能量高度集中的激光束作为热源。 三、熔焊加热特点及焊接接头的形成 (一)焊件上加热区的能量分布 热源把热能传给焊件是通过焊件上一定的作用面积进行的。对于电弧焊来讲,这个作用面积称为加热区,加热区又可分为加热斑点区和活性斑点区; 1)活性斑点区活性斑点区是带电质点(电子和离于)集中轰击的部位,并把电能转为热能; 2)加热斑点区在加热斑点区焊件受热是通过电弧的辐射和周围介质的对流进行的。在该区内热量的分布是不均匀的,中心高,边缘低,如同立体高斯锥体. (二)焊接接头的形成: 熔焊时焊接接头的形成,一般都要经历加热、熔化、冶金反应、凝固结晶、固态相变,直至形成焊接接头。 (l)焊接热过程:熔焊时被焊金属在热源作用下发生局部受热和熔化,使整个焊接过程自始至终都是在焊接热过程中发生和发展的。它与冶金反应、凝固结晶和固态相变、焊接温度场和应力变形等均有密切的关系。

洁净室的定义、分类及洁净度检测标准|喜格

洁净室的定义、分类及洁净度检测标准 一、洁净室的定义 1.什么是洁净室 洁净室是指将一定空间范围内之空气中的微粒子、有害空气、细菌等之污染物排除,并将室内之温度、洁净度、室内压力、气流速度与气流分布、噪音振动及照明、静电控制在某一需求范围内,而所给予特别设计之房间 2.洁净工作原理 气流→初效净化→加湿段→加热段→表冷段→中效净化→风机送风→管道→高效净化风口→吹入房间→带走尘埃细菌等颗粒→回风百叶窗→初效净化重复以上过程,即可达到净化目的。 二、按用途分类 1、工业洁净室 以无生命微粒的控制为对象。主要控制空气尘埃微粒对工作对象的污染,内部一般保持正压状态。它适用于精密机械工业、电子工业(半导体、集成电路等)宇航工业、高纯度化学工业、原子能工业、光磁产品工业(光盘、胶片、磁带生产)LCD(液晶玻璃)、电脑硬盘、电脑磁头生产等多行业。 2、生物洁净室 以控制有生命微粒(细菌)与无生命微粒(尘埃)对工作对象的污染。又可分为: A.一般生物洁净室,主要控制微生物(细菌)对象的污染。同时其内部材料要能经受各种灭菌剂侵蚀,内部一般保持正压。实质上其内部材料要能经受各种灭菌处理的工业洁净室。 B.生物学安全洁净室:主要控制工作对象的有生命微粒对外界和人的污染。内部要保持与大气的负压。 三、按气流分类 1、单向流洁净室 单向流洁净室也叫层流洁净室也分为垂直流动洁净室和水平流动洁净室,其气流是从室内送风一侧平行、直线、平稳地流向相对应的回风侧,它是将室内污染源的污染物在未向室内扩散之前就被洁净空气压出房间,送入的清洁空气对污染源起隔离作用。 特点:流线单向平行,是指时均流线彼此平行,方向单一,并且干净气流不是一股或几股,而是充满全室断面,所以这种洁净室不是靠洁净气流对室内脏空气的掺混稀释作用,而是靠洁净气流推出作用将室内脏空气沿整个断面排至室外,达到净化室内空气的目的。

洁净室分类及工作原理)

洁净室分类及工作原理 一、洁净室原理 (一) 洁净室的定义 洁净室是指空气洁净度达到规定级别的可供人活动的空间。其功能是控制微粒(尘埃粒子)的污染。来达到满足精密产品的生产与科学实验活动。洁净室绝不是仅限于"洁净",不同的行业与部门对温度、温度、照明、噪声、静电、微振都有相当要求的多功能的综合整体,是集建筑装饰(与大气相对隔断的密闭装修)、净化空调、纯水、纯气、动力电、照明电、工艺管道等多种专业技术于一体的产物,洁净室(或洁净厂房) (二) 洁净室的分类实现层流的最低风速值 2.1按用途分类(可分为两大类) ①工业洁净室-以无生命微粒的控制为对象。主要控制空气尘埃微粒对工作对象的污染,内部一般保持正压状态。它适用于精密机械工业、电子工业(半导体、集成电路等)宇航工业、高纯度化学工业、原子能工业、光磁产品工业(光盘、胶片、磁带生产)LCD(液晶玻璃)、电脑硬盘、电脑磁头生产等多行业。 ②生物洁净室:以控制有生命微粒(细菌)与无生命微粒(尘埃)对工作对象的污染。又可分为: A.一般生物洁净室,主要控制微生物(细菌)对象的污染。同时其内部材料要能经受各种灭菌剂侵蚀,内部一般保持正压。实质上其内部材料要能经受各种灭菌处理的工业洁净室。 B.生物学安全洁净室:主要控制工作对象的有生命微粒对外界和人的污染。内部要保持与大气的负压。 2.2按气流分类(按气流可分为四类) ①.单向流洁净室(层流、活塞流) ②.乱流净室 ③.辐射流(斜流)洁净室 ④.混合流洁净室(乱流、层流同在) (三) 单向流(层流)洁净室(又称垂直流,平行流)

(1) 既气流以均匀的截面速度,沿着平行流线以单一方向在整个室天花截面下通过的洁净室。单向流洁净室靠送风气流“活塞”般的挤压作用。迅速把室内污染排回风道。 (2) 要想实现"活塞流"的作用,最重要的是高效过滤器必须满布。但是由于高效过滤器有边框,放置高铲过滤器也要有支架,不可能百分之百的满布。所以我国《洁净厂房设计规范》规定,垂直流洁净室满布比不应小于60%,水平单向流洁净室不应小于40%,否则就是局部单向流了。 (四) 乱流洁净室的原理和特性 1、定义:乱流洁净室的定义是气流以不均匀的速度是不平行流动,伴有回流或涡流的洁净室。 2、原理:乱流洁净室靠送风气流不断稀释室内空气,把室内污染逐渐排出,来实殃洁净的(乱流洁净室一般设计在千级以上至30万级净化级别)。 3、特性:乱流洁净室是靠多次换气来实现洁净级别。换气次数决定定义无反顾的净化级别(换气次数越多,净化级别越高) (五)洁净室的新风要求 按《洁净厂房设计规范》规定,乱流洁净室新风量应不小于总风量的10%-30%;单向流洁净室,新风量应不小于总风量的2%-4%,当然也可以根据洁净室的具体功能而定 洁净室 洁净室 一、洁净室之定义 洁净室(Clean Room),亦称为无尘室或清净室。它是污染控制的基础。没有洁净室,污染敏感零件不可能批量生产。在FED-STD-2里面,洁净室被定义为具备空气过滤、分配、优化、构造材料和装置的房间,其中特定的规则的操作程序以控制空气悬浮微粒浓度,从而达到适当的微粒洁净度级别。 洁净室是指将一定空间范围内之空气中的微粒子、有害空气、细菌等之污染物排除,并将室内之温度、洁净度、室内压力、气流速度与气流分布、噪音振动及照明、静电控制在某一需求范围内,而所给予特别设计之房间。亦即是不论外在之空气条件如何变化,其室内均能俱有维持原先所设定要求之洁净度、温湿度及压力等性能之特性。

电动机的分类

摘要: 电机:也称电动机(俗称马达),是指依据电磁感应定律实现电能的转换或传递的一种电磁装置。它的主要作用是产生驱动转矩,作为用电器或各种机械的动力源。电动机被广泛应用的推动力来自直流电动机的问世,在1870年时比利时的工程师格拉姆发明了这种实用机械,并把它大量制造出来,而后还不断的对电动机的效率进行提高。电动机的另一个研究单位德国西门子也在努力研究,几乎也是在格拉姆成功的同一时间,西门子推出了电机车,这个不烧油的车在柏林工业展览会上获得一片喝彩声。交流电动机的发明是由美国发明家特斯拉完成的,最早的交流电动机根据电磁感应原理设计,结构比起直流电动机更为简单,同时也比起只能使用在电车上的直流电动机用途更广泛,它的发明让电动机真正进入了家庭电器领域。交流电动机问世之后,同步电动机、串激电动机、交流换向器电动机等也逐步被人们发明出来,并投入实际的生产,为人们的生活提供更多便利。电动机的发明和应用对人类来说具有极大的意义,可以说它为人类生活带来了翻天覆地的变化。 关键字:电动机分类原理应用 第一章电动机的分类 1.1 电动机的分类 电动机按工作电源种类划分:可分为直流电机和交流电机。直流电动机按结构及工作原理可划分:无刷直流电动机和有刷直流电动机。有刷直流电动机可划分:永磁直流电动机和电磁直流电动机。电磁直流电动机划分:串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。永磁直流电动机划分:稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钴永磁直流电动机。其中交流电机还可分:同步电机和异步电机。同步电机可划分:永磁同步电动机、磁阻同步电动机和磁滞同步电动机。异步电机可划分:感应电动机和交流换向器电动机。感应电动机可划分:三相异步电动机、单相异步电动机和罩极异步电动机等。交流换向器电动机可划分:单相串励电动机、交直流两用电动机和推斥电动机。如图一

焊接冶金学基本原理

1.第一章 1、氮对焊接质量的影响? (1).有害杂质(2).促使产生气孔(3).促使焊缝金属时效脆化。 影响焊缝含氮量的因素及控制措施? 1)、机械保护2)、焊接工艺参数(采用短弧焊;增加焊接电流; 直流正接高于交流,高于直流反接(焊缝含N量); 增加焊丝直径;N%,多层焊>单层焊;N%,小直径焊条>大直径焊条3)合金元素( 增加含碳量可降低焊缝含氮量;Ti、Al、Zr和稀土元素对氮有较大亲和力 2.、氢对焊接质量的影响? 1).氢气孔2)、白点3)、氢脆4)、组织变化和显微斑点5)、产生冷裂纹控制氢的措施? 1)、限制焊接材料的含氢量,药皮成分2)、严格清理工件及焊丝:去锈、油污、吸附水分3)、冶金处理4)、调整焊接规范5)、焊后脱氢处理 3、氧对焊接质量的影响? 1)、机械性能下降;化学性能变差2)、产生CO气孔,合金元素烧损3)、工艺性能变差应采取什么措施减小焊缝含氧量? 1)纯化焊接材料2)控制焊接工艺参数3)脱氧 4.CO2保护焊焊接低合金钢时,应采用什么焊丝,为什么? 答:采用高锰高硅焊丝,原因:(1)Mn,Si被烧损;(2)Mn,Si联合脱氧。 5.既然熔渣的碱度越高,其中的自由氧越多,为什么碱性焊条焊缝含氧量比酸性焊条焊缝含氧量低? 答:L=(FeO)/[FeO] T↑L↓,焊接温度下L>1 同样温度下,FeO在碱性渣中比酸性渣中更容易向金属中分配 在熔渣含FeO量相同的情况下,碱性渣时焊缝含氧量比酸性渣时多。 然而碱性焊条的焊缝含氧量比酸性焊条低 碱性焊条药皮的氧化势小的缘故 6为什么焊接高铝钢时,即使焊条中不含SiO2,只是由于水玻璃作粘结剂焊缝还会严重增硅? 答:Al和O的亲和力比Si和O的亲和力大,Si烧损少,水玻璃中的Si能大量的过渡到金属中。 7.为什么酸性焊条用锰铁作为脱氧剂,而碱性焊条用硅铁、锰铁和钛铁为脱氧剂? 答:酸性焊条含SiO2多,与MnO2 (脱氧产物)形成复合氧化物,,降低O含量,使渣中MnO2含量降低,浓度降低,从而使熔敷金属中的氧化物向渣中过渡,达到脱氧的目的。在碱性渣中MnO的活度系数较大,不利于锰脱氧而碱性渣中Si的脱氧效果较好,硅的脱氧能力比锰大,但生成的SiO2熔点高,不易聚合为大的质点,SiO2与钢液的界面张力小,润湿性好,不易从钢中分离,易造成夹杂锰和硅按适当比例加入金属中进行联合脱氧时可以得到较好的脱氧效果. 优点:脱氧产物MnO·SiO2熔点低,比重小,易聚成球,浮到渣中去,减少焊缝夹杂物[Mn]/[Si]=3~7时效果最佳 8.综合分析熔渣的碱度对金属的氧化、脱氧、脱硫、脱磷、合金过渡的影响。 答:1)氧化问题:碱度大,则含SiO2等酸性氧化物就少,使FeO的活度大,容易向金属中扩散,使焊缝增氧。因此在熔渣含FeO含量相同的情况下碱性渣的焊缝含氧量比酸性渣多。 2)脱氧问题:碱性渣中MnO活度较大,不利于Mn脱氧,且碱度越大,Mn的脱氧

电机分类结构和原理

电机分类结构和原理标准化管理部编码-[99968T-6889628-J68568-1689N]

电机知识学习总结 1基本知识介绍 直流、单相交流、三相交流 交流下有“同步和异步”的区别 同步异步指的是转子转速与定子旋转磁场转速是同步(相同)还是异步(滞后),因而只有交流能产生旋转磁场,只有交流电机有同步异步的概念。 同步电机——原理:靠“磁场总是沿着磁路最短的方向上走”实现转子磁极与定子旋转磁场磁极逐一对应,转子磁极转速与旋转磁场转速相同。特点:同步电机无论作为电动机还是发电机使用,其转速与交流电频率之间将严格不变。同步电机转速恒定,不受负载变化影响。 异步电机——原理:靠感应来实现运动,定子旋转磁场切割鼠笼,使鼠笼产生感应电流,感应电流受力使转子旋转。转子转速与定子旋转磁场转速必须有转速差才能形成磁场切割鼠笼,产生感应电流。 区别:(1)同步电机可以发出无功功率,也可以吸收;只能吸收无功。(2)同步电机的转速与交流工频50Hz电源同步,即2极电机3000转、4极1500、6极1000等。异步电机的转速则稍微滞后,即2极2880、4极1440、6极960等。(3)同步电动机的电流在相位上是超前于电压的,即同步电动机是一个容性负载。同步电动机可以用以改进供电系统的功率因素。 同步电机无法直接启动:刚通电一瞬间,通入直流电的转子励磁绕组是静止的,转子磁极静止;定子磁场立即具有高速。假设此瞬间正好定子磁极与转子磁极一一对应吸引,在定子磁极在极短的时间内旋转半周的时间之内,会对转子产生吸引力,半周之后将会产生排斥力。由于转子有转动惯量,转子不会转动起来,而是在接近于0的速度下左右震动。因此同步电机需要鼠笼绕组启动。转速差使其产生感应电流,而感应电流具有减小转速差的特性(四根金属棒搭成井形,内部磁场变密会减小面积,变疏会增加面积,阻止其变化趋势),因而会使转子转动起来,直到感应电流与转速差平衡(没有电流就不会有力,因而不会消除转速差,猜测与旋转阻力有关)。 永磁、电磁、感磁(构成定子、转子) 永磁——永磁铁 电磁——通电线圈 感磁——无电闭合绕组、鼠笼

电动机分类及介绍

电动机分类及介绍 电动机是一种旋转式电动机器,它将电能改动为机械能,它首要包含一个用以发作磁场的电磁铁绕组或散布的定子绕组和一个旋转电枢或转子。在定子绕组旋转磁场的效果下,其在电枢鼠笼式铝框中有电流转过并受磁场的效果而使其翻滚。这些机器中有些类型可作电动机用,也可作发电机用。它是将电能改动为机械能的一种机器。通常电动机的作功有些作旋转运动,这种电动机称为转子电动机;也有作直线运动的,称为直线电动机。以下为电动机的各种分类。 几种多见电动机介绍直流电动机将直流电能改换为机械能的电动机。因其超卓的调速功用而在电力拖动中得到广泛运用。直流电动机按励磁办法分为永磁、他励和自励3类,其间自励又分为并励、串励和复励3种。沟通电动机将沟通电的电能改动为机械能的一种机器。沟通电动机首要由一个用以发作磁场的电磁铁绕组或散布的定子绕组和一个旋转电枢或转子构成。电动机运用通电线圈在磁场中受力翻滚的景象而制成的。沟通电动机由定子和转子构成,并且定子和转子是选用同一电源,所以定子和转子中电流的方向改动老是同步的。沟通电动机即是运用这个原理而作业的。三相电动机三相电机是指当电机的三相定子绕组(各相差120度电视点),通入三相

沟通电后,将发作一个旋转磁场,该旋转磁场切开转子绕组,然后在转子绕组中发作感应电流(转子绕组是闭合通路),载流的转子导体在定子旋转磁场效果下将发作电磁力,然后在电机转轴上构成电磁转矩,驱动电动机旋转,并且电机旋转方向与旋转磁场方向相同。三相异步电动机的三相定子绕组每相绕组都有两个引出线头,总共六个引出线头,别离以U1、U2;V1、V2;W1、W2标明。这六个引出线头引进电机接线盒的接线柱上。单相电动机单相电机通常是指用单相沟通电源(AC220V)供电的小功率单相异步电动机。单相异步电动机通常在定子上有两相绕组,转子是通常鼠笼型的。两相绕组在定子上的散布以及供电状况的纷歧样,能够发作纷歧样的起动特性和作业特性。下图是带正回转开关的接线图,通常这种电机的起动绕组与作业绕组的电阻值是相同的,即是说电机的起动绕组与作业绕组是线径与线圈数完全一同的。通常洗衣机用得到这种电机。这种正回转操控办法简略,不必杂乱的改换开关。步进电动机步进电动机又称脉冲电机,是数字操控体系中的一种首要的施行元件,它是将电脉冲信号改换成转角或转速的施行电动机,其角位移量与输入电脉冲数成正比;其转速与电脉冲的频率成正比。在负载才调方案内,这些联络将不受电源电压、负载、环境、温度等要素的影响,还可在很宽的方案内完毕调速,活络主张、制动和回转。伺服电动

焊接冶金学基本原理要点归纳总计

绪论 1)焊接:焊接是指被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子间的结合而形成永久性连接的工艺过程。 2)焊接、钎焊和粘焊本质上的区别: 焊接:母材与焊接材料均熔化,且二者之间形成共同的晶粒; 钎焊:只有钎料熔化,而母材不熔化,在连接处一般不易形成共同晶粒,只有在母材和钎料之间形成有相互原子渗透的 机械结合; 粘焊:既没有原子的相互渗透而形成共同的晶粒也没有原子间的扩散,只是靠粘接剂与母材的粘接作用。 3)熔化焊热源:电弧热、等离子弧热、电子束、激光束、化学热。 压力焊和钎焊热源:电阻热、摩擦热、高频感应热。 4)焊接加热区可分为活性斑点区和加热斑点区 5)焊接温度场:焊接时焊件上的某瞬时的温度分布称为焊接温度场。 6)稳定温度场:当焊件上温度场各点温度不随时间变化时,称之 7)准稳定温度场:恒定功率的热源作用在焊件上做匀速直线运动时,经过一段时间后,焊件传热达到饱和状态,温度场会达到暂时稳定状态,并可随着热源以同样速度移动。 8)焊接热循环:在焊接热源的作用下,焊件上某点的温度随时间的变化过程。 第一章 1)平均熔化速度:单位时间内熔化焊芯质量或长度。 平均熔敷速度:单位时间内熔敷在焊件上的金属质量称为平均熔敷速度。 损失系数:在焊接过程中,由于飞溅、氧化、蒸发损失的一部分焊条金属(或焊丝)质量与熔化的焊芯质量之比称焊条损失系数。 熔合比:焊缝金属中,局部熔化的母材所占的比例。 熔滴的比表面积:表面积与质量之比2)熔滴过渡的形式:短路过渡、颗粒状过渡和附壁过渡。 3)熔池:焊接热源作用在焊件上所形成的具有一定几何形状的液态金属部分就是熔池。 4)焊接过程中对金属的保护的必要性: (1)防止熔化金属与空气发生激烈的相 互作用,降低焊缝金属中氧和氮的含量。 (2)防止有益合金元素的烧损和蒸发而 减少,使焊缝得到合适的化学成分。(3) 防止电弧不稳定,避免焊缝中产生气孔。 5)手工电弧焊时的反应区:药皮反应区、 熔滴反应区和熔池反应区。 6)药皮反应区主要物化反应有: 1 水分蒸发: 2 有机物燃烧和分解: 3 铁合金氧化: 7)熔滴反应区的特点: 1 熔滴温度高,熔滴金属过热度大; 2 熔滴与气体和熔渣的接触面积大; 3 各相之间的反应时间短; 4 熔滴与熔渣发生强烈的混合。 8)焊接区气体来源: 1焊接材料:焊接区内的气体主要来源 于焊接材料。焊条药皮、焊剂及焊丝药芯 中都含有造气剂。 2热源周围的气体介质:热源周围的空 气是难以避免的气体来源,而焊接材料中 的造气剂所产生的气体,不能完全排除焊 接区内的空气。 3焊丝和母材表面上的杂质:焊丝表面 和母材表面的杂质,如铁锈、油污、氧化 铁皮以及吸附水等,在焊接过程中受热而 析出气体进入气相中。 气体的产生: 1 有机物的分解和燃烧 2 碳酸盐和高价氧化物的分解 3 材料的蒸发 9)氮对金属的作用: 焊接时电弧气氛中氮的主要来源是 周围的空气。 焊接时空气中的氮总是或多或少地 会侵入焊接区,与熔化金属发生作用。 氮对焊接质量的影响: 1 促使焊缝产生气孔:液态金属在高温时 可以溶解大量的氮,凝固结晶时氮的溶解 度突然下降,过饱和氮以气泡形式从熔池 中逸出,若焊缝金属的结晶速度大于氮的 逸出速度时,就形成气孔。 2 氮是提高低碳、低合金钢焊缝强度,降 低塑性和韧性的元素。如果熔池中含有比 较多的氮,一部分氮将以过饱和的形式存 在于固溶体中;另一部分氮则以针状氮化 物Fe4N的形式析出,分布于晶界或晶内, 因而使焊缝金属的强度、硬度升高,而塑 性、韧性,特别是低温韧度急剧下降。 3 氮是促使焊缝金属时效脆化的元素:焊 缝金属中过饱和的氮处于不稳定状态,随 着时间的延长,过饱和的氮逐渐析出,形 成稳定的碳氮化物Fe4N,因而使焊缝金属 的强度增加、塑性、韧性降低。 4 氮可以作为合金元素加入钢中。在焊缝 金属中加入能形成稳定氮化物元素,如 RE、A1、Ti、Zr等,可以抑制或消除时效 现象。 控制焊缝合氮量的措施 1 加强焊接区的保护 (1)焊条药皮的保护作用,取决于药皮 的成分和数量。 (2)药芯焊丝的保护效果,取决于保护 成分含量和形状系数。 2 焊接工艺参数的影响 (1)U↑(电弧长度↑),氮可以与熔滴 作用时间τ↑,S N ↑,应尽量采用短弧 焊。 (2)I↑,熔滴过渡频率f↑,熔滴阶段作 用时间τ↓, S N↓ 。 直流正极性焊接时焊缝含氮量比反 极性(焊条接正极,工件接负极)时高。 (3)焊接速度对焊缝的含氮量影响不大。 (4)增加焊丝直径,熔滴变粗,焊缝含 氮量下降。 (5)多层焊时焊缝含氮量比单层焊时高, 这与氮的逐层积累有关 3 利用合金元素控制焊缝合氮量: (1)增加焊丝或药皮中的含碳量可降 低焊缝的含氮量,其原因是: a)碳能够降低氮在铁中的溶解度。 b)碳氧化生成CO、CO2加强保护作用, 降低了氮分压。 c)碳的氧化引起熔池沸腾,有利于氮 的逸出。 (2)Ti、A1、Zr和稀土元素对氮有较大 的亲合力,能形成稳定的氮化物。并且这 些氮化物不溶于铁水,而进入熔渣中。这 些元素对氧的亲力也很大,因此,可减少 气相中NO的含量,这在一定程度上减少 了焊缝的含氮量。 10)焊缝金属中的氢 扩散氢:氢原子及离子半径很小,可 以在焊缝金属晶格中自由扩散,故被称为 扩散氢。 残余氢:氢扩散到金属的晶格缺陷、

相关文档
最新文档