法拉电容放电简单计算方法

法拉电容放电简单计算方法
法拉电容放电简单计算方法

法拉電容放電簡單計算方法

超級電容的特點

體積小,容量大,能量密度遠大於電解電容。

可以作為後備電源使用。ESR小,功率特性好,功率密度遠大於電池。可作為主電源的功率補償,保證短時間、大電流的需要。充放電次數10萬次以上。

過充和過放都不會對其電性能產生影響。

使用簡單,不需要特別的充放電控制電路。

綠色環保,無污染,免維護。

工作溫度範圍大,最低工作溫度,零下40攝氏度。

法拉電容放電簡單計算方法

T = (C×ΔU) / I

T:放電時間,單位s

C:電容容量,單位F

ΔU:電壓降,是最高工作電壓與最低工作電壓的差,單位V

I :放電電流,單位A

◆超級電容器充放電時間計算方法

一般應用在太陽能指示燈上時,LED都採用閃爍發

光,例如採用一顆LED且控制每秒閃爍放電持續時間為0.05秒,對超級電容器充電電流100mA,LED放電電流為15mA.

下面以2.5V50F在太陽能交通指示燈上的應用為例,超級電容器充電時間計算如下:

C×dv=I×t

C: 電容器額定容量;

V:電容器工作電壓;

I:電容器充電;

t: 電容器充電時間

故2.5V50F超級電容器充電時間為:

t =(C×dv)/I

=(50×2.5)/0.1

=1250s

超級電容器放電時間為:

C×dv-I×C×R=I×t

C: 電容器額定容量;

V:電容器工作電壓;

I:電容器放電電流;

t: 電容器放電時間;

R:電容器內阻

則2.5V50F超級電容器從2.5V放到0.9V放電時間為:

t =C×(dv/I-R)

=50×[(2.5-0.9)/0.015-0.02]

=5332s

應用在LED上工作時間為5332/0.05=106640s=29.62小時

舉例如下︰

如單片機應用系統中,應用超級電容作為後備電源,在掉電後需要用超級電容維持100mA的電流,持續時間為10s,單片機系統截止工作電壓為4.2V,那麼需要多大容量的超級電容能夠保證系統正常工作?

由以上公式可知︰

工作起始電壓Vwork=5V

工作截止電壓Vmin=4.2V

工作時間t=10s

工作電源I=0.1A

那麼所需的電容容量為︰

C=(Vwork+ Vmin)It/( Vwork2 -Vmin2)

=(5+4.2)*0.1*10/(5^2 -4.2^2)

=1.25F

电容器的充放电与能量

高一电工 DG-16-01-003 《电容器的充放电与电场能量》导学案 编写人:张军审核人:编写时间: 班级:组别:姓名:等级: 【教学目标】 1.理解电容器的储能特性及其在电路中能量的转换规律。 2.掌握电容器中电场能量的计算。 【教学重点】 1.电容器充、放电过程中,电路中的电流和电容器两端电压的变化规律。 2.电容器质量的判别和电容器中电场能量的计算。 【教学难点】 电容器质量的判别和电容器中电场能量计算式的推导。 【学法指导】 1、认真阅读书本60面充放电实验,了解充放电过程。 2、通过电容器质量判别实验掌握万用表测量电阻的一般步骤,自主学会判 别电容器好坏。 【知识链接】 复习电容的串联与并联电路特点。 【学习过程】 一、电容器的充电 开关S合向1,电容器充电。 1.现象: (1)白炽灯开始较,逐步变。 (2)○A1的读数由变。 (3)○V的读数变。 (4)最后○A1指向,○V的大小等于。 2.解释 2.解释: 电源正极向极板供给电荷,负极向极板供给电荷。电荷在电路中形成定向移动形成,两极板间有电压。 S刚合上时,电源与电容器之间存在较大的电压,使大量电荷从电源移向电容器极板,产生较大电流,随着电荷的增加,电压,电流。当电容器两端电压等于电源电压时,电荷定向移动,电流为,灯不亮。

二、电容器的放电 S 合向2,电容放电。 1.现象: (1)开始灯较 ,逐渐变 ,直至熄灭。 (2)○A2开始较 ,逐渐变 ,电流方向与刚才充电方向 ,直至指示为 。 (3)开始○V 指示为 ,逐渐 ,直至为0。 2.解释: 放电过程中,由于电容器两极板间的电压使回路中有 产生。开始这个电压较大,因此电流较大,随着电容极板上的正、负电荷的 ,极板间的电压逐渐 ,电流也 ,最后放电结束,极板间不存在电压,电流为 。 3.结论: 当电容器极板上所储存的 发生变化时,电路中就有 流过;若电容器极板上所储存的电荷量恒定 时,则电路中就没有电流流过。电路中的电流为 i t q ??C t u C ?? 三、电容器的质量判别 1.用R 或R 挡。 2.将万用表分别与电容器两端接触,指针发生偏转并回到接近起始的地方,说明电容器的质量 。 3.若指针偏转后回不到起始位置的地方,而停在标度盘的某处说明电容器的漏电很大,这时指针所指出的电阻数值即表示该电容器的漏电阻值。 4.若指针偏转到零位置之后不再回去,则说明电容器内部已经 ;如果指针根本不偏转,则说明电容器内部可能 ,或电容量很小。 四、 电容器中的电场能量 1.充电时,q ↑→U c ↑电压与电荷量成 :q C u C 2.电源输入电荷量为q 时所做的总功,也就是存储于电容器中的总 。 Wc 21q U C 2 1C U C 2 式中:C ——电容器的电容 单位:F (法拉) U C ——电容器两端的电压 单位:V (伏特) Q ——电容器所带的电荷量 单位:C (库仑)

电容的充放电过程及其应用

电容的充放电过程及其应用 一、实验目的 1.观察RC 电路的矩形脉冲响应。 2.了解RC 微分电路、积分电路及耦合电路的作用及特点。 3.学习双踪示波器的使用方法。 二、实验原理 1. RC 串联电路的充放电过程 在由电阻R 及电容C 组成的直流串联电路中,暂态过程即是电容器的充放电过程(图1),当开关K 打向位置1时,电源对电容器C 充电,直到其两端电压等于电源E 。这个暂态变化的具体数学描述为q =CUc ,而I = dq / dt ,故 dt dUc C dt dq i == (1) E iR Uc =+ (2) 将式(1)代人式(2),得 E RC Uc RC dt dUc 11=+ 考虑到初始条件t=0时,u C =0,得到方程的解: []()() ?? ?? ?? ?-=-=-==RC t E U E U RC t R E i RC t E U C R /exp /exp )/-(exp -1C 上式表示电容器两端的充电电压是按指数增长的一条曲线,稳态时电容两端的电压等于电 源电压E ,如图2(a) 所示。式中RC=具有时间量纲,称为电路的时间常数,是表征暂态过程进 行得快慢的一个重要的物理量,由电压u 上升到,1/e ≈,所对应的时间即为。 当把开关k 1打向位置2时,电容C 通过电阻R 放电,放电过程的数学描述为 图2 RC 电路的充放电曲线 (a )电容器充电过程 (b )电容器放电过程 U R Uc K 1 2 V E R C 图1 RC 串联电路

将dt dUc C i =,代人上式得01 =+Uc RC dt dUc 由初始条件t =0时,Uc =E ,解方程得 ? ??? ?--=--=-=) /exp()/exp() /exp(RC t E U RC t R E i RC t E Uc R 表示电容器两端的放电电压按指数律衰减到零,也可由此曲线衰减到所对应的时间 来确定。充放电曲线如图2所示。 2. 半衰期T 1/2 与时间常数τ有关的另一个在实验中较容易测定的特征值,称为半衰期T 1/2,即当U C (t )下降到初值(或上升至终值)一半时所需要的时间,它同样反映了暂态过程的快慢程度,与t 的关系为:T 1/2 =τln2 = τ(或τ= 2) 3. RC 电路的矩形脉冲响应。 若将矩形脉冲序列信号加在电压初值为零的RC 串联电路上,电路的瞬变过程就周期性地发生了。显然,RC 电路的脉冲响应就是连续的电容充放电过程。如图3所示。 图3 RC 电路及各元件上电压的变化规律 若矩形脉冲的幅度为U ,脉宽为t p 。电容上的电压可表示为: ?? ??? ≤≤?≤≤-=- -211 0)1()(t t t e U t t e U t u t t c τ τ ) (t u i )(t u R ) (t C R C ) (t u i (t u R (t u C u u u -t t t 1t 2 t 2t p t 1t 1 t 3 t 2t 3 t 3 t

电容充放电计算公式

标 签:电容充放电公式 电容充电放电时间计算公式设,V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 例如,电压为E的电池通过R向初值为0的电容C充电 V0=0,V1=E,故充到t时刻电容上的电压为: Vt="E"*[1-exp(-t/RC)]

再如,初始电压为E的电容C通过R放电 V0=E,V1=0,故放到t时刻电容上的电压为: Vt="E"*exp(-t/RC) 又如,初值为1/3Vcc的电容C通过R充电,充电终值为 Vcc,问充到2/3Vcc需要的时间是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t="RC"*Ln[(1-1/3)/(1-2/3)]=RC*Ln2 = 注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函 解读电感和电容在交流电路中的作用 山东司友毓 一、电感 1.电感对交变电流的阻碍作用 交变电流通过电感线圈时,由于电流时刻都在变化,因此在线圈中就会产生自感电动势,而自感电动势总是阻碍原电流的变化,故电感线圈对交变电流会起阻碍作用,前面我们已经学习过,自感电动势的大小与线圈的自感系数及电流变化的快慢有关,自感系数越大,交变电流的频率越高,产生的自感电动势就越大,对交变电流的阻碍作用就越大,电感对交流的阻碍作用大小的物理量叫做感抗,用X L表示,且X L=2πfL。感抗的大小由线圈的自感系数L和交变电流的频率f共同决定。 2.电感线圈在电路中的作用 (1)通直流、阻交流,这是对两种不同类型的电流而言的,因为恒定电流的电流不变化,不能引起自感现象,所以对恒定电流没有阻碍作用,交流电的电流时刻改变,必有自感

用示波器观测电容的充放电特性2

用示波器观测电容的充放电特性 ● 实验目的 1.观察电容器的充与放电现象 2.通过放电的电压曲线,研究放电时间与哪些因素有关,测定电容器的电容量; 3.进一步熟悉示波器的使用. ● 仪器和用具 双踪示波器一台, 函数发生器一台,标准电阻箱一个,电容器一个 ● 实验原理

电容器能储存电量,如图8-1所示,将电键S与a 接通,电容器充电;将电键S与b相连接,电容器放电。可以用示波器CH1通道并联在电容器两端观察电容器充放电时电压与时间的变化曲线,实际测量中使用信号发生器输出标准方波来代替电键。根据串联电阻电容充电公式: 电容放电公式: 当电容充电(或放电)时间t=τ(τ=RC)时电容

器两端的电压等于电源E的63.2%(或36.8%),可见电容器两端电压跟串联电阻R的大小和电容C的大小有关。当电容器两端电压: τ=RC C=τ/R C=T/2R0.693 如果已知标准电阻R, 只要测得半衰期时间T/2就可以求得待测电容C的值. ● 实验步骤 1,按图连接线路, 2,调节信号发生器输出方波, 参考幅度:2Vpp---4Vpp。

参考频率:50HZ---200HZ 参考电阻: 10000Ω 参考电容: 0.100UF 3,用示波器CH1通道观测电容器的充放电特性;也可以用CH2通道观测信号发生器的输出波形,用 以作为对比; 4,改变R,C,和信号发生器的方波周期,观测充放电特性曲线; 5,调节最佳半衰期图形,用示波器标尺读出T1/2值, 设计表格记下各项参数; 6, 用坐标纸画出一个完整的充放电波形图. ● 实验数据处理

1,计算测量电容值 因为电容充放电为: τ=RC C=τ/R C=T1/2R0.693 2,计算相对误差: E=ΔC/C参考X100% ● 实验结论与误差分析1, 2, 3,

时间管理电池使用时间的计算办法

最新卓越管理方案您可自由编辑

ups电池使用时间的计算方法 市电停电后,UPS是依靠电池储能供电给负载的。标准型UPS本身机内自带电池,在停电后一般可以继续供电几分钟至几十分钟;而长效型UPS配有外置电池组,可以满足用户长时间停电时继续供电的需要,一般长效型UPS满载配置时间可达数小时以上。 一般长效型UPS备用时间主要受电池成成本、安装空间大小以及电池回充时间等因素的限制。一般在电力环境较差、停电较为频繁的地区采用UPS与发电机配合供电的方式。当停电时,UPS先由电池供电一段时间,如停电时间较长,可以起动备用发电机对UPS继续供电,当市电恢复时再切换到市电供电。 电池供电时意主要受负载大小、电池容量、环境温度、电池放电截止电压等因数影响。一般计算机UPS电池供电时间,可以先计算出电池放电电流,然后根据电池放电曲线查处放电时间。电池放电电流可以按以下经验公式计算: 放电电流=UPS容量(VA)×功率因数/(电池放电平均电压×效率)如果计算实际负载下的电池放电时间,只需将UPS容量换为实际负载容量即可 后备延时电池的配置方法

在UPS电源运行中,如果遇到市电供电中断时,蓄电池必须在用户所预期的一段时间内向逆变器提供足够的直流能源,以便在带额定负载的条件下,其电压不应下降到蓄电池组允许的最低临界放电电压以下。蓄电池的实际可供使用容量与下列等因素有关: ①蓄电池放电电流大小 ②蓄电池环境工作温度 ③蓄电池存储、使用的时间长短 ④负载特性(电阻性、电感性、电容性)及大小只有在考虑上述因素之后,才能正确选择和确定蓄电池的可供使用容量与蓄电池标称容量的比率。决定UPS后备长延时电池容量的重要因素是负荷大小、种类和特性。目前常用的微型机及其配件的负载特性如下表。常见的微机、服务器及其配件的负载特性

RC电路充电时间计算

RC电路充电时间计算 简单RC电路充电时间的计算方法。时间常数为tao=RC,一般三个tao就能完全充满电

V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 求充电到90%VCC的时间。(V0=0,V1=VCC,Vt=0.9VCC)

代入上式:0.9VCC=0+VCC*[[1-exp(-t/RC)] 既[[1-exp(-t/RC)]=0.9; exp(-t/RC)=0.1 - t/RC=ln(0.1) t/RC=ln(10) ln10约等于2.3 也就是t=2.3RC。 带入R=10k C=10uf得。 t=2.3*10k*10uf=230ms RC回路充放电时间的推导过程需要用高等数学,简单的方法只要记住RC回路的时间常数τ=R×C,在充电时,每过一个τ的时间,

电容器上电压就上升(1-1/e)约等于0.632倍的电源电压与电容器电压之差;放电时相反。 如C=10μF,R=10k,则τ=10e-6×10e3=0.1s 在初始状态Uc=0时,接通电源,则过0.1s(1τ)时,电容器上电压Uc为0+(1-0)×0.63 2=0.632倍电源电压U,到0.2s(2τ)时,Uc为0.632+(1-0.632)×0.632=0.865倍U……以此类推,直到t=∞时,Uc=U。放电时同样运用,只是初始状态不同,初始状态Uc=U。 单片机复位(上电复位和按键复位,复位脉宽10ms,R常取值10k~47k,c取值10~100uf,电容大些为好): 原理:如果复位是高电平复位,加电后电容充电电流逐渐减少,此时经电阻接地的单片机IO是没电压的,因为电容是隔直流的,直到充电完毕开始放电,放电的过程同样是电流逐渐减少的,开始放电时电流很大,加到电阻上后提供给IO高电平,一段时间(电容器的充放电参数:建立时间等)后,电流变弱到0,但是复位引脚已经有了超过3us的高电平,所以复位就完成了; 手动复位,如加按键,则是直接将电容短路,给复位引脚送高电平,此部分就只有电容在起作用;当然电源较大(一般3.3v-5v)的话,加电阻是为了分压,防止烧坏引脚。 1.放电是一个一阶电路的零输入响应, SPICE Model R 1 0 R C 1 0 C IC=UC 我们有公式:UR-Uc=0,而UR=i*R, i=dUc/dt; 所以,有RC*dUc/dt+Uc=0;从而有初始条件有:Uc=UC*EXP(-t/RC),令τ=1/RC为时间常数,我们得到放电方程为Uc=UC*EXP(-t/τ), 其放电时间一般为3~5τ,理由是5τ时Uc=0.0067UC,已很小。 2. 充电方程类似,可以自己分析吧!

电容的选取与充放电时间的计算

电容的选取与充放电时间的计算 电容的选取: 电容在电路中实际要承受的电压不能超过它的耐压值。在滤波电路中,电容的耐压值不要小于交流有效值的1.42倍。使用电解电容的时候,还要注意正负极不要接反。 不同电路应该选用不同种类的电容。揩振回路可以选用云母、高频陶瓷电容,隔直流可以选用纸介、涤纶、云母、电解、陶瓷等电容,滤波可以选用电解电容,旁路可以选用涤纶、纸介、陶瓷、电解等电容。 电容在装入电路前要检查它有没有短路、断路和漏电等现象,并且核对它的电容值。安装的时候,要使电容的类别、容量、耐压等符号容易看到,以便核实。 电容的原理: 在电子线路中,电容用来通过交流而阻隔直流,也用来存储和释放电荷以充当滤波器,平滑输出脉动信号。小容量的电容,通常在高频电路中使用,如收音机、发射机和振荡器中。大容量的电容往往是作滤波和存储电荷用。而且还有一个特点,一般1μF以上的电容均为电解电容,而1μF以下的电容多为瓷片电容,当然也有其他的,比如独石电容、涤纶电容、小容量的云母电容等。电解电容有个铝壳,里面充满了电解质,并引出两个电极,作为正(+)、负(-)

极,与其它电容器不同,它们在电路中的极性不能接错,而其他电容则没有极性。 把电容器的两个电极分别接在电源的正、负极上,过一会儿即使把电源断开,两个引脚间仍然会有残留电压(学了以后的教程,可以用万用表观察),我们说电容器储存了电荷。电容器极板间建立起电压,积蓄起电能,这个过程称为电容器的充电。充好电的电容器两端有一定的电压。电容器储存的电荷向电路释放的过程,称为电容器的放电。 举一个现实生活中的例子,我们看到市售的整流电源在拔下插头后,上面的发光二极管还会继续亮一会儿,然后逐渐熄灭,就是因为里面的电容事先存储了电能,然后释放。当然这个电容原本是用作滤波的。至于电容滤波,不知你有没有用整流电源听随身听的经历,一般低质的电源由于厂家出于节约成本考虑使用了较小容量的滤波电容,造成耳机中有嗡嗡声。这时可以在电源两端并接上一个较大容量的电解电容(1000μF,注意正极接正极),一般可以改善效果。发烧友制作HiFi音响,都要用至少1万微法以上的电容器来滤波,滤波电容越大,输出的电压波形越接近直流,而且大电容的储能作用,使得突发的大信号到来时,电路有足够的能量转换为强劲有力的音频输出。这时,大电容的作用有点像水库,使得原来汹涌的水流平滑地输出,并可以保证下游大量用水时的供应。

RC电路充放电时间计算

RC电路充放电时间计算 V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 求充电到90%VCC的时间。(V0=0,V1=VCC,Vt=0.9VCC) 代入上式: 0.9VCC=0+VCC*[[1-exp(-t/RC)] 既 [[1-exp(-t/RC)]=0.9; exp(-t/RC)=0.1 - t/RC=ln(0.1) t/RC=ln(10) ln10约等于2.3 也就是t=2.3RC。 带入R=10k C=10uf得。 t=2.3*10k*10uf=230ms RC回路充放电时间的推导过程需要用高等数学,简单的方法只要记住RC回路的时间常数τ=R×C,在充电时,每过一个τ的时间,电容器上电压就上升(1-1/e)约等于0.632倍的电源电压与电容器电压之差;放电时相反。 如C=10μF,R=10k,则τ=10e-6×10e3=0.1s 在初始状态Uc=0时,接通电源,则过0.1s(1τ)时,电容器上电压Uc为0+(1-0)×0.632=0.632倍电源电压U,到0.2s(2τ)时,Uc为0.632+(1-0.632)×0.632=0.865倍U……以此类推,直到t=∞时,Uc=U。放电时同样运用,只是初始状态不同,初始状态Uc=U。

单片机复位(上电复位和按键复位,复位脉宽10ms,R常取值10k~47k,c 取值10~100uf,电容大些为好): 原理:如果复位是高电平复位,加电后电容充电电流逐渐减少,此时经电阻接地的单片机IO是没电压的,因为电容是隔直流的,直到充电完毕开始放电,放电的过程同样是电流逐渐减少的,开始放电时电流很大,加到电阻上后提供给IO高电平,一段时间(电容器的充放电参数:建立时间等)后,电流变弱到0,但是复位引脚已经有了超过3us的高电平,所以复位就完成了; 手动复位,如加按键,则是直接将电容短路,给复位引脚送高电平,此部分就只有电容在起作用;当然电源较大(一般3.3v-5v)的话,加电阻是为了分压,防止烧坏引脚。

UPS后备时间电池计算公式

U P S后备时间电池计算 公式 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

U P S电池放电时间计算方法(逆变效率按90%、12V电池放电终止电压10.5V) 1、计算蓄电池的最大放电电流值: I最大=Pcosф/(η*E临界) 注:P→UPS电源的标称输出功率 cosф→UPS电源的输出功率因数(UPS一般为0.8) η→UPS逆变器的效率,一般为0.88~0.94(实际计算中可以取0.9) E临界→蓄电池组的临界放电电压(12V电池约为10.5V,2V电池约为1.7V) 2、根据所选的蓄电池组的后备时间,查出所需的电池组的放电速率值C,然后根据: 电池组的标称容量=I最大/C 3、由于使用E临界——电池的最低临界放电电压值,所以会导致所要求的电池组的安时容量偏大的局面。按目前的使用经验,实际电池组的安时容量可按下面公式计算: 例如1.10KVAUPS延时60分钟 电池的最大放电电流26.4A=标称功率10000×0.8÷(0.9效率*32节*10.5V每节电池放电电压) 电池组的标称容量=26.4A÷0.61C=43.3AH 10KVA延时60分钟,电池配置为32节1组12V44AH。选配时32节12V1组容量≥44AH 例如1.20KVA延时180分钟 电池的最大放电电流52.9A=标称功率20000×0.8÷(0.9效率*32节*10.5V每节电池放电电压) 电池组的标称容量=52.9A÷0.28C=188.5AH 20KVA延时180分钟,电池配置为32节1组12V190AH。选配时32节12V1组容量≥190AH

电池放电时间计算

电池放电时间计算 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

新电池估算方法: 估计算法:电池容量×÷负载电流 详细算法: 第一,先求出电池10小时率的放电电流,即容量除以10,一组500AH的电池,10小时率放电电流为50A,二组500AH的,10小时率放电电流为100A。 第二,用实际放电电流除以10小时率放电电流,求出一个比率,根据这个比率,查《电池放电率与放电容量》表中的放电倍率,从这个放电倍率数中选择一个最为相近的值,对应看到放电率,和有效放电容量倍率这一栏,记录好表中数据。 第三,查看当时的放电环境温度。 第四,计算放电时长:t=额定容量×放电容量倍率×〔1+温度系数×(环境温度-25)〕/放电电流 一般温度系数基站里选用,机房里选用 注意事项: 1、实际放电中,电流是逐渐增大的,并不恒定,因此放电时长肯定要与计算出来的有差别,电流越大,同容量的情况下,放电时间就越短。 2、长期使用后,电池容量肯定要下降的,应该用实际容量进行计算,在初期,可以用额定容量进行计算。 3、如果电池前后两次放电间,由于种种原因没充满电,算出来的时间肯定也不一样,而且充电容量不能以小时×电流直接进行计算,存在一个充电效率问题,充电时,电池会把一部分容量转换为热能散失掉。

4、一般48v用电,电池都是以24节串联一组使用,根据规定,当其中最低一节电压率先达到,也就是只要有一只电池达到,放电终止,计算此时的容量。但实际应用当中,不是以此来停止电池放电的,而是整组电压降到多少V就终止放电,所以放电放到这个项目的时候,往往会有更大的误差。而且电池测试的一个项目是单体电压的最大最小差值,说明一组电池的单体电压是不均衡的。如果均衡的,那么以×24=,即可以放到算做结束,但实际当中这种事情至少我是没碰到过,如果相差幅度较大,可能总电压在48v时,有一节达到,但由于终止放电判定条件以整组电压计量的,我设定在47v,那还继续放电,这个求出的容量于真正意义上的容量就不等了,所以反过来求放电时长,也就不准了。 5、综合上述所说,只能求一个大概值,除非在条件达到一定要求的情况下,才有可能算得很准。当然,具体相差多少,本人也没做过实验,但至少可以有这样一个概念:到底能放5小时左右还是10小时左右,这个左右可能是几十分钟,也可能是1或2个小时,但从大的方向来判断,还是可以依靠的。 电池常用术语解释一:放电倍率 电池放电电流的大小常用"放电倍率"表示,即电池的放电倍率用放电时间表示或者说以一定的放电电流放完额定容量所需的小时数来表示,由此可见,放电倍率表示的放电时间越短,即放电倍率越高,则放电电流越大。(放电倍率=额定容量/放电电流) 根据放电倍率的大小,可分为低倍率(<0.5C)、中倍率(-3.5C)、高倍率(- 7.0C)、超高倍率(>7.0C) 如:某电池的额定容量为20Ah,若用4A电流放电,则放完20Ah的额定容量需用5h,也就是说以5倍率放电,用符号C/5或0.2C表示,为低倍率。

电容的选取与充放电时间的计算完整版

电容的选取与充放电时 间的计算 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

电容的选取与充放电时间的计算 电容的选取: 电容在电路中实际要承受的电压不能超过它的耐压值。在滤波电路中,电容的耐压值不要小于交流有效值的倍。使用电解电容的时候,还要注意正负极不要接反。 不同电路应该选用不同种类的电容。揩振回路可以选用云母、高频陶瓷电容,隔直流可以选用纸介、涤纶、云母、电解、陶瓷等电容,滤波可以选用电解电容,旁路可以选用涤纶、纸介、陶瓷、电解等电容。电容在装入电路前要检查它有没有短路、断路和漏电等现象,并且核对它的电容值。安装的时候,要使电容的类别、容量、耐压等符号容易看到,以便核实。 电容的原理: 在电子线路中,电容用来通过交流而阻隔直流,也用来存储和释放电荷以充当滤波器,平滑输出脉动信号。小容量的电容,通常在高频电路中使用,如收音机、发射机和振荡器中。大容量的电容往往是作滤波和存储电荷用。而且还有一个特点,一般1μF以上的电容均为电解电容,而1μF以下的电容多为瓷片电容,当然也有其他的,比如独石电容、涤纶电容、小容量的云母电容等。电解电容有个铝壳,里面充满了电解质,并引出两个电极,作为正(+)、负

(-)极,与其它电容器不同,它们在电路中的极性不能接错,而其他电容则没有极性。 把电容器的两个电极分别接在电源的正、负极上,过一会儿即使把电源断开,两个引脚间仍然会有残留电压(学了以后的教程,可以用万用表观察),我们说电容器储存了电荷。电容器极板间建立起电压,积蓄起电能,这个过程称为电容器的充电。充好电的电容器两端有一定的电压。电容器储存的电荷向电路释放的过程,称为电容器的放电。 举一个现实生活中的例子,我们看到市售的整流电源在拔下插头后,上面的发光二极管还会继续亮一会儿,然后逐渐熄灭,就是因为里面的电容事先存储了电能,然后释放。当然这个电容原本是用作滤波的。至于电容滤波,不知你有没有用整流电源听随身听的经历,一般低质的电源由于厂家出于节约成本考虑使用了较小容量的滤波电容,造成耳机中有嗡嗡声。这时可以在电源两端并接上一个较大容量的电解电容(1000μF,注意正极接正极),一般可以改善效果。发烧友制作HiFi音响,都要用至少1万微法以上的电容器来滤波,滤波电容越大,输出的电压波形越接近直流,而且大电容的储能作用,使得突发的大信号到来时,电路有足够的能量转换为强劲有力的音频输出。这时,大电容的作用有点像水库,使得原来汹涌的水流平滑地输出,并可以保证下游大量用水时的供应。

电容放电和充电时间计算

设:O V 为电容器两端的初始电压值 m a x V 为电容器两端充满时电压值 t V 为电容器两端任意时刻t 时的电压值 那么: ()??? ? ??-?-+=-RC t o o t e V V V V 1max 若,电压为E 的电池通过电阻R 向初值为0的电容C 充电,此时0=o V ,充电极限E V =max 故,任意时刻t ,电容上的电压为: ??? ? ??-?=????? ??-=-t RC t t V E E RC t e E V ln 1 若,已知某时刻电容上的电压t V ,根据常数可以计算出时间t 。 公式涵义: 完全充满时,t V 接近E ,时间t 无穷大; 当RC t =时,电容电压E 63.0=; 当RC t 2=时,电容电压E 86.0=; 当RC t 3=时,电容电压E 96.0=; 当RC t 4=时,电容电压E 98.0=; 当RC t 5=时,电容电压E 99.0=; 可见,经过RC 个5~3后,充电过程基本结束。 例:F C V V V t μ1.01M R 375V 325V V 0max O =Ω====,,,,,求t S t 20.0325 375375ln 101.010166=-????=

已知,初始电压为E 的电容C 通过电阻R 放电,0max O ==V E V ,; 那么,电容器放电时任意时刻t ,电容两端电压t V 为: t RC t t V E RC t e E V ln ?=??=- 例:F C V V t μ1.01M R 22V V 375O =Ω===,,,,求t S t 28.022375 ln 101.010166=????=

电容充放电计算公式

签:电容充放电公式 电容充电放电时间计算公式 设,V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 例如,电压为E的电池通过R向初值为0的电容C充电 V0=0,V1=E,故充到t时刻电容上的电压为: Vt="E"*[1-exp(-t/RC)] 再如,初始电压为E的电容C通过R放电 V0=E,V1=0,故放到t时刻电容上的电压为: Vt="E"*exp(-t/RC) 又如,初值为1/3Vcc的电容C通过R充电,充电终值为 Vcc,问充到2/3Vcc需要的时间是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t="RC"*Ln[(1-1/3)/(1-2/3)]=RC*Ln2 = 注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函

解读电感和电容在交流电路中的作用 山东司友毓 一、电感 1.电感对交变电流的阻碍作用 交变电流通过电感线圈时,由于电流时刻都在变化,因此在线圈中就会产生自感电动势,而自感电动势总是阻碍原电流的变化,故电感线圈对交变电流会起阻碍作用,前面我们已经学习过,自感电动势的大小与线圈的自感系数及电流变化的快慢有关,自感系数越大,交变电流的频率越高,产生的自感电动势就越大,对交变电流的阻碍作用就越大,电感对交流的阻碍作用大小的物理量叫做感抗,用X L表示,且X L=2πfL。感抗的大小由线圈的自感系数L 和交变电流的频率f共同决定。 2.电感线圈在电路中的作用 (1)通直流、阻交流,这是对两种不同类型的电流而言的,因为恒定电流的电流不变化,不能引起自感现象,所以对恒定电流没有阻碍作用,交流电的电流时刻改变,必有自感电动势产生以阻碍电流的变化,所以对交流有阻碍作用。 (2)通低频、阻高频,这是对不同频率的交变电流而言的,因为交变电流的频率越高,电流变化越快,感抗也就越大,对电流的阻碍越大。 (3)扼流圈:利用电感阻碍交变电流的作用制成的电感线圈。 低频扼流圈:线圈绕在铁芯上,匝数多,自感系数大,电阻较小,具有“通直流、阻交流”的作用。 高频扼流圈:匝数少,自感系数小;具有“通低频、阻高频”的作用。 二、电容 1.电容器为何能“通交流” 把交流电源接到电容器两个极板上后,当电源电压升高时,电源给电容器充电,电荷向电容器极板上聚集,在电路中形成充电电流;当电源电压降低时,电容器放电,原来极板上聚集的电荷又放出,在电路中形成放电电流,电容器交替进行充电和放电,电路中就有了电流,好像是交流“通过”了电容器,但实际上自由电荷并没有通过电容器两极板间的绝缘介质。 2. 电容器对交变电流的阻碍作用是怎样形成的 我们知道,恒定电流不能通过电容器,原因是电容器的两个极板被绝缘介质隔开了。当

蓄电池放电公式

UPS具体放电时间计算公式 a. 基本公式: 负载的有功功率×支持时间 = 电池放出容量×电池电压×UPS逆变效率 其中:负载的有功功率 = 负载总功率×负载的功率因数 UPS逆变效率≈0.9 电池放出容量 = 电池标称容量×电池放电效率 电池放电效率与放电电流或放电时间有关,可参照下表确定: 放电电流 2C 1C 0.6C .4C .2C 0.1C 0.05C 放电时间 12min 30min 1h 2h 4h 9h 20h 放电效率 0.4 0.5 0.6 0.7 0.8 0.9 1 b. 计算公式: 负载的有功功率×支持时间 =电池放出容量×电池电压×UPS逆变效率 c. 计算举例: 例:负载总功率3000VA,负载功率因数0.7,UPS电池电压96V,要求支持时间1小时,求应选用的电池容量。计算: 3000(VA)×0.7×1(h) =电池放出容量×96×0.9 得出:电池放出容量= 24.3(Ah) 电池标称容量 = 24.3/0.6 = 40.5(Ah) 结果:可选用38Ah 的电池(12V/38Ah 电池8块) 因电池放电时间与放电电流、环境温度、负载类型、放电速率、电池容量等多因素相关,故实际放电时间无法直接用公式推导出。现提供电池最大放电电流公式:I=(Pcosφ)/(ηEi) ......其中P是UPS的标称输出功率; .......cosφ是负载功率因数,PC、服务器一般取0.6~0.7; ......η是逆变器的效率,一般也取0.8(山特10KVA取0.85); .......Ei是电池放电终了电压,一般指电池组的电压。 将具体数据代入上式,求出电池最大放电电流后,即可从电池的各温度下放电电流与放电时间的关系图上查出相应的放电时间。请注意这里求出的是电池总放电电流值。当外接多组电池时则需求出单组电池的放电电流值。

电容充放电时间的计算

电容充放电时间的计算: 1.L、C元件称为“惯性元件”,即电感中的电流、电容器两端的电压,都有一定的“电惯性”,不能突然变化。充放电时间,不光与L、C的容量有关,还与充/放电电路中的电阻R有关。“1UF电容它的充放电时间是多长?”,不讲电阻,就不能回答。 RC电路的时间常数:τ=RC 充电时,uc=U×[1-e^(-t/τ)]U是电源电压 放电时,uc=Uo×e^(-t/τ)Uo是放电前电容上电压 RL电路的时间常数:τ=L/R LC电路接直流,i=Io[1-e^(-t/τ)]Io是最终稳定电流 LC电路的短路,i=Io×e^(-t/τ)]Io是短路前L中电流 2. 设V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。则: Vt=V0 +(V1-V0)× [1-exp(-t/RC)] 或 t = RC × Ln[(V1 - V0)/(V1 - Vt)] 例如,电压为E的电池通过R向初值为0的电容C充电,V0=0,V1=E,故充到t时刻电容上的电压为: Vt=E × [1-exp(-t/RC)] 再如,初始电压为E的电容C通过R放电, V0=E,V1=0,故放到t时刻电容上的电压为:Vt=E × exp(-t/RC) 又如,初值为1/3Vcc的电容C通过R充电,充电终值为Vcc,问充到2/3Vcc需要的时间是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故t=RC × Ln[(1-1/3)/(1-2/3)]=RC × Ln2 =0.693RC 注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函数 {e是一个数值,约等于2.7182818245,对数函数:以e为底X的对数就可以写成lne,叫做自然对数} 3. 提供一个恒流充放电的常用公式:?Vc=I*?t/C.再提供一个电容充电的常用公式: Vc=E(1-e-(t/R*C))。RC电路充电公式Vc=E(1-e-(t/R*C))中的:-(t/R*C)是e的负指数项。

时间常数RC的计算方法

进入正题前,我们先来回顾下电容的充放电时间计算公式,假设有电源Vu通过电阻R给电容C充电,V0为电容上的初始电压值,Vu为电容充满电后的电压值,Vt为任意时刻t时电容上的电压值,那么便可以得到如下的计算公式: Vt = V0 + (Vu – V0) * [1 – exp( -t/RC)] 如果电容上的初始电压为0,则公式可以简化为: Vt = Vu * [1 – exp( -t/RC)] 由上述公式可知,因为指数值只可能无限接近于0,但永远不会等于0,所以电容电量要完全充满,需要无穷大的时间。 当t = RC时,Vt = ; 当t = 2RC时,Vt = ; 当t = 3RC时,Vt = ; 当t = 4RC时,Vt = ; 当t = 5RC时,Vt = ; 可见,经过3~5个RC后,充电过程基本结束。 当电容充满电后,将电源Vu短路,电容C会通过R放电,则任意时刻t,电容上的电压为: Vt = Vu * exp( -t/RC) 对于简单的串联电路,时间常数就等于电阻R和电容C的乘积,但是,在实际电路中,时间常数RC并不那么容易算,例如下图(a)。

对于上图(a),如果从充电的角度去计算时间常数会比较难,我们不妨换个角度来思考,我们知道,时间常数只与电阻和电容有关,而与电源无关,对于简单的由一个电阻R和一个电容C串联的电路来说,其充电和放电的时间参数是一样的,都是RC,所以,我们可以把上图中的电源短路,使电容C1放电,如上图(b)所示,很容易得到其时间常数: t = RC = (R1 果RC电路中的电源是电压源形式,先把电源“短路”而保留其串联内阻;

2).把去掉电源后的电路简化成一个等效电阻R和等效电容C串联的RC放电回路,等效电阻R和等效电容C的乘积就是电路的时间常数; 3).如果电路使用的是电流源形式,应把电流源开路而保留它的并联内阻,再按简化电路的方法求出时间常数; 4).计算时间常数应注意各个参数的单位,当电阻的单位是“欧姆”,电容的单位是“法拉”时,乘得的时间常数单位才是“秒”。 对于在高频工作下的RC电路,由于寄生参数的影响,很难根据电路中各元器件的标称值来计算出时间常数RC,这时,我们可以根据电容的充放电特性来通过曲线方法计算,前面已经介绍过了,电容充电时,经过一个时间常数RC 时,电容上的电压等于充电电源电压的倍,放电时,经过一个时间常数RC时,电容上的电压下降到电源电压的倍。 如上图所示,如通过实验的方法绘出电容的充放电曲线,在起点处做一条充放电切线,则切线与横轴的交点就是时间常数RC。

超级电容充放电控制电路毕业设计

摘要: 超级电容是一种新型的储能元器件,它相比其它储能元器件有很多优势,比如比功率高、充电速度快、放电电流大、使用寿命长、不污染环境等。其具有很大的发展前景,但由于超级电容个体电压不高,在实际应用过程中就需要将多个超级电容器串并联起来使用。超级电容在充放电过程中,由于其参数存在离散型,即使是同一型号同一规格的超级电容器在其电压内阻、容量等参数上都存在一定的差异。这样容易导致某些超级电容器过充或者过放,影响超级电容的使用寿命和系统的稳定性。同时,超级电容器在充放电过程中,超级电容器电池组两端的电压会逐渐下降,尤其经过长时间大电流放电,电压下降明显,会直接影响负载的工作稳定性。因此研究超级电容充放电控制电路对提高超级电容的使用寿命和系统稳定性十分重要。本文主要对超级电容器电池组采取电压均衡和放电稳压就行设计研究。超级电容器的充放电控制电路有恒压、恒流等。放电稳压有稳压管稳压、三极管反馈稳压、集成芯片稳压等等方式。联系到将超级电容用作后备电源,针对实际应用列出了详细的设计步骤和研究方案。 关键词: 超级电容电压均衡放电稳压 1 绪论 1.1 课题研究背景及意义 1.1.1 课题研究背景 当今社会由于石油、煤炭等传统能源日益枯竭,并且这些燃料燃烧对生态环境已经造成了严重的污染。目前人们研究的层次还是局限于油、气混合动力燃料电池、化学电池的研究。虽然其研究成果取得了一定的成就但是他们的缺点也日益暴露出来比如:使用寿命短、温度特性差、充放电速度慢、放电电流小、对环境仍有一定的污染等。所以人们迫切希望能够找到一种绿色环保的储能装置代替传统的储能装置。而超级电容器是上个世纪80年代初出现的新产品,是一种介于传统电容器和充电电池之间的新型储能器件。它有其功率高、充电速度快、储存能量大、放电电流大、使用寿命长、免维护等优点。随着便携式电气设备的普及,超级电容在电动汽车的研发、UPS电源、数码产品电源的发展获得了极大的

RC电路充放电时间计算精编版

R C电路充放电时间计 算 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

R C电路充放电时间计算 V0为电容上的初始电压值; V1为电容最终可充到或放到的电压值; Vt为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)*[1-exp(-t/RC)] 或, t=RC*Ln[(V1-V0)/(V1-Vt)] 求充电到90%VCC的时间。(V0=0,V1=VCC,Vt=0.9VCC) 代入上式:0.9VCC=0+VCC*[[1-exp(-t/RC)] 既[[1-exp(-t/RC)]=0.9; exp(-t/RC)=0.1 -t/RC=ln(0.1) t/RC=ln(10)ln10约等于2.3 也就是t=2.3RC。 带入R=10k?C=10uf得。 t=2.3*10k*10uf=230ms RC回路充放电时间的推导过程需要用高等数学,简单的方法只要记住RC回路的时间常数τ=R×C,在充电时,每过一个τ的时间,电容器上电压就上升(1-1/e)约等于0.632倍的电源电压与电容器电压之差;放电时相反。 如C=10μF,R=10k,则τ=10e-6×10e3=0.1s在初始状态Uc=0时,接通电源,则过0.1s(1τ)时,电容器上电压Uc为0+(1-0)×0.632=0.632倍电源电压U,到0.2s (2τ)时,Uc为0.632+(1-0.632)×0.632=0.865倍U……以此类推,直到t=∞时,Uc=U。放电时同样运用,只是初始状态不同,初始状态Uc=U。 单片机复位(上电复位和按键复位,复位脉宽10ms,R常取值10k~47k,c取值 10~100uf,电容大些为好): 原理:如果复位是高电平复位,加电后电容充电电流逐渐减少,此时经电阻接地的单片机IO是没电压的,因为电容是隔直流的,直到充电完毕开始放电,放电的过程同样是电流逐渐减少的,开始放电时电流很大,加到电阻上后提供给IO高电平,一段时间(电容器的充放电参数:建立时间等)后,电流变弱到0,但是复位引脚已经有了超过3us的高电平,所以复位就完成了;手动复位,如加按键,则是直接将电容短路,给复位引脚送

电容充电放电时间和充电电流计算公式

电容充电放电时间和充电电流计算公式 设,V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 例如,电压为E的电池通过R向初值为0的电容C充电 V0=0,V1=E,故充到t时刻电容上的电压为: Vt="E"*[1-exp(-t/RC)] 再如,初始电压为E的电容C通过R放电 V0=E,V1=0,故放到t时刻电容上的电压为: Vt="E"*exp(-t/RC) 又如,初值为1/3Vcc的电容C通过R充电,充电终值为 Vcc,问充到2/3Vcc需要的时间是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t="RC"*Ln[(1-1/3)/(1-2/3)]=RC*Ln2 =0.693RC 注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函数

直流充电电流计算: 1F 乘1V 除1A = 1S 1法拉乘1伏特除1安培=1秒 以上式类推, 另:i = (V / R)e - (t / CR) 在交流电路中电容中的电流的计算公式: I=U/Xc Xc=1/2πfC I=2πfCU f:交流电频率 U:电容两端交流电电压 C:电容器电容量 在直流电路中电容中上的电量:Q=CU,如电容器两端电压不变,电容上的电量也不变,电容中就没有电流流过。

THANKS !!! 致力为企业和个人提供合同协议,策划案计划书,学习课件等等 打造全网一站式需求 欢迎您的下载,资料仅供参考

相关文档
最新文档