基于数值模拟的无芯模旋压收口工艺

基于数值模拟的无芯模旋压收口工艺
基于数值模拟的无芯模旋压收口工艺

旋压成形技术和设备的应用与发展

旋压成形技术的应用 摘要:本文阐述了金属旋压成形技术和设备的在各个主要领域的应用与发展,详细介绍了旋压工艺技术、典型旋压件的工艺技术方案、旋压设备及关键装置、典型旋压设备的应用,提出了旋压技术中值得探讨的表面粗糙度等问题,并对今后旋压技术和设备的发展进行了展望。 关键词:旋压成形技术旋压设备 The Application and Development of Metal Spinning Technology and Equipment Zhao Linyu Han dun Wang beiping Yang yantao (The 7414th Factory of the Fourth Academy of CASC, Xi’an 710025, China) Abstract:Introduce the application and development of metal spinning technology and equipment in all sorts of main fields, detailedly account for spinning process technology, typical spinning part’s process projects,spinning Equipment and pivotal devices, typical spinning equipment’s application, bring forward worthy discuss ible questions,such as roughness,and in expectation of the development of metal spinning technology and equipment in the future. Keywords: Metal Spinning Technology; Metal Spinning Equipment 1 前言 旋压技术是一项具有悠久历史的传统技术,据文献记载最早起源于我国唐代,由制陶工艺发展出了金属的旋压工艺。到20世纪中叶以后,随着工业的发展和宇航事业的开拓,普旋工艺大规模应用于金属板料成形领域,从而促进了该工艺的研究与发展。在二十世纪中叶以后,普通旋压有了以下三个方面的重大进展:一是,普通旋压设备逐渐机械化与自动化,在20世纪50年代出现了模拟手工旋压的设备,即采用液压助力器等驱动旋轮往复移动,以实现进给和回程,因而减轻了劳动强度。二是,在20世纪60~70年代出现了能单向多道次进给的、电器液压程序控制的半自动旋压机。三是,由于电子技术的发展,于20世纪60年代后期,国外在半自动旋压机的基础上,发展了数控和录返式旋压机。这些设备的快速发展将旋压工艺带进了中、大批量化的生产中[1-11]。 强力旋压是上世纪五十年代在普通旋压的基础上发展起来的,最早是在瑞典、德国被用于民间工业(例如,加工锅皿等容器)。由于旋压工艺的先进性、经济性和实用性,且该工艺具有变形力小,节约原材料等特点,在近四十年中,旋压技术得到了长足的发展,不仅在航空航天领域,而且在化工、机械、轻工等民用工业中都得到了广泛应用。目前,旋压技术已日趋成熟,已经成为金属压力加工中的一个新的领域。 近20年来,旋压成形技术突飞猛进,高精度数控和录返旋压机不断出现并迅速推广应用,目前正向着系列化和标准化方向发展。在许多国家,如美国、俄罗斯、德国、日本和加拿大等国己生产出先进的标准化程度很高的旋压设备,这些旋压设备己基本定型,旋压工艺稳定,产品多种多样,应用范围日益广泛[19]。 我国旋压技术的发展状况与国外先进水平相比有较大差距。但近年来取得了较大发展,许多产品精度和性能都接近或达到了国外较先进水平。国内许多研究所(如北航现代技术研究所、黑龙江省旋压技术研究所、长春55所等)已经研制出了性能较好的旋压机。

simufact旋压工艺仿真解决方案

Simufact.forming 旋压及热处理工艺仿真优化整体解决方案 西模发特信息科技(上海)有限公司 2013年9月15日

目录 一、旋压及热处理工艺仿真软件购买的必要性 (3) 二、旋压及热处理工艺仿真软件的组成部分和技术要求 (4) 2.1、旋压及热处理工艺仿真软件的主要组成部分 (4) 2.2、旋压及热处理工艺仿真软件的主要技术要求 (4) 三、Simufact旋压及热处理工艺设计仿真优化整体解决方案 (7) 3.1 德国SIMUFACT公司介绍 (7) 3.2 Simufact.forming旋压及热处理工艺仿真软件介绍 (7) 3.3 simufact.froming软件工作原理 (9) 3.4 simufact.forming旋压案例分析 (9) 3.5 simufact.forming其他国内客户成功案例 (12) 3.6 simufact.forming热处理案例分析 (16) 3.7 simufact.forming软件推荐配置 (19) 3.8 simufact.forming硬件参考配置 (20) 3.9 simufact.forming其他功能介绍 (21) 3.10 simufact.forming售后服务能力介绍 (21) 四、结论 (22)

一、旋压及热处理工艺仿真软件购买的必要性 航天行业许多重要的零部件都通过旋压及热处理加工生产出来,旋压工艺主要包括强力旋压和普通旋压。影响旋压成形零件的工装设计参数和工艺参数众多。主要有如下几类: (1)工装设计参数主要有:咬入角、卸荷角、旋轮半径、圆角半径、间隙等 (2)工艺参数主要有:芯轴转速、进给比、压下率、温度、润滑等 以上这些参数均会对旋压零件产生影响,如果工装设计或者工艺参数匹配不合理,将会导致产品出现缺陷,造成人力和物力资源的浪费。 过去对于零件的热处理工艺一直是一个难题,只能通过反复试验摸索加以解决。随着计算机技术及有限元仿真软件技术的发展,通过先进的计算机模拟技术,我们能得到实际试验看不到的很多内容及参数。在国外,进行实际加工前,对零件的加工及热处理进行仿真已经是必要过程。而且,近些年来随着众多机械装备向高可靠性、小型化、轻量化发展,要求应用于机械中的机械零部件具有高强度、高可靠性。因此, 为提高机械零部件的材料强度,大多数采用各种热处理及表面处理等方法。如“凸轮轴和齿轮”是发动机中的重要承力机械零部件。其表面产生压缩应力是至关重要的。目前,常常是通过渗碳淬火实施表面硬化处理,以取代传统的齿轮调质处理。然而,为了降低成本, 在淬火结束时, 必须对所产生的变形、应力、硬度的偏差进行调整, 另外,应用实测值及模拟方法,预测、控制这类偏差将成为一项重要工作。 传统的旋压工艺工装设计主要依据经验数据,工量量大、周期长、效率低、费用高、缺少科学性和预见性。且航天中旋压零件多为难旋压的贵重合金,如:钛合金、铝镁合金、高温合金等。我们通过实际的物理实验,往往需要多次实验才能得到较为合理的工装设计和工艺参数,对人力和物力的消耗极为巨大。随着计算机技术在仿真领域中的广泛应用,旋压过程的数值仿真技术也越来越显示出其优越性。 对旋压及热处理过程进行计算机模拟,可从以下几个方面显著地减少能耗节约资源: (1)减少物理实验次数,节约能源及相关人力物力,提高工作效率 (2)减少因物理实验或工艺不当造成的材料和模具损耗 (3)减少工时

导柱导套

三、模具导套的机械加工实例 例图3-40所示为一冷冲模具的导套,材料为20钢,淬火、低温回火58-62HRC。 图3-40 冷冲模导套 1.结构工艺性分析 该零件是典型的套类零件,主要加工方法为钻、镗、车、磨。 2.技术要求分析 (1)主要表面及其加工方案 主要表面为内圆柱面?32H7 Ra0. 2um,外圆柱面?45r6 Ra0. 4um,其加工方案:内圆柱面:钻—粗镗(扩)—半粗镗—粗磨—精磨;对于外圆柱面:粗车—半精车—粗磨—精磨。 (2)定位基准 根据基准选择的原则选用内、外圆柱面互为基准。 (3)热处理 如导套材料为20钢渗碳,则热处理为渗碳,淬火、低温回火;如导套材料为T10A钢,则热处理为淬火低温回火。 (4)技术关键及其采取的措施 1主要表面为内圆柱面,尺寸公差等级高,表面粗糙度值Ra值小。采取的措施:划分加工阶段,工艺路线采用:钻—粗镗(扩)—半精镗(铰)—粗磨—精磨—研磨;选择精密机床;控制切削用量;充分冷却。 2由于外圆柱面的尺寸公差等级高,表面粗糙度值Ra值小,故 采取的措施是:在加工阶段划分、机床选用、切削用量的控制方面的要求与内圆柱面加工相同。此外,工艺路线为:粗车—半精车—粗磨—精磨。 3外圆柱?45r6对内孔?32H7径向跳动要求高,采取的措施之一:以非配合外圆柱面定位夹紧,一次装夹磨削内孔?32H7、外圆柱?45r6,即“一刀下”的方法。但此方法调整机 床频繁,辅助时间长,生产效率低,仅适用于单件生产。 采取的措施之二:利用内圆柱面采用锥度心轴限位,以心轴两端中心孔定位磨削外圆柱面。此方法操作简便,生产效率高,质量稳定可靠,但需要制造专用机床夹具,因此,适用

基于simufact.forming软件的车轮旋压模拟分析

基于simufact.forming软件车轮旋压模拟仿真 段小亮1,李光杰1 (1.西模发特信息科技(上海)有限公司技术工程部,上海 200336) 摘要:旋压轮毂具有重量轻、强度高、寿命长、表面光洁,机械加工余量少等优点。而旋压工艺过程复杂,影响因素多,造成实际旋压加工中工艺参数和工装的选择和调试较为困难,本文采用理论结合实际对钢质重型卡车车轮及铝合金轿车车轮旋压工艺进行模拟分析,得出了旋压件的应力应变、厚度尺寸变化、旋压力变化情况,验证了工艺参数的准确性与工艺的可行性,仿真结果与实际有较好的相符性。通过simufact.forming软件在旋压产品研制过程中的应用发现,仿真分析软件可以提前判断旋压工艺的可行性及合理性,为旋压产品的研制提供重要参考。 关键词:轮毂旋压;Simufact.forming;模拟仿真 Simulation of wheel spinning by simufact.forming Xiaoliang.Duan1,Jason.Li1 (1.ManuSim Solutions Co,.Ltd Engineering department, Shanghai 200336) Abstract:The spinning wheel has the advantages of light weight, high strength, long service life, smooth surface, less machining allowance. But the spinning process is complicated, many influence factors that cause selection and debugging parameters and tooling is difficult in actual spinning process, this paper simulation of the spinning process of steel heavy truck wheels and aluminum alloy car wheel, give the result of the stress and strain, thickness, pressure changes of the parts, verify the feasibility and accuracy of process parameters, Through the simufact.forming software used in the process of spinning in the product development of discovery, analysis and simulation software can advance to judge the feasibility and rationality of the spinning process, provides the important reference for the development of spinning products. Keywords:wheel spinning;Simufact.forming;numerical Simulation 1引言 轮毂作为汽车中的重要部件之一,起着承载着汽车的重量,同时也体现着汽车的外观造型。国内制造汽车轮毂主要是采用铸造、旋压、锻造等工艺。目前,在轮毂轻量化趋势的要求下,铸旋、锻旋及旋压是目前轮毂加工中最安全、最经济适用的一种加工方法。通过旋压能够是车轮内部组织有明显的纤维流线,大大提高了车轮的整体强度和耐腐蚀性。由于材料强度高、产品重量轻,从而使车轮的使用寿命和安全性大幅提高,有利于车辆减重、节油,机械加工余量也大大减少。 2 有限元建模 由于本文主要对车轮旋压工艺进行有限元模拟分析。两个模型均采用三旋轮错距旋压,旋轮形式和芯模尺寸均不一样。工艺一原始坯料为14mm厚度的板材,采用复合旋压工艺。工艺二所用坯料形状见下图1中工艺二几何模型示意图。采用三旋轮强力旋压工艺。为下图1为在Simufact中建立的三维几何模型,几何模型通过导入CAD软件的数字模型建立。 计算模型按照实际加工过程施加边界条件。工艺一给旋轮施加沿坯料外轮廓运动的时间位移参数,选择常库伦摩擦模型进行计算,设定为0.05。芯模和顶料板转速为650Rot/min。进给比为1mm/Rot。工艺二给旋轮施加沿坯料外轮廓运动的时间速度参数。选用库伦摩擦模型,设定为0.01。芯模的顶料板转速为300Rot/min,进给比为0.01666mm/Rot。两种工艺中均对旋轮设定局部坐标系,释放其自身Z轴的旋转运动,使其可在坯料的带动下,绕自身Z轴自转。

旋压技术

旋压技术基本概念 金属旋压技术的基本原理相似于古代的制陶生产技术。旋压 成型的零件一般为回转体筒形件或碟形件,旋压件毛坯通常 为厚壁筒形件或圆形板料。旋压机的原理与结构类似于金属 切削车床。在车床大拖板的位置,设计成带有有轴向运动动 力的旋轮架,固定在旋轮架上的旋轮可作径向移动;与主轴 同轴联接的是一芯模(轴),旋压毛坯套在芯模(轴)上;旋轮 通过与套在芯模(轴)上的毛坯接触产生的摩擦力反向被动 旋转;与此同时,旋轮架在轴向大推力油缸的作用下,作轴 向运动。旋轮架在轴向、旋轮在径向力的共同作用下,对坯料表面实施逐点连续塑性变形。在车床尾顶支架的位置上,设计成与主轴同一轴线的尾顶液压缸,液压缸对套在芯模(轴)上的坯料端面施加轴向推力。 旋压成型有普通旋压和强力旋压成型两种。不 改变坯料厚度,只改变坯料形状的旋压叫普通旋压 成型;即改变坯料厚度,又改变坯料形状的旋压叫 强力旋压成型。强力旋压成型所需要的旋压力较大, 旋压机的结构一般也较复杂。强力旋压成型又依旋 轮移动的方向与金属流动的方向,分为正旋和反 旋。旋轮移动的方向与金属流动的方向相同,叫正 旋;反之,称为反旋。同一种材料,反旋成型所需 的旋压力较大。采用哪种旋压方式成型,要依据零 件的形状和工艺要求确定。 旋压机的选型由旋压工艺及多种成型工艺条件要求确定。旋压机分强力旋压机和普通旋压机二大类型。强力旋压机又分双旋轮和三旋轮。还有 用于特殊零件旋压的旋压机,如热旋压机、钢球 旋压机等。 我国金属旋压成型技术的发展历史近四十 年,而在国防工业的应用研究尤为广泛,研究应 用水平很高,特别是在旋压成型工艺及装备方 面,已经处于国内领先地位。旋压机的设计和制 造能力也很强。 旋压技术简介 什么叫旋压技术,也叫金属旋压成形技术,通过旋转使之受力点由点到线由线到面,同时在某个方向给予一定的压力使金属材料沿着这一方向变形和流动而成型某一形状的技术。这里,金属材料必须具有塑性变形或流动性能,旋压成形不等同塑性变形,它是集塑性变形和流动变形的复杂过程,特别需要指出的是,我们所说的旋压成形技术不是单一的强力旋压和普通旋压,它是两者的结合;强力旋压用于各种筒、锥体异形体的旋压成型壳体的加工技术,是一种比较老的成熟的方法和工艺,也叫滚压法。 在机械产品中如何节约原材料却能提高产品质量,减轻产品的重量却能延长使用寿命,降低产品的制造成本及能源消耗却能减少加工工时一直是人们关注的。 例如"V"型皮带轮(通称"V"型带轮)是用途十分广泛的机械传动零件之一,如果能由钢板成型具有重要意义。钣制皮带轮同传统的铸铁皮带轮相比,可节约原材料70%以上。由金属钣材经拉伸--旋压成形的钣制旋压皮带轮是最新最佳的带轮结构形式。这种带轮不仅具备上叙优点,而且无环境无污染,尤其在汽车、拖拉机、收割机、空压机等多种机械产品中应用广泛。采用钢钣毛坯在专用的皮带轮旋压机床上使毛坯产生由点到线、由线到面的塑性变形而制成。旋压带轮一般有三种基本形式:折叠式带轮、劈开式带轮和滚压式多V型带轮(也称多楔带轮)。 旋压带轮与铸铁皮带轮相比的优点是采用旋压工艺制成的(无屑加工),结构轻、省材料,因

导套加工工艺

课程名称:模具制造工艺学考核日期: 2016年5月9日 一.零件图 导套,材料为20钢,淬火、低温回火58-62HRC。1.结构工艺性分析 该零件是典型的套类零件,主要加工方法为钻、镗、车、磨。2.技术要求分析 (1)主要表面及其加工方案 主要表面为内圆柱面?32H7Ra0. 2um,外圆柱面?45r6Ra0. 4um,其加工方案:内圆柱面:钻—粗镗(扩)—半粗镗—粗磨—精磨;对于外圆柱面:粗车—半精车—粗磨—精磨。(2)定位基准 根据基准选择的原则选用内、外圆柱面互为基准。(3)热处理如导套材料为20钢渗碳,则热处理为渗碳,淬火、低温回火;如导套材料为T10A 钢,则热处理为淬火低温回火。(4)技术关键及其采取的措施 1主要表面为内圆柱面,尺寸公差等级高,表面粗糙度值Ra值小。采取的措施:划

分加工阶段,工艺路线采用:钻—粗镗(扩)—半精镗(铰)—粗磨—精磨—研磨;选择精密机床;控制切削用量;充分冷却。 2由于外圆柱面的尺寸公差等级高,表面粗糙度值Ra值小,故 采取的措施是:在加工阶段划分、机床选用、切削用量的控制方面的要求与内圆柱面加工相同。此外,工艺路线为:粗车—半精车—粗磨—精磨。 3外圆柱?45r6对内孔?32H7径向跳动要求高,采取的措施之一:以非配合外圆柱面定位夹紧,一次装夹磨削内孔?32H7、外圆柱?45r6,即“一刀下”的方法。但此方法调整机床频繁,辅助时间长,生产效率低,仅适用于单件生产。 采取的措施之二:利用内圆柱面采用锥度心轴限位,以心轴两端中心孔定位磨削外圆柱面。此方法操作简便,生产效率高,质量稳定可靠,但需要制造专用机床夹具,因此,适用于成批生产。 3.机械加工顺序安排 车端面-车外圆-钻孔-镗孔-磨孔。其中内孔的精加工应在外圆表面的精加工之前进行。 4.加工阶段的划分 整个加工过程划分为:粗加工、半精加工、热处理、精加工四个加工阶段。 5.机械加工工艺规程 表:冷冲模导套机械加工工艺规程

筒形件模环旋压隆起和旋压力的有限元模拟分析

20 筒形件模环旋压隆起和旋压力的有限元模拟分析 大连理工大学 王浩然 杨 志 周文龙 航天特种材料及工艺技术研究所 刘黎明 摘要 在分析筒形件强力模环旋压工艺变形特点的基础上,采用三维弹塑性有限元法对筒形件模环旋压进行了数值模拟,分析了旋压成形时的应力分布、旋压成形中的隆起现象及工艺参数对隆起和旋压力的影响。结果表明,在所描述的工艺条件下,采用成形角为20°~25°,牵引速度范围为0.4~0.6mm/s 是合理的。模拟分析结果为模环旋压工艺参数的优化提供了依据。 关键词 筒形件 模环旋压 有限元 计算机仿真 1 引言 旋压成形技术特别适用于加工大直径高精度薄壁筒体类零件,在金属材料的精密加工领域占有十分重要的地位。 强力模环旋压方法是在内旋压基础上的改进技术,其成形原理如图1所示。成形工件外壁紧贴在成形模具内表面,旋轮和成形模具在轴向相对位置保持不变,坯料前端固定在牵引机构上,在机床主轴带动下主动旋转,同时在端面拉力和推力的作用下,材料通过旋轮和成形模具之间的间隙时产生塑性变形,实现旋压变形。 图1 模环旋压成形示意图 1-模环 2-工件 3-牵引机构 4-旋轮 模环旋压相比其他种类的旋压方法,其模具制造 成本较低,可以使用同一模具生产出不同内径和不同长度的工件,加工工件的表面具有较高的硬度和表面光洁度。 旋压成形工艺参数的影响因素较多,而新品研制通常需结合经验,经过反复试验,才能确定合理的工艺参数。利用计算机数值模拟方法对旋压成形工艺进行模拟和优化并预测工件质量,具有重要的现实意义。近年来,许多学者[1 ~8] 开展了有限元方法分析旋 压成形过程的研究,但对外旋压成形过程的研究较多,而有关模环旋压成形过程的数值模拟却少见报道。 本文使用有限元软件MSC.Marc 对LF6铝合金进行了三维弹塑性有限元数值模拟,分析了模环旋压过程中隆起的成因,并对不同工艺参数对旋压力和隆起的影响进行了探讨。 2 有限元模型的建立 2.1 有限元基本理论 在旋压成形过程中,坯料与旋轮的相对运动是螺旋式的运动过程。本文采用更新拉格朗日法进行模环旋压的有限元建模,按照普朗特—路埃斯理论来确定本构方程: 收稿日期:2007-10-23 作者简介:王浩然(1980-),硕士研究生;研究方向:材料变形计算机数值模拟分析。

模具制造工艺课程设计

模具制造工艺课程设计 内容:1、编制图示零件的加工工艺规程 要求:(1)进行工艺性分析 (2)制订工艺规程 2、任选一模具装模图(附图)制订 其装配工艺规程(必做) 姓名 班级 学号 日期

目录 一、导柱的加工工艺规程————————————1 二、导套的加工工艺规程————————————3 三、上模座的加工工艺规程———————————6 四、下模座的加工工艺规程———————————8 五、凹模的加工工艺规程————————————10 六、凹模的加工工艺规程————————————12 七、典型凹模的加工工艺规程——————————14 八、凹凸模的加工工艺规程———————————16 九、凹模的加工工艺规程————————————18 十、模具装配图————————————————20

一、导柱的加工工艺规程 导柱(20钢渗碳58-62HRC) 1.导柱的作用 导柱是磨具上的导向零件。与导套配合,起导向和定位作用。导柱安装在下模座上,导柱与导套滑动配合以保证凸模与凹模工作时有正确的位置,为了保证良好的导向作用,导柱与导套的配合间隙小于凹凸模之间的间隙,导柱与导套的配合间隙一般采用H7/h6,精度要求高时采用H6/h5,导柱与下模座采用H7/r6过盈配合。 为了保证导向精度。加工时除了使导柱导套精度符合要求外,还应满足配合表面间的同轴度。即两个外圆表面间的同轴度,以及导套外圆与内孔表面的同轴度。 2.导柱的工艺性分析 1)几何形状 有同轴不同直径的外圆、倒角、退刀槽组成。 2)技术要求分析 ⑴导柱配合表面的尺寸和形状精度 ⑵导柱配合表面间的同轴度 ⑶导柱配合表面有较高的硬度:HRC50-55 3)加工表面分析 φ32r6:Ra0.4——精磨才能达到要求 φ32h6:Ra0.1——圆柱度0.006—研磨才能达到要求 φ32h6:精车—半精车—粗磨—精磨—研磨

旋压技术的应用

旋压技术的应用及相关介绍 金属旋压技术的基本原理相似于古代的制陶生产技术。旋压 成型的零件一般为回转体筒形件或碟形件,旋压件毛坯通常 为厚壁筒形件或圆形板料。旋压机的原理与结构类似于金属 切削车床。在车床大拖板的位置,设计成带有有轴向运动动 力的旋轮架,固定在旋轮架上的旋轮可作径向移动;与主轴 同轴联接的是一芯模(轴),旋压毛坯套在芯模(轴)上;旋轮 通过与套在芯模(轴)上的毛坯接触产生的摩擦力反向被动 旋转;与此同时,旋轮架在轴向大推力油缸的作用下,作轴 向运动。旋轮架在轴向、旋轮在径向力的共同作用下,对坯料表面实施逐点连续塑性变形。在车床尾顶支架的位置上,设计成与主轴同一轴线的尾顶液压缸,液压缸对套在芯模(轴)上的坯料端面施加轴向推力。 旋压成型有普通旋压和强力旋压成型两种。不 改变坯料厚度,只改变坯料形状的旋压叫普通旋压 成型;即改变坯料厚度,又改变坯料形状的旋压叫 强力旋压成型。强力旋压成型所需要的旋压力较大, 旋压机的结构一般也较复杂。强力旋压成型又依旋 轮移动的方向与金属流动的方向,分为正旋和反 旋。旋轮移动的方向与金属流动的方向相同,叫正 旋;反之,称为反旋。同一种材料,反旋成型所需 的旋压力较大。采用哪种旋压方式成型,要依据零 件的形状和工艺要求确定。 旋压机的选型由旋压工艺及多种成型工艺条件要求确定。旋压机分强力旋压机和普通旋压机二大类型。强力旋压机又分双旋轮和三旋轮。还有 用于特殊零件旋压的旋压机,如热旋压机、钢球 旋压机等。 我国金属旋压成型技术的发展历史近四十 年,而在国防工业的应用研究尤为广泛,研究应 用水平很高,特别是在旋压成型工艺及装备方 面,已经处于国内领先地位。旋压机的设计和制 造能力也很强。 旋压技术简介 什么叫旋压技术,也叫金属旋压成形技术,通过旋转使之受力点由点到线由线到面,同时在某个方向给予一定的压力使金属材料沿着这一方向变形和流动而成型某一形状的技术。这里,金属材料必须具有塑性变形或流动性能,旋压成形不等同塑性变形,它是集塑性变形和流动变形的复杂过程,特别需要指出的是,我们所说的旋压成形技术不是单一的强力旋压和普通旋压,它是两者的结合;强力旋压用于各种筒、锥体异形体的旋压成型壳体的加工技术,是一种比较老的成熟的方法和工艺,也叫滚压法。 在机械产品中如何节约原材料却能提高产品质量,减轻产品的重量却能延长使用寿命,降低产品的制造成本及能源消耗却能减少加工工时一直是人们关注的。 例如"V"型皮带轮(通称"V"型带轮)是用途十分广泛的机械传动零件之一,如果能由钢板成型具有重要意义。钣制皮带轮同传统的铸铁皮带轮相比,可节约原材料70%以上。由金属钣材经拉伸--旋压成形的钣制旋压皮带轮是最新最佳的带轮结构形式。这种带轮不仅具备上叙优点,而且无环境无污染,尤其在汽车、拖拉机、收割机、空压机等多种机械产品中应用广泛。采用钢钣毛坯在专用的皮带轮旋压机床上使毛坯产生由点到线、由线到面的塑性变形而制成。旋压带轮一般有三种基本形式:折叠式带轮、劈开式带轮和滚压式多V型带轮(也称多楔带轮)。 旋压带轮与铸铁皮带轮相比的优点是采用旋压工艺制成的(无屑加工),结构轻、省材料,因

旋压工艺

二、工艺分析 1、旋压过程分析 ⑴劈开轮 劈开轮成形分为劈开、整形二个阶段。 垂直缸快速进给,在接近零件时转为工进并压紧零件(始终保压),主轴带动上下模旋转(见图2)。X1劈开轮沿径向快速进给,接近工件时转换为工进,当X1进给了8~10mm后,X3整形轮沿径向快速进给(此时X1停留在原地)(图2 b),接近工件时转换为工进,此时X1和X3同时工进,在速度上X3比X1稍快一点。当X1进给到预定深度,延时0.5~1.5秒后快速退回,X3继续工进,直到零件成形(图2 c)。 图 2 劈开轮旋压过程示意图 在此旋压过程中要注意的问题有:1、垂直缸在压紧工件后应始终处于保压状态下,直到零件成形,X3退回; 2、X1的进给位置一定要是在毛坯的二分之一处,偏差不能大于0.1mm,否则会产生劈偏现象,造成废品; 3、X1和X3工进速度的协调关系(见图3); 4、成形后槽型的回弹变形与X3的延时和X3旋轮尺寸之间的关系,当成形旋轮X3进给到位后,零件槽型部分会产生冷作硬化,角度尺寸有部分回弹现象,这时的X3旋轮的最终进给尺寸和延时量可以适当调整,最终保证角度尺寸不会超差。在设计X3旋轮时也可以将回弹因素考虑进去,X3的旋轮夹角可以在图纸要求的尺寸上增加1°至2°,使之在旋压结束时能补充回弹量。 图3 X1与X3工进速度的协调关系 注:当X1的工进速度比X3快或两者相等,都会产生如图a的效果,这时会发生已经被劈开的材料边缘部分受材料内应力的作用向X1旋轮表面靠拢,最终产生相对摩擦。这样会在X1旋轮表面留下一圈积削,而这些积削会划伤零件表面,从而影响零件表面质量。只有当X3的进给速度比X1的进给速度稍快一点(但不能快太多,否则到最后会产生X3成了劈开轮,X1没有起到作用的情况),由X3撑开已经被劈开的材料部分,使被劈开的材料部分不会与X1产生相对摩擦。从而保证产品质量。 ⑵折叠轮 折叠轮成形分为预成形、整形二个阶段。 垂直缸快速进给,在接近零件时转为工进并压紧零件(没有保压)。主轴带动上下模旋转(见图4)。X1预成形轮沿径向快速进给,接近工件时转换为工进,同时垂直缸以预成形工进速度对毛坯加压(图4 b),当X1进给到位后,垂直缸停止加压,X1快速后退,同时X3沿径向快速进给,接近工件时转换为工进,此时X3和垂直缸同时工进,在速度上以两者同时完成进给为准。(图4 c)。 图4 折叠轮旋压过程示意图 在此旋压过程中要注意的问题有:X1旋轮和垂直缸同时工进时的速度协调性;X3旋轮和垂直缸同时工进时的速度协调性。X1、X3旋轮在与垂直缸协同进给时各自的进给量均不同,这时需要调整各自的速度来达到时间上的协调(同时完成进给)。 ⑶多楔轮 多楔轮成形分为第一次预成形、第二次预成形、整形三个阶段。 垂直缸快速进给,在接近零件时转为工进并压紧零件(始终保压),主轴带动上下模旋转(见图5)。 图5 多楔轮旋压过程示意图 1 ─ 上模 2 ─ 压料杆 3 ─ 毛坯 4 ─ 下模 5 ─ 退料板 6 ─ 定位销 X1预成形轮沿径向快速进给,接近工件时转换为工进,X1进给到位后延时1秒至3秒不等(视零件直径尺

旋压机技术之旋压成型的基本方式拉深旋压

旋压机技术之在旋制各类薄壁剖面形状的产品时,主要是以改变板坯的形状为主,而板坯的厚度变化较小,称这一类旋压方式为普通旋压。普通旋压的基本方式主要有:拉深旋压(拉旋)、缩径旋压(缩旋)和扩张旋压(扩旋)三种。 2.1.1拉深旋压 拉深旋压是以径向拉深为主体而使毛坯(板材或预制制件)直径减小的成形工艺。也可以说它与拉深成形相类似,但不用冲头而用芯模,不用冲模而用旋轮。它是普通旋压中最主要和应用最广泛的成形方法。毛坯弯曲塑性变形是它主要的变形方式。 由于是靠旋轮的运动旋制工件,所以与拉深相比其加工条件的自由度更大,能制出很复杂的回转对称体。在旋制过程中,对旋轮运动轨迹有较高的要求。因此,把拉深旋压的成形技术说成是掌握旋轮运动的规律并不算过分。对于成形中的旋轮的运动轨迹控制,主要有A手动;B机械仿形;C液压仿形装置;D数控(nc或者cnc);E录返系统(或称再学习系统)。 2.1.1.1 简单拉深旋压 如上图所示是用直径为D0、厚度为t0的析坯制出内径为d(与芯模的直径相同)的圆筒形旋压件。当D0小时只能制出短圆筒件,但是成形非常容易,只需采用简单拉深旋压即可。D0/d称为拉深比,其值小时旋轮只需沿芯模移动一次即进行一道次拉深旋压就能成形。为

区别于多道次拉深旋压而称它为简单拉深旋压。旋压机旋轮只应沿芯模运动以保证它与芯模的间隙C。在实际成形中还需考虑下面几个问题。 (1)旋轮的形状通常选用直径为D、顶端圆角半径为R的圆孤状旋轮。将上图中所示的旋轮称为标准旋轮。 (2)旋轮的进给速度通常用拖板运动的速度u0(m/min)表示,但由于在判断成形的效果时要考虑毛坯的转速,因此毛坯每转的旋轮移动量U的大小是极为重要的因素,称其为旋轮进给量。例如在进给速度U不变的条件下,如果毛坯转速增加一倍,则旋轮相对毛坯的运动距离变为原来的1/2,这样瞬间成形量就变小了。 (3)芯模的形状在上图中的情况下芯模是圆柱形,其直径为d,端部拐角处的圆角半径为pm。在其他情况下芯模的形状随旋压件的形状而异。 (4)毛坯的转速要判定所采用的转速n能否完成加工,总要与旋轮的进给速度联系起来考虑。如(2)中所说,可以在旋轮进给速度不变的条件下改变转速,或者在转速不变的条件下改变旋轮的进给速度。 (5)毛坯的尺寸和性质拉深比D0/d或板坯的相对速度to/d是拉深旋压能否顺利进行的重要参数。对于拉深旋压时,毛坯的材料主要为低碳钢、低合金钢等具有很好的塑性性能的材料。

旋压成型技术研究进展

旋压成型技术研究进展Newly compiled on November 23, 2020

旋压成型技术研究进展摘要:主要介绍了旋压成型工艺的概念、特点、分类以及发展。同时,着重介绍了普通旋压成型技术和强力旋压成型技术。最后介绍了国内外旋压成型技术的现状以及展望。关键词:旋压成型;概念;分类;进展 前言 旋压技术是一项传统技术, 据文献记载,最早起源于我国唐代,由制陶工艺发展出了金属的旋压工艺[1]。到20世纪中叶以后,随着工业的发展和航空航天技术的开拓,旋压工艺开始大规模应用于金属板料成型领域,从而促进了该工艺的研究和发展[2]。 由于旋压工艺的先进性、经济性和实用性, 且该工艺具有变形力小,节约原材料等特点, 在近年中, 又得到了长足的发展,并已经成为金属压力加工中的一个新的领域[3]。随着旋压成形技术的突飞猛进, 高精度数控和录返旋压机不断出现并迅速推广应用, 目前正向着系列化和标准化方向发展。在许多工业发达国家,己生产出先进的、标准化程度很高的旋压设备, 这些旋压设备己基本定型, 旋压工艺稳定, 产品多种多样, 应用范围日益广泛[4]。 1. 旋压成型 旋压成型的概念 旋压是综合了锻造、挤压、拉伸、弯曲、环轧、横轧和滚压等工艺特点的少、无切削的先进加工工艺,广泛地应用于回转体零件的加工成形中。是根据材料的塑性特点,将毛坯装卡在芯模上并随之旋转,选用合理的旋压工艺参数,旋压工具(旋轮或其他异形件)与芯模相对连续地进给,依次对工件的极小部分施加变形压力,使毛坯受压,并产生连续逐点变形而逐渐成形工件的一种先进的塑性加工方法[5]。 旋压成型的特点

1)在旋压过程中,旋轮(或钢球)对坯料逐点施压,接触面积小,单位压力可达250~350kgf/mm2以上,对于加工高强度难变形材料,所需总变形力较小,从而使功率消耗大大降低。 2)坯料的金属晶粒在三向变形力的作用下,沿变形区滑移面错移,滑移面各滑移层的方向与变形方向一致,因此,金属纤维保持连续完整。 3)强力旋压可使制品达到较高的尺寸精度和表面光洁度。在旋压过程中,旋轮不仅对被旋压的金属有压延的作用,还有平整的作用,因此制品表面光洁度高。 4)制品范围很广。根据旋压机的能力可以制作大直径薄壁管材、特殊管材、变截面管材以及球形、半球形、椭圆形、曲母线形以及带有阶梯和变化壁厚的几乎所有回转体制件,如火箭、导弹和卫星的鼻锥和壳体潜水艇渗透密封环和鱼雷外壳;雷达反射镜和探照灯外壳;喷气发动机整流罩和原动机零件;液压缸、压气机外壳和圆筒涡轮轴、喷管、电视锥、燃烧室锥体以及波纹管。 5)同一台旋压设备可进行旋压、接缝、卷边、缩颈、精整等加工,因而可生产多种产品。同时产品规格范围大。 6)坯料来源广,可采用空心的冲压件、挤压件、铸件、焊接件、机加工的锻件和轧制件以及圆板作坯料,能旋压有色金属、黑色金属以及含钛、钼、钨、钽、铌一类难变形的合金金属, 7)在旋压过程中,由于被旋压坯料近似逐点变形,因此,其中任何夹渣、夹层、裂纹、砂眼等缺陷很容易暴露出来,这样旋压过程也附带起到了对制品的自动检验的作用。 8)金属旋压与板材冲压相比较,金属旋压能大大简化工艺所使用的装备,一些需要多次冲压的制件,旋压一次即可制造出来。

旋压成型技术研究进展

旋压成型技术研究进展 材料142 王瑞仙3140102205 摘要:主要介绍了旋压成型工艺的概念、特点、分类以及发展。同时,着重介绍了普通旋压成型技术和强力旋压成型技术。最后介绍了国内外旋压成型技术的现状以及展望。 关键词:旋压成型;概念;分类;进展 前言 旋压技术是一项传统技术, 据文献记载,最早起源于我国唐代,由制陶工艺发展出了金属的旋压工艺[1]。到20世纪中叶以后,随着工业的发展和航空航天技术的开拓,旋压工艺开始大规模应用于金属板料成型领域,从而促进了该工艺的研究和发展[2]。 由于旋压工艺的先进性、经济性和实用性, 且该工艺具有变形力小,节约原材料等特点, 在近年中, 又得到了长足的发展,并已经成为金属压力加工中的一个新的领域[3]。随着旋压成形技术的突飞猛进, 高精度数控和录返旋压机不断出现并迅速推广应用, 目前正向着系列化和标准化方向发展。在许多工业发达国家,己生产出先进的、标准化程度很高的旋压设备, 这些旋压设备己基本定型, 旋压工艺稳定, 产品多种多样, 应用范围日益广泛[4]。 1. 旋压成型 1.1 旋压成型的概念 旋压是综合了锻造、挤压、拉伸、弯曲、环轧、横轧和滚压等工艺特点的少、无切削的先进加工工艺,广泛地应用于回转体零件的加工成形中。是根据材料的塑性特点,将毛坯装卡在芯模上并随之旋转,选用合理的旋压工艺参数,旋压工具(旋轮或其他异形件)与芯模相对连续地进给,依次对工件的极小部分施加变形压力,使毛坯受压,并产生连续逐点变形而逐渐成形工件的一种先进的塑性加工方法[5]。 1.2 旋压成型的特点 1)在旋压过程中,旋轮(或钢球)对坯料逐点施压,接触面积小,单位压力可达250~350kgf/mm2以上,对于加工高强度难变形材料,所需总变形力较小,从而使功率消耗大大降低。 2)坯料的金属晶粒在三向变形力的作用下,沿变形区滑移面错移,滑移面各滑移层的方向与变形方向一致,因此,金属纤维保持连续完整。 3)强力旋压可使制品达到较高的尺寸精度和表面光洁度。在旋压过程中,旋轮不仅对被旋压的金属有压延的作用,还有平整的作用,因此制品表面光洁度高。 4)制品范围很广。根据旋压机的能力可以制作大直径薄壁管材、特殊管材、变截面管材以及球形、半球形、椭圆形、曲母线形以及带有阶梯和变化壁厚的几乎所有回转体制件,如火箭、导弹和卫星的鼻锥和壳体潜水艇渗透密封环和鱼雷外壳;雷达反射镜和探照灯外壳;喷气发动机整流罩和原动机零件;液压缸、压气机外壳和圆筒涡轮轴、喷管、电视锥、燃烧室锥体以及波纹管。

模具导柱和导套一般可采取哪些加工工艺方法

模具导柱和导套一般可采取哪些加工工艺方法? 导柱一般使用20钢,经车床粗加工(留磨削余量),热处理(渗碳层深度0.8~1.2mm,淬硬至58~62HRC)、研顶尖孔以及外圆精磨制成。为了进一步提高导柱的尺寸精度和改善表面粗糙度,也可在外圆磨削后留出余量0.01~0.015mm,再进行研磨。用圆盘式研磨机研磨时,把导柱装夹在隔板内,如图1所示,并在上下研盘之间作偏心运转,导柱的运动方向作周期性改变,使研磨剂分布均匀,导柱表面形成纵横交错的研磨痕迹,这种研磨方法的生产率高,研磨工具的磨损比较均勾,适用于导柱的大量生产。若用车床装夹研磨导柱,常用顶尖和卡箍装夹,在研磨的表面均匀地涂一层研磨剂,用如图2所示研磨环套在导柱上,用手握住沿导柱轴向往复运动,导柱在主轴的带动下作圆周运动,使导柱的外圆得到研磨。此外,也可用铸铁板研磨导柱的外圆。 图1 圆盘式导柱研磨机用隔板 图2 导柱研磨环 导套的加工,一般是在粗车后留出0.3mm的磨削余量,经热处理(常用20钢渗碳,深度0.8~1.2m m,淬硬58~62HRC)后进行内、外圆磨削。 由于导套和导柱相配合的尺寸精度要求高,并且内孔和外圆要同轴,因而在磨削加工时要先磨好内孔,再装上心轴磨外圆。若导套和模座的固定采用粘接工艺,因而外圆的同轴度要求不高,则导套的外圆可不需要磨削加工。 为提高内孔尺寸精度和改善表面粗糙度而需要研磨时,应在内圆磨削后留出0.01~0.015mm研磨余量。研磨导套常用立式单轴或双轴研磨机,有时也可在车床上研磨或用珩磨机珩磨。如果在车床上研磨导套,需先将研磨工具夹在车床卡盘上,均匀涂以研磨剂,然后套上导套,用尾座顶尖顶住研磨工具,并调节研磨工具与导套的松紧(以用手转动导套不十分费力为准)。研磨时,由机床带动研磨工具旋转,导套由圆口钳夹住用手工沿研磨工具轴向作往复运动。

基于ALE法的DEFORM旋压数值模拟

文章来源:安世亚太官方订阅号(搜索:peraglobal) 简介 金属旋压是一种复杂的金属塑形变形过程,广泛应用于航空、航天、军工等金属精密加工技术领域。旋压主要分为普通旋压和强力旋压,其中强力旋压使初始坯料厚度发生改变,变形过程较复杂。目前旋压工艺的研究大部分仍采用传统的试验方法研究,对旋压的过程控制依赖于经验值,生产过程中一旦产生缺陷,原因也不能很好地解释。而在数值模拟仿真技术和软件成熟的今天,应当快速采用计算机数值模拟的方法对其进行了研究,对不同工艺参数下的强力旋压过程进行了模拟,获得了成形角、减薄率、进给比等工艺参数对等效应力和旋压力的影响规律,为旋压工艺参数的选择和优化提供了依据。 旋压过程是点接触并接触位置不断发生变化,在模拟计算时边界接触条件高度非线性,使得旋压成形机理较复杂,旋压工件各点的应力、应变分布很不均匀。因此大部分金属成形仿真软件对于旋压模拟都比较费力,设置过程复杂,计算速度慢,导致计算结果很难与实际保持一致,需要多次调试模拟设置,这些困难阻碍了数值模拟与旋压工艺的结合使用。对于旋压过程模拟,多年来SFTC公司对旋压模拟在DEFORM通用模块应用实践基础上总结经验,不断研发改进,在DEFORM软件最新版本v11.2中正式推出了专业旋压模拟向导式模块Flow Forming,将复杂的旋压有限元设置内部优化处理,工艺研

发人员只需按照向导界面提示,导入实际几何模型和工艺参数,即可完成模拟,整个设置过程犹如高级仿真专家指导一般,实现了旋压模拟的高效、高精度仿真计算。 技术特点 1、向导式工艺设置界面 Flow Forming旋压工艺仿真是DEFORM最新推出的向导式模块,该模块面向专业的旋压工艺技术人员,无需学习复杂的有限元理论和DEFORM软件的基础操作设置,只需按照界面提示,输入几何模型、运动参数、选择材料即可完成模拟设置。其余高级设置均自动生成或有推荐值填入。 设置流程树

旋压加工技术

旋压工艺介绍 录入: 151zqh 来源: 日期: 2006-4-24,17:27 旋压加工技术 旋压加工是利用旋压加工设备将厚壁金属筒形件,包括难熔金属、有色金属、不锈钢等经强力旋压成各种尺寸的薄壁管材或异形旋压加工成异形空心回转件的加工技术。 三十年来,本中心先后承担了多项国家及省市的旋压加工技术科研项目,并取得多项重要旋压加工科研成果,积累了丰富的旋压加工实践经验。本中心的旋压加工产品在国内电子工业、核工业、船舶工业、汽车工业均获得了应用并享有很好的声誉。 RX-300大型旋压设备 不变薄旋压 不变薄旋压时,料基本保持不变,主要是靠改变坯料直径而成形空心旋转体工件。有拉深旋压、缩口旋压和扩口旋压三种(见表1)。除用于成形空心旋转体工件外,还可完成翻边、卷边、铆接、修剪、擀光等加工。手工旋压适于中小批量及薄软坯料加工,半自动或自动旋压则能用于大中批量及厚硬坯料加工。

变薄旋压 (1)不变形程度。拉深旋压的变形程度是用拉深系数m表示,即 m=d/D0 锥形件m≥0.2~0.3(计算m时d取小端直径)和筒形件m≥0.6~0.8,可一道次旋压成形,否则要多道次旋压(图1)。多道次旋压成形时,应确定恰当的半成品形状,使每道旋压都能充分利用材料的塑性(包括加热)。

(2)主轴转速。旋压铝合金时转速见表2。其他材料按表3选取坯料周边切向线速度(厚料、大直径件取小值),再由公式 n =υθ/πD 0×1000 (r/min) 求得主轴转速n 。 表2 旋压机主轴转速(铝合金) 表3 旋压时坯料周边切向线速度υ θ (m/min ) (3)旋轮进给比。由下式计算: f=υ′ /n (mm/r) 式中:υ′ ——旋轮相对芯模的进给速度(mm/min); n ——主轴转速(r/min)。 进给比f 过大进坯料易起皱,过小时则易拉薄,常用f =0.33mm/r 。一般在不起皱的前提下尽量选用较大的旋轮进给比f ,精旋时宜取小值。 用平板坯料旋压筒形件、锥形件和半球形件时,旋压力的三个分力(轴向分力F z 、径向分力F ρ和切向分力F θ)可按下列经验式计算 F z =c σb t 0h φβk ρk f (N) F ρ=(0.85~0.9) F z (N) F θ=(0.25~0.3) F z (N)非铁金属 (0.16~0.2) F z (N)低碳钢 式中: c ——比例系数; h φ——预制坯凸缘高度(mm); β——指数,表征对旋压力的影响; k ρ——与旋轮圆角半径有关的系数; k f ——考虑进给比f 影响的系数,由式k f =fk 1+b 确定,其中为角系数,为常数。 c 、β、k 1、b 和之数值分别表4和表5(试验条件:材料为低碳钢和铝合金,料厚t 0=1.5~4mm ,进给比f=0.2~2.5mm/r ,旋轮圆角半径r ρ=3~18mm ,拉深系数m=0.65~0.9) 。 表4 系数c 、β、k 1、b 表5 系数k ρ

相关文档
最新文档