冯诺依曼体系结构、哈佛体系结构与改进型哈佛结构之间的区别

冯诺依曼体系结构、哈佛体系结构与改进型哈佛结构之间的区别
冯诺依曼体系结构、哈佛体系结构与改进型哈佛结构之间的区别

1、冯·诺依曼结构

冯·诺依曼结构又称作普林斯顿体系结构(Princetionarchitecture)。

1945年,冯·诺依曼首先提出了“存储程序”的概念和二进制原理,后来,人们把利用这种概念和原理设计的电子计算机系统统称为“冯·诺依曼型结构”计算机。冯·诺依曼结构的处理器使用同一个存储器,经由同一个总线传输。

冯·诺依曼结构处理器具有以下几个特点:

必须有一个存储器;

必须有一个控制器;

必须有一个运算器,用于完成算术运算和逻辑运算;

必须有输入和输出设备,用于进行人机通信。

冯·诺依曼的主要贡献就是提出并实现了“存储程序”的概念。由于指令和数据都是二进制码,指令和操作数的地址又密切相关,因此,当初选择这种结构是自然的。但是,这种指令和数据共享同一总线的结构,使得信息流的传输成为限制计算机性能的瓶颈,影响了数据处理速度的提高。

在典型情况下,完成一条指令需要3个步骤,即:取指令、指令译码和执行指令。从指令流的定时关系也可看出冯·诺依曼结构与哈佛结构处理方式的差别。举一个最简单的对存储器进行读写操作的指令,指令1至指令3均为存、取数指令,对冯·诺依曼结构处理器,由于取指令和存取数据要从同一个存储空间存取,经由同一总线传输,因而它们无法重叠执行,只有一个完成后再进行下一个。

arm7系列的CPU有很多款,其中部分CPU没有内部cache的,比如arm7TDMI,就是纯粹的冯·诺依曼结构,其他有内部cache且数据和指令的cache分离的cpu则使用了哈弗结构。

2、哈佛结构

哈佛结构是一种将程序指令存储和数据存储分开的存储器结构,如图1所示。中央处理器首先到程序指令存储器中读取程序指令内容,解码后得到数据地址,再到相应的数据存储器中读取数据,并进行下一步的操作(通常是执行)。程序指令存储和数据存储分开,可以使指令和数据有不同的数据宽度,如Microchip公司的PIC16芯片的程序指令是14位宽度,而数据是8位宽度。

图1 哈佛体系结构框图

哈佛结构的微处理器通常具有较高的执行效率。其程序指令和数据指令分开组织和存储的,执行时可以预先读取下一条指令。

目前使用哈佛结构的中央处理器和微控制器有很多,除了Microchip公司的PIC系列芯片,还有摩托罗拉公司的MC68系列、Zilog公司的Z8系列、A TMEL公司的A VR系列和ARM公司的ARM9、ARM10和ARM11。

哈佛结构是指程序和数据空间独立的体系结构,目的是为了减轻程序运行时的访存瓶颈。

例如最常见的卷积运算中,一条指令同时取两个操作数,在流水线处理时,同时还有一个取指操作,如果程序和数据通过一条总线访问,取指和取数必会产生冲突,而这对大运算量的循环的执行效率是很不利的。

哈佛结构能基本上解决取指和取数的冲突问题。

而对另一个操作数的访问,就只能采用Enhanced哈佛结构了,例如像TI那样,数据区再split,并多一组总线。或向AD那样,采用指令cache,指令区可存放一部分数据。

在典型情况下,完成一条指令需要3个步骤,即:取指令、指令译码和执行指令。从指令流的定时关系也可看出冯·诺依曼结构与哈佛结构处理方式的差别。举一个最简单的对存储器进行读写操作的指令,指令1至指令3均为存、取数指令,对冯·诺依曼结构处理器,由于取指令和存取数据要从同一个存储空间存取,经由同一总线传输,因而它们无法重叠执行,只有一个完成后再进行下一个。

如果采用哈佛结构处理以上同样的3条存取数指令,由于取指令和存取数据分别经由不同的存储空间和不同的总线,使得各条指令可以重叠执行,这样,也就克服了数据流传输的瓶颈,提高了运算速度。

3、冯·诺依曼体系和哈佛总线体系的区别

二者的区别就是程序空间和数据空间是否是一体的。冯·诺依曼结构数据空间和地址空间不分开,哈佛结构数据空间和地址空间是分开的。

早期的微处理器大多采用冯·诺依曼结构,典型代表是Intel公司的X86微处理器。取指和取操作数都在同一总线上,通过分时服用的方式进行的。缺点是在高速运行时,不能达到同时取指令和取操作数,从而形成了传输过程的瓶颈。

哈佛总线技术应用是以DSP和ARM为代表的。采用哈佛总线体系结构的芯片内部程序空间和数据空间是分开的,这就允许同时取指和取操作数,从而大大提高了运算能力。

DSP芯片硬件结构有冯·诺依曼结构和哈佛结构,两者区别是地址空间和数据空间分开与否。一般DSP都是采用改进型哈佛结构,就是分开的数据空间和地址空间都不只是一条,而是有多条,这根据不同的生产厂商的DSP芯片有所不同。在对外寻址方面从逻辑上来说也是一样,因为外部引脚的原因,一般来说都是通过相应的空间选取来实现的。本质上是同样的道理。

4.改进型的哈佛结构与哈佛体系结构差别

与冯.诺曼结构处理器比较,哈佛结构处理器有两个明显的特点:

(1).使用两个独立的存储器模块,分别存储指令和数据,每个存储模块都不允许指令和数据并存;

(2).使用独立的两条总线,分别作为CPU与每个存储器之间的专用通信路径,而这两条总线之间毫无关联。

后来,又提出了改进的哈佛结构,其结构特点为:

(1).使用两个独立的存储器模块,分别存储指令和数据,每个存储模块都不允许指令和数据并存;

(2).具有一条独立的地址总线和一条独立的数据总线,利用公用地址总线访问两个存储模块(程序存储模块和数据存储模块),公用数据总线则被用来完成程序存储模块或数据存储模块与CPU之间的数据传输;

(3).两条总线由程序存储器和数据存储器分时共用。

5.总结

体系结构与采用的独立与否的总线无关,与指令空间和数据空间的分开独立与否有关。51单片机虽然数据指令存储区是分开的,但总线是分时复用得,所以属于改进型的哈佛结构。ARM9虽然是哈佛结构,但是之前的版本(例如ARM7)也还是冯·诺依曼结构。早期的X86能迅速占有市场,一条很重要的原因,正是靠了冯·诺依曼这种实现简单,成本低的总线结构。现在的处理器虽然外部总线上看是诺依曼结构的,但是由于内部CACHE的存在,因此实际上内部来看已经类似改进型哈佛结构的了。至于优缺点,哈佛结构就是复杂,对外围设备的连接与处理要求高,十分不适合外围存储器的扩展。所以早期通用CPU难以采用这种结构。而单片机,由于内部集成了所需的存储器,所以采用哈佛结构也未尝不可。现在的处理器,依托CACHE的存在,已经很好的将二者统一起来了。

冯诺依曼体系结构计算机的要点和工作过程

1、简述诺依曼体系结构计算机的要点和工作过程。 答:诺依曼体系结构计算机的要点:计算机中的信息(程序和数据)以二进制方式表示。程序预存储,机器自动执行。计算机由运算器、控制器、存储器、输入设备和输出设备五大部分组成。计算机通过执行预存储在存储器中的程序来完成预定的运算。程序由计算机的指令序列构成,计算机在处理器的控制下,首先从存储器读取一条待执行的指令到处理器中,接下来分析这条指令,而后发出该指令对应的电平脉码序列,即执行该指令。并以此递归运行程序。 2、何谓总线?计算机中有哪几类总线?简述其用途。 答:计算机的总线(Bus)就是连接计算机硬件各部件,用于计算机硬件各部件之间信息传输的公共通道。按照其传送信号的用途属性,总线可细分为:地址总线(Address Bus)、数据总线(Data Bus)和控制总线(Control Bus)三类。 ?地址总线(A_Bus):专用于在CPU、存储器和I/O端口间传送地址信息的信号线。此类信号线传送的信息总是从CPU到存储器或I/O端口,它是单向信号线。 ?数据总线(D_Bus):专用于在CPU、存储器和I/O端口间传送数据信息的信号线。此类信号线传送的信息可以是从CPU到存储器或I/O端口(“写”操作),也可能是从存储 器或I/O端口到CPU(“读”操作),它是双向信号线。 ?控制总线(C_Bus):专用于CPU与其它部件之间传送控制信息和状态信息的信号线。此类信号线的构成比较复杂,传送的控制、状态信息可以是从CPU到其它部件,也可能 是从其它部件到CPU。此类总线中的某些具体的线是单向的(或从CPU到其它部件, 或反之),但作为总线来说,它是双向信号线。 3、中央处理器CPU是计算机的核心部件,主要功能是解释并执行计算机指令,完成数据处理和对计算机其他各部分进行控制。存储器是计算机系统中用来存储程序和数据的信息记忆部件。 4、嵌入式系统:以应用为中心、以计算机技术为基础、软件硬件可裁剪、适应应用系统对功能、 可靠性、成本、体积、功耗严格要求的专用计算机系统。简而言之,嵌入式系统就是嵌入到目标应用系统中、完成特定处理功能的专用计算机系统。 5嵌入式处理器分类嵌入式微处理器、嵌入式微控制器、嵌入式DSP处理器、嵌入式片上系统1.何谓计算机体系结构? 答:计算机体系结构是对计算机较高层次的抽象,是摆脱具体电路的实现而主要着眼于计算机系统的逻辑特征、原理特征、结构特征和功能特征的抽象。 3.什么是RISC?什么是CISC?简述他们的特点与差别。 答:RISC是Reduced Instruction Set Computer,精简指令集计算机。特点是指令系统精炼,处理器电路逻辑相对简单,且能够以更快的速度执行操作。对于负载的功能需要编程实现。 CISC是Complex Instruction Set Computer,复杂指令集计算机。特点是指令系统中含有大量的类似于高级程序设计语言结构的复合功能指令。指令系统庞大,处理器硬件电路的复杂度。 21.存储器和IO端口统一编址和独立编址各有什么特点?ARM7处理器统一编址编址方式 答:统一编址方式---存储器单元资源和IO端口资源统一编址在一个地址空间。特点:按地址空间位置约定各分类资源,访问IO端口如同访问存储器单元,无需专用的IO访问指令。 芯片上没有专用于IO访问的引脚。 独立编址方式---存储器资源和IO端口资源分别编址在两个地址空间,存储器地址空间和IO 地址空间。特点:按资源分类的地址空间清晰,使用不同的指令访问存储器和IO端口,处理器指令系统中既有存储器访问指令,又有专用的IO访问指令。芯片上有专用于IO访问的引脚。 22.大端存储模式和小端存储模式的含义:高位数据存储在高地址字节,这种组织数据的存储方

冯诺依曼体系结构计算机的要点和工作过程

1、简述冯诺依曼体系结构计算机的要点和工作过程。 答:冯诺依曼体系结构计算机的要点:计算机中的信息(程序和数据)以二进制方式表示。程序预存储,机器自动执行。计算机由运算器、控制器、存储器、输入设备和输出设备五大部分组成。计算机通过执行预存储在存储器中的程序来完成预定的运算。程序由计算机的指令序列构成,计算机在处理器的控制下,首先从存储器读取一条待执行的指令到处理器中,接下来分析这条指令,而后发出该指令对应的电平脉码序列,即执行该指令。并以此递归运行程序。 2、何谓总线?计算机中有哪几类总线?简述其用途。 答:计算机的总线(Bus)就是连接计算机硬件各部件,用于计算机硬件各部件之间信息传输的公共通道。按照其传送信号的用途属性,总线可细分为:地址总线(Address Bus)、数据总线(Data Bus)和控制总线(Control Bus)三类。 ?地址总线(A_Bus):专用于在CPU、存储器和I/O端口间传送地址信息的信号线。此类信号线传送的信息总是从CPU到存储器或I/O端口,它是单向信号线。 ?数据总线(D_Bus):专用于在CPU、存储器和I/O端口间传送数据信息的信号线。此类信号线传送的信息可以是从CPU到存储器或I/O端口(“写”操作),也可能是从存 储器或I/O端口到CPU(“读”操作),它是双向信号线。 ?控制总线(C_Bus):专用于CPU与其它部件之间传送控制信息和状态信息的信号线。此类信号线的构成比较复杂,传送的控制、状态信息可以是从CPU到其它部件,也可 能是从其它部件到CPU。此类总线中的某些具体的线是单向的(或从CPU到其它 部件,或反之),但作为总线来说,它是双向信号线。 3、中央处理器CPU是计算机的核心部件,主要功能是解释并执行计算机指令,完成数据处理和对计算机其他各部分进行控制。存储器是计算机系统中用来存储程序和数据的信息记忆部件。 4、嵌入式系统:以应用为中心、以计算机技术为基础、软件硬件可裁剪、适应应用系统对功能、 可靠性、成本、体积、功耗严格要求的专用计算机系统。简而言之,嵌入式系统就是嵌入到目标应用系统中、完成特定处理功能的专用计算机系统。 5嵌入式处理器分类嵌入式微处理器、嵌入式微控制器、嵌入式DSP处理器、嵌入式片上系统1.何谓计算机体系结构? 答:计算机体系结构是对计算机较高层次的抽象,是摆脱具体电路的实现而主要着眼于计算机系统的逻辑特征、原理特征、结构特征和功能特征的抽象。 3.什么是RISC?什么是CISC?简述他们的特点与差别。 答:RISC是Reduced Instruction Set Computer,精简指令集计算机。特点是指令系统精炼,处理器电路逻辑相对简单,且能够以更快的速度执行操作。对于负载的功能需要编程实现。 CISC是Complex Instruction Set Computer,复杂指令集计算机。特点是指令系统中含有大量的类似于高级程序设计语言结构的复合功能指令。指令系统庞大,处理器硬件电路的复杂度。 21.存储器和IO端口统一编址和独立编址各有什么特点?ARM7处理器统一编址编址方式 答:统一编址方式---存储器单元资源和IO端口资源统一编址在一个地址空间。特点:按地址空间位置约定各分类资源,访问IO端口如同访问存储器单元,无需专用的IO访问指令。芯片上没有专用于IO访问的引脚。 独立编址方式---存储器资源和IO端口资源分别编址在两个地址空间,存储器地址空间和IO地址空间。特点:按资源分类的地址空间清晰,使用不同的指令访问存储器和IO端口,处理器指令系统中既有存储器访问指令,又有专用的IO访问指令。芯片上有专用于IO访问的引脚。 22.大端存储模式和小端存储模式的含义:高位数据存储在高地址字节,这种组织数据的存储方式称为‘小端模式’;另一种则反之,高位数据存储在低地址字节,这种组织数据的存储方式称为‘大端模式’;

计算机体系结构的分类模型_沈绪榜

第28卷 第11期2005年11月 计 算 机 学 报 CH INESE JOURNA L OF COM PU TERS V ol.28N o.11 No v.2005 收稿日期:2004-09-01;修改稿收到日期:2005-05-08.沈绪榜,男,1933年生,中国科学院院士,博士生导师,长期从事嵌入式计算机及其国产芯片实现的研究工作.张发存,男,博士,副教授,研究方向为嵌入式计算机系统结构.冯国臣,男,1975年生,博士研究生,研究方向为嵌入式计算机系统结构.车德亮,男,1975年生,博士研究生,研究方向为嵌入式计算机系统结构.王 光,男,1973年生,博士研究生,嵌入式计算机系统结构. 计算机体系结构的分类模型 沈绪榜1) 张发存 1),2) 冯国臣1) 车得亮1) 王 光 1) 1)(西安微电子技术研究所 西安 710054) 2) (西安理工大学计算机学院 西安 710048) 摘 要 根据计算机体系结构的发展,以指令流(instruction st ream)计算、数据流(data stream )计算与构令流(config ur atio n str eam)计算的概念为基础,提出了一种新的计算机体系结构的分类模型.关键词 指令流;数据流;构令流;软件;构件;流件;体系结构中图法分类号T P 302 The Classification Model of Computer Architectures SHEN Xu -Bang 1) ZH AN G Fa -Cun 1),2) FENG Guo -Chen 1) CH E De -Liang 1) WANG Guang 1) 1) (X i c an M icroelectronic T echnique Institute ,X i c an 710054)2)(S chool of Compu ter ,X i c an Univ ersity of T ech nology ,X i c an 710048) Abstract A ccording to the dev elo pment o f computer architectures,on the basis o f the concept of Instruction Str eam co mputation,Data Stream computation and Co nfiguration Str eam co mputa -tion,this paper proposes a new classification m odel of co mputer architectures. Keywords instruction stream;data stream;co nfiguratio n stream;so ftw are;configw are;flow -w are;ar chitecture 1 引 言 从制造技术上讲,芯片的集成度是按摩尔定律成指数增长的,摩尔定律不是一个物理定律,而是一个经营管理的规律,目前已成为IC 业制定规划的标准,只有达到这个标准,才能实现计算能力不变时,微处理器的价格和体积每18个月能减小1倍的目标.从设计技术上讲,芯片集成度的不断提高,促进了可重用的芯片实现形式的不断发展变化.如何改变和重新定义计算硬件的性质,这不但会影响软件和硬件的计算平台,而且也会影响计算机的应用领域.在多媒体、无线通信、数据通信与许多其它的嵌入式应用领域中,为了满足标准的不断更新和多标 准操作所带来的高吞吐量和超低功耗要求,可重构 计算技术成了当前的研究热点. 重构计算已经为硬件设计开辟了一个新天地,可能导致计算/逻辑0的一次革命.硬件重构不仅能加快程序执行,而且也能调整计算平台.为了尽可能地降低可重构性的开销,设计者必须从硬件与软件两个方面考虑计算任务的优化划分,寻找可重构性与性能之间的平衡.人们估计到2010年,90%以上的程序设计者都将是从事嵌入式系统的程序设计的,那时,可重构计算也将是程序设计者必须具备的基础知识之一. 可重构计算技术的发展,使计算机不仅有传统的基于指令流计算的体系结构和基于数据流计算的体系结构,而且有基于构令流的体系结构.所以,为

冯诺依曼体系结构与哈佛体系结构

冯诺依曼体系结构、哈佛体系结构与改进型哈佛结构之间的区别 1、冯·诺依曼结构 冯·诺依曼结构又称作普林斯顿体系结构(Princetionarchitecture)。 1945年,冯·诺依曼首先提出了“存储程序”的概念和二进制原理,后来,人们把利用这种概念和原理设计的电子计算机系统统称为“冯·诺依曼型结构”计算机。冯·诺依曼结构的处理器使用同一个存储器,经由同一个总线传输。 冯·诺依曼结构处理器具有以下几个特点: 必须有一个存储器; 必须有一个控制器; 必须有一个运算器,用于完成算术运算和逻辑运算; 必须有输入和输出设备,用于进行人机通信。 冯·诺依曼的主要贡献就是提出并实现了“存储程序”的概念。由于指令和数据都是二进制码,指令和操作数的地址又密切相关,因此,当初选择这种结构是自然的。但是,这种指令和数据共享同一总线的结构,使得信息流的传输成为限制计算机性能的瓶颈,影响了数据处理速度的提高。 在典型情况下,完成一条指令需要3个步骤,即:取指令、指令译码和执行指令。从指令流的定时关系也可看出冯·诺依曼结构与哈佛结构处理方式的差别。举一个最简单的对存储器进行读写操作的指令,指令1至指令3均为存、取数指令,对冯·诺依曼结构处理器,由于取指令和存取数据要从同一个存储空间存取,经由同一总线传输,因而它们无法重叠执行,只有一个完成后再进行下一个。 arm7系列的CPU有很多款,其中部分CPU没有内部cache的,比如arm7TDMI,就是纯粹的冯·诺依曼结构,其他有内部cache且数据和指令的cache分离的cpu则使用了哈弗结构。 2、哈佛结构 哈佛结构是一种将程序指令存储和数据存储分开的存储器结构,如图1所示。中央处理器首先到程序指令存储器中读取程序指令内容,解码后得到数据地址,再到相应的数据存储器中读取数据,并进行下一步的操作(通常是执行)。程序指令存储和数据存储分开,可以使指令和数据有不同的数据宽度,如Microchip 公司的PIC16芯片的程序指令是14位宽度,而数据是8位宽度。 哈佛结构的微处理器通常具有较高的执行效率。其程序指令和数据指令分开组织和存储的,执行时可以预先读取下一条指令。 目前使用哈佛结构的中央处理器和微控制器有很多,除了Microchip公司的PIC系列芯片,还有摩托罗拉公司的MC68系列、Zilog公司的Z8系列、ATMEL 公司的AVR系列和ARM公司的ARM9、ARM10和ARM11。 哈佛结构是指程序和数据空间独立的体系结构,目的是为了减轻程序运行时的访存瓶颈。 例如最常见的卷积运算中,一条指令同时取两个操作数,在流水线处理时,同时还有一个取指操作,如果程序和数据通过一条总线访问,取指和取数必会产生冲突,而这对大运算量的循环的执行效率是很不利的。 哈佛结构能基本上解决取指和取数的冲突问题。 而对另一个操作数的访问,就只能采用Enhanced哈佛结构了,例如像TI 那样,数据区再split,并多一组总线。或向AD那样,采用指令cache,指令区可存放一部分数据。

冯诺依曼与哈佛结构计算机的区别(精品)

冯诺依曼与哈佛结构计算机的区别(精品)冯诺依曼型计算机与哈佛结构计算机的区别 说到计算机的发展,就不能不提到德国科学家冯诺依曼。从20世纪初,物理学和电子学科学家们就在争论制造可以进行数值计算的机器应该采用什么样的结构。人们被十进制这个人类习惯的计数方法所困扰。所以,那时以研制模拟计算机的呼声更为响亮和有力。20世纪30年代中期,德国科学家冯诺依曼大胆的提出,抛弃十进制,采用二进制作为数字计算机的数制基础。同时,他还说预先编制计算程序,然后由计算机来按照人们事前制定的计算顺序来执行数值计算工作。 (一)冯?诺依曼结构 1945年,冯?诺依曼首先提出了“存储程序”的概念和二进制原理,后来,人们把利用这种概念和原理设计的电子计算机系统统称为“冯.诺曼型结构”计算机。冯.诺曼结构的处理器使用同一个存储器,经由同一个总线传输。 传统计算机采用冯?诺依曼(Von Neumann)结构,也称普林斯顿结构,是一种将程序指令存储器和数据存储器并在一起的存储器结构。冯?诺依曼结构的计算机其程序和数据公用一个存储空间,程序指令存储地址和数据存储地址指向同一个存储器的不同物理位置;采用单一的地址及数据总线,程序指令和数据的宽度相同。处理器执行指令时,先从储存器中取出指令解码,再取操作数执行运算,即使单条指令也要耗费几个甚至几十个周期,在高速运算时,在传输通道上会出现瓶颈效应。 如图 1-3 所示,冯?诺依曼结构的计算机由 CPU 和存储器构成,程序计算器(PC)是CPU 内部指示指令和数据的存储位置的寄存器。CPU 通过程序计数器提供的地址信息,对存储器进行寻址,找到所需要的指令或数据,然后对指令进行译码,最后执行指令规定的操作。

冯诺依曼结构与哈佛结构

1、冯·诺依曼结构 冯·诺依曼结构又称作普林斯顿体系结构(Princetionarchitecture)。 1945年,冯·诺依曼首先提出了“存储程序”的概念和二进制原理,后来,人们把利用这种概念和原理设计的电子计算机系统统称为“冯·诺依曼型结构”计算机。冯·诺依曼结构的处理器使用同一个存储器,经由同一个总线传输。 冯·诺依曼结构处理器具有以下几个特点: 必须有一个存储器; 必须有一个控制器; 必须有一个运算器,用于完成算术运算和逻辑运算; 必须有输入和输出设备,用于进行人机通信。 冯·诺依曼的主要贡献就是提出并实现了“存储程序”的概念。由于指令和数据都是二进制码,指令和操作数的地址又密切相关,因此,当初选择这种结构是自然的。但是,这种指令和数据共享同一总线的结构,使得信息流的传输成为限制计算机性能的瓶颈,影响了数据处理速度的提高。 在典型情况下,完成一条指令需要3个步骤,即:取指令、指令译码和执行指令。从指令流的定时关系也可看出冯·诺依曼结构与哈佛结构处理方式的差别。举一个最简单的对存储器进行读写操作的指令,指令1至指令3均为存、取数指令,对冯·诺依曼结构处理器,由于取指令和存取数据要从同一个存储空间存取,经由同一总线传输,因而它们无法重叠执行,只有一个完成后再进行下一个。 arm7系列的CPU有很多款,其中部分CPU没有内部cache的,比如arm7TDMI,就是纯粹的冯·诺依曼结构,其他有内部cache且数据和指令的cache分离的cpu则使用了哈弗结构。 2、哈佛结构 哈佛结构是一种将程序指令存储和数据存储分开的存储器结构,如图1所示。中央处理器首先到程序指令存储器中读取程序指令内容,解码后得到数据地址,再到相应的数据存储器中读取数据,并进行下一步的操作(通常是执行)。程序指令存储和数据存储分开,可以使指令和数据有不同的数据宽度,如Microchip公司的PIC16芯片的程序指令是14位宽度,而数据是8位宽度。 图1 哈佛体系结构框图 哈佛结构的微处理器通常具有较高的执行效率。其程序指令和数据指令分开组织和存储的,执行时可以预先读取下一条指令。 目前使用哈佛结构的中央处理器和微控制器有很多,除了Microchip公司的PIC系列芯片,还有摩托罗拉公司的MC68系列、Zilog公司的Z8系列、ATMEL公司的A VR系列和ARM公司的ARM9、ARM10和ARM11。 哈佛结构是指程序和数据空间独立的体系结构,目的是为了减轻程序运行时的访存瓶颈。 例如最常见的卷积运算中,一条指令同时取两个操作数,在流水线处理时,同时还有一个取指操作,如果程序和数据通过一条总线访问,取指和取数必会产生冲突,而这

第4章冯诺依曼计算机机器级程序及其执行练习题答案解析

百度文库 1 第4章冯.诺依曼计算机:机器级程序及其执行 1、关于“图灵机”,下列说法不正确的是_____。 (A)图灵机给出的是计算机的理论模型; (B)图灵机的状态转移函数,其实就是一条指令,即在q状态下,当输入为X时,输出为Y,读写头向右(R)、向左(L)移动一格或不动(N),状态变为p; (C)图灵机是一种离散的、有穷的、构造性的问题求解思路; (D)凡是能用算法方法解决的问题也一定能用图灵机解决;凡是图灵机解决不了的问题人和算法也解决不了; (E)上述有不正确的。 答案:E 解释: 本题考核基本的图灵机模型。 20世纪30年代,图灵提出了图灵机模型,建立了指令、程序及通用机器执行程序的理论模型,奠定了计算理论的基础,因此(A)正确;选项(B)是图灵机的五元组形式的指令集,是一个行动集合,又称状态转移函数,因此正确;图灵机是一种离散的、有穷的、构造性的问题求解思路,一个问题的求解可以通过构造其图灵机(即算法和程序)来解决,因此(C)正确;(D)为图灵可计算性问题,正确。综上,本题答案为(E)。 具体内容请参考第四章视频之“图灵机的思想与模型简介”以及第四章课件。 2、关于“图灵机”和“计算”,下列说法不正确的是_____。 (A)计算就是对一条两端可无限延长的纸带上的一串0和1,一步一步地执行指令,经过有限步骤后得到的一个满足预先规定的符号串的变换过程; (B)“数据”可被制成一串0和1的纸带送入机器中进行自动处理,被称为数据纸带;处理数据的“指令”也可被制作成一串0和1的纸带送入机器中,被称为程序纸带;机器一方面阅读程序纸带上的指令,并按照该指令对数据纸带上的数据进行变换处理。 (C)计算机器可以这样来制造:读取程序纸带上的指令,并按照该指令对数据纸带上的数据做相应的变换,这就是图灵机的基本思想; (D)上述有不正确的。 答案:D

冯·诺依曼结构和哈佛结构

中央处理器的体系架构可以分为:冯·诺依曼结构和哈佛结构 冯·诺依曼结构也称普林斯顿结构,是一种将程序指令存储器和数据存储器合并在一起的存储器结构。程序指令存储地址和数据存储地址指向同一个存储器的不同物理位置,因此程序指令和数据的宽度相同,如英特尔公司的8086中央处理器的程序指令和数据都是16 位宽。 目前使用冯·诺伊曼结构的中央处理器和微控制器有很多。除了上面提到的英特尔公司的8086,英特尔公司的其他中央处理器、ARM的ARM7、MIPS公司的MIPS处理器也采用了冯·诺伊曼结构。 1945年,冯·诺依曼首先提出了“存储程序”的概念和二进制原理,后来,人们把利用这种概念和原理设计的电子计算机系统统称为“冯·诺曼型结构”计算机。冯·诺曼结构的处理器使用同一个存储器,经由同一个总线传输。 冯·诺曼结构处理器具有以下几个特点:必须有一个存储器;必须有一个控制器;必须有一个运算器,用于完成算术运算和逻辑运算;必须有输入和输出设备,用于进行人机通信。冯·诺依曼的主要贡献就是提出并实现了“存储程序”的概念。由于指令和数据都是二进制码,指令和操作数的地址又密切相关,因此,当初选择这种结构是自然的。但是,这种指令和数据共享同一总线的结构,使得信息流的传输成为限制计算机性能的瓶颈,影响了数据处理速度的提高。 在典型情况下,完成一条指令需要3个步骤,即:取指令、指令译码和执行指令。从指令流的定时关系也可看出冯·诺依曼结构与哈佛结构处理方式的差别。举一个最简单的对存储器进行读写操作的指令,指令1至指令3均为存、取数指令,对冯·诺曼结构处理器,由于取指令和存取数据要从同一个存储空间存取,经由同一总线传输,因而它们无法重叠执行,只有一个完成后再进行下一个。 哈佛结构

1冯-诺依曼原理的基本思想是什么

1.冯-诺依曼原理的基本思想是什么? 答:主要有三点: (1)计算机硬件组成应为五大部分:控制器、运算器、存储器、输入和输出; (2)存储程序,让程序来指挥计算机自动完成各种工作; (3)计算机运算基础采用二进制; 2.什么是计算机硬件、计算机软件?各由哪几部分组成?它们之间有何联系? 答:人们通常把构成计算机的物理装置称为计算机的硬件,其主要功能是:存放控制计算机运行的程序和数据,对信息进行加工处理,实现与外界的信息交换。软件是计算机程序及其相关文档的总称。软件是对硬件功能的完善与扩充,一部分软件又是以另一部分软件为基础的再扩充。 3.什么是位、字节?什么是内存地址? 答:在计算机中,二进制数中的每个0和1是信息的最小单位,称为二进制位,简称“位”,英文用“bit”表示。 4.什么是存储器?什么是内存?什么是外存?存储器的容量以什么为单位? 答:在计算机中用于存放供CPU执行的指令,计算或处理的原始数据、中间结果、最终答案的部件称为存储器。用来存放可供CPU直接调用的指令或数据的存储器称为内部存储器,简称内存。计算机的内存一般由RAM和ROM组成,通过电路与CPU相连,CPU可向其中存入数据,也可以从中取得数据,存取数据速度与CPU速度相匹配。外存储器简称外存,主要有磁带、磁盘、光盘等。用于长期保存数据或程序,并能随时恢复或应用。其特点是容量大且断电后数据不丢失,但存储速度较慢。存储器的容量以字节为单位。 5.计算机主频和运算速度的含义是什么? 答:主频是指机器的时钟频率,它直接影响到机器运行速度。运算速度是指机器每秒能执行的指令数,其单位为MIPS。 6.微型计算机中的主存储器由RAM和ROM组成,二者的主要区别是什么?正运行的用户程序存放在哪部分中?答: (1)RAM为随机存储器,可随时读写,断电后信息归零; (2)ROM为只读存储器,只可读出其内容而不能写入信息,断电后其住处仍保存着; (3)正运行的用户程序存放在RAM中; 7.计算机系统的主要性能指标反映在哪些方面? 答:四个方面:字长、运算速度、存贮容量和主频。 8.计算:3.5英寸双面高密软盘容量,每道18个扇区,每面80条磁道。(要求有计算过程步骤) 答:512×18×80×2=1474560(字节)约1.44MB 9.什么是CPU?它在计算机中起什么作用? 答:运算控制单元又称为中央处理单元,简称CPU。 CUP是计算机的核心,由极其复杂的线路组成,它的作用是完成各种运算,并控制计算机各部件协调工作。 10.简述常用计算机语言及其程序的执行方式? 答: (1)机器语言,是由若干个0和1,按照一定的规则组成的代码串。用机器语言编写的程序叫做目标程序。计算机可直接识别目标程序。 (2)汇编语言,它不能直接使硬件工作,必须用一套相应的语言处理程序去翻译为机器语言后,才能使硬件接受并

冯诺依曼结构是指计算机结构必须包括五个部分

1.冯诺依曼结构是指计算机结构必须包括五个部分,分别为_________、__________、 _________、__________、__________。 2.复制的快捷键是_____________,粘贴的快捷键是_____________。 3.1MB=_____________KB。 4.在查找中,“*”表示_____________,“?”表示_____________。 5..JPG表示_____________格式;.DOC表示_____________格式。 6.请写出你的一个电子邮箱__________________________。 7.FTP是指__________________。 8.请指出IP地址“192.168.110.257”的错误___________________。 9.数码相机中导出的图片怎么改变其容量和尺寸,写出你常用的软件或方法(至少两种) _________________、________________。 10.使用打印、复印、扫描一体机的复印功能是否需要连接计算机。_____________ 11.硬盘格式化以后,里面的资料是否无法找回?_____________ 12.ROM是指_____________,RAM是指_____________。 13.网址https://www.360docs.net/doc/4214652907.html,中gov表示网站类型为_____________。 14.通过电子邮箱一次性发送20个文件,首先应将这些文件进行________处理。 15.大多数打印机连接到计算机上不能直接使用,需先安装该打印机的_____________。 16.请检测你当前计算机的性能:CPU__________________________,内存_____________, 硬盘_____________。 17.写出Office办公组件中常用的三个软件名称:_____________,_____________, _____________。

计算机体系结构习题与答案

一、复习题 1.简述冯?诺依曼原理,冯?诺依曼结构计算机包含哪几部分部件,其结构以何部件为中心? 答:冯?诺依曼理论的要点包括:指令像数据那样存放在存储器中,并可以像数据那样进行处理;指令格式使用二进制机器码表示;用程序存储控制方式工作。这3条合称冯?诺依曼原理 冯?诺依曼计算机由五大部分组成:运算器、控制器、存储器、输入设备、输出设备,整个结构一般以运算器为中心,也可以以控制器为中心。 (P51-P54) 2.简述计算机体系结构与组成、实现之间的关系。 答:计算机体系结构通常是指程序设计人员所见到的计算机系统的属性,是硬件子系统的结构概念及其功能特性。计算机组成(computer organization)是依据计算机体系结构确定并且分配了硬件系统的概念结构和功能特性的基础上,设计计算机各部件的具体组成,它们之间的连接关系,实现机器指令级的各种功能和特性。同时,为实现指令的控制功能,还需要设计相应的软件系统来构成一个完整的运算系统。计算机实现,是计算机组成的物理实现, 就是把完成逻辑设计的计算机组成方案转换为真实的计算机。计算机体系结构、计算机组成和计算机实现是三个不同的概念,各自有不同的含义,但是又有着密切的联系,而且随着时间和技术的进步,这些含意也会有所改变。在某些情况下,有时也无须特意地去区分计算机体系结构和计算机组成的不同含义。 (P47-P48) 3.根据指令系统结构划分,现代计算机包含哪两种主要的体系结构? 答:根据指令系统结构划分,现代计算机主要包含:CISC和RISC两种结构。 (P55) 4.简述RISC技术的特点? 答:从指令系统结构上看,RISC 体系结构一般具有如下特点: (1) 精简指令系统。可以通过对过去大量的机器语言程序进行指令使用频度的统计,来选取其中常用的基本指令,并根据对操作系统、高级语言和应用环境等的支持增设一些最常用的指令; (2) 减少指令系统可采用的寻址方式种类,一般限制在2或3种; (3) 在指令的功能、格式和编码设计上尽可能地简化和规整,让所有指令尽可能等长; (4) 单机器周期指令,即大多数的指令都可以在一个机器周期内完成,并且允许处理器在同一时间内执行一系列的指令。 (P57-58) 5.有人认为,RISC技术将全面替代CISC,这种观点是否正确,说明理由? 答:不正确。与CISC 架构相比较,RISC计算机具备结构简单、易于设计和程序执行效率高的特点,但并不能认为RISC 架构就可以取代CISC 架构。事实上,RISC 和CISC 各有优势,CISC计算机功能丰富,指令执行更加灵活,这些时RISC计算机无法比拟的,当今时代,两者正在逐步融合,成为CPU设计的新趋势。 (P55-59) 6.什么是流水线技术? 答:流水线技术,指的是允许一个机器周期内的计算机各处理步骤重叠进行。特别是,当执行一条指令时,可以读取下一条指令,也就意味着,在任何一个时刻可以有不止一条指令在“流水线”上,每条指令处在不同的执行阶段。这样,即便读取和执行每条指令的时间保持不变,而计算机的总的吞吐量提高了。 (P60-62) 7.多处理器结构包含哪几种主要的体系结构,分别有什么特点? 答:多处理器系统:主要通过资源共享,让共享输入/输出子系统、数据库资源及共享或不共享存储的一组处理机在统一的操作系统全盘控制下,实现软件和硬件各级上相互作用,达到时间和空间上的异步并行。 SIMD计算机有多个处理单元,由单一的指令部件控制,按照同一指令流的要求为他们分配各不相同的数据并进行处理。系统结构为由一个控制器、多个处理器、多个存贮模块和

冯诺依曼结构和哈佛结构

冯?诺依曼结构和哈佛结构 一、冯?诺依曼结构: 1冯?诺依曼结构,也称普林斯顿结构,是一种将程序指令存储器和数据指令存储器合并在一起并经由同一个总线传输的存储器结构。其结构如下图所示: 2.冯?诺依曼结构处理器具有以下几个特点: ①必须有一个存储器; ②必须有一个控制器; ③必须有一个运算器,用于完成算术运算和逻辑运算; ④必须有输入和输出设备,用于进行人机通信。 3.在典型情况下,完成一条指令需要3个步骤,即:取指令、译码和执行。 冯?诺依曼结构的处理器对存储器进行读写操作的指令,如下图所示: 由于冯?诺依曼结构中取指令和存取数据要从同一个存储空间存取,而且由同一总线传输,所以它们无法重叠执行,只有一个完成后再进行下一个。 这种指令和数据共享同一总线的结构,使得信息流的传输成为限制计算机性能的瓶颈,影响了数据处理速度的提高。为克服数据流传输的瓶颈,提高运算速度,人们开发出了较快运算速率,更高数据吞吐量的哈佛结构。

二、哈佛结构 1.哈佛结构是一种将程序指令存储和数据指令存储分开的存储器结构。中央处理器首先到程序指令存储器中读取程序指令内容,解码后得到数据地址,再到相应的数据存储器中读取数据,并进行下一步的操作(通常是执行)。其结构如下图所示: 2..哈佛结构处理器与冯?诺依曼结构处理器相比较有两个明显的特点: ①使用两个独立的存储器模块,分别存储指令和数据,每个存储模块都不允 许指令和数据并存; ②使用独立的两条总线,分别作为CPU与每个存储器之间的专用通信路径, 而这两条总线之间毫无关联。 3.哈佛结构的处理器对存储器进行读写操作的指令,如下图所示: 通过上图可以看出如果采用哈佛结构,在处理相同的3条存取数指令的时候,各条指令可以重叠地执行,这样就克服了数据流传输过程中的瓶颈,提高了处理器的运算速度。 三、哈佛结构和常见的冯?诺依曼结构区别 哈佛结构与冯?诺依曼结构的最大区别在于冯?诺依曼结构的计算机采用代码与数据的统一编址,而哈佛结构是独立编址的,代码空间与数据空间完全分开。

冯诺依曼体系结构发展综述

冯·诺依曼体系结构发展综述 摘要:本文介绍了冯·诺依曼体系结构的诞生和发展,探讨了制约现代计算机进一步发展的主要因素。指出基础硬件IC生产技术的极限和冯·诺依曼体系结构的缺陷将成为计算机发展的两大瓶颈。调查了现在为了突破冯·诺依曼体系瓶颈各国科学家做出的努力,总结了现在正在研究发展中的几种非冯·诺依曼体系结构计算机。 关键词:冯·诺依曼体系结构;计算机;局限;发展 1冯·诺依曼体系的诞生和发展 1.1冯·诺依曼体系结构概述 众所周知,第一台计算机是诞生于1946年的ENIAC。作为第一台计算机的研制者,数学家冯·诺依曼提出了计算机制造的三个基本原则,即采用二进制逻辑、程序存储执行以及计算机由五个部分组成(运算器、控制器、存储器、输入设备、输出设备),这套理论被称为冯·诺依曼体系结构。该体系结构在创立70年后的今天仍然指导着计算机的制造,冯·诺依曼由此被称为“计算机之父”。对冯体系结构的传承与突破也记载着计算机的发展进程。[1] 1.2冯·诺依曼提下的发展动向 作为经久不哀的经典理论,冯·诺依曼系结构的优点是逻辑清晰、结构简单、实现成本低,缺点是存储的指令和数据共享一条总线,信息流的传输成为限制计算机性能的瓶颈,串行执行指令的方式影响了指令的执行速度。基于该理论的特点,对冯·诺依曼体系结构的三原则的演变角度分析计算机的发展动向。[2] 1.2.1二进制逻辑的演变 计算机诞生前,人类对计算机的逻辑并无清晰的概念,计算机采用什么进制一度成为科学家争论的焦点。基于人类的习惯,计算机采用十进制似乎更符合人类规范,能更好地为人类服务。但是,冯·诺依曼以电子设备存在二种稳态为依据提出了以二进制逻辑作为计算机逻辑基础,沿用至今。取决进制使用的关键在于基本稳态数量,人类普遍有十根手指,十种基本稳态造成了人类使用十进制这一现象。计算机的制造元器件如二极管等,普遍具有通断、高电平低电平、充放电等二种稳态,故而计算机内采用二进制。目前,科学家研究的新型计算机如生物计算机、量子计算机等,其制造元件使用生物分子和量子等,具备的基本稳态数量很多,其内部采用的进制也必然不同。在生物、量子等前沿科技的推动下,未来将很有可能制造出采用十进制的计算机。

画出冯诺依曼结构模型

1;画出冯诺依曼结构模型,并简述冯.诺依曼原理的基本内容。 答;冯诺依曼体系结构有以下特点; 1;计算机处理的数据和指令一律采用二进制数的形式表示; 2;指令和数据不加区别混合储存在同一个储存器中; 3;顺序执行程序的每一条指令; 4;计算机硬件由控制器、运算器、存储器、输入设备和输出设备五大部分组成。 程序执行过程实际上是不断的取指令、分析指令、执行的过程。因为其结构特点,冯诺依曼的计算机本质上讲是采取串行顺序处理的工作机制,即使有关数据已经准备好,也必须逐条执行指令。 2. 简述启动控制面板的常用方法。(至少列出三种) 答;1;点开始,选择控制面板打开。 2;打开我的电脑,选择控制面板。 3;点开始-运行,输入命令control,回车打开控制。 3.什么是存储器?内存储器与外存储器之间有什么异同点 答:(1).存储器(Memory)是计算机系统中的记忆设备,用来存放程序和数据。计算机中的全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。它根据控制器指定的位置存入和取出信息。 内存储器与外存储器之间有什么本质的不同在于:内存储器就是我们常说的内存,还有其他一些只有通电的时候才能存储信息的东西。一旦停电,数据马上就没了。外存储器就是我们常说的,硬盘,U盘,光盘等,在不通电的情况下数据是不会丢失的。 (2)内储存器与外储存器主要的区别; 1,速度不同,内存要比外存快上百倍。 2,容量不同,一般内存就几个G,大的也就16G,32G,外存,比如硬盘随便就几T.

4. 简述计算机的工作原理。 答;计算机工作是现将需要执行的程序从外储存中读入内存中,由CPU负责从内存中逐条取出指令,分析指令,然后执行指令,再有指令计数器取出一条指令,CPU重复的工作,直到遇到停止指令然后结束程序的执行。 5. 简述记事本和写字板的功能。 答;记事本是txt格式,写字板是rtf格式。 1,记事本用于纯文本文档的编辑,功能没有写字板强大,适于编写一些篇幅短小的文件,由于使用方便,应用也是较多的。如一些程序的README的文件通常是以记事本的方式打开的。 2写字板是一个使用简单,但功能强大的文字处理程序,可以利用它进行日常的文件编辑。不及可以进行中英文文档的编辑,还可以图文混排,插入图片,声音,视频剪辑等多媒体资料。 6.如何设置远程桌面连接,请写出具体过程? 答;第一步:点开始——在运行里面输入mstsc,按回车键。 第二步:输入远程电脑的ip,点链接。 注;远程电脑必须开启允许连接方法如下 1,选择桌面上的计算机,鼠标右键选择属性。 2,点远程设置。 3选中允许运行任意版本远程桌面的计算机,点选择用户,点添加,输入允许连接本台计算机的用户,然后返回系统属性窗口,点确定。 7.为了保护重要文档,有哪几种具体方法? 答;根据目的的不同,有很多方法可以实现,如U盘的,disk卡的防写保护,是通过硬件保护,禁止更改或删除,通过windows的权限设置也可以实现防止对电脑中文件进行更改,删除,和复制。另外也可以使用工具软件对需要保护的文件进行加密,隐藏等,总体来说,有三类方法;1是硬件保护,2是系统工具保护,3是工具软件保护。 8. 当输入或更改数据时,会影响所有被选中的工作表,请列出选择工作的几种操作方法?答;(1)选择单张工作表,单击工作表标签,如果看不到所需的标签,可单击标签滚动按钮为显示标签然后再单击它。 (2)选择两张或多张相邻的工作表;选择中第一张工作表的标签,再按住{shif}键,单击最后一张工作表的标签。 (3)选择两张或多张相邻的工作表单击第一张工作表的标签,再按住{ctri}键,单击其它需要选择的工作表标签。

第2章 计算机体系结构 习题与答案

第二章习题(P69-70) 一、复习题 1.简述冯?诺依曼原理,冯?诺依曼结构计算机包含哪几部分部件,其结构以何部件为中心?答:冯?诺依曼理论的要点包括:指令像数据那样存放在存储器中,并可以像数据那样进行处理;指令格式使用二进制机器码表示;用程序存储控制方式工作。这3条合称冯?诺依曼原理 冯?诺依曼计算机由五大部分组成:运算器、控制器、存储器、输入设备、输出设备,整个结构一般以运算器为中心,也可以以控制器为中心。(P51-P54) 2.简述计算机体系结构与组成、实现之间的关系。 答:计算机体系结构通常是指程序设计人员所见到的计算机系统的属性,是硬件子系统的结构概念及其功能特性。计算机组成(computer organization)是依据计算机体系结构确定并且分配了硬件系统的概念结构和功能特性的基础上,设计计算机各部件的具体组成,它们之间的连接关系,实现机器指令级的各种功能和特性。同时,为实现指令的控制功能,还需要设计相应的软件系统来构成一个完整的运算系统。计算机实现,是计算机组成的物理实现, 就是把完成逻辑设计的计算机组成方案转换为真实的计算机。计算机体系结构、计算机组成和计算机实现是三个不同的概念,各自有不同的含义,但是又有着密切的联系,而且随着时间和技术的进步,这些含意也会有所改变。在某些情况下,有时也无须特意地去区分计算机体系结构和计算机组成的不同含义。(P47-P48) 3.根据指令系统结构划分,现代计算机包含哪两种主要的体系结构? 答:根据指令系统结构划分,现代计算机主要包含:CISC和RISC两种结构。(P55) 4.简述RISC技术的特点? 答:从指令系统结构上看,RISC 体系结构一般具有如下特点: (1) 精简指令系统。可以通过对过去大量的机器语言程序进行指令使用频度的统计,来选取其中常用的基本指令,并根据对操作系统、高级语言和应用环境等的支持增设一些最常用的指令; (2) 减少指令系统可采用的寻址方式种类,一般限制在2或3种; (3) 在指令的功能、格式和编码设计上尽可能地简化和规整,让所有指令尽可能等长; (4) 单机器周期指令,即大多数的指令都可以在一个机器周期内完成,并且允许处理器在同一时间内执行一系列的指令。(P57-58) 5.有人认为,RISC技术将全面替代CISC,这种观点是否正确,说明理由? 答:不正确。与CISC 架构相比较,RISC计算机具备结构简单、易于设计和程序执行效率高的特点,但并不能认为RISC 架构就可以取代CISC 架构。事实上,RISC 和CISC 各有优势,CISC计算机功能丰富,指令执行更加灵活,这些时RISC计算机无法比拟的,当今时代,两者正在逐步融合,成为CPU设计的新趋势。(P55-59) 6.什么是流水线技术? 答:流水线技术,指的是允许一个机器周期内的计算机各处理步骤重叠进行。特别是,当执行一条指令时,可以读取下一条指令,也就意味着,在任何一个时刻可以有不止一条指令在“流水线”上,每条指令处在不同的执行阶段。这样,即便读取和执行每条指令的时间保持不变,而计算机的总的吞吐量提高了。(P60-62) 7.多处理器结构包含哪几种主要的体系结构,分别有什么特点? 答:多处理器系统:主要通过资源共享,让共享输入/输出子系统、数据库资源及共享或不共享存储的一组处理机在统一的操作系统全盘控制下,实现软件和硬件各级上相互作用,达到时间和空间上的异步并行。 SIMD计算机有多个处理单元,由单一的指令部件控制,按照同一指令流的要求为他们分配各不相同的数据并进行处理。系统结构为由一个控制器、多个处理器、多个存贮模块和

相关文档
最新文档