SUV选购必须懂的知识差速器及差速锁

SUV选购必须懂的知识差速器及差速锁
SUV选购必须懂的知识差速器及差速锁

SUV选购必须懂的知识差速器及差速锁

我们在讨论一辆SUV时,不免会提及其通过能力。而每谈到通过能力时,中央差速器以及差速锁的概念是需要知道的。时下SUV的中央差速器都有哪些?又有什么不同?差速锁对车辆的通过能力到底有着怎样的影响?下面我们就来了解一下。

要看一套四驱系统有多大能耐,主要看两方面,一是轴间动力分配系统,二是轮间动力分配系统。为什么这么说呢?因为轴间动力分配系统决定了四驱车的前后桥动力分配,轮间动力分配系统则决定同轴车轮间的动力分配,而这两方面的动力分配恰当与否将决定四驱车的通过能力。

常见的轴间动力分配方式主要有四种,粘性联轴节(耦合器)、多片离合器、机械式差速器以及分动箱。下面先来看下这些动力分配方式都有什么不同。

● 粘性联轴节结构最简单成本最低

粘性联轴节(也叫粘性耦合器),可以说在所有类型的中央差速器里面,其结构是最简单、成本最低的,既没有复杂的电子控制系统也没有精密的机械结构。它的结构是一个装有硅油的密封容器,里面有两组带槽的金属叶片,一组与前轴相连,一组与后轴相连,两组金属叶片是分离地浸在硅油中。

粘性联轴节是利用硅油升温膨胀变粘的特性来进行动力传递的。在车辆正常行驶的时候,前后轴的转速基本一样,或车辆转弯时前后轴存在小的转速差,但两组叶片的“搅动”不足以让硅油升温起作用,因此两组叶片之间是无作用力的,也就不会把动力传递给后桥,这时相当于前驱车。

若车轮前轮出现打滑时,前后轴转速差增大,两组金属叶片相对运动,使得硅油温度上升膨胀、变粘,阻止内外板间的相对运动,进而带动后轴(这有点像用筷子伸进装有粘稠蜂蜜的杯子,快速搅动的时候会带动杯子转动),实现四轮驱动。

了解原理后不难发现,采用粘性联轴节作为中央差速器的四驱系统,只有当前轮打滑后,动力才“被动地”传递到后轮,四驱的介入是有迟滞性的。而且这种动力传递方式效率也不高,通常最多只能将30%的动力传递到后轮。还有一点是,如车轮频繁打滑,硅油温度过高,反而会变稀,四驱系统也会因此而失效。

目前单纯采用这种粘性联轴节作为中央差速器的四驱系统不多见,哈弗M1上使用的就是粘性联轴节控制的适时四驱系统,这种四驱系统的特点是不能进行主动控制与干预,不能祈求它有多强大的越野能力,跑跑一般的烂路还是可以的。

● 电控多片离合式差速器反应速度快可靠性低

在城市SUV中,采用多片离合式中央差速器的适时四驱系统很常见,如现代新胜达、雪佛兰科帕奇、日产逍客、别克昂科拉等等。这种差速器主要是通过多片离合器产生的摩擦转矩来传递动力的。

其内部有两组摩擦盘,一组为主动盘,与前轴连接,另一组为从动盘,与后轴连接,而两者的结合与分离是依靠电子控制系统(有液压与电磁控制两种)来完成的。

如别克昂科拉采用的是电磁控制多片离合式中央差速器的适时四驱系统,理论上可以根据车辆实际行驶状况,实现前后轴扭矩在100:0至50:50间连续变化。

车辆在平直路段行驶时,前后轴的转速差没有达到电子系统的设定要求,离合器保持分离状态,这时跟两驱车是一样的,这样有个好处就是可以降低油耗。而当前后轴的转速差超过一定限度的时候(如前轮出现打滑),ECU监测到这种状态后发出指令,控制电控机构将多片离合器压紧,将动力传递到后轮,实现四轮驱动,以提高车辆通过性。

相对于前面介绍的粘性联轴节,电控多片离合中央差速器则更为“主动”,离合器的结合与分离,以及扭矩的分配比例,均由电子控制系统来完成,反应速度快。离合器接合后前后轴为刚性连接,最多能传递50%的动力到后轮,不过如果高强度地频繁使用,容易导致摩擦片过热而失效的。

● 托森中央离合差速器扭矩分配速度敏捷耐用但造价高

说到机械式差速器,不得不说的就是托森差速器了。托森差速器也称为扭矩感应式差速器,是一个全自动纯机械差速器,实现锁止功能完全不需借助人为或电子系统的。这种结构的特点是具有双涡轮蜗杆结构,通过扭矩单向地从蜗杆传递到涡轮的特性实现了差速器“自锁止”功能。

在正常行驶时,前、后差速器的作用是传统差速器,蜗杆齿轮不影响半轴输出速度的不同,如车向左转时,右侧车轮比差速器快,而左侧速度低,左右速度不同的蜗轮能够严密地匹配同步啮合齿轮。此时蜗轮蜗杆并没有锁止,因为扭矩是从蜗轮到蜗杆齿轮。

而当一侧车轮打滑时,蜗轮蜗杆组件发挥作用,极为迅速地自动调整动力分配。它可以根据行驶状态使动力输出在前后桥间以25:75~75:25连续变化,而且反应十分迅速,几乎不存在滞后。能够在瞬间对驱动轮之间出现的阻力差提供反馈,分配扭矩输出,而且锁止特性是线性的,可以在一个相对宽泛的扭矩输出范围内进行调节。

与电控多片离合器式中央差速器相比,纯机械式扭矩感应式中央差速器无需对各类传感器及转速差进行分析和判断,扭矩分配速度更敏捷,且耐用性更高。不过这种差速器造价高,多见于高端的车型上。

● 什么是差速锁?有什么用?

前面介绍的中央差速器(负责前后轴的动力分配),都可以做到将动力分配到前后桥,不过这个分配比例会随着前后车轮的附着力发生变化的。而带锁止功能的中央差速器,可以让前后桥获得一个固定不变的动力分配比值(通常前后比为50:50),保证前后桥都能获得一个稳定的动力输出,以提高车辆的通过性能。

在城市SUV的四驱系统中,部分中央差速器有带锁止功能,如现代IX35、丰田RAV4、日产奇骏等。在车上会看到“LOCK”的按键,就是用来锁止中央差速器的。

那是不是有了中央差速锁的四驱系统就可以满足各种越野需要了?其实不然。中央差速锁只是负责分配前后桥的动力,但是分配到每个桥后,还要由轮间的差速器分配到两边的车轮上。

这时就会遇到另一个问题,了解差速器原理就知道(不明白差速器原理可点击:汽车差速器结构原理解析),如前桥的一侧车轮出现打滑的话,那么经由中央差速器分配到前桥的那50%的动力将会从打滑的车轮流失。若前后桥各有一个车轮打滑,那么车辆将无法动弹。

在越野时还是很容易碰上这种路况的,那怎么来对付这种情况?就是接下来介绍轮间的动力分配问题了。现在主要用机械式限滑差速器、差速器锁或制动车轮的方式来应付传统差速器这种把动力传给附着力小的车轮的“弊端”。

限滑式差速器,主要是把两侧车轮间的转速差始终限定在一定的范围内,简单的说就是当一侧的车轮打滑到一定程度时,另一侧的车轮就跟着转,从而推动车辆前进。不过这种摩擦片式的限滑差速器,提供的限滑系数还是有限的,随着摩擦片的磨损限滑系数也会下降的。

差速锁,就是将差速器锁止起来,让它失去差速的作用,简单来说就是把左右两侧的车轮变成硬轴连接,两侧车轮的转速完全一样,这样就算一侧车轮打滑了,有抓地力的一侧车轮同样可以使车轮前进,不过这种状态是不能在铺装路面行驶的。

而利用制动的方式阻止车轮打滑,其实就是我们常听到的电子式差速锁(EDS、XDS、EDL),跟前面介绍的差速锁有所不同,电子差速锁充其量只是一段程序,基于ESP的扩展功能,如奇骏的B-LSD。那这种方式跟前两种有什么不同?主要是借助电子稳定系统(ESP、ESC),对打滑的车轮进行单独施加制动力,使得打滑轮胎的阻力比接触地面的轮胎更大,利用差速器的“劣势”,将动力传递到触地的轮胎,从而使得车辆前进。

上面介绍的三种轮间的限滑方式,差速锁对同轴两侧车轮的是最为彻底的,限滑差速器次之。而电子差速锁比起限滑差速器和差速锁在性能上还是有差距的,不过这仅属于ESP的附加功能,无须改变差速器的结构,所以在城市SUV中应用比较广泛,利用“制动”来进行轮间的扭矩分配,可以提高它的公路行驶性能以及通过能力。

总结:具备“三把锁”的四驱系统无疑是具有很强的越野性能的,这种系统多见于偏向越野的SUV,如吉普牧马人、奔驰G系等。而时下的城市SUV很多都

有中央差速器带锁止功能,加以电子辅助,使得这类SUV兼顾良好的公路性能具有一定的通过能力。

后桥限滑差速器差速锁

后桥限滑差速器/差速锁 后桥限滑差速器位于车辆两个后车轮之间,它可以弥补普通差速器的由于车轮悬空而导致空转,此时差速器会将动力不断的传给没有阻力的空转车轮,车辆不但不能向前运动,而且大量动力也会流失的这种弊端。一般后桥限滑差速器会配备在一些高性能车辆上。装有后桥限滑差速器的车辆在激烈驾驶时,还可以进行大范围的漂移动作。 差速器 在此之前我们先来了解一下什么是差速器,以及为什么需要差速器?顾名思义,“差速器”就是用来让车轮转速产生差异的,在转弯的情况下可以使左右车轮进行合理的扭矩分配,来达到合理的转弯效果。汽车在弯道行驶,内外两侧车轮的转速有一定的差别,外侧车轮的行驶路程长,转速也要比内部车轮的转速高,这个时候就需要差速器来调节。 那么这个过程是如何实现的呢?首先我们来看看普通差速器的构成。差速器主要由行星齿轮、齿轮架以及左右半轴齿轮构成。在传动轴和驱动桥的结合点上,我们能看到一个半径比较大的从动齿轮,由于输入轴主动齿轮半径比较小,因此动力从此齿轮传递到半径比较大的从动齿轮的过程中就能实现一个减速增矩的过程。 接下来减速器从动齿轮带动着行星齿轮架一起运转,由于左右输出轴和行星齿轮架是相连的,因此左右输出轴会跟着一起转动,而左右半轴齿轮就会跟着一起运转,而实现“差速”的关键就是两个和左右半

轴齿轮相垂直的行星齿轮。这两个行星齿轮和左右车轮都咬合着,齿轮咬合方式能够让左右两个齿轮达到一个互相抵制的效果。 当汽车直线行驶的时候,左右半轴齿轮的扭矩和转速都是相同的,因此和行星齿轮结合的时候左侧和右侧能够互相抵消,这个时候行星齿轮是不运动的。遇到转弯情况,内侧车轮要比外侧车轮受到的阻力大,这个时候左右半轴齿轮的扭矩不同,就会导致行星齿轮的转动,行星齿轮能给内侧齿轮一个阻力扭矩实现减速,同时也能给外侧齿轮增速,这样外侧齿轮比内侧齿轮的转速快,实现了顺利的转弯。 限滑差速器 普通差速器有一种弊端,那就是由于车轮悬空而导致空转,一旦发生类似的情况,差速器将动力源源不断的传给没有阻力的空转车轮,车辆不但不能向前运动,大量的动力也会流失。这时候就需要一种差速器来解决这样的情况,就是下面介绍的限滑差速器。 限滑差速器的英文简写为LSD,是Limited Slip Differential的缩写,而LSD的主要功能就是在工作时使左右车轮一同运转,而且将左右车轮的转速差控制在一定范围之内,以车辆保证正常的行进。根据实现方式以及机件结构的不同,LSD可细分为扭力感应型、黏耦合型、螺旋齿轮式、标准机械式LSD等多种形式。虽然实现限滑差速的过程不同,最终目的是一致的。 当驾驶一辆装有LSD的车,其中一只驱动轮发生空转时,LSD会控制两只车轮动力输出,阻止空转的车轮不会继续空转,使另一只车轮也有足够大的动力从而帮助车辆前进;在加速过弯时,输出扭力和离

伊顿机械锁式差速器详解

作为一家知名的牵引力控制产品的供应商,美国伊顿公司差速器产品的技术一直处于世界的领先地位。机械锁式差速器作为伊顿公司中最畅销的产品之一,目前已经在全球范围内被广泛地应用于SUV和皮卡车上,2007年的全球销量已超过了140万件,随着近年来国内SUV 的需求的日益增加,伊顿机械式差速器已经走入中国,为国内的SUV用户们提供更多驾驶乐 趣。 机械锁式差速器(MLD,Mechanical Locking Differential)区别于普通差速器(Open D ifferential)和限滑差速器(LSD,Limited Slip Differential)。在遇到一侧车轮打滑的情况下(如冰雪、泥泞路面),普通差速器会将发动机扭矩全部传递到打滑的车轮上,使车辆无法获得任何牵引力驶出障碍:而限滑差速器(LSD)虽然能够通过部分限制左右车轮的相对转动,将部分的发动机扭矩传递到不打滑的车轮上,但在大部分情况下由于传递的扭矩有限,还是无法帮助车辆获得足够的牵引力摆脱障碍。 机械锁式差速器(MLD)作为在限滑差速器(LSD)基础上的改进产品,可以通过在一侧车轮打滑的情况下(左右轮速差达到100转/分钟),触发机械锁合机构将车桥完全锁死,将发动机扭矩100%传递到有抓地力的有效车轮上,从而提供足够的牵引力帮助车辆驶出障 碍。 除此之外,机械锁式差速器还因为具备如下优点,获得了全球SUV和皮卡用户的青睐: 1.无须驾驶员控制,完全自动锁止和解锁; 2.结构简单,安装方便(外型尺寸与普通差速器一致); 3.无须使用含特殊添加剂的齿轮油,维护成本低; 4.与ABS/ESP以及四驱系统完全兼容; 5.仅在低速情况下工作(30公里/小时以下),安全可靠; 鉴于MLD的工作原理和特点,装配MLD的两驱车在某些情况下的表现甚至超过了装配普通差速器的四驱车(4WD)。这是因为一般的四驱系统仅仅能够将扭矩从后轮传递到前轮(或者前轮传递到后轮),而无法将扭矩在左右轮之间进行传递,当遇到车辆前后各有一侧车轮打滑的情况下,四驱系统就同样无法将发动机扭矩传递到有效车轮上。

差速器的结构及工作原理 图解

差速器的结构及工作原理(图解) 汽车差速器是一个差速传动机构,用来保证各驱动轮在各种运动条件下的动力传递,避免轮胎与地面间打滑。 当汽车转弯行驶时,外侧车轮比内侧车轮所走过的路程长(图D-C5-5);汽车在不平路面上直线行驶时,两侧车轮走过的曲线长短也不相等; 即使路面非常平直,但由于轮胎制造尺寸误差,磨损程度不同,承受的载荷不同或充气压力不等,各个轮胎的实际上不可能相等,若两侧车轮都固定在同一转轴上,两轮角速度相等,则车轮必然出现边滚动边滑动的现象。 差速器的作用 车轮对路面的滑动不仅会加速轮胎磨损,增加汽车的动力消耗,而且可能导致转向和制动性能的恶化。 若主减速器从动齿轮通过一根整轴同时带动两侧驱动轮,则两侧车轮只能同样的转速转动。为了保证两侧驱动轮处于纯滚动状态,就必须改用两根半轴分别连接两侧车轮,而由主减速器从动齿轮通过差速器分别驱动两侧半轴和车轮,使它们可用不同角速度旋转。

这种装在同一驱动桥两侧驱动轮之间的差速器称为轮间差速器。 在多轴驱动汽车的各驱动桥之间,也存在类似问题。为了适应各所处的不同路面情况,使各驱动桥有可能具有不同的输入角速度,可以在各驱动桥之间装设轴间差速器。 布置在前驱动桥(前驱汽车)和后驱动桥(后驱汽车)的差速器,可分别称为前差速器和后差速器,如安装在四驱汽车的中间传动轴上,来调节前后轮的转速,则称为中央差速器。

差速器可分为普通差速器和两大类。 普通差速器的结构及工作原理 目前国产轿车及其它类汽车基本都采用了对称式锥齿轮普通差速器。 对称式锥齿轮差速器由行星齿轮、半轴齿轮、行星齿轮轴(十字轴或一根直销轴)和差速器壳等组成12-13(见图D-C5-6)。(从前向后看)左半差速器壳2和右半差速器壳8用螺栓固紧在一起。主减速器的从动齿轮7用螺栓(或)固定在差速器壳右半部8的上。十字形行星齿轮轴9安装在差速器壳接合面处所对出的园孔内,每个轴颈上套有一个带有滑动轴承(衬套)的直齿圆锥行星齿轮6,四个行星齿轮的左右两侧各与一个直齿圆锥半轴齿轮4相啮合。半轴齿轮的轴颈支承在差速器壳左右相应的孔中,其内花键与半轴相连。与差速器壳一起转动(公转)的行星齿轮拨动两侧的半轴齿轮转动,当两侧车轮所受阻力不同时,行星齿轮还要绕自身轴线转动--自转,实现对两侧车轮的差速驱动。

LSD限滑差速器的基本工作原理

LSD限滑差速器的基本工作原理 机械摩擦片式限滑差速器(LSD)是改装车、赛车必备的改装零件,LSD看起来结构复杂,但其实工作原理很好理解。左右两组摩擦片组在热敏差速器油的粘度变化中改变差速比,使操控变得得心应手,油门和方向的感觉更理想,更重要的是LSD是风靡全球的漂移赛车最核心的部分之一。 各类差速器的特性比较: 一.开式差速器 切诺基的开式差速器的结构,是典型的行星齿轮组结构,只不过太阳轮和外齿圈的齿数是一样的。在这套行星齿轮组里,主动轮是行星架,被动轮是两个太阳轮。通过行星齿轮组的传动特性我们知道,如果行星架作为主动轴,两个太阳轮的转速和转动方向是不确定的,甚至两个太阳轮的转动方向是相反的。 车辆直行状态下,这种差速器的特性就是,给两个半轴传递的扭矩相同。在一个驱动轮悬空情况下,如果传动轴是匀速转动,有附着力的驱动轮是没有驱动力的,如果传动轴是加速转动,有附着力的驱动轮的驱动力等于悬空车轮的角加速度和转动惯量的乘积。 车辆转弯轮胎不打滑的状态下,差速器连接的两个半轴的扭矩方向是相反的,给车辆提供向前驱动力的,只有内侧的车轮,行星架和内侧的太阳轮之间由等速传动变成了减速传动,驾驶感觉就是弯道加速比直道加速更有力。 开式差速器的优点就是在铺装路面上转行行驶的效果最好。缺点就是在一个驱动轮丧失附着力的情况下,另外一个也没有驱动力。 开式差速器的适用范围是所有铺装路面行驶的车辆,前桥驱动和后桥驱动都可以安装。 二.限滑差速器 限滑差速器用于部分弥补开式差速器在越野路面的传动缺陷,它是在开式差速器的机构上加以改进,在差速器壳的边齿轮之间增加摩擦片,对应于行星齿轮组来讲,就是在行星架和太阳轮之间增加了摩擦片,增加太阳轮与行星架自由转动的阻力力矩。 限滑差速器提供的附加扭矩,与摩擦片传递的动力和两驱动轮的转速差有关。 在开式差速器结构上改进产生的LSD,不能做到100%的限滑,因为限滑系数越高,车辆的转向特性越差。

差速锁

你真的了解差速器与差速锁吗? 越野e族原创 2010-4-16 汽车越野这项非常“男人”的运动,多少年来一直深受人们的喜爱。只是在目前汽车技术越来越发达的境况下,很多刚刚接触越野的爱好者们都还不甚了解“越野”这二字的具体含义,他们不管路面多么崎岖、复杂,只顾踩着油门轰轰的向前冲,而其余的事情都交给车来办。由于对越野的不了解,因此人们选购越野车的时候,总是听风就是雨,只关注品牌、动力、外形,而越野车真正应该具有的内在特质却被逐渐淡忘。

想要成为一个真正的越野高手,在拥有出色的技术之前,必须要对自己的爱车与自己所喜欢的运动有足够的了解,而这都要从最基础的传动部分抓起。搞清楚差速器与差速锁在汽车上的应用、区别以及在越野车上的利与弊都很重要。 你真的了解差速器与差速锁吗? 越野e族原创 2010-4-16 首先,向大家阐述一下差速器,差速器这个自从汽车诞生不久就有了的产物已经诞生了百年之久。而在最初,差速器存在的唯一意义就是让汽车能够正常的转弯。由于在转弯时,内侧车轮和外侧车轮的转速不同,若是没有差速器,而是由一根硬轴进行连接,那么内侧的车轮除了有滚动摩擦之外还有着滑动摩擦,产生剧烈的磨损。

按照工作特性来分,差速器又分为齿轮式差速器和防滑差速器两种。其中,齿轮式差速器若是装到越野车上的话,一旦一个驱动轮悬空失去的抓地力,其另外一个轮子也会失去驱动力,因此,齿轮式差速器不能被装配到越野车之上。对于防滑差速器来说,它能够弥补齿轮式差速器在越野方面的缺陷,但是增加了摩擦片,在有了能够提供一定限滑力矩这一优点的同时,又有着转向特性变差、摩擦片寿命短的缺陷。 你真的了解差速器与差速锁吗? 越野e族原创 2010-4-16

智能差速器锁止系统设计说明书

智能差速器锁止系统设计说明书 浙江理工大学金鑫任明 一设计背景: 当今市面上,随着汽车的普及,人们对汽车的性能要求也越来越高,比如说汽车的安全性,以及汽车在较差路况上的通行能力,这些都是人们在选购汽车时首要考虑的因素。就这次罕见大雪的影响来说,可谓是对汽车通行能力的一个严格考验。有差速锁止系统以及全时四轮驱动系统的汽车来说,可以说是得心应手,操控型还是不错的,而对那些只安装普通差速器的汽车来说,可以把“趴窝”当成家常便饭了,而且其在冰雪路面上简直是在滑旱冰。这就体现了差速锁止系统在恶劣情况下的重要性了。而我们如今用得最多的差速器,是结构最为简单的、性能比较可靠的对称式齿轮差速器,这种差速器的广泛使用,是因为其比较经济,以及以后的维修比较便利,这就使得现在在路上跑的车上所安装的差速器几乎都是这种形式的,这种差速器功能较简单,在好的路面上也算游刃有余,可在有些恶劣情况下就不能适应了。当遇到左右或前后驱动轮与路面之间的附着条件相差较大的情况时,简单的对称齿轮式差速器将不能得到足够的驱动力,此时,只是附着较差的驱动轮高速滑转而汽车却不能前进,故需要解决此种情况的汽车应当采用防(限)滑差速器,而如今技术较为成熟的也只是几种半自动的或机械摩檫形式的锁止机构,他们的结构往往比较复杂,而且在价格上相对较高,不是一般消费者所能接受的,故只在有些高档车上才有使用。这时,我们就萌发了设计智能差速器锁止系统的想法。

目前,后轮驱动的汽车上广泛使用的差速器如图所示: 当两侧的车轮以相同的转速转动时,行星齿轮绕半轴轴线转动——公转,若两侧车轮阻力不同,则行星齿轮在作上述公转的同时,还将绕着自身轴线转动——自转,因此,两半轴齿轮带动两侧的车轮以不同的转速转动。 微型以及部分轻型载货汽车和大部分轿车的车桥,因主减速器输出转矩不大,故可用两个行星齿轮。因此,行星齿轮轴相应为一根直销轴,差速器壳也不必分成两部分,而制成整体式的,其前后两侧都开有大窗孔,以便拆装行星齿轮和半轴齿轮。 现如今的差速器绝大部分是以这两种为模型,再经过适当的改进或附加一些

详解各种差速器

详解各种差速器 目录 差速器的种类 一、开式差速器 切诺基的开式差速器的结构,是典型的行星齿轮组结构,只不过太阳轮和外齿圈的齿数是一样的。在这套行星齿轮组里,主动轮是行星架,被动轮是两个太阳轮。通过行星齿轮组的传动特性我们知道,如果行星架作为主动轴,两个太阳轮的转速和转动方向是不确定的,甚至两个太阳轮的转动方向是相反的。 车辆直行状态下,这种差速器的特性就是,给两个半轴传递的扭矩相同。在一个驱动轮悬空情况下,如果传动轴是匀速转动,有附着力的驱动轮是没有驱动力的,如果传动轴是加速转动,有附着力的驱动轮的驱动力等于悬空车轮的角加速度和转动惯量的乘积。 车辆转弯轮胎不打滑的状态下,差速器连接的两个半轴的扭

矩方向是相反的,给车辆提供向前驱动力的,只有内侧的车轮,行星架和内侧的太阳轮之间由等速传动变成了减速传动,驾驶感觉就是弯道加速比直道加速更有力。 开式差速器的优点就是在铺装路面上转行行驶的效果最好;缺点就是在一个驱动轮丧失附着力的情况下,另外一个也没有驱动力。 开式差速器的适用范围是所有铺装路面行驶的车辆,前桥驱动和后桥驱动都可以安装。 二、限滑差速器 限滑差速器用于部分弥补开式差速器在越野路面的传动缺陷,它是在开式差速器的机构上加以改进,在差速器壳的边齿轮之间增加摩擦片,对应于行星齿轮组来讲,就是在行星架和太阳轮之间增加了摩擦片,增加太阳轮与行星架自由转动的阻力力矩。 限滑差速器提供的附加扭矩,与摩擦片传递的动力和两驱动轮的转速差有关。 在开式差速器结构上改进产生的LSD,不能做到100%的限滑,因为限滑系数越高,车辆的转向特性越差。 LSD具备开式差速器的传动特性和机械结构。优点就是提供一定的限滑力矩,缺点是转向特性变差,摩擦片寿命有限。 LSD的适用范围是铺装路面和轻度越野路面。通常用于后驱车。前驱车一般不装,因为LSD会干涉转向,限滑系数越大,转向越困难。

拒绝误导 彻底了解差速器和差速锁

“电子差速锁”“电子限滑差速器”这是同样的东西吗?竟然连身为汽车编辑的人自己都还没搞明白,而某品牌4S店里的销售大哥/大嫂也会向你描述一下他们某款前驱轿车装备了“电子差速锁”什么的,那功能更是被吹得天花乱坠,你身边也会有一些很懂车的兄弟跟你说限滑差速器或差速锁是个何等神奇的玩意儿,但是,你确定你听懂了吗? 我们首先要了解一点,那就是嘴上挂着这些词儿的人,其实十个有八个压根儿没明白是怎么回事儿。而他们的错误认知,很大程度上来源于那些自己也没明白差速器是怎么回事儿的汽车编辑。各位,今儿,咱就再认真的琢磨一遍差速器的这些事儿,做个明白人,权当是让自己对汽车有个更清晰的认知,毕竟,信自己比信什么都强(别提“信春哥”,春哥不懂车…)。

●什么是差速器? 在描述“差速锁”或是“限滑差速器”之类的概念之前,我们先要了解什么是差速器,以及它有什么样的作用。 『普通差速器示意图』 如果直白的说,差速器的存在就是为了补偿左右驱动轮间(轮间差速器)或各个驱动桥间(轴间差速器)的转速差异,使车辆顺利转弯,并且能消除因为车轮滚动半径不同或路面不同起伏等因素可能造成的车轮滑动。目前轮间差速器中使用最广泛的,就是文章中图示的对称式锥齿轮差速器。

没有差速器会怎么样?转弯,内侧车轮滑拖,外侧车轮滑动,轮胎还有传动机构直接承受这种应力,要么轮胎磨损,要么传动轴和齿轮给你闹出个三长两短,要么失控要么翻车…如果你还是想不出来没有差速器是个什么状态,可以看看下面这个视频。 关于差速器大致的结构和描述如果感兴趣,可以参考下面这篇文章。 ●差速器的运动特性、转矩分配特性和锁紧系数的概念

几种越野汽车锁止式差速器性能比较

第10卷第5期呼伦贝尔学院学报No.5 Vol.10 2002年10月Jour nal of Hulunbeir College Published in M ay.2002 几种越野汽车锁止式差速器性能比较 汪 铸 总装备部汽车试验场 南京市 210016 摘 要:本文介绍了三种不同形式的越野汽车锁止式差速器的结构及工作机理,并对其性能的优缺点作了分析比较。 关键词:汽车 锁止式差速器 相对运动 一、普通差速器的特性概述 汽车在行驶过程中,车轮与地面有两种相对运动:滚动和滑动。滑动将加速车轮轮胎的磨损,增加汽车的转向阻力和行驶阻力,因此要尽量使车轮滚动,减少车轮和地面的滑磨现象发生。汽车在弯道上或在凹凸不平路面上行驶时,左右车轮有不同的移动距离,这就要求左右车轮有不同的转速。为了让左右车轮尽可能的接近于纯滚动,汽车设计时,同一驱动桥的左右两侧区动轮应由两根不直接连接的半轴分别驱动,两个半轴由主传动轴通过差速器传动。 差速器主要由圆锥行星齿轮、行星齿轮轴、圆锥半轴齿轮和差速器壳组成,发动机动力自主传动器从动齿轮依次经差速器壳、十字轴、行星齿轮、半轴齿轮、半轴传递给车轮。行星齿轮在汽车两侧车轮相同时绕半轴轴线转动,称为公转;若两边车轮阻力不同时,行星齿轮在公转的同时还可绕自身的轴线转动,称为自转,行星齿轮自转时,两个半轴可以有不同的转速,此时即产生了差速作用。 根据差速器差速原理: (1)、自转和公转时,半轴和传动轴转速应符合以下关系: n1+n2=2n0 n0、n1、n2……分别为主传动轴、左右半轴转速。 (2)、差速器扭矩分配应符合以下关系: M1-M2=M T M1、M2、M T……分别为左右半轴和差速器齿轮内摩擦力矩。 目前广泛使用的普通差速器,其内摩擦力距都很小,M T≈0,此时 M1=M2 由以上可以看出:差速器实现了任何情况下驱动桥两侧车轮之滚动而不滑动,并且无论左右区动轮转速是否相等,扭矩总是平均分配的。正是由于差速器的如此特性,使得汽车通过坏路的行驶能力受到限制。 当汽车通过软滑路面时,软滑路面上的车轮与地面的附着力很小,路面对半轴产生的反作用力矩也减小,这时虽然另一车轮与好路面间有较大的附着力,根据差速器的扭矩分配特性,好路面上的车轮扭矩只得减小以与软滑路面上的车轮扭矩相等,以至总的牵引力不足以克服汽车的行驶阻力,汽车出现打滑现象。 二、锁止式差速器的特性比较 为了提高越野汽车在坏路上的通行能力,最好的办法是让普通差速器不起作用,在一个驱动轮滑转时,使大部分甚至全部扭 87

差速器的结构及工作原理

汽车差速器是一个差速传动机构,用来保证各驱动轮在各种运动条件下的动力传递,避免轮胎与地面间打滑。 当汽车转弯行驶时,外侧车轮比内侧车轮所走过的路程长(图D-C5-5);汽车在不平路面上直线行驶时,两侧车轮走过的曲线长短也不相等; 即使路面非常平直,但由于轮胎制造尺寸误差,磨损程度不同,承受的载荷不同或充气压力不等,各个轮胎的滚动半径实际上不可能相等,若两侧车轮都固定在同一刚性转轴上,两轮角速度相等,则车轮必然出现边滚动边滑动的现象。 差速器的作用 车轮对路面的滑动不仅会加速轮胎磨损,增加汽车的动力消耗,而且可能导致转向和制动性能的恶化。 若主减速器从动齿轮通过一根整轴同时带动两侧驱动轮,则两侧车轮只能同样的转速转动。为了保证两侧驱动轮处于纯滚动状态,就必须改用两根半轴分别连接两侧车轮,而由主减速器从动齿轮通过差速器分别驱动两侧半轴和车轮,使它们可用不同角速度旋转。 这种装在同一驱动桥两侧驱动轮之间的差速器称为轮间差速器。 在多轴驱动汽车的各驱动桥之间,也存在类似问题。为了适应各驱动桥所处的不同路面情况,使各驱动桥有可能具有不同的输入角速度,可以在各驱动桥之间装设轴间差速器。 布置在前驱动桥(前驱汽车)和后驱动桥(后驱汽车)的差速器,可分别称为前差速器和后差速器,如安装在四驱汽车的中间传动轴上,来调节前后轮的转速,则称为中央差速器。 差速器可分为普通差速器和防滑差速器两大类。

普通差速器的结构及工作原理 目前国产轿车及其它类汽车基本都采用了对称式锥齿轮普通差速器。 对称式锥齿轮差速器由行星齿轮、半轴齿轮、行星齿轮轴(十字轴或一根直销轴)和差速器壳等组成12-13(见图D-C5-6)。(从前向后看)左半差速器壳2和右半差速器壳8用螺栓固紧在一起。主减速器的从动齿轮7用螺栓(或铆钉)固定在差速器壳右半部8的凸缘上。十字形行星齿轮轴9安装在差速器壳接合面处所对出的园孔内,每个轴颈上套有一个带有滑动轴承(衬套)的直齿圆锥行星齿轮6,四个行星齿轮的左右两侧各与一个直齿圆锥半轴齿轮4相啮合。半轴齿轮的轴颈支承在差速器壳左右相应的孔中,其内花键与半轴相连。与差速器壳一起转动(公转)的行星齿轮拨动两侧的半轴齿轮转动,当两侧车轮所受阻力不同时,行星齿轮还要绕自身轴线转动--自转,实现对两侧车轮的差速驱动。 行星齿轮的背面和差速器壳相应位置的内表面,均做成球面,这样作能增加行星齿轮轴孔长度,有利于和两个半轴齿轮正确地啮合。 差速器的工作原理 在传力过程中,行星齿轮和半轴齿轮这两个锥齿轮间作用着很大的轴向力,为减少齿轮和差速器壳之间的磨损,在半轴齿轮和行星齿轮背面分别装有平垫片3和球面垫片5。垫片通常用软钢、铜或者聚甲醛塑料制成。 差速器的润滑是和主减速器一起进行的。为了使润滑油进入差速器内,往往在差速器壳体上开有窗口。为保证润滑油能顺利到达行星齿轮和行星齿轮轴轴颈之间,在行星齿轮轴轴颈上铣出一平面,并在行星齿轮的齿间钻出径向油孔。在中级以下的汽车上,由于驱动车轮的转矩不大,差速器内多用两个行星齿轮。相应的行星齿轮轴相为一根直销轴,差速器壳可以制成开有大窗孔的整体式壳,通过大窗孔,可以进行拆装行星齿轮和半轴齿轮的操作。 差速器的工作原理图解 一般的差速器主要是由两个侧齿轮(通过半轴与车轮相连)、两个行星齿轮(行星架与环形齿轮连接)、一个环形齿轮(动力输入轴相连)。 传动轴传过来的动力通过主动齿轮传递到环齿轮上,环齿轮带动行星齿轮轴一起旋转,同时带动侧齿轮转动,从而推动驱动轮前进。

一文读懂差速器的作用及工作原理

一文读懂差速器的作用及工作原理 相信很多人都对一件事感到很奇怪,那就是为什么汽车的一个车轮打滑了,另一边的车轮也不动了,这种情况在冰雪路面和泥泞路面上特别常见。一些SUV车型针对于此,装备了一种叫做电子限滑差速器的东西,很多4s店的销售顾问对此是大吹特吹,甚至将其说成了越野神器。那么它究竟是一个什么鬼呢?今天老侯就来给大家说说汽车的差速器和差速锁。 为啥么发明差速器?因为汽车在转向的时候,两侧轮子走过的距离不一样,这就导致轮胎打滑磨损等问题的产生。 差速器的作用是什么?汽车差速器能够使左、右(或前、后)驱动轮实现以不同转速转动的机构。主要由左右半轴齿轮、两个行星齿轮及齿轮架组成。功用是当汽车转弯行驶或在不平路面上行驶时,使左右车轮以不同转速滚动,即保证两侧驱动车轮作纯滚动运动。差速器是为了调整左右轮的转速差而装置的。在四轮驱动时,为了驱动四个车轮,必须将所有的车轮连接起来,如果将四个车轮机械连接在一起,汽车在曲线行驶的时候就不能以相同的速度旋转,为了能让汽车曲线行驶旋转速度基本一致性,这时需要加入中间差速器用以调整前后轮的转速差。目前使用最广泛的就是对称式锥齿轮差速器。 如果你的车上没有差速器,两个车轮将刚性的固定在一起,以同一转速旋转。汽车在转弯时,车轮必然出现边滚动边滑动的现象。这将会加速轮胎磨损,增加汽车的动力消耗,使车桥承受很大的应力。为了保证两侧驱动轮始终处于纯滚动状态,人们使用两根半轴分别连接两侧车轮,而由主减速器从动车轮通过差速器分别驱动两侧半轴和车轮,使它们可用不同角速度旋转。 然而差速器也带来了一定的副作用。就是当两个轮子,其中一个轮子阻力较大时,输出动力全部集中在另外的轮子上,导致只有一个轮子空转。常见陷在泥土和雪地里的轮子。

各类差速器的特性比较

各类差速器的特性比较: 一.开式差速器 切诺基的开式差速器的结构,是典型的行星齿轮组结构,只不过太阳轮和外齿圈的齿数是一样的。在这套行星齿轮组里,主动轮是行星架,被动轮是两个太阳轮。通过行星齿轮组的传动特性我们知道,如果行星架作为主动轴,两个太阳轮的转速和转动方向是不确定的,甚至两个太阳轮的转动方向是相反的。 车辆直行状态下,这种差速器的特性就是,给两个半轴传递的扭矩相同。 在一个驱动轮悬空情况下,如果传动轴是匀速转动,有附着力的驱动轮是没有驱动力的,如果传动轴是加速转动,有附着力的驱动轮的驱动力等于悬空车轮的角加速度和转动惯量的乘积。 车辆转弯轮胎不打滑的状态下,差速器连接的两个半轴的扭矩方向是相反的,给车辆提供向前驱动力的,只有内侧的车轮,行星架和内侧的太阳轮之间由等速传动变成了减速传动,驾驶感觉就是弯道加速比直道加速更有力。 开式差速器的优点就是在铺装路面上转行行驶的效果最好。缺点就是在一个驱动轮丧失附着力的情况下,另外一个也没有驱动力。 开式差速器的适用范围是所有铺装路面行驶的车辆,前桥驱动和后桥驱动都可以安装。 二.限滑差速器 限滑差速器用于部分弥补开式差速器在越野路面的传动缺陷,它是在开式差速器的机构上加以改进,在差速器壳的边齿轮之间增加摩擦片,对应于行星齿轮组来讲,就是在行星架和太阳轮之间增加了摩擦片,增加太阳轮与行星架自由转动的阻力力矩。 限滑差速器提供的附加扭矩,与摩擦片传递的动力和两驱动轮的转速差有关。 在开式差速器结构上改进产生的LSD,不能做到100%的限滑,因为限滑系数越高,车辆的转向特性越差。 LSD具备开式差速器的传动特性和机械结构。优点就是提供一定的限滑力矩,缺点是转向特性变差,摩擦片寿命有限。 LSD的适用范围是铺装路面和轻度越野路面。通常用于后驱车。前驱车一般不装,因为LSD会干涉转向,限滑系数越大,转向越困难。 三.锁止式差速器(机械锁止、电动锁止、气动锁止) 为了保证车辆在复杂的越野路况下的行驶性能,通过一定的机械结构把差速器锁死,实现两个半轴的同步转动。通过行星齿轮组分析,就是把行星齿轮组的变速机构锁死,保证行星架和太阳轮之间,以及两个太阳轮之间的传动比都是1:1。可以把太阳轮和行星架锁止,可以把行星架和行星齿轮锁死,还可以把两个太阳轮锁死。 锁止式差速器,在没有锁止的时候,其传动特性与开式差速器完全相同,在锁止的情况下,传动比被固定为1:1。 这种差速器的优点不言而喻,在越野路面提供了最大的驱动力,缺点是在差速器锁止的情况下,车辆转向极其困难;存在单车轮承受发动机100%的扭矩的可能,半轴会因为扭矩过大而变形或折断;车辆在转向的过程中,两半轴承受相反的扭矩,如果两侧轮胎的附着力都很大,会扭断半轴。另

各种四驱车的差速锁_详细介绍

各种四驱车的差速锁详细介绍 汽车为什么需要四驱?这个问题可能有点愚蠢,但如果你认真地按照这个思路思考下去,就能发现,四驱其实并不难理解,还很有趣呢。好了,该说答案了,为什么需要四驱,因为汽车不可能只跑在铺装很好的路面上,偶尔也会去沙滩、山林、沼泽、雪地或 者其它车轮很容易打滑的地方。 两驱车,一旦某一个驱动轮打滑,这意味?麻烦开始了,即使另外一边的驱动轮不打滑,但因为差速器的缘故,动力只往打滑车轮流淌,这时候,徒踩油门也无济于事,不打滑的车轮得不到动力分配,打滑车轮却因过多动力而高速空转。 如果是四驱车,那情形就好多了,后轮打滑,前轮还可以使上力气,左侧车轮打滑,那右侧车轮或许能帮上忙,这就是四驱车的最大好处,可以帮助你通过各种复杂路面。现在,各种四驱车多不胜数,几乎每个车厂都有自己的四驱车,从CR-V、RAV4、欧蓝德、翼虎,到帕杰罗、X5、B9、普拉多、维拉克斯、Q7、MDX,再到揽胜、切诺基、卡宴、途锐、Petrol、牧马人、奔驰G等,多不胜数。虽然它们都笼统地被称作SUV或者四驱车,实际上,四驱有强弱之分,有贵贱差别,有各自擅长的领地。 如果你想很快读懂它们,抓住几个要点足够了。四驱车的通过能力高低,最主要是,决定于它们配用的差速器锁止装置的数目和类型,也就是说,在有车轮打滑时,车辆能不能把打滑车轮完全死锁,不让动力流失,再把动力有选择地分配给不打滑的车轮的能力, 这决定了它通过能力的高下。 先说说差速锁的数目。如果有一个车轮打滑,这时候,汽车上至少有一个差速锁,才能把车轮锁止;如果碰到前后两个车轮打滑,这时候,至少配备两个差速锁才能锁止;如果是三个车轮同时打滑,那就得需要三个差速锁了。因此,我们从差速锁的数目,基本

自动锁止式差速器

自动锁止式差速器(ASD)是指一种带有多片式离合器的电控液压式自动锁止差速器。最高工作速度为30kM/h,可以使用在承载式车身上。比如在美国,自1991年以来,部分使用承载式车身的小型柴油车就开始选装ASD以代替成本更高的ASR(加速防滑控制系统),后者在动力更为强劲的车型中仍是常见装备。ASD 也是老版4matic系统的组成部分。 老版4Matic四轮驱动技术(1987-1995) 该技术于1985年在法兰克福国际车展上首次亮相,当时被称为“自动选择四轮驱动技术(4MATIC)”。它可能受到了1979年面世的奔驰G系列的某种启发,但比G系列更出色,因为它有三个开式差速器,包括前部、后部,甚至还有中央差速器,而G系列是在90年以后才提供中央差速器的。 它抛弃了手动分动箱和差速器锁,转而采用液压操作的多片离合器。通过ABS系统的车轮转速传感器来探测车轮打滑情况,随之在控制器的作用下,多片离合器逐渐接合。它测量方向盘转角,并使用线性模型(类似于ESP系统所使用的模型)来计算预期的前轮转速,并将其与测得的车轮转速相比较。如果发现两者有差异,则中央多片离合器接合,前桥随之接通动力。通常情况下,它是一套后轮驱动系统,一旦发生打滑,前轮会接收动力,一开始前后动力分配比是35:65。此时,组合仪表上的三角形警告灯开始闪烁。如果打滑仍继续,中央差速器彻底锁止,前后轮动力分配比变为50:50,并且最终后桥差速器也可锁止。如果进行制动操作,则三个离合器会同步分离,以防止干扰ABS系统的工作。 车辆起步或加速时,前桥通常是主动接合的,无论此时是否探测到车轮打滑情况。它仅仅是一套分时四轮驱动系统,而不像后来的新版4Matic是一套全时四轮驱动系统。在起伏的山路中,该系统没什么作用,因为它缺少一个前桥差速器锁,就象奔驰500GE一样。车主一般会对它的性能表示满意。有时分动箱内部的执行器密封件可能失效,导致液压油泄漏到分动箱中,但是改进后的分动箱已经排除了这种故障。 但是老式4Matic系统有一个缺点更为致命:锁止差速器会对传动系、齿轮、万向节、车桥、轴承等部件产生非常大的应力,因为高达100%的扭力可能突然施加到单个车轮上。而这一点在某种意义上也违背了四轮驱动的初衷,因为之所以开发四轮驱动技术,就是为了将扭力均匀分配给全部车轮。出于以上原因,该系统的车辆传动系中的部件必须能承受相当大的载荷。这增加了成本,并且由于这种部件较重,车辆性能也会有一些损失,包括悬架上非簧载质量与簧载质量的比值也会偏高。它与PSK(保时捷四驱技术)类似,并且考虑到它并非是全时四轮驱动系统,它的价格也偏贵。老式4matic系统主要与直列式六缸汽油发动机搭配使用,从未扩展到动力更为强劲的发动机,个中原因估计也就是因为以上这些因素。因此在1997年,该系统被基于4ETS技术的新版4Matic系统代替。 新版4Matic和电子牵引系统(ETS,4ETS) 对于车辆制动操作来说,优化车轮的滑移率就可以优化车辆的抓地性能,这一点也同样有益于车辆的加速表现。从下面的轮胎附着力与打滑情况对照图中可以看到,加速曲线和制动曲线基本是对称的: 注意,当车轮在加速打滑时,轮胎的侧向抓地力会变得非常小,因此,如果你的车辆没有安装该系统,那在湿滑路面上急加速并且车轮快速空转时,你通常会发现车辆会向侧面滑动。和ABS系统一样,加速时也需要有一个最佳的打滑比率,因为这对于保持轮胎的横向附着力,进而至保持车辆的可控性非常重要。 加速防滑控制(ASR),或称电子牵引力控制(ETS)系统首先出现在1986年。

最新各种四驱车的差速锁 详细介绍

1 各种四驱车的差速锁详细介绍 2 汽车为什么需要四驱?这个问题可能有点愚蠢,但如果你认真地按照这个思路思考下去,3 就能发现,四驱其实并不难理解,还很有趣呢。好了,该说答案了,为什么需要四驱,因为4 汽车不可能只跑在铺装很好的路面上,偶尔也会去沙滩、山林、沼泽、雪地或者其它车轮很5 容易打滑的地方。 6 7 两驱车,一旦某一个驱动轮打滑,这意味?麻烦开始了,即使另外一边的驱动轮不打滑,但8 因为差速器的缘故,动力只往打滑车轮流淌,这时候,徒踩油门也无济于事,不打滑的车轮9 得不到动力分配,打滑车轮却因过多动力而高速空转。 10 11 如果是四驱车,那情形就好多了,后轮打滑,前轮还可以使上力气,左侧车轮打滑,那右12 侧车轮或许能帮上忙,这就是四驱车的最大好处,可以帮助你通过各种复杂路面。现在,各13 种四驱车多不胜数,几乎每个车厂都有自己的四驱车,从CR-V、RAV4、欧蓝德、翼虎,到帕14 杰罗、X5、B9、普拉多、维拉克斯、Q7、MDX,再到揽胜、切诺基、卡宴、途锐、Petrol、15 牧马人、奔驰G等,多不胜数。虽然它们都笼统地被称作SUV或者四驱车,实际上,四驱有16 强弱之分,有贵贱差别,有各自擅长的领地。 17 18 如果你想很快读懂它们,抓住几个要点足够了。四驱车的通过能力高低,最主要是,决定19 于它们配用的差速器锁止装置的数目和类型,也就是说,在有车轮打滑时,车辆能不能把打20 滑车轮完全死锁,不让动力流失,再把动力有选择地分配给不打滑的车轮的能力,这决定了21 它通过能力的高下。 22

23 先说说差速锁的数目。如果有一个车轮打滑,这时候,汽车上至少有一个差速锁,才能把24 车轮锁止;如果碰到前后两个车轮打滑,这时候,至少配备两个差速锁才能锁止;如果是三25 个车轮同时打滑,那就得需要三个差速锁了。因此,我们从差速锁的数目,基本上就可以判26 定车子的越野能力强弱。如吉普牧马人、奔驰G系、路虎卫士、日产Petrol等,都使用了27 前、中、后三个差速锁,即使在极端情况下,只要还有一个车轮有附?力,它们就有靠自己走28 出困境的可能。而CR-V、RAV4、欧蓝德、翼虎、帕杰罗、X5、Q7、普拉多等,都只使用了一29 个差速锁,可应付的地形就比较有限。 30 31 当然,差速锁越多,成本就越高,设计越困难,因为针对的是硬派越野,因此对车身、悬32 挂、轮胎强度要求也高。开它们,走在马路上,不可能很舒服,锁上四驱,你甚至会发现它33 们几乎不会拐弯,因为它们不允许车轮之间有丝毫打滑,即使是转弯时,内外车轮出现一点34 儿转速差,它们也认为是有车轮在打滑,被它们禁止。因而在铺装路面,不是它们的天下,35 只有在附?力不好的地方,它们行走才更显稳健。在那里,转弯时,外侧走远道的车轮是被拖? 36 走的,但由于附?力低,你感觉不到拖拉的阻力,也不会对轮胎有大的磨损。 37 38 除了差速锁数目,差速锁的类型,也决定车的越野能力。差速锁有液力耦合式、扭距敏感39 式、电液摩擦片式,还有齿轮牙嵌式,不同类型,有不同的锁止能力。 40 目前很多四驱车,都使用液力耦合式差速锁(第一种),因为它结构简单,布置方便。如41 CR-V、RAV4、欧蓝德、翼虎、B9等。液力耦合差速锁有个特点:不很灵敏、锁止有迟滞,也42 就是车轮打滑情况出现一段时间后,它才意识到需要锁止,而且锁止能力有限,且介入时冲43 击大。因此,使用这一装备的车,不会特别注重越野,而在于提高车辆在冰雪、砂石等路面44 上的通过性和稳定性。 45

汽车电子差速锁工作原理

汽车电子差速锁工作原理 其实,汽车电子差速锁英文全称为ElectronicDifferentialSystem,它是ABS的一种扩展功能,用于鉴别汽车的轮子是不是失去着地摩擦力,从而对汽车的打滑车轮进行控制。 工作原理 EDS的工作原理比较容易理解。因为差速器允许传动轴两侧的车轮以不同的转速转动,如果传动轴某一侧的车轮打滑或者悬空时,会造成另一侧车轮完全没了动力,当EDS电子差速锁通过ABS 系统的传感器,自动探测到由于车轮打滑或悬空而产生的两侧车轮转速不同的现象时,就会通过ABS系统对打滑一侧的车轮进行制动,从而使驱动力有效地作用到非打滑侧的车轮,保证汽车平稳起步。当车辆的行驶状况恢复正常后,电子差速锁即停止作用。 当汽车驱动轴的两个车轮分别在不同附着系数的路面起步时,例如一个驱动轮在干燥的柏油路面上,另一个驱动轮在冰面上,EDS电子差速锁则通过ABS 系统的传感器会自动探测到左右车轮的转动速度,当由于车轮打滑而产生两侧车轮的转速不同时,EDS系统就会通过ABS系统对打滑一侧的车轮进行制动,从而使驱动力有效地作用到非打滑侧的车轮,保证汽车平稳起步。

XDS 在国产的高尔夫GTI上我们听到了一个新名词:XDS电子差速锁。在官方网站上,厂家这样宣传它们的产品:GTI在弯道上的出色动态平衡还得益于另一项法宝;--;XDS车辆动态电子差速锁,内置于ESP系统内的XDS可以避免内侧驱动轮的打滑,有效改善前驱车的转向不足现象;而大尺寸的刹车盘则提供了极其优异的制动性能,为驾驶者的极致速度提供了更安全的保障。XDS系统似乎很强大,当然厂家的宣传需要辩证的看待,况且可能还有很多人并不明白:为什么避免内侧驱动轮打滑就能避免转向不足? 衡量一辆车性能优劣,除了看直线加速能力外,关键还是在弯道中的表现,高性能车型如果装备的是普通差速器的话,在高速过弯时会产生很多问题。在日常行驶中,我们认为四个车轮总是紧贴地面的,左右两侧车轮的抓地力的差异基本可以忽略,差速器将动力平均分配到左右车轮。但在激烈驾驶时情况就变得复杂了。 注:以下所说的内侧轮、外侧轮都指两侧的驱动轮,不包括从动轮。 ● 问题一:动力的损失

差速锁原理杂谈

差速锁使用注意事项: 一、不出现轮胎打滑时不使用4HLC、4LLC和后差 二、不在极限爬坡、拖车和深陷的情况下不使用4LLC 三、严禁在时速超过20km、车辆转向时使用后差,脱困后及时关闭后差 四、2H、4H和4HLC切换时时速须低于100km(后者个人建议少于50km,减少齿轮冲击程度) 五、4LLC和后差须停车在N档的情况下切换 六、后差在不到万不得已时尽量不用 后差锁只有在后单轮悬空或后轮深陷时才会用到,如果不玩高强度越野估计是一辈子都用不到几次了。 山猫有超选四驱足以 最近想换个4驱车,所以一直关注这方面的问题 就我最近看到的一些知识贴的内容,给楼主分享下 首先纠正下楼主一个错词,不是“没有差速锁”,是没有差速器 差速器和差速锁是2个完全对立的概念 说通俗点,差速器是允许相对2个轮子以不同的速度转, 差速锁是指将差速器锁死,拿机械式差速锁来说就是让相对的2个轮子必须以完全相同的速度转 以安装的部位分为中央差速锁、前桥差速锁和后桥差速锁 4驱车又分全时4驱和分时4驱 全时4驱车一般都有中央差速器,所以可以在铺装路面开,但如果它不装中央差速锁的话,陷在泥里自救很困难,打滑的车轮会消耗大部分扭矩,但比较高档的限滑差速器如LC系列,可以以85%与15%的扭矩自动在前轮和后轮间转换,但那个是比较贵的车才有,一般的森林人什么的也只能坐到50:50。但如果装了机械式中央差速锁,将之100%锁死的话,那么有附着力的轮子可以得到100%的动力。 H3属于分时4驱,分时4驱平时一般以2驱开,在4驱状态下,其实就相当于全时4驱车锁死中央差速锁的状态,即如果前轮打滑,可以将动力输送给后轮,若后轮打滑,则将动力输送到前轮。 从另一个角度说,分时4驱车不需要中央差速锁。就拿罗宾汉来说,它是分时4驱,所以只装了2个差速锁,一个前桥,一个后桥,没有中央差速锁。而另一个绝顶牛B角色:奔驰G系,它是全时4驱,所以装有3把差速锁(多个中央差速锁)这2个车之所以牛B,也因为它们装的都是机械式差速锁或是电子控制的机械式差速锁,是100%锁死的,所以即使在3个轮子都打滑的状态下,也可以将100%的动力全部

各种四驱车的差速锁 详细介绍复习课程

各种四驱车的差速锁 详细介绍

各种四驱车的差速锁详细介绍 汽车为什么需要四驱?这个问题可能有点愚蠢,但如果你认真地按照这个思路思考下去,就能发现,四驱其实并不难理解,还很有趣呢。好了,该说答案了,为什么需要四驱,因为汽车不可能只跑在铺装很好的路面上,偶尔也会去沙滩、山林、沼泽、雪地或者其它车轮很容易打滑的地方。 两驱车,一旦某一个驱动轮打滑,这意味?麻烦开始了,即使另外一边的驱动轮不打滑,但因为差速器的缘故,动力只往打滑车轮流淌,这时候,徒踩油门也无济于事,不打滑的车轮得不到动力分配,打滑车轮却因过多动力而高速空转。 如果是四驱车,那情形就好多了,后轮打滑,前轮还可以使上力气,左侧车轮打滑,那右侧车轮或许能帮上忙,这就是四驱车的最大好处,可以帮助你通过各种复杂路面。现在,各种四驱车多不胜数,几乎每个车厂都有自己的四驱车,从CR-V、RAV4、欧蓝德、翼虎,到帕杰罗、X5、B9、普拉多、维拉克斯、Q7、MDX,再到揽胜、切诺基、卡宴、途锐、Petrol、牧马人、奔驰G等,多不胜数。虽然它们都笼统地被称作SUV或者四驱车,实际上,四驱有强弱之分,有贵贱差别,有各自擅长的领地。 如果你想很快读懂它们,抓住几个要点足够了。四驱车的通过能力高低,最主要是,决定于它们配用的差速器锁止装置的数目和类型,也就是说,在有车轮打滑时,车辆能不能把打滑车轮完全死锁,不让动力流失,再把动力有选择地分配给不打滑的车轮的能力,这决定了它通过能力的高下。

先说说差速锁的数目。如果有一个车轮打滑,这时候,汽车上至少有一个差速锁,才能把车轮锁止;如果碰到前后两个车轮打滑,这时候,至少配备两个差速锁才能锁止;如果是三个车轮同时打滑,那就得需要三个差速锁了。因此,我们从差速锁的数目,基本上就可以判定车子的越野能力强弱。如吉普牧马人、奔驰G系、路虎卫士、日产Petrol等,都使用了前、中、后三个差速锁,即使在极端情况下,只要还有一个车轮有附?力,它们就有靠自己走出困境的可能。而CR-V、RAV4、欧蓝德、翼虎、帕杰罗、X5、Q7、普拉多等,都只使用了一个差速锁,可应付的地形就比较有限。 当然,差速锁越多,成本就越高,设计越困难,因为针对的是硬派越野,因此对车身、悬挂、轮胎强度要求也高。开它们,走在马路上,不可能很舒服,锁上四驱,你甚至会发现它们几乎不会拐弯,因为它们不允许车轮之间有丝毫打滑,即使是转弯时,内外车轮出现一点儿转速差,它们也认为是有车轮在打滑,被它们禁止。因而在铺装路面,不是它们的天下,只有在附?力不好的地方,它们行走才更显稳健。在那里,转弯时,外侧走远道的车轮是被拖?走的,但由于附?力低,你感觉不到拖拉的阻力,也不会对轮胎有大的磨损。 除了差速锁数目,差速锁的类型,也决定车的越野能力。差速锁有液力耦合式、扭距敏感式、电液摩擦片式,还有齿轮牙嵌式,不同类型,有不同的锁止能力。 目前很多四驱车,都使用液力耦合式差速锁(第一种),因为它结构简单,布置方便。如CR-V、RAV4、欧蓝德、翼虎、B9等。液力耦合差速锁有个特点:不很灵敏、锁止有迟滞,也就是车轮打滑情况出现一段时间后,它才意识到需要锁止,而且锁止能力有限,且介入时冲击大。因此,使用这一装备的车,不会特别注重越野,而在于提高车辆在冰雪、砂石等路面上的通过性和稳定性。

相关文档
最新文档