中焊15

中焊15
中焊15

一、单项选择题

1.对火焰钎焊碳钢管子所用的自制溶剂中硼砂与硼酸百分比是()。

A、15%:85%

B、35%:65%

C、50%:50% D 、25%:75%

2.焊缝中心的杂质往往比周围(),这种现象叫区域偏析。

A、高

B、极低

C、低

D、极高

3.金顺的焊接性是指金属材料对()的适应性。

A、化学成分

B、工艺因素

C、使用性能

D、焊接加工

4.()的目的是使零件表面具有高的硬度、耐磨性及疲劳强度,而心部具有较高的韧性。

A、淬火

B、正火

C、调质

D、渗碳

5.普通低合金结构钢,淬硬和冷裂比较()。

A、敏感

B、适应

C、迟钝

D、不敏感。

6.推焊后,焊件表面要求机械加工时,留有()加工余量是不正确的。

A、5毫米

B、4毫米

C、3毫米

D、6毫米

7.焊接过程中,熔化金属自坡口背面流出,形成()的缺陷称为烧穿。

A、咬边

B、穿孔

C、凹坑

D、焊瘤

8.冷弯角的标准一般为()。

A、180°或360°

B、90°或360°

C、45°或180°

D、90°或180°

9.超声波检验用来探测大厚度焊件焊缝()。

A、外部缺陷

B、内部缺陷

C、表面缺陷 D 、近表面缺陷

10.合金组织大多数都属于()。

A、机械混合物

B、纯金属

C、单一固溶体

D、金属化合物

11.细丝二氧化碳气体保护焊使用的焊丝直径是()。

A、大于2mm

B、大于1.6 mm,小于2 mm

C、等于1.6 mm

D、小于

1.6 mm

12.热处理是将固态金属或合金采用适当方式进行加热、保温和冷却以获得所需要的()与性能的工艺

A、晶体结构

B、机械性能

C、焊接方法

D、组织结构

13.焊后()在焊接结构内部的焊接应力,就叫做焊接残余应力。

A、凝缩

B、延伸

C、压缩

D、残留

14.外观检验方法一般以肉眼为主,有时也可利用()的放大镜进行观察。

A、5—10倍

B、3—5倍

C、10—20倍

D、8—15倍

15.编织工艺过程的步骤之一是进行()。

A、产品的工艺过程试验

B、产品的工艺过程坚定

C、产品的工艺过程研讨

D、产品的工艺过程分析

16.奥氏体不锈钢采用()的目的是防止晶间腐蚀

A、普通碳焊丝

B、高碳焊丝

C、超低碳焊丝 D 、优质焊丝

17.在并联电路中,电流分配()关系。

A、与电阻成正比

B、与电压成正比 C 、与电压成反比 D、与电阻成反比

18.下列帖碳合金组织中,硬度高、塑韧性低的是()。

A、渗碳体 B 、珠光体 C、铁素体 D、奥氏体

19.全电路欧姆定律的内容是全电路中的电流强度与()成正比,与整个电路的电阻成反比。

A、电源的电功率

B、电源的电阻

C、电源的电动势

D、电源的电

20.( )是减小焊件的残余变形比较合理的焊接顺序

A、先焊收缩量大的焊缝

B、先焊受力大的焊缝

C、对称焊 D 、尽可能考虑焊缝长短

21.当材料处于()拉伸应力作用下,往往容易发生脆性断裂。

A 、单向 B、双向或三向C、双向D、三向

22.退火后()偏高,多数情况造成的原因是冷却过快。

A、应力

B、弹性

C、硬度 D 、韧性

23.()用来矫形的机械设备是型钢剪切机。

A、不能

B、能

C、可以

D、可选

23.对于()的焊接,采用分段退焊的目的是减少变形。

A 、段焊缝B、对称焊缝 C、点焊缝 D、长焊缝

24.坏性检验是从焊件或试件上切取试样,或以产品的整体破坏做时间,一检查其各种()等的检验方式。

A、力学性能,物理性能

B、力学性能,材料性能

C、力学性能,成品性能

D、力学性能,抗腐蚀性能

25.可焊的最大焊件厚度可达()米。

A、1

B、3

C、2

D、4

26.对焊接零件表面及焊缝每边的铁锈、毛刺、油污等,必须彻底清除干净的范围是()。

A、20~40mm

B、40~60mm

C、30~50mm

D、10~30mm

27.碳溶于()的r—Fe中的所形成的固熔体称为奥氏体。

A、金属晶体

B、体心立方晶格 C 、面心里放晶格 D、密排六方晶格

28.等离子弧切割机水路,气路系统需要更换的管子是()

A 、接头泄露的 B、弯曲盘四节的 C、钻污泥水的D、老化的

29.有时在乙炔发生器中还应增加一些附属设备,但不应有()。

A、化学干燥机

B、化学清净器 C 、油水分离器 D、洗涤器

30.对于厚壁容器,加热和冷却速度应控制在()。

A、10~20℃/小时 B 、150~250℃/小时 C、50~150℃/小时 D、20~30℃/小时

31.产生焊缝尺寸不符合要求的主要原因是()或装配间隙不均匀及焊接工艺参数选择不当。

A、焊件温度过高

B、焊件太厚

C、焊接坡口不当

D、焊件钝边开得不当

32.金属材料()的好坏主要决定于材料的化学成分。

A、工艺条件

B、使用条件

C、焊接方法

D、焊接性

33. X射线检查焊缝厚度小于30毫米时,显示缺陷的灵敏度()。

A、低 B 、很差 C、高 D、一般

34. 焊接铜及铜合金时,采用Ar+He混合气体最显著的好处是改善焊缝金属的()。

A、强度

B、抗裂性

C、润湿性

D、抗氧化性

35.下列焊接方法属于压焊的是()。

A、钎焊

B、点焊

C、熔焊

D、气焊

36.合金组织大多数都是有两相或多相构成的()。

A、机械混合物

B、单一固溶体

C、金属化合物

D、纯金属

37.焊接电流太小,()易引起的缺陷未融合。

A、局部低洼部分

B、层间清渣不干净

C、产生新界面

D、气孔未逸出

38.在()的等离子弧,称为转移弧。

A、电极与焊丝之间建立

B、电极与喷嘴之间建立

C、电极与离子之间建立

D、电极与焊件之间建立

39.造成凹坑的主要原因是(),在收弧时未填满湖坑。

A、电弧过短及角度不当

B、电弧过长及角度不当

C、电弧过长及角度太大

D、电弧过段及角度太小

40.预防和减少焊接缺陷的可能性的检验是()。

A、焊后检验

B、设备检验

C、材料检验

D、焊前检验

41.钢的碳当量Cg<0.4%时,其焊接性()。

A、较差

B、优良

C、一般

D、很差

42.管状溶嘴电渣焊适合用于厚度为()的焊件的焊接。

A 、80~150mm B、20~60mm C、200~300mm D、160~200mm

43.过液体熔渣所产生的电阻热进行焊接的方法称为()。

A 、电阻焊 B、埋弧焊 C、电弧焊D、电渣焊

44.铝及铝合金焊接时,熔池表面生产氧化铝薄膜熔点高达()。

A、2050℃

B、1025℃

C、3000℃

D、2850℃

45.()的主要目的是改善钢的性能。

A、热处理

B、机械处理

C、变质处理

D、化学处理

46.低碳钢由于(),所以显微偏析不严重。

A、结晶区间不小

B、结晶区间极大

C、结晶区间很大

D、结晶区间不大

47.在常温下的金属晶体结构中,晶粒(),晶界越多,金属材料的硬度,强度就会高

A、越细

B、越粗

C、很大

D、不变

48.惰性气体保护焊的代表符号式()。

A、TIG

B、MIG

C、MAG D、PMIG

49.钢的组织不发生变化,只消除内应力的是()

A、完全退火

B、去应力退火

C、秋化退火

D、扩散退火

50.磁阻大小与磁路()

A、长度平方成反比,与铁芯截面面积成正比

B、长度成反比,与铁芯截面面积成正比

C、长度成正比,与铁芯截面面积成反比

D、长度成正比,与铁芯截面面积平方成正比

51.焊缝在焊接结构上的位置(),往往是造成结构整体弯曲变形的主要

A、变形

B、不对称

C、对称

D、标准

52.焊接过程中,融化金属自坡口背面流出,形成穿孔的缺陷成为()。

A、咬边

B、烧穿

C、焊瘤

D、凹坑

53.为消除铸件,焊接件及及加工件中残余应力,应在()前进行的退货方式是去应力退

货。

A、粗加工或淬火

B、粗加工或正火

C、精加工或淬货

D、精加工或正火

54.二氧化碳气体保护焊焊接灰铸铁时,应用的焊丝牌号()。

A 、H08MnA B、Ho8A C、 H08或H08MnA D 、H08Mn2Si

55.水压试验压力应为受压容器工作压力的()。

A 、1-1.25倍 B、 0.5-1倍 C、 1.5-2倍 D 、1.25-1.5倍

56.能够完整地反映晶格特征的最小几何单元称为()。

A 、晶胞 B、晶体 C、晶粒 D、晶面

57.粗丝二氧化碳气体保护焊的焊丝直径为()。

A 、≥1.6mm B、小于1.0mm C、 1.33 D 、1.3-1.5

58.等离子弧切割机控制箱清洁保养(除尘、干燥)范围不包括()。

A、高频振荡器火花隙

B、降压变压器

C、继电器

D、高频变压器

59.焊接裂纹在重要的焊接接头中()。

A、数量不多时允许存在

B、以上说法都不对

C、不允许存在

D、允许存在

60.二氧化碳气体保护焊焊接回路中()的原因是防止产生电弧燃烧不稳定,飞溅大。

A、串联电路

B、串联电阻

C、并联电感

D、并联电阻

61.溶化极氩弧焊为使熔滴出现(),其电源极性应选用直流反接。

A、短路过渡

B、粗滴过度

C、喷射过渡

D、颗粒状过渡

62.按焊接结构的变形形式可分为()

A、纵向变形B、弯曲变形C、波浪变形 D 、局部变形和整体变形

63.当熔渣的碱度为()时,成为碱性渣

A、 1.4

B、>1.5 C 、1.5 D 、1.2

64.二氧化碳气体保护焊时使用的焊丝直径在()的半自动焊枪是推丝焊枪。

A 、1mm以上 B、 4mm以上 C、3mm以上 D 、2mm以上

65.二氧化碳气体保护焊时使用的焊丝直径在()的半自动焊枪时推丝焊枪。

A 、供电装置 B、供气装置 C、供水装置 D 、供丝装置

66.焊接电流太小,层间清渣不干净易引起的缺陷是()。

A 、烧穿B、焊瘤 C 、裂纹D、未融合

67.电流流过导体产生的热量,除了与()此外,还与电流强度的平方成正比。

A、导体的电阻及通电时间成正比

B、电感强度的成反比

C、电容强度成反比

D、电感强度的成正比

68.化学热处理的基本过程由()三部分组成。

A、加热,保温和扩散

B、加热,保温和氮化

C、分解,保温和氮化

D、分解,吸收和扩散

69.为消除铸件,焊接件及机加工件总残余内应力,应在精加工或淬火前进行的退火方式是()

A、去应力退火

B、扩散退火

C、球化退火

D、完全退火

70.选择坡口形式是,应尽量()

A、调整焊缝金属的填充量

B、保证焊缝金属的填充量

C、增加焊缝金属的填充量

D、减少焊缝金属的填充量

71.等离子弧焊接是利用()产生的高温等离子弧来融化金属的焊接方法。

A、手弧焊焊钳

B、碳弧气刨枪

C、钨极氩弧焊焊枪

D、等离子焊枪

72.车床比其它机床应用的更加普通,约占总数的()

A 、30% B、50% C 、60% D、40%

73.在焊接生产中常用选择合理的装配焊顺序()的方法。

A、提高生产率

B、选择焊接设备

C、提高产品质量

D、减少焊接变形

74.在焊接薄板时,一般采用的熔滴过渡形式是()。

A、细滴过渡

B、短路过渡

C、粗滴过渡

D、喷射过渡

75.焊接容器进行水压试验时,同时具有()焊接残余应力的作用。

A、加强

B、降低

C、保持

D、升高

76. 35号钢铸造后在魏氏组织,再经正火处理后,可得到的均匀细小的()与珠光体晶体,

使机械性能大大改善。

A. 渗碳体

B. 铁素体

C. 菜氏体

D.奥氏体

77.并联电路的总电阻一定比任何一个并联()。

A、电流的值大

B、电流的值小

C、电阻的阻值大

D、电阻的阻值小

二.判断题

1.照片底片上,为焊接缺陷常为一条断续或连续的黑直线()。

2.钢中加入合金元素,并不改变加热时奥氏体形成的基本过程,但影响奥氏体的形成速度()。

3.氩弧焊比手弧焊引燃电弧容易( ).

4.由于手弧焊设备的额定电流值不大于500A,所以手弧焊的静特性曲线为上升特性区()。

5.磁阻大小与磁路长度成正比,与铁芯截面面积成反比()。

6.焊接变形的大小是由外力所引起的应力大小来决定的()。

7.由于焊接时温度分布不均匀而引起的应力是热应力()。

8.严格控制熔池温度不能太高是防止产生焊瘤的关键()。

9.气压试验一般用潮湿的空气进行试验()。

10.细丝CO2气体保护焊的电弧静特性曲线是一条上升的曲线()。

11.氢不但会产生气孔,也会促使形成延迟裂纹()。

12.为了减少应力,应该先焊结构中收缩量最小的焊缝()。

13.碳能提高钢的强度和硬度,所以焊芯中应该具有较高的含碳量()。

14.电极到工作的距离是等离子弧切割的工艺参数之一()。

15.减压器出口与氧气管接头处必须用钢丝或退火的铁丝拧紧()。

16.铁的溶碳能力决定于晶体中原子间隙的形状和大小()。

17.焊接接头质量检验分为破坏性和非破坏性检验两大类()。

18.并联电路中各电阻两端的电压相等()。

19.富氩混合气体保护焊的优点是细化溶滴、减少飞溅、提高电弧的稳定性、改善熔深和焊缝成型不良()。

20.对接焊缝坡口形成选择,应考虑以下因素,焊接材料的消耗量、根部焊透、坡口加工的难

易程度和焊接变形的大小()。

焊接机器人工作站方案

. . . 目录 一、工件基础资料及工件工艺要求 (2) 1.1对被焊工件的要求 (2) 二、工作环境 (2) 三、机器人工作站简介 (2) 3.1焊接工艺 (2) 3.2工作站简述 (2) 3.3机器人工作站布局: (图中形状,尺寸仅供参考) (2) 3.4机器人工作站效果图 (3) 3.5机器人工作站动作流程 (3) 四、配置清单明细表 (4) 五、关键设备的主要参数及配置 (5) 六、电气控制系统 (6) 七、双方职责及协作服务 (7) 7.2需方职责 (7) 7.2供方职责 (7) 八、工程验收及验收标准 (7) 九、质量保证及售后服务 (8) 十、技术资料的交付 (9) 十一、其它约定................................................... 错误!未定义书签。附件一 KUKA机器人 (9) 1.1 KUKA KR6弧焊机器人: (10) 1.2机器人系统: (10)

一、工件基础资料及工件工艺要求 1.1对被焊工件的要求 ?工件误差:精度误差、位置误差、焊缝间隙误差。 ?工件焊缝周围10mm内不能有影响焊接质量的油、水分和氧化皮。 ?工件上不能有影响定位的流挂和毛刺等缺陷。 ?工件的尺寸偏差不能超过 1 mm。 ?不同工件在夹具定位后焊缝位置度重复定位偏差不超过 1 mm。 ?坡口的焊缝间隙小于1mm,大于1mm需人工打底。 二、工作环境 2.1电源:3相AC380V ,50Hz±1Hz ,电源的波动小于10%。 2.2工作温度:5℃~ 45℃。 2.3工作湿度:90%以下。 三、机器人工作站简介 3.1焊接工艺 ?焊接方式;人工定焊组对、人工示教,机器人满焊。 ?焊接方法:MIG/MAG ?保护气体:80%Ar+20%CO2。 ?焊丝直径:1.0/1.2mm。 ?焊丝形式:盘/桶装。 ?焊接的可达率:机器人焊枪可达范围,不可达区域由人工补焊。 ?工件装卸方式:人工装配。 ?物流方式:人工、行吊。 3.2工作站简述 ?本案设备采用单工位三班制,每班工作时间8小时,并且设备满足24小时三班连续作业工作能 力。 ?本工作站主要包括弧焊机器人1套、焊接电源1套、L型双轴变位机1套、机器人底座1套、系 统集成控制柜1套等组成。 3.3机器人工作站布局: (图中形状,尺寸仅供参考)

材料焊接对照表

常用钢号焊接参数对照一览表 钢号材料标准焊接方法焊材规格电流电压焊接速度焊后热处理温度硬度焊接注意事项 Q235B GB/T3274SMAW J427/J426 φ3.2110~13026~298~12 620±14℃156HB焊条应经350℃1小时的烘干后方可使用。 φ4.0150~18028~3210~15 SAW HJ431-H08MnAφ4.0400~65038~4030~60 Q245R GB713SMAW J427/J426 φ3.2100~13026~298~12 620±14℃156HB焊条应经350℃1小时的烘干后方可使用。 φ4.0150~18028~3210~15 SAW HJ431-H08MnAφ4.0400~65038~4030~60 Q345R GB713SMAW J506/J507 φ3.2110~13024~2610~15 620±14℃156HB焊条应经350℃1小时的烘干后方可使用。 φ4.0150~18028~3015~20 SAW HJ431-H10Mn2/H10MnSi HJ350-H10Mn2/H10MnSi φ4.0450~65035~3845~55 GMAW ER50-6 H08Mn2SiAφ1.2120~14014~1820~40 A516Gr65ASTM A516SMAW J507RH φ3.2100~12024~2610~15 620±14℃156HB 焊条应经400℃1.5小时的烘干后方可使用,焊后可做-46℃低温冲 击。 φ4.0150~18028~3015~20 X60API 5L SMAW J507GX AWS A5.1 E7015 φ3.2100~13026~288~12 620±14℃156HB 焊条应经380℃1.5小时的烘干后方可使用,焊接时必须短弧操作, 以窄道焊为宜。 φ4.0150~18028~3015~20 X70API 5L SMAW J607GX AWS A5.1 E9015-G φ3.2110~12026~288~12 620±14℃156HB 焊条应经380℃1.5小时的烘干后方可使用,焊接时必须短弧操作, 以窄道焊为宜。 φ4.0150~16028~3015~20 14Cr1MoR GB713SMAW R307H φ3.2110~12026~2810~15 720±14℃156HB 焊条烘干400℃/1小时,焊前需经200~250℃预热,层间温度控制在 250℃左右,焊后立即进行300~350℃的消氢处理,经24小时后进行 100%RT检测,合格后经720℃的消除应力热处理。 φ4.0150~18028~3015~20 15CrMoR 15CrMoG GB713 SMAW R307 φ3.2110~12026~2810~15 720±14℃156HB 焊条需经350℃烘干1小时方可使用,HJ305、SJ101需经350℃烘干2 小时方可使用。焊前需经250~300℃预热,层间温度控制在250℃左 右,焊后立即进行300~350℃的消氢处理,经24小时后进行100%RT检 测,合格后经720℃的消除应力热处理。 φ4.0150~18028~3015~20 SAW HJ350-H08CrMoA/H13CrMoA SJ101-H08CrMoA/H13CrMoA φ4.0550~60036~4045~55 720±14℃156HB GTAW H08CrMoAφ2.4 120~140正 极 14~165~8 A387 GR11 A335 P11ASTM A387 ASTM A335 SMAW R307 φ3.2110~12026~2810~15 720±14℃156HB 焊条需经350℃烘干1小时方可使用,HJ305、SJ101需经350℃烘干2 小时方可使用。焊前需经250~300℃预热,层间温度控制在250℃左 右,焊后立即进行300~350℃的消氢处理,经24小时后进行100%RT检 测,合格后经720℃的消除应力热处理。 φ4.0150~18028~3015~20 SAW HJ350-H08CrMoA/H13CrMoA SJ101-H08CrMoA/H13CrMoA φ4.0550~60036~4045~55 720±14℃156HB GTAW H08CrMoAφ2.4 120~140正 极 14~165~8

焊接冶金学—材料焊接性课后答案

第三章:合金结构焊接热影响区( HAZ最高硬度 1.分析热轧钢和正火钢的强化方式和主强化元素又什么不同,二者的焊接性有何差别?在制定焊接工艺时要注意什么问题?答:热轧钢的强化方式有:( 1)固溶强化,主要强化元素:Mn,Si 。( 2)细晶 强化,主要强化元素: Nb,V。(3)沉淀强化,主要强化元素:Nb,V. ;正火钢的强化方式:( 1)固溶强化, 主要强化元素:强的合金元素( 2)细晶强化,主要强化元素:V,Nb,Ti,Mo ( 3)沉淀强化,主要强化元素: Nb,V,Ti,Mo. ;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。热轧钢被加热到1200 C以上的热影响区可能产生粗晶脆 化,韧性明显降低,而是、正火钢在该条件下粗晶区的V析出相基本固溶,抑制 A长大及组织细化作用被 削弱,粗晶区易出现粗大晶粒及上贝氏体、 M-A 等导致韧性下降和时效敏感性增大。制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接方法。 2. 分析Q345的焊接性特点,给出相应的焊接材料及焊接工艺要求。答:Q345钢属于热轧钢,其碳当量小 于0.4 %,焊接性良好,一般不需要预热和严格控制焊接热输入,从脆硬倾向上,Q345钢连续冷却时,珠 光体转变右移,使快冷下的铁素体析出,剩下富碳奥氏体来不及转变为珠光体,而转变为含碳量高的贝氏 体与马氏体具有淬硬倾向,Q345刚含碳量低含锰高,具有良好的抗热裂性能,在Q345刚中加入V、Nb达 到沉淀强化作用可以消除焊接接头中的应力裂纹。被加热到1200 C以上的热影响区过热区可能产生粗晶脆 化,韧性明显降低,Q345钢经过600CX 1h退火处理,韧性大幅提高,热应变脆化倾向明显减小。;焊接材料:对焊条电弧焊焊条的选择:E5系列。埋弧焊:焊剂 SJ501,焊丝H08A/H08MnA电渣焊:焊剂HJ431、 HJ360焊丝H08MnMo A CO2气体保护焊:H08系列和YJ5系列。预热温度:100?150C。焊后热处理:电弧焊一般不进行或600?650 C回火。电渣焊 900?930 C正火,600?650 C回火 3. Q345与Q390焊接性有何差异? Q345焊接工艺是否适用于 Q390焊接,为什么?答:Q345与Q390都属 于热轧钢,化学成分基本相同,只是Q390的Mn含量高于Q345,从而使Q390的碳当量大于 Q345,所以Q390 的淬硬性和冷裂纹倾向大于Q345,其余的焊接性基本相同。Q345的焊接工艺不一定适用于 Q390的焊接, 因为Q390的碳当量较大,一级Q345的热输入叫宽,有可能使Q390的热输入过大会引起接头区过热的加剧或热输入过小使冷裂纹倾向增大,过热区的脆化也变的严重。 4. 低合金高强钢焊接时,选择焊接材料的原则是什么?焊后热处理对焊接材料有什么影响?答:选择原 则:考虑焊缝及热影响区组织状态对焊接接头强韧性的影响。由于一般不进行焊后热处理,要求焊缝金属在焊态下应接近母材的力学性能。中碳调质钢,根据焊缝受力条件,性能要求及焊后热处理情况进行选择焊接材料,对于焊后需要进行处理的构件,焊缝金属的化学成分应与基体金属相近。 5. 分析低碳调质钢焊接时可能出现的问题?简述低碳调质钢的焊接工艺要点,典型的低碳调质钢如 (14MnMoNiB HQ70 HQ80)的焊接热输入应控制在什么范围?在什么情况下采用预热措施,为什么有最低预热温度要求,如何确定最高预热温度。(P81)答:焊接时易发生脆化,焊接时由于热循环作用使热影 响区强度和韧性下降。焊接工艺特点:①要求马氏体转变时的冷却速度不能太快,使马氏体有一自回火” 作用,以防止冷裂纹的产生;② 要求在800~500C之间的冷却速度大于产生脆性混合组织的临界速度。此外,焊后一般不需热处理,采用多道多层工艺,采用窄焊道而不用横向摆动的运条技术 ; 典型的低碳调质钢在 Wc> 0.18 %时不应提高冷速,Wc< 0.18 %时可提高冷速(减小热输入)焊接热输入应控制在小于 481KJ/cm;当焊接热输入提高到最大允许值裂纹还不能避免时,就必须采用预热措施,当预热温度过高时不仅对防止冷裂纹没有必要,反而会使800?500C的冷却速度低于出现脆性混合组织的临界冷却速度,使 热影响区韧性下降,所以需要避免不必要的提高预热温度,包括层间温度,因此有最低预热温度。通过实验后确定钢材的焊接热输入的最大允许值,然后根据最大热输入时冷裂纹倾向再来考虑,是否需要采取预热和预热温度大小,包括最高预热温度。 6. 低碳调质钢和中碳调质钢都属于调质钢,他们的焊接热影响区脆化机制是否相同?为什么低碳钢在调质 状态下焊接可以保证焊接质量,而中碳调质钢一般要求焊后热处理?答:低碳调质钢:在循环作用下, t8/5 继续增加时,低碳钢调质钢发生脆化,原因是奥氏体粗化和上贝氏体与M-A组元的形成。中碳调质钢:由

各种材料的焊接性能

金属材料的焊接性能 (1)焊接性能良好的钢材主要有: 低碳钢(含碳量<0.25);低合金钢(合金元素含量1~3、含碳量<0.20);不锈钢(合金元素含量>3、含碳量<0.18)。 (2)焊接性能一般的钢材主要有: 中碳钢(合金元素含量<1、含碳量0.25~0.35);低合金钢(合金元素含量<3、含碳量<0.30);不锈钢(合金元素含量13~25、含碳量£0.18) (3)焊接性能较差的钢材主要有: 中碳钢(合金元素含量<1、含碳量0.35~0.45);低合金钢(合金元素含量1~3、含碳量0.30~0.40);不锈钢(合金元素含量13、含碳量0.20)。 (4)焊接性能不好的钢材主要有: 中、高碳钢(合金元素含量<1、含碳量>0.45);低合金钢(合金元素含量1~3、含碳量>0.40);不锈钢(合金元素含量13、含碳量0.30~0.40)。 焊条和焊丝选择的基本要点如下: 同类钢材焊接时选择焊条主要考虑以下几类因素: 考虑工件的物理、机械性能和化学成分;考虑工件的工作条件和使用性能; 考虑工件几何形状的复杂程度、刚度大小、焊接坡口的制备情况和焊接部位所处的位置等;考虑焊接设备情况;考虑改善焊接工艺和环保;考虑成本。 异种钢材和复合钢板选择焊条主要考虑以下几类焊接情况: 一般碳钢和低合金钢间的焊接;低合金钢和奥氏体不锈钢之间的焊接;不锈钢复合钢板的焊接。 焊条和焊丝的选择参数查阅机械设计手册中焊条和焊丝等章节和焊条分类及型号(GB 980-76)、焊条的性能和用途(GB 980~984-76)等有关国家标准。 ###15CrMoR的换热器的热处理工艺 ***当板厚超过筒体内径的3%时,卷板后壳体须整体热处理。 *** 15CrMoR焊接性能良好。手工焊用E5515-B2(热307)焊条,焊前预热至200-250℃(小口径薄壁管可不预热),焊后650-700℃回火处理。自动焊丝用H13CrMoA和焊剂250等。 ###压力容器用钢的基本要求 压力容器用钢的基本要求:较高的强度,良好的塑性、韧性、制造性能和与相容性。 改善钢材性能的途径:化学成分的设计,组织结构的改变,零件表面改性。 本节对压力容器用钢的基本要求作进一步分析。 一、化学成分 钢材化学成分对其性能和热处理有较大的影响。 1、碳:碳含量增加时,钢的强度增大,可焊性下降,焊接时易在热影响区出现裂纹。 因此压力容器用钢的含碳量一般不应大于0.25%。2、钒、钛、铌等:在钢中加入钒、钛、铌等元素,可提高钢的强度和韧性。

FANUC焊接机器人控制系统介绍、应用故障分析及处理

FANUC焊接机器人控制系统介绍、应用故障分析 及处理 FANUC机器人主要应用在奇瑞公司乘用车一厂和乘用车三厂的焊装车间中,其控制系统采用32位CPU 控制,采用64位数字伺服驱动单元,同步控制6轴运动;支持离线编程技术;控制器内部结构相对集成化,这种集成方式具有结构简单、整机价格便宜且易维护保养等特点。 焊接是工业生产中非常重要的加工方式,同时由于焊接烟尘、弧光和金属飞溅的存在,焊接的工作环境非常恶劣,随着人工成本的逐步提升,以及人们对焊接质量的精益求精,焊接机器人得到了越来越广泛的应用。 机器人在焊装生产线中运用的特点 焊接机器人在高质、高效的焊接生产中发挥了极其重要的作用,其主要特点如下: 1.性能稳定、焊接质量稳定,保证其均一性 焊接参数如焊接电流、电压、焊接速度及焊接干伸长度等对焊接结果起决定性作用。人工焊接时,焊接速度、干伸长等都是变化的,很难做到质量的均一性;采用机器人焊接,每条焊缝的焊接参数都是恒定的,焊缝质量受人为因素影响较小,降低了对工人操作技术的要求,焊接质量非常稳定。 2.改善了工人的劳动条件 采用机器人焊接后,工人只需要装卸工件,远离了焊接弧光、烟雾和飞溅等;点焊时,工人不再需要搬运笨重的手工焊钳,从大强度的体力劳动中解脱出来。 3.提高劳动生产率 机器人可一天24h连续生产,随着高速、高效焊接技术的应用,使用机器人焊接,效率提高地更加明显。 4.产品周期明确,容易控制产品产量 机器人的生产节拍是固定的,因此安排生产计划非常明确。 5.可缩短产品改型换代的周期,降低相应的设备投资 可实现小批量产品的焊接自动化。机器人与专机的最大区别就是它可以通过修改程序以适应不同工件的生产。 FANUC机器人控制系统 1.概述 FANUC机器人主要应用在奇瑞公司乘用车一厂和乘用车三厂的焊装车间中,是奇瑞公司最早引进的焊接机器人,也是最先用到具有附加轴的焊接机器人。其控制系统采用32位CPU控制,以提高机器人运动插补运算和坐标变换的运算速度;采用64位数字伺服驱动单元,同步控制6轴运动,运动精度大大提高,最多可控制21轴,进一步改善了机器人动态特性;支持离线编程技术,技术人员可通过离线编程软件设置参数,优化机器人运动程序;控制器内部结构相对集成化,这种集成方式具有结构简单、整机价格便宜且易维护保养等特点。其控制原理如图1所示。

金属材料的焊接性能

金属材料的焊接性能 (2014.2.27) 摘要:对各种常用金属材料的焊接性能进行研究,通过参考各类焊接丛书及焊接前辈多年的经验总结,对常用金属材料的焊接工艺可行性起指导作用。 关键词:碳当量;焊接性;焊接工艺参数;焊接接头 1 前言 随着中国特种设备制造业的不断发展,我们在制造产品时所用到的金属材料种类也在不断增加,相应地所必须掌握的各种金属材料的焊接性能也在不断研究和更新中,为了实际产品制造的焊接质量,熟悉金属材料的焊接性能,以制定正确的焊接工艺参数,从而获得优良的焊接接头起到至关重要的指导作用。 2 金属材料的焊接性能 2.1 金属材料焊接性的定义及其影响因素 2.1.1 金属材料焊接性的定义 金属材料的焊接性是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的能力。一种金属,如果能用较多普通又简便的焊接工艺获得优良的焊接接头,则认为这种金属具有良好的焊接性能金属材料焊接性一般分为工艺焊接性和使用焊接性两个方面。 工艺焊接性是指在一定焊接工艺条件下,获得优良,无缺陷焊接接头的能力。它不是金属固有的性质,而是根据某种焊接方法和所采用的具体工艺措施来进行的评定。所以金属材料的工艺焊接性与焊接过程密切相关。 使用焊接性是指焊接接头或整个结构满足产品技术条件规定的使用性能的程度。使用性能取决于焊接结构的工作条件和设计上提出的技术要求。通常包括力学性能、抗低温韧性、抗脆断性能、高温蠕变、疲劳性能、持久强度、耐蚀性能和耐磨性能等。例如我们常用的S30403,S31603不锈钢就具有优良的耐蚀性能,16MnDR,09MnNiDR低温钢也有具备良好的抗低温韧性性能。

材料焊接性

《材料焊接性》(专科)学案 第一章绪论 二、本章习题 1. 根据本章所述内容,举例说明低合金钢焊接在工程结构中的重要作用。 2.先进材料的发展和应用在工程中越来越受到人们的重视,简述先进材料(如陶瓷、金属间化合物和复合材料等)和金属材料相比,在工程结构中的应用有什么不同? 第2章材料焊接性及其试验方法 1. 了解焊接性的基本概念。什么是工艺焊接性?影响工艺焊接性的主要因素有哪些? 焊接性,是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的难易程度。 工艺焊接性是指在一定焊接工艺条件下,获得优质、无缺陷的焊接接头的能力。 影响因素:材料因素、工艺因素、结构因素、使用条件。 2. 什么是热焊接性和冶金焊接性,各涉及到焊接中的什么问题? 冶金焊接性指在熔焊高温下的熔池金属与气象熔渣等相互之间繁盛化学冶金反映所引起的焊接变化

3. 举例说明有时工艺焊接性好的金属材料使用焊接性不一定好。 工艺焊接性是指影响焊接操作的焊接性能,如电弧的稳定性、焊缝的成形性、脱渣性、飞溅大小及发尘量等。而使用焊接性则是指焊件需满足的使用要求,如接头的力学性能、物理性能及化学性能要求。 有时,工艺焊接性好的材料如果焊接材料选择不当,其使用性能就不一定好:例如不锈钢焊接,若使用普通结构钢焊条焊接,其工艺焊接性很好,即焊接过程很顺利,但是,焊缝不耐腐蚀,就不能满足不锈钢焊件的使用要求,因此焊接接头是不合格的。 金属材料使用性能主要指力学性能,即金属材料在外力作用下表现出来的各种特性,如弹性、塑性、韧性、强度、硬度等。 比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好| 第3章低合金结构钢的焊接 1. 分析热轧钢和正火钢的强化方式及主强化元素有什么不同。二者的焊接性有何差异,在制定焊接工艺时应注意什么问题。 热轧钢的强化方式有:(1)固溶强化,主要强化元素:Mn,Si。(2)细晶强化,主要强化元素:Nb,V。(3)沉淀强化,主要强化元素:Nb,V.;正火钢的强化方式:(1)固溶强化,主要强化元素:强的合金元素(2)细晶强化,主要强化元素:V,Nb,Ti,Mo(3)沉淀强化,主要强化元素:Nb,V,Ti,Mo.;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。热轧钢被加热到1200℃以上的热影响区可能产生粗晶脆化,韧性明显降低,而是、正火钢在该条件粗晶区的析出相基本固溶,抑制A长大及组织细化作用被削弱,粗晶区易出现粗大晶粒及上贝、M-A等导致韧性下降和时敏感性增大。制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接 2. 分析16Mn的焊接性特点,给出相应的焊接材料及焊接工艺要求。

智能焊接机器人系统

焊接机器人系统 机器人通常定义为:机器人(Robot)是自动执行工作的机器装置。它既可以接受人类指挥,又可以运行预先编排的程序,也可以根据以人工智能技术制定的原则纲领行动。它的任务是协助或取代人类工作的工作,例如生产业、建筑业,或是危险的工作。 焊接机器人作为在生产中最为常见的工业机器人,焊接机器人目前已广泛应用在汽车制造业,汽车底盘、座椅骨架、导轨、消声器以及液力变矩器等焊接,尤其在汽车底盘焊接生产中得到了广泛的应用。因此,我选取焊接机器人作为讨论对象,以下是我比对自己在图书馆和网上找到的资料对焊接机器人的系统组成进行的简要概括,分析焊接机器人系统是怎样完成复杂的焊接工作的。 一、典型的机器人系统组成: 1、机器人本体和操作机,可以直接完成各种具体作业; 2、机器人控制器,用来控制机器人和完成数据存储,包括计算机系统和伺服系统两部分; 3、各种不同的作业工具,如焊枪和手爪等; 4、各种周边辅助设备; 5、为完成特殊任务而使用的传感器; 6、用于完成计算机管理、监控和计算机通信的通信系统。 二、焊接机器人的定义 焊接机器人是从事焊接的工业机器人。根据国际标准化组织工业机器人术语标准焊接机器人的定义,工业机器人是一种多用途的、可重复编程的自动控制操作,具有三个或更多可编程的轴,用于工业自动化领域。为了适应不同的用途,机器人最后一个轴的机械接口,通常是一个连接法兰,可接装不同工具或称末端执行器。焊接机器人就是在工业机器人的末轴法兰装接焊钳或焊枪的,使之能进行焊接,切割或热喷涂。目前在汽车工业中被广泛应用于汽车底盘的焊接。 三、焊接机器人的软硬件系统组成 1、焊接机器人的硬件系统。如下图所示:焊接机器人的硬件系统一般由机器人本体、摄像 机随动机构、焊接电源、摄像机、机器人控制器、示教盒、和中央控制机、导引/焊缝跟踪计算机、熔透控制计算机、焊机接口控制盒、电焊机和送丝机等部分构成。 2、焊接机器人的软系统。焊接机器人的软系统根据模块化设计的思想,将焊接机器人工作 单元分解为不同的功能模块。主要有初始位置导引模块、焊缝跟踪模块,熔透控制模块,

焊接机器人发展现状及发展趋势!

焊接机器人发展现状 我国的工业机器人从80年代“七五”科技攻关开始起步,目前已基本掌握了机器人操作机的设计制造技术、控制系统硬件和软件设计技术、运动学和轨迹规划技术,生产了部分机器人关键元器件,开发出喷漆、弧焊、点焊、装配、搬运等机器人;弧焊机器人已应用在汽车制造厂的焊装线上。但总的来看,我国的工业机器人技术及其工程应用的水平和国外比还有一定的距离,如:可靠性低于国外产品;机器人应用工程起步较晚,应用领域窄,生产线系统技术与国外比有差距;应用规模小,没有形成机器人产业。 当前我国的机器人生产都是应用户的要求,单户单次重新设计,品种规格多、批量小、零部件通用化程度低、供货周期长、成本也不低,而且质量、可靠性不稳定。因此迫切需要解决产业化前期的关键技术,对产品进行全面规划,搞好系列化、通用化、模块化设计,积极推进产业化进程。 焊接机器人的编程方法目前还是以在线示教方式为主,但编程器的界面比过去有了不少改进,尤其是液晶图形显示屏的采用使新的焊接机器人的编程界面更趋友好、操作更容易。然而,机器人编程时焊缝轨迹上的关键点坐标位置仍必须通过示教方式获取,然后存入程序的运动指令中。这对于一些复杂形状的焊缝轨迹来说,必须花费大量的时间示教,从而降低了机器人的使用效率,也增加了编程人员的劳动强度。目前解决的方法有两种:一是示教编程时只是粗略获取几个焊缝轨迹上的几个关键点,然后通过焊接机器人的视觉传感器通常是电弧传感器或激光视觉传感器自动跟踪实际的焊缝轨迹。这种方式虽然仍离不开示教编程但在一定程度上可以减轻示教编程的强度,提高编程效率。由于电弧焊本身的特点,机器人的视觉传感器并不是对所有焊缝形式都适用。二是采取完全离线编程的办法,使机器人焊接程序的编制、焊缝轨迹坐标位置的获取、以及程序的调试均在一台计算机上独立完成,不需要机器人本身的参与。机器人离线编程早在多年以前就有,只是由于当时受计算机性能的限制,离线编程软件以文本方式为主,编程员需要熟悉机器人的所有指令系统和语法,还要知道如何确定焊缝轨迹的空间位置坐标,因此,编程工作并不轻松省时。随着计算机性能的提高和计算机三维图形技术的发展,机器人离线编程系统多数可在三维图形环境下运行,编程界面友好、方便,获取焊缝轨迹的坐标位置通常可以采用“虚拟示教”的办法,用鼠标轻松点击三维虚拟环境中工件的焊接部位即可获得该点的空间坐标;在有些系统中,可通过图形文件中事先定义的焊缝位置直接生成焊缝轨迹,然后自动生成机器人程序并下载到机器人控制系统。从而大大提高了机器人的编程效率,也减轻了编程员的劳动强度。目前,国际市场上已有基于普通机的商用机器人离线编程软件,通过虚拟示教获得,并在三维图形环境中可让机器人按程序中的轨迹作模拟运动,以此检验其准确性和合理性。所编程序可通过网络直接下载给机器人控制器。 焊接机器人发展趋势 目前国际机器人界都在加大科研力度,进行机器人共性技术的研究。从机器人技术发展趋势看,焊接机器人和其它工业机器人一样,不断向智能化和多样化方向发展。具体而言,表现在如下几个方面: 1).机器人操作机结构: 通过有限元分析、模态分析及仿真设计等现代设计方法的运用,实现机器人操作机构的优化设计。 探索新的高强度轻质材料,进一步提高负载/自重比。例如,以德国KUKA公司为代表的机器人公司,已将机器人并联平行四边形结构改为开链结构,拓展了机器人的工作范围,加之轻质铝合金材料的应用,大大提高了机器人的性能。此外采用先进的RV减速器及交流伺服电机,使机器人操作机几乎成为免维护系统。

各种常用材料焊接的焊接材料选择原则

各种常用材料焊接的焊接材料选择原则 为得到高质量的焊接接头,首先要合理选择焊接材料。由于焊接部件在运行中的工况有很大差异,母材的材质性能、成分千差万别,部件的制造工艺错综复杂,因此需要从各方面综合考虑确定对应的焊接材料。选择焊接材料应遵循以下原则: 满足焊接接头使用性能的要求。包括常温、高温短时强度、弯曲性能、 冲击韧性、硬度、化学成分等,以及一些技术标准和设计图纸中对街头性能的特殊要求,诸如持久强度,入编极限、高温抗氧化强度、抗腐蚀性能等。 满足焊接接头制造工艺性能和焊接工艺性能的要求。焊接接头组成的构 件,在制造过程中不可避免要进行各种成型和切削加工,例如冲压、车、刨等,要求焊接接头具有一定的塑性变形能力和切削性能、高温综合性能等。 合理的经济性。在满足上述性能外,应选择价格便宜的焊接材料,降低 制造成本。例如重要部件的低碳钢手工电弧焊时,应优先选择碱性药皮焊条,因为碱性焊条脱硫、脱氧充分,且氢含量低,焊缝金属抗裂性能及冲击韧性性能好。而对于一些非重要不见,可选用酸性焊条,因为酸性焊条仍能满足费重要部件的性能要求,而且工艺性良好,价格便宜,可降低制造成本。 第二节碳素钢、低合金钢焊接材料的选择 碳素钢、低合金钢(包括低合金耐热钢、低合金高强钢)焊接材料的选择,应考虑下列因素:等强性和等韧性原则 承压承载的部件,通常根据材料的拉伸应力进行强度计算,拉伸需用应力与 材料的标准抗拉强度下限值有关,即许用应力 (σ)=σb/nb(各种标准nb的取值同) (σ)为材料的拉伸许用应力 σb为材料的标准抗拉强度下限值 nb 为安全系数(各种标准nb的取值不同) 所以焊接接头作为部件的一部分,其焊缝抗拉强度应不小于母材标准抗拉强度规定的下限。同时应注意焊接材料熔敷金属的抗拉强度不能大大高于母材的抗拉强度,而导致焊缝塑性性能降低,硬度增大,不利于随后的制造成型。尽管强度计算仅考虑材料的抗拉强度,各种工艺评定标准对焊缝的屈服强度均无要求,但选择焊接材料时也应考虑焊接材料熔敷金属的屈服强度不应低于母材的屈服强度,并注意保证一定的屈强比。当接头在高温运行通常用工作温度(或设计温度)下材料的高温短时抗拉强度规定下限进行需用应力计算即 [σt]= σbt/nb 其中[σt]为材料t温度下,短时抗拉强度规定值下计算的高温许用应力 σbt为材料t温度下,短时抗拉强度规定值下限 或工作温度下材料的持久强度蠕变极限进行许用应力计算 [σDt]= σDt/nD 其中,[σDt]为材料t温度下持久强度计算的许用应力 σDt为材料t温度下的持久强度 nD为安全系数(各种标准的取值不同) 因此,选择高温运行焊接接头的焊接材料时,应考虑其高温短时抗拉强度或持久强度不得低于母材的对应值。一般碳素钢和普通低合金钢选择焊接材料只要考虑焊接材料的考拉强度,可不考虑熔敷金属的化学成分与母材匹配,但对于Cr-Mo耐热钢材料的焊接,选择焊接材料不仅考虑其等强性,还应考虑合金元素的匹配以保证焊接接头的综合性能与母材一致。 在特殊情况下,部件按材料的屈服强度计算许用应力进行设计时,就必须以屈服强度的等强

六自由度机器人控制系统设计

1前言 1.1 焊接机器人的发展历史与现状 现代机器人的研究始于20世纪中期,其技术背景是计算机和自动化的发展,以及原子能的开发利用。美国原子能委员会下属的阿尔贡研究所为解决可代替人进行放射性物质的处理问题,在1947年研制了遥控式机械手臂;1948年又相继开发了电气驱动式的主从机械手臂,从而解决了对放射性物质的进行远距离操作的问题。1954年,美国科学家戴沃尔最先提出工业机器人的概念,并申请了新的专利。其主要特点是借助伺服技术来控制机器人的关节,并利用人手对机械手臂进行动作示教,机械手臂能实现人物动作的记录和再现。这就是示教再现机械臂,现在所用的机械手臂差不多都采用这种控制方式。伴随着现代社会的发展,为了提高生产效率,稳定和提高产品的质量,加快实现工业生产机械化,改善工人劳动条件,已经大大改进了机械手臂的性能,并大量应用于实际生产中,尤其是在高压、高温、多粉尘、高噪音和重度污染的场合。焊接机器人的诞生可以追溯到上世纪70年代,是由日本发那科(FANUC)公司生产的小型机器人改进的,受限于当时的技术手段以及高昂的造价,使得当时的焊接机器人不能得到很好的应用。机械手臂是一种工业机器人,它由控制器、操作机、检测传感装置和伺服驱动系统组成,是一种可以自动控制、仿人手操作、可以重复编程、可以在三维空间进行各种动作的自动化生产设备。机械手臂首先是在汽车制造工业中使用的,它一般可进行焊接、上下料、喷漆以及搬运。它可代替人们进行从事繁重、单调的重复劳动作业,并且能够大大改善劳动生产率,提高产品的质量[1]。 到了90年代初,随着计算机技术、微电子技术、网络技术等的快速发展,机器人技术也得到了飞速发展。工业机器人的制造水平、控制速度和控制精度、可靠性等不断提高,而机器人的制造成本和价格却不断下降。在西方国家,由于劳动力成本的提高为企业带来了不小的压力,而机器人价格指数的降低又恰巧为其进一步推广应用带来了契机,采用机器人的利润显然要比采用人工所带来的利大,使得焊机机器人得到了推广,同时技术的进步也使得焊机机器人技术得到很大提高。 进入新世纪之后,由于各国对焊接机器人的不断重视,使得焊接机器人技术取得了很大的进步。同时由于其焊机精度及更低的生产成本,也使得它得到了越来越多的应用。目前,焊接机器人主要用于装卸、搬运、焊接、铸锻以及热处理等方面,无论数量、品种和性能方面都还不能满足工业生产发展需要。在一些特殊的行业,使用它来代替人工操作的,主要是在危险作业、多粉尘、高温、噪声、工作空间小等的不适于人工作业的环境。 1.2 焊接机器人发展趋势

焊接机器人的控制原理及应用

焊接机器人的控制原理及应用焊接机器人是一种高度自动化的焊接设备,是焊接自动化的革命性进步,它突破了焊接刚性自动化传统方式,开拓了一种柔性自动化新方式。在大三上学期的认识实习过程中,已经在长力机械厂有所接触。焊接机器人采用机器人代替手工焊接作业是焊接制造业的发展趋势,是提高焊接质量、降低成本、改善工作环境的重要手段。机器人焊接作为现代制造技术发展的重要标志己被国内许多工厂所接受,并且越来越多的企业首选焊接机器人作为技术改造的方案。 一、我国焊接机器人技术的发展历史 焊接机器人技术的发展我国开发工业机器人晚于美国和日本,起于20世纪70年代,早期是大学和科研院所的自发性的研究。到80年代中期,全国没有一台工业机器人问世。而在国外,工业机器人已经是个非常成熟的工业产品,在汽车行业得到了广泛的应用。鉴于当时的国内外形势,国家“七五”攻关计划将工业机器人的开发列入了计划,对工业机器人进行了攻关,特别是把应用作为考核的重要内容,这样就把机器人技术和用户紧密结合起来,使中国机器人在起步阶段就瞄准了实用化的方向。 与此同时于1986年将发展机器人列入国家"863"高科技计划。在国家"863"计划实施五周年之际,邓小平同志提出了"发展高科技,实现产业化"的目标。在国内市场发展的推动下,以及对机器人技术研究的技术储备的基础上,863主题专家组及时对主攻方向进行了调整和延伸,将工业机器人及应用工程作为研究开发重点之一,提出了以应用带动关键技术和基础研究的发展方针,以后又列入国家"八五"和"九五"中。经过十几年的持续努力,在国家的组织和支持下,我国焊接机器人的研究在基础技术、控制技术、关键元器件等方面取得了重大进展,并已进入使用化阶段,形成了点焊、弧焊机器人系列产品,能够实现小批量生产。 二、焊接机器人的组成 常规的弧焊机器人系统由以下5部分组成。 1、机器人本体,一般是伺服电机驱动的 6 轴关节式操作机,它由驱动器、传动机构、机械手臂、关节以及内部传感器等组成。它的任务是精确地保证机械手末端(悍枪)所要求的位置、姿态和运动轨迹。 2、机器人控制柜,它是机器人系统的神经中枢,包括计算机硬件、软件和一些专用电路,负责处理机器人工作过程中的全部信息和控制其全部动作。 3、焊接电源系统,包括焊接电源、专用焊枪等。 4、焊接传感器及系统安全保护设施。 5、焊接工装夹具。 三、焊接机器人工作站的工作原理 焊接机器人工作站正常运行的中枢是其控制柜中的计算机系统。焊接机器人工作站通过计算机系统对焊接环境、焊缝跟踪及焊接动态过程进行智能传感,根据传感信息对各种复杂的空间曲线焊缝进行实时跟踪控制,从而控制焊枪能够实现规划轨迹运行,并对焊接动态过程进行实时智能控制。由于焊接工艺、焊接环境的复杂性和多样性,焊接机器人工作站在实施焊接前,应配备其焊接

各种材料焊接工艺

各种材料焊接工艺

各种材料焊接工艺 8.1碳钢、合金钢焊接 8.1.1碳钢的焊接 碳钢是最容易焊接的一种金属,适用于碳钢的焊接方法很多,氧–乙炔气气焊、药皮焊条电弧焊、埋弧焊、气体保护电弧焊、等离子弧焊、电渣焊、电阻焊、磨擦焊、热剂焊、钎焊等,几乎所有焊接方法都能适用。 碳钢以铁为基础,以碳为合金元素,碳含量一般不超过 1.0%,此外,含锰量不超过1.2%,硅量不超过0.5%,皆不作为合金元素。而其他元素,如镍、铬和铜等,更控制在残余量的限度内,远非合金成分。杂质元素,例如硫、磷、氧、氮等,根据钢材品种和等级的不同,也都有严格限制。 碳钢的焊接性主要取决于碳含量,随着碳含量的增加,焊接性逐渐变差。 碳钢中的锰和硅对焊接性也有影响。它们的含量增加,焊接性变差,但不及碳作用强烈。锰和硅的影响可以折算为相当于多少碳量的作用,这样适用于碳钢的碳当量(C eq )经验公式如下: C eq = C + Mn/6+Si/24 (%) C eq 值增加,则产生冷裂纹的可能性增加,焊接性变差。通常,C eq 大于0.4时,冷裂纹 的敏感性将增大,另外,焊接冷却速度也会影响焊缝和热影响区组织,从而影响母材的焊接性。 (1)低碳钢的焊接 1)焊接性 低碳钢含碳量低,锰、硅含量又少,所以通常情况下不会因焊接而引起严重硬化或淬火组织。这种钢材的塑性和冲击韧性优良,焊成的接头塑性和冲击性也良好,焊接时,一般不需预热、层间温度和后热,焊后也不必采用热处理改善组织,可以说,整个焊接过程

中毋需特殊的工艺措施,其焊接性优良。 2)焊接材料的选用 a.焊接低碳钢时大多使用E43××系列的焊条,因为低碳钢结构通常使用GB700-88 的Q235牌号钢材制造,这类钢材的抗拉强度平均值为417.5N/mm2(42. kgf /mm2),而E43××系列焊条熔敷金属的抗拉强度不小于420N/mm2(43 kgf /mm2),在力学性能上正好与之匹配。 b.埋弧焊焊丝和焊剂 低碳钢埋弧焊一般选用实芯焊丝H08A或H08E,它们与高锰高硅低氟熔炼焊剂HJ430、HJ431、HJ433或HJ434配合,应用甚广。 c.二氧化碳气体保护焊丝 实芯焊丝主要有H08Mn2Si和 H08Mn2Si A两种。 药芯焊丝主要有YJ502-1、YJ506-2、YJ506-3、YJ506-4等。 3)低碳钢在低温下的焊接 在严寒冬天或类似的气温条件下焊接低碳钢结构,为避免出现裂纹可以采取以下措施: a.焊前预热,焊时保持层间温度。 b.采用低氢或超低氢焊接材料。 c.点固焊时加大电流,减慢焊速,适当增大点固焊缝截面和长度,必要时施加预热。 d.整条焊缝连续焊完,尽量避免中断。 e.不在坡口以外的母材上打弧,熄弧时弧坑要填满。 f.弯板、矫正和装配时,尽可能不在低温下进行。 g.尽可能改善严寒下劳动生产条件。 以上措施可单独采用或综合采用。 (2)中碳钢的焊接 1)焊接性 中碳钢含碳量0.3~0.60%。当含碳量接近0.3%而含锰量不高时,焊接性良好。随着含碳量的增加,焊接性逐渐变差。如果含碳量0.5%左右而仍按焊接低碳钢常用的工艺施焊时,则热影响区可能产生硬脆的马氏体组织,易于开裂。当焊接材料和焊接过程控制不好时,甚至焊缝也易开裂。 焊接时,相当数量母材会熔化进入焊缝,使其含碳量增高,容易产生焊缝热裂纹。特别是杂质硫控制不严时,更易显示出来。这种热裂纹在弧坑处更为敏感。此外,由于含碳量增高,气孔敏感性也增大。 2)焊接材料的选用 应当尽量选用低氢型焊接材料,例如低氢焊条,它们有一定脱硫能力,熔敷金属塑性和韧性良

机器人焊接系统要求

焊接机器人技术要求 一、设备名称、数量及用途 焊接机器人 1套用于山东玲珑机电有限公司(甲方) 二、供货范围 1、焊接机器人(焊枪、送丝机、储丝桶、水冷机、清枪剪丝装置、防碰撞传感器等) 2、机器人滑台系统 3、变位机 4、集成控制系统 5、示教器 6、焊接软件 7、配套的工装夹具 8、安全护栏及其它保护装置 9、烟尘处理系统 10、附件、备品备件 11、其它 一、系统方案 1.依据 1.1 甲方所提供的被焊工件照片、图纸及相关技术要求。 1.2 以产品的焊接工艺分析和工艺流程的合理性为基础,力求高柔性、高性价比、高可靠性,并且日后可扩展升级。 2.主要焊接工件及焊接要求 2.1.1工件外形图如下:(甲方可提供图纸)

热板 2.2工件的焊接要求: 2.2.1 气体保护电弧焊接(MAG)。 2.2.2 焊接牢固,无设备自身原因导致的夹渣、裂纹、咬边、漏焊等焊接缺陷。 2.2.3 焊缝均匀平整、无焊瘤等外观缺陷。 2.2.4 焊缝尺寸及质量应符合甲方图纸及技术要求。 2.2.5焊接位置:船形位焊接 3.工序及工艺路线的划分 3.1工序: 人工点焊零部件---吊运工件至变位机-→手动夹紧工件-→确认程序号-机器人焊接工件(变位机协调联动)- →焊接工件结束-→机器人复位→人工装卸工件,程序结束。 底座、横梁和热板在变位机上面焊接。 底座、横梁需要分两次焊接,第一次焊接底座、横梁的内部焊缝,第二次焊接底座、横梁的外部焊缝。需要人工分两次装卸工件。 3.2操作: 操作人员按下操作盒上的启动按钮,滑台上的焊接机器人按照预先设定好的程序运行,机器人夹持焊枪到达焊缝始端开始焊接,在焊接过程中变位机可以适时转动工件,使得工件上的焊缝有利于机器人的焊接作业,焊接结束,机器人复位,人工装卸工件。 该变位机可以同机器人配合工作。变位机带动工件适时翻转,可以将工件焊缝调整为机器人最佳位置焊接焊缝(船型焊缝),方便机器人焊接工件,此变位机还可以适应工件的多层多道焊接、对称焊接等焊接要求,减少工件焊接变形。 3.3机器人弧焊软件包: 机器人带有起始点寻位功能。该功能具备接触传感功能,具有自动寻找焊缝起始位置的功能,从而解决工件初始定位偏差问题。 机器人带有电弧跟踪功能。能够自动补偿由于工件的不一致性、焊接变形带来的偏差。 焊接工艺特点:通过触碰寻位对于其中特征位置的焊缝集中进行寻位;按照工艺需求,遵循焊接应力变化、表面要求及焊接可达性要求,依次进行焊接;大部分焊缝都尽最大可能调整为船型位置。焊接过程中,部分关键尺寸进行必要的二次寻位,以保证起弧位置准确。并利用变位机大幅反转的间隙,设置程序,进行清枪剪丝喷硅油的工作。 3.4焊接工艺

金属材料焊接及热处理工艺

金属材料焊接及热处理工艺 总则 1)本工艺适用于汽机范围内管道、容器、承重构架及结构部件的焊接及热处理工作。 2)本工艺适用于低碳钢,普通低合金钢,耐热钢、不锈钢、铜及铜合金、铝及铝合金、铸铁等材料的手工电弧焊,手工钨氩弧焊和O2 C 2H2气焊。 3)有关安全方面,应遵守安全防火等规程的有关规定。 4)焊缝检查和焊工考核及质量验收应遵照有关射线超声检验等规定及焊工考试的规则执行。5)对焊工及热处理工的要求,见电力建设施工及验收技术规范(火力发电厂焊接篇)。 16.2 焊接工艺 16.2.1焊接材料 16.2.1.1焊条、电丝的选择,具体按工程一览表选择 1)对同种类钢,机械性能及化学性能,化学成分与母材相近,焊条的合金元素的含量应略高于母材,Ar弧焊焊则要求与母材相同,化学类有钢要求抗蚀性同母材相同。 2)对焊接质量要求高,裂纹倾向大的材料和结构,应选用低氢型焊条。 3)对于异种钢,两非“A”体钢同类组织异种钢应选择靠近低合金侧或选其中间合金含量的焊条和焊丝;两非“A”体一同组织异种钢应选择能获得综合性能好的组织的焊条,焊丝,两材料其中之一为“A”体不锈钢时应选用高Ni不透钢焊条,对各异种钢结构,可参考附表16-1选择。4)对低碳钢,普通碳素结构钢,选用相应强度等级的结构焊丝,焊条。 5)焊条的直径选择,必须是在保证操作工艺性良好,成型美观,保证焊接质量的前提下尽可能选择较大直径的焊条,对于承压管道的多层焊,底层采用?2.5mm焊条,第2-3层选用?3.2mm 焊条,以后各层选用?4.0mm焊条,对应力大,裂纹倾向大的高合金钢,高碳钢,应选用较小的焊条直径。 16.2.1.2钨极的选择:目前市场上有纯钨极,钍钨极和铈钨极三种,纯钨极及钍钨极已趋于淘汰不再被采用。最好选用铈钨极。其直径据所用的电流进行选择,各种规格的钨极所适应的电流范围如表16.1.

相关文档
最新文档