模三干扰案例

模三干扰案例
模三干扰案例

模三干扰处理案例

一、问题描述

在泉州电信FDD-LTE簇优化拉网过程中,出现RSRP值较好,SINR值差,并且下载速率低,易出现切换失败等异常事件。

二、问题影响

模三导致SINR值差,影响簇优化指标

三、问题分析

在泉州电信FDD-LTE簇优化拉网过程中,主服务小区和邻小区电平小于等于-100dBm且相差在6dBm以内,并且PCI相同。

四、问题处理

1、在分析拉网LOG时再模三区域找到一个电平值较好,适合做主服务小区

的站点小区,把与主服务小区模三的小区下压电下倾或机械下倾,降功

率,也可以适当调整方位角,避免模三的小区在该区域电平值过高。

2、在分析拉网LOG时再模三区域找到一个电平值较好,适合做主服务小区

的站点小区,给此小区加功率,或者适当上抬电下倾,机械下倾,提高

该小区在此问题路段的电平值,避免与模三小区电平值相差6dBm

3、根据实际情况可以改PCI,改PCI的时候避免别的区域出现模三现象。

五、案例

新安路附近路段区域模三干扰问题

问题描述:

车辆在新安路附近路段由西向东行驶过程中,主要占用安溪县凤城邮政局_C0WCYT 小区信号,rsrp在-95dBm左右,SINR在-4dB左右,主服务小区与邻区rsrp差值在-6dB 以内,存在明显mod3干扰现象。

问题分析:

此问题路段距离最近的站点安溪县凤城先声距离170米,周围邻区与主服务小区rsrp 差值在-6dB以内,由于mod3干扰导致SINR值差。

解决方案:

建议将安溪县凤城先声_D0WCYT电下倾上调2度,从7度调整到5度,并且加功率。 复测结果:

复测效果明显,建议闭环。

五、总结建议

分析簇优化问题点,出方案时,要保证方案的可行性,结合现场情况给出

合理的优化建议。

2012上行干扰处理流程及案例

2012遵义上行干扰处理流程及案例 根据省公司“工兵行动”专项干扰优化要求,各分公司将按照自查自纠展开工作。干扰问题一直是属于优化的重点,干扰会造成后台指标恶化,同时用户感到呼叫困难、通话质量差、异常掉话等。因此,处理干扰刻不容缓。 目前,遵义全网存在三种类型干扰:一是直放站干扰(设备稳定性较差)。二是网内干扰(谐振腔、馈线头、避雷器、天线等)。三是外部干扰(如电信CDMA、私装天线等)。处理起来比较繁琐、较为复杂,网优室结合现场处理经验。梳理了排查步骤和案例如下,各公司要进行认真学习,强化干扰处理能力,着实提升网络质量。 一、排查步骤 1、带直放站干扰小区 若接直放站,则将直放站全部甩开,将直放站合路器一同拆下,保持基站天馈原有状态。 (切忌不可只关直放站电源),联系机房人员查看上行干扰是否消失或减弱(让机房工作人员多刷新几次)。 若上行干扰消失,则需联系直放站厂家对直放站设备进行处理。处理完成后,维护人员 应打机房电话确认干扰是否消除,并且到直放站远端覆盖区域检查覆盖是否减弱。 若上行干扰没有任何变化,需要做如下步骤。 2、若无直放站小区存在上行干扰 排查该干扰小区100米内是否存在电信基站,若存在电信基站,建议首选协调电信关闭 电信基站后联系机房查看干扰小区的上行干扰情况。若无法协调电信关闭基站,建议将干扰小区天线方位角转向背向电信基站方向,联系机房查看上行干扰情况,判断是否减弱或消失。若干扰减弱或消失,则该小区的干扰源为电信基站,建议协调电信整改或者安装滤波器。若不是电信干扰,需要做如下步骤。 3、网内干扰处理 该小区无电信站在附近,无直放站,基本可以判断为基站网内干扰,涉及到的部件有: ANC、ANY、1/2跳线头、避雷器、7/8馈线头、天线。首先检查1/2跳线头是否老化、松

FDD模3干扰浅析

PCI模3干扰浅析 1.概述 目前4G网络建设中主要采用FDD-LTE同频组网的方式进行组网建设,而同频组网系统的最大挑战是相邻小区之间的同频干扰问题,而同频干扰中PCI的模3干扰是最常见的一种干扰,这种干扰会导致在RSRP较好的情况下RSRQ及SINR值较差的情况,对用户的接入、切换及下载速率都会造成很大的影响。通过DT测试可以发现模3干扰的区域,通过天馈调整、更改PCI、调整干扰小区功率等手段解决测试中发现的模3干扰。本文从原理方面分析PCI模3干扰产生的原理。 2.PCI概念 PCI全称Physical Cell Identifier,即物理小区标识,LTE中终端以此区分不同小区的无线信号。PCI共有504个,从0至503编号。PCI=PSS+SSS*3,其中PSS是主同步信号,共3个,分别为0、1、2,SSS是辅同步信号,共168组,从0至167编号。LTE小区搜索流程通过检索主同步信号PSS和辅同步信号SSS来与小区取得时间和频率上的同步,得到物理小区标示并根据物理小区标示获得小区信号质量与小区其他信息的过程。 3.PCI模3干扰原理简介 LTE各种重选、切换的系统消息中,邻区的信息均是以频点+PCI的格式下发、上报。在LTE系统中RS(参考信号)用于下行物理信道解调及信道质量测量,终端测量计算频带内小区的RS平均功率RSRP,作为衡量小区覆盖电平强度标准,目前小区选择、小区重选、切换均是基于RSRP值进行。无线网络衡量信道质量指标SINR通过RSRP与干扰电平的比值计算得到。普通CP(保护循环前缀)情况下,下行2天线端口RS的位置图如下:(每一个小框代表一个RE,频域上15Khz,时域上是1个OFDM码长,即1/14ms) 当天线端口数为1时,RS出现在每个RB的每个时隙的第0和第4个OFDM符号上,一个OFDM符号的12个子载波上出现两次RS,所以在频域上有6个位置可以选择。当天线端口数为2时,RS在时间上的位置不变,但由于RS在两个天线端口上频域上不能重叠,且一

联通FDD-LTE干扰排查案例

武汉联通FDD-LTE干扰排查案例 红光社区保障房 一、问题现象 在8月4日LTE的日常网络优化问题跟踪中,发现在L石洋污水处理厂_2等13个小区

二、优化分析 1.针对小区异常情况,我们首先在华为网管对该小区进行告警查询,结果发现这些站未出现有影响业务的告警,并未发现其与影响业务的重大告警,可以排除由于基站硬件原因。 2.查看采集到通过收集这13个小区的上行PRB干扰数据,统计干扰出现规律。经统计发现13个小区的干扰一直存在,且干扰波形类似,持续的时间都很长,基本是24小时,出现时间为7月26日晚,初步确定干扰源为外部有源固定干扰源,而且长时间不间断供电。 可以看出干扰主要集中在前40个RB上,为此详细分析了前40个RB值的干扰情况: 可以看出干扰波形走势类似,可以认定为同一个干扰源影响,并且在第13个RB上的干扰有突增,对应频率段为1747.4MHz。 3.假定干扰为外部干扰:分析采用扫频仪(美国泰克YBT-250),并配备八木天线,

现场频谱扫描,设定频率1745-1750MHz。 A、从基站小区受干扰的轻重程度、基站的部分受干扰扇区覆盖区域入手,初步判断干扰源可能存在的大致区域。 B、在初步认定的干扰源区域附近选取测试点多个合适的测试点,检测出干扰源的最强方向,并在图层上作出射线,通过多条射线的方向汇合点,进一步确定干扰源位置。 C、在确定的干扰源位置上用过观测附近环境和扫频测试精确找到干扰源。 最终确定干扰源为红光社区保障房3栋3201的业主私装手机信号放大器。 三、干扰排除 通过联系业主当面沟通后发现为移动用户因为手机信号不好私自加装了手机信号放大器。了解到该业主是7月26日搬到这所新租的房子内,并使用了房东留下的手机信号放大

干扰-MR不处理分析报告案例

MR不处理分析报告 1 现象描述 C国LTE项目,做上行拉网测试时,UE从M站点FE2切换到N站点FE2,切换成功后,N站点FE2测量控制消息还没有下发,UE又上报测量报告,基站不处理,导致掉话。 前台信令截图 2 告警信息 无 3 原因分析 【问题结论】 UE从A小区成功切换到B小区后,如果B小区测量控制消息还没有下发,UE就上报测量报告要求切换到C小区,此时UE上报的测量报告中的measId是沿用A 小区下发给它的测量控制消息中的measId(因为没有收到B小区下发的测量控制消息,故无法更新),因为测量报告中的measld与B小区预期的不一致,故B小区不处理测量报告。

【原因分析】 (1)UE 从M 站点FE2(A 小区)切换至N 站点FE2(B 小区),M 站点FE2(A 小区)作为目标小区时下发的测量控制消息中预期的measIdObjectId=1,之后上报的测量报告中measId=1,两者一致,故M 站点FE2(A 小区)处理测量报告,UE 成功切换到N 站点FE2(B 小区)。 (2)UE 成功切换到N 站点FE2(B 小区)后,从前台信令可以看出,N 站点FE2(B 小区)还没有下发测量控制消息,UE 就上报测量报告。 从后台虚拟用户跟踪信令可以看出,在UE 上报多个测量报告(measId=1)后, N 站点FE2(B 小区)才下发测量控制消息(预期measIdObectId=2),两者不一致,故之前的测量报告,基站不处理,导致切换失败。 A 站点FE2作为目标小区下发 的测量控制消息

(3)该问题是在切换时出现了RRC重配置流程与MR测量报告嵌套,正常情况下,在测量控制还未下发前,UE是不会上报MR测量报告的,一般情况下,有两个原因会导致该问题发生: 1、终端UE问题,终端设计不符合协议; 2、上行信号质量较差,干扰严重。 4 处理过程 调整M站点FE2功率,降低干扰。测试发生切换失败时,区域的SINR<-5dB,RSRP为-100dbm左右,调整完M站点FE2功率后,区域的SINR>-3dB,RSRP 为-95dbm左右,复测未出现该问题; 5 学习心得 切换过程中,如果基站没有下发测量控制消息,或者UE没有收到测量控制消息,UE就无法更新其上报MR的内容,这样将导致UE想切换时,基站侧预期的MR 与实际的MR不一致,基站不处理MR,最终导致切换失败。 这种问题发生的频率不高,出现问题时应先排除上行干扰。

实验报告四 模三干扰问题的分析模板

实验报告四模三干扰问题的分析 一、实验目的 1.能熟练的使用Pioneer软件导入测试数据,打开常用的窗口 2.能使用Pioneer软件分析模三干扰问题 二、实验工具 Pioneer软件、测试数据、PC 三、实验步骤 1.打开软件 双击Pioneer的图标 2.导入测试数据 点击文件主菜单,选择导入测试数据子菜单,再选择常规选择,然后在弹出的文件路径窗口选择需要导入的文件“模三干扰.RCU” 3.打开常用的窗口 1)Map窗口 选择导航栏中的工程选项卡,双击导入“模三干扰”数据文件下面的MAP 图标。 点击导航栏“工程选项”卡LTE下面的Serving Cell Info,将其下的LTE SINR 拖曳到Map窗口,如图2所示(详见附录)。 2)LTE Serving+Neighbor Cell List 右击导航栏“工程选项”卡LTE,在弹出的菜单中,选择LTE Serving+Neighbor Cell List 4.点击主菜单配置,在点击小区设置子菜单,在弹出的小区设置窗口,选择LTE网络,symbol1,如图1所示(详见附录)。 5.打开播放工具 6.简要分析 ①通过测试路线采集到的测试数据轨迹图,将鼠标点击在大红色区域 ②用Map窗口里的测量距离工具,SINR<0的区域约有250米,如图2(详见附录)的椭圆形区域。 7.点击主菜单分析,再选择子菜单Mod3分析,在弹出的对话框中,点击工程文件按钮,选择相应的工程文件,然后点击分析按钮,如图3(详见附录)中的Mod3分析窗口。 8.结合Mod3分析窗口,观看Map窗口 从Map窗口轨迹图中的红色区域,发现此处的Mod3干扰较为严重,如图4(详见附录)中的Mod3分析问题测试窗口中,存在较强的两个型号,分别是PCI=287和PCI=245,其中PCI287信号的RSRP=-80.56dBm,PCI245信号的RSRP=-82.12dBm,287Mod3=2,245Mod3=2,且信号都比较强,存在Mod3干扰。 四、实验心得 (自己写)

上行干扰排查

上行干扰排查 近年来,各移动网络规模发展非常迅速,一方面,为了应对由于市场资费调整带来的话务压力,在某些人口密集地区(如商业区、大学城)出现了较多的大配置基站,基站分布变密;另一方面,为了解决网络弱覆盖以及投诉,网络中建设了大量的分布系统和直放站。这样,在解决网络覆盖和话务的同时也带来了其他一些问题,其中上行干扰问题显得较为突出,直接导致了网络质量的下降和用户投诉量的增加。本文基于干扰的排查提出一些方法及总结。 1.1 干扰分类 GSM系统的干扰按照频段有上行干扰和下行干扰之分,此次项目主要针对上行干扰进行排查和处理。根据我们目前在实际工作中所遇到的干扰类型,主要有以下几种情况: 直放站干扰 直放站干扰是网络优化过程中最常见的干扰之一。直放站有宽频直放站和选频直放站。宽频直放站实际上是一个宽频放大器,它将整个移动上行或下行频带放大,实现信号覆盖。宽频直放站有合法直放站和非法直放站之分,合法直放站由于设置不好,造成对基站干扰,但较多的宽频直放站干扰为非法私自安装的直放站,这是因为劣质宽频直放站价格便宜,在人口密度大,信号覆盖不好的场所经常私自安装。宽频直放站的干扰特点是频带宽,占据整个上行,且幅度不稳定。 选频直放站也是放大上行信号的放大器,但与宽频直放站不同,选频直放站仅工作在某一频率或几个频率上,因此产生的干扰比宽频直放站产生的干扰小。有些选频直放站仅在有手机业务信号时才存在,形成的干扰是间歇的。从频谱上看,选频直放站具有与正常手机信号相同的频谱,只是手机信号是瞬间信号,选频直放站信号相对停留时间比较长。选频直放站一般价格较高,通常不是非法直放站,而是运营商自身或运营商之间的直放站设置不好造成的。 CDMA基站及其直放站的干扰 从运行频段上看,CDMA的下行频段与GSM的上行频段比较接近,在站址选择及网络规划中如果做得不恰当,势必造成对GSM的干扰,造成GSM系统接收性能的下降(干扰是相互的,但由于GSM的发射频段与CDMA的接收频段相差较远,且CDMA是自扩频通信系统,抗干扰性能较好,所以GSM对CDMA系统所造成的干扰可以忽略)。三种主要的CDMA干扰为杂散干扰、阻塞干扰和互调干扰。其中,杂散干扰与CDMA直放站(或基站)目前在890MHz附近的带外发射有关,这是接收方(GSM系统)自身无法克服的,将导致GSM系统信噪比下降,

无线网络上行干扰排查规范及典型案例

无线网络上行干扰排查方法及典型优化案例 湖南移动网优中心 2012年7月

目录 一、前言 (3) 二、干扰排查分析大致流程 (3) 三、典型干扰分析鉴别方法 (5) (一)、通用干扰分析方法 (5) 1、无源互调干扰 (5) 2、网内同邻频干扰 (5) 3、直放站干扰 (5) 4、外部干扰 (6) (二)、华为设备干扰分析方法(利用burst测试辅助分析) (7) 1、无源互调干扰 (7) 2、CDMA网干扰 (7) 3、网内同邻频干扰 (8) 4、上行网外干扰 (8) 四、典型干扰排查优化方法 (10) (一)、CDMA干扰排查 (14) 1、CDMA干扰排查方法 (17) 2、CDMA干扰优化方法 (19) (二)、直放站干扰排查 (14) 1、直放站干扰小区排查方法 (14) 2、直放站干扰优化方法 (16) (三)、天馈系统互调干扰排查 (10) 1、无源互调干扰对通信系统的影响 (10) 2、互调干扰初步筛选定位 (12) 3、非现场式的互调干扰定位方法 (12) 4、互调干扰现场测试与定位 (13) (四)、保密器干扰排查 (22) 1、内部排查 (22) 2、外部扫频 (22) 五、典型干扰优化案例 (23) 1、天馈互调干扰优化案例 (23) 2、同邻频干扰优化案例 (24) 3、直放站干扰优化案例 (24) 4、CDMA干扰优化案例 (24) 5、外部强干扰优化案例 (24)

一、前言 通过对上行干扰小区进行定位,有针对性的对现网产生上行干扰的直放站类设备和天线、无源器件等天馈系统设备进行排查,实现全网上行干扰的降低; 二、干扰排查分析大致流程 上行干扰可通过小区的干扰数据予以分析,进行初步定位。上行底噪为信道在空闲状态下接收到的噪声电平值,反映了整个系统上行干扰水平。在话务网管中以干扰频带1-5方式进行统计,方法如下: 当干扰带4和干扰带5的占比之和大于30%时,即判定该小区为高干扰小区。 常见干扰类型归纳主要有互调干扰、网内同邻频、直放站干扰以及其它外部干扰四类。大体分析优化思路如下:

EMC干扰详解

?EMI/EMC设计秘籍 ?一、EMC工程师必须具备的八大技能 EMC工程师需要具备那些技能?从企业产品需要进行设计、整改认证的过程看,EMC工程师必须具备以下八大技能: 1、EMC的基本测试项目以及测试过程掌握; 2、产品对应EMC的标准掌握; 3、产品的EMC整改定位思路掌握; 4、产品的各种认证流程掌握; 5、产品的硬件硬件知识,对电路(主控、接口)了解; 6、EMC设计整改元器件(电容、磁珠、滤波器、电感、瞬态抑制器件等)使用掌握; 7、产品结构屏蔽设计技能掌握; 8、对EMC设计如何介入产品各个研发阶段流程掌握。 二、EMC常用元件介绍 共模电感 由于EMC所面临解决问题大多是共模干扰,因此共模电感也是我们常用的有力元件之一!这里就给大家简单介绍一下共模电感的原理以及使用情况。 共模电感是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。(原理是流过共模电流时磁环中的磁通相互叠加,从而具有相当大的电感量,对共模电流起到抑制作用,而当两线圈流过差模电流时,磁环中的磁通相互抵消,几乎没有电感量,所以差模电流可以无衰减地通过。因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响)。 共模电感在制作时应满足以下要求: 1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路。 2)当线圈流过瞬时大电流时,磁芯不要出现饱和。 3)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿。 4)线圈应尽可能绕制单层,这样做可减小线圈的寄生电容,增强线圈对瞬时过电压的承受能力。 通常情况下,同时注意选择所需滤波的频段,共模阻抗越大越好,因此我们在选择共模电感时需要看器件资料,主要根据阻抗频率曲线选择。另外选择时注意考虑差模阻抗对信号的影响,主要关注差模阻抗,特别注意高速端口。 磁珠 在产品数字电路EMC设计过程中,我们常常会使用到磁珠,那么磁珠滤波地原理以及如何使用呢? 铁氧体材料是铁镁合金或铁镍合金,这种材料具有很高的导磁率,他可以是电感的线圈绕组之间在高频高阻的情况下产生的电容最小。铁氧体材料通常在高频情况下应用,因为在低频时他们主要呈电感特性,使得线上的损耗很小。在高频情况下,他们主要呈电抗特性比并且随频率改变。实际应用中,铁氧体材料是作为射频电路的高频衰减器使用的。实际上,铁氧体较好的等效于电阻以及电感的并联,低频下电阻被电感短路,高频下电感阻抗变得相当高,以至于电流全部通过电阻。铁氧体是一个消耗装置,高频能量在上面转化为热能,这是由他的电阻特性决定的。 铁氧体磁珠与普通的电感相比具有更好的高频滤波特性。铁氧体在高频时呈现电阻性,相当于品质因数很低的电感器,所以能在相当宽的频率范围内保持较高的阻抗,从而提高高频滤波效能。在低频段,阻抗由电感的感抗构成,低频时R很小,磁芯的磁导率较高,因此电感量较大,L起主要作用,电磁干扰被

掉话处理案例总结完整版

掉话处理案例总结 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

路测掉话的原因分析及解决 1. 关于掉话的描述 在 GSM 系统中掉话从统计角度讲分为两大类:RF_LOSS 和 HO_LOSS 即射频掉话和切换掉话。考虑到2层信令的接续等问题,我们把掉话作如下描述。 1) 射频掉话 ●下行原因:Radio_link_timeout 计数器减至 0 ●上行原因:BSS 在 link_fail 的设定时间内未能接收到 UL SACCH 消息,使link_fail 计数器减至 0。BSS 下行功率停止发射 ●在 Layer 2 上: BSS/MS 每 T200 时间发送 N200+1 次 SABM/DISC 消息,但未从接收端收到回应 2) 切换掉话 ●MS 未能成功切换至目标小区, 但未能回到源小区 ●MS 发送 HO FAILURE 和 UL-SABM 消息给源小区,但未得到回应 2. 在路测时发现的掉话问题时,我们应从哪些方面进行考虑 在路测中,如果我们发现了掉话,我们应该如何入手建议根据不同的现象作出一些初步的判断,可以尽量减少不必要的周折,提高工作效率。归纳起来初步判断有以下几点: ●带内、外干扰 ●无可切换的小区(拥塞、无邻区)

●覆盖问题(overshooting/poor coverage) ●有线口的信道释放 ●基站硬件故障(时钟、CTU 低功、信道盘的收发功率不平) ●天线错误(下倾角、方位角等错误) ●由于切换失败造成的掉话 ●参数设置不当 ●其它特殊原因(手机问题、交换机参数设置问题) 3. 对掉话现象进行分析以及可能的原因 在这一节中我们对每种造成掉话的可能原因进行具体的研究。在每一种原因中,我们尽可能的举出实际例子来进行说明。 1) 频率干扰 干扰会导致误码率升高,通信质量下降,是造成掉话的一个重要的原因。干扰可以分为带内干扰和带外干扰,也可以叫做系统内部干扰和系统外部干扰。 带外干扰:随着科技的进步,空中的无线电波越来越多,有些系统如 TCS 系统与 GSM 系统工作在同一频段,如果频率设置不当,会造成严重的频率干扰。在发射设备的非线性单元由于载波与通过天线进入的干扰信号产生互调干扰,会引起通话质量下降,产生掉话。另外一种情况就是人为的加建 GSM 频段的直放站,对功率以及天线方向不进行控制,对系统会造成上下行的干扰。一般有这

模三干扰案例

模三干扰处理案例 一、问题描述 在泉州电信FDD-LTE簇优化拉网过程中,出现RSRP值较好,SINR值差,并且下载速率低,易出现切换失败等异常事件。 二、问题影响 模三导致SINR值差,影响簇优化指标 三、问题分析 在泉州电信FDD-LTE簇优化拉网过程中,主服务小区和邻小区电平小于等于-100dBm且相差在6dBm以内,并且PCI相同。 四、问题处理 1、在分析拉网LOG时再模三区域找到一个电平值较好,适合做主服务小区 的站点小区,把与主服务小区模三的小区下压电下倾或机械下倾,降功 率,也可以适当调整方位角,避免模三的小区在该区域电平值过高。 2、在分析拉网LOG时再模三区域找到一个电平值较好,适合做主服务小区 的站点小区,给此小区加功率,或者适当上抬电下倾,机械下倾,提高 该小区在此问题路段的电平值,避免与模三小区电平值相差6dBm 3、根据实际情况可以改PCI,改PCI的时候避免别的区域出现模三现象。 五、案例 新安路附近路段区域模三干扰问题 问题描述: 车辆在新安路附近路段由西向东行驶过程中,主要占用安溪县凤城邮政局_C0WCYT 小区信号,rsrp在-95dBm左右,SINR在-4dB左右,主服务小区与邻区rsrp差值在-6dB 以内,存在明显mod3干扰现象。

问题分析: 此问题路段距离最近的站点安溪县凤城先声距离170米,周围邻区与主服务小区rsrp 差值在-6dB以内,由于mod3干扰导致SINR值差。 解决方案: 建议将安溪县凤城先声_D0WCYT电下倾上调2度,从7度调整到5度,并且加功率。 复测结果: 复测效果明显,建议闭环。 五、总结建议 分析簇优化问题点,出方案时,要保证方案的可行性,结合现场情况给出

华为上行干扰处理流程

华为上行干扰处理流程浅谈 目录 一、概述........................... 错误!未定义书签 二、G SM现网干扰类型分析 .................... 错误!未定义书签 三、干扰排查步骤....................... 错误!未定义书签 四、干扰案例处理流程..................... 错误!未定义书签 隔离度干扰处理....................... 错误!未定义书签 直放站干扰处理....................... 错误!未定义书签 外部干扰处理......................... 错误!未定义书签 互调干扰处理......................... 错误!未定义书签 频率干扰处理......................... 错误!未定义书签 隐性故障干扰处理....................... 错误!未定义书签 五、给研发人员的一点思路................... 错误!未定义书签 六、总结........................... 错误!未定义书签 、概述 无线通信干扰的危害非常大,干扰将导致呼叫困难、杂音、掉话等问题,是导致网络质 量下降的非常关键问题。干扰分上行干扰和下行干扰,下行干扰主要是网内的频率干扰,而 上行干扰的类型较多,处理尤其困难。本文主要针对GSM网络的上行干扰的类型及定位方法进行介绍,并通过案例对每种干扰类型的定位处理进行了详细介绍。

二、GSM现网干扰类型分析

干扰带统计: BTS在时隙空闲时将不断对当前所用频点的上行干扰信号的情况进行扫描并通过资源 指示消息按照干扰带的方式进行统计上报。华为BSC中干扰带的缺省设置是: 实时干扰带显示: 与干扰带统计原理一样,BSC将空闲时隙的上行干扰情况实时显示出来,可以直观的反 映小区的实时干扰变化情况,干扰图例如下图: 不支持:是指有用户占用或者数据信道、主B信道。 三、干扰排查步骤 因发射空闲Burst受时间限制,互调小区筛选法主要目标是通过后台话统数据,从前述五类干扰中,筛选出受到互调干扰的小区。在通过其他手段来区分其

学习心得体会-LTE的PCI的组成和模3干扰

LTE的PCI的组成和模3干扰 一、PCI的组成: PCI指的的是物理小区ID,作用相当于TD里扰码的概念,用来区分小区,因为目前LTE组网是同频组网,所以区分小区必须是不同的PCI来区分.其中pci共有504个,从0到503进行编号 LTE是用PCI(Physical Cell ID)来区分小区,并不是以扰码来区分小区,LTE无扰码的概念,LTE共有504个PCI;PCI有主同步序列和辅同步序列组成,主同步信号是长度为62的频域Zadoff-Chu序列的3种不同的取值,主同步信号的序列正交性比较好;辅同步信号是10ms中的两个辅同步时隙(0和5)采用不同的序列,168种组合,辅同步信号较主同步信号的正交性差,主同步信号和辅同步信号共同组成504个PHY_CELL_ID码;公式为:PCI=PSS+3*SSS,其中PSS取值为0...2(实为3种不同PSS序列),SSS取值为0...167(实为168种不同SSS序列),利用上述公式可得PCI的范围是从0...503,因此在物理层存在504个PCI。 PCI是下行区分小区的,上行根据根序列区分E-UTRA小区搜索基于(主同步信号)、(辅同步信号)、以及下行参考信号完成同步信号的作用:频率校正、基准相位、信道估计、测量。 而从网络操作维护级别来看,CI(Cell Identity)唯一标识一个小区,在网络中不能重复。但PCI却可以重复,因为PSS+SSS仅有504种组合。如,当网络中有1000个小区时,PCI仅有504个,此时就需要对PCI进行复用,通常情况下,PCI规划原则是每个扇区分配特定的PSS序列(0...2)值,而每个基站分配特定的SSS序列(0...167)值,以此避免相邻基站间存在相同PCI的问题发生。 其实,可以把PCI理解为扰码,就像在WCDMA系统中下行扰码用于区分扇区一样,对待发送的数据进行加扰,以便终端可以区分不同扇区。 二、模3干扰: (一)、模3干扰原理:LTE系统中,主同步序列(PSS)只有3个符号,辅同步序列(SSS)有168个符号,主同步序列和辅同步序列共同构成PCI(共504个符号)。终端在接入网络时首先解析主同步序列,解析到出主同步序列后再解析辅同步序列;因为主同步序列较少,所以在现网解析中容易出现干扰,而干扰的出现即表现为PCI每间隔3个符号出现一次,所以习惯称之为模3干扰。 (二)、模3干扰现场判断:测量邻区中,电平强度与服务小区相近,SINR值较差,模三后值相等判断为模三干扰。同时如果与目标邻区存在模三,也会干扰(三)、解决方法: 解决模三干扰,优先考虑RF 1、对向模三的可以调整方位角相互错开 2、邻区的邻区模三,可以通过调换PCI来处理 3、越区而造成的模三,可以通过下压倾角的方法 (四)、模3、模6、模30干扰对比: 1、PCI mod 3: LTE网络中PCI = 3* Group ID ( S-SS)+ Sector ID (P-SS),如果PCI mod 3值相

【案例】高干扰处理分析

汉中汉台鑫源干扰分析案例 1、问题描述 后台发现汉中汉台鑫源-HLH-HZBO438TL长期每日10时~13时出现切换差,但在14:00过后,切换指标恢复正常,切换失败的原因均为重建回源,通过排查小区告警及驻波等均正常,怀疑站点存在干扰导致切换失败较多,在时域和频域上跟踪小区信令发现小区的上行干扰较高,确定引起切换失败的主要原因为小区存在干扰导致,下表为小区上行每个PRB平均值。 2、原因分析 汉中汉台鑫源-HLH-HZBO438TL-0/-1两个小区存在外部通信信号屏蔽干扰(8-13时频域上持续高干扰,时域上主要在早9-13时),具体如下图所示: 汉中汉台鑫源-HLH-HZBO438TL-0时域干扰噪:

汉中汉台鑫源-HLH-HZBO438TL-1时域干扰噪声 汉中汉台鑫源-HLH-HZBO438TL-0频域干扰噪声 该小区频域特征如下,从RB0~RB99上行干扰呈现左高右低的趋势,中间突起,符合外部阻塞干扰特征。 汉中汉台鑫源-HLH-HZBO438TL-1频域干扰噪声 该小区频域特征如下,从RB0~RB99上行干扰呈现左高右低的趋势,符合外部干扰特征。

1)从各RB干扰噪声分析结果来看,汉中汉台鑫源-HLH-HZBO438TL小区存在外部阻塞干扰特性,主要是其频谱呈现左高右低的态势,但在时域上又存在明显的时间段突起特征; 2)10月23日10时上站排查汉中汉台鑫源-HLH-HZBO438TL,该站点位于鑫源楼顶,,排除电信干扰,根据干扰在时域上的特性,对周边建筑物进行扫频,发现鑫源-1小区方向车管所附近干扰噪声明显增强,勘测发现车管所楼顶竖有两个根,经了解车管所每天早上考试,开启信号屏蔽设备。 干扰源车管所位置及扫频仪干扰图: 3、解决方案 需协调车管所相关人员,对干扰源进行关闭处理。 4、问题处理思路流程图

干扰查找方法及案例

干扰查找方法及案例 一、概述: 干扰的大小是影响移动网络的关键因素,对通话的质量、掉话、切换、拥塞均有显著的影响。干扰分为网内干扰和网外干扰,网内干扰:主要是基站硬件损坏或因运行时间较长而导致的硬件性能下降(如:隐性故障如TRU、CDU等的接受性能下降、自激;天线性能下降等,并不能上报告警信息):天线是无源器件,损坏概率很小,可通过话音质量是否下降来判断;网内的同频和邻频干扰。网外干扰主要是CDMA干扰、直放站干扰、通讯阻断器干扰,其中通讯阻断器的干扰尤为严重。查干扰首先要排除硬件故障、同频、邻频干扰,然后再确定外界干扰的种类。确定外界干扰种类后,再与相关的运营商或厂家协调解决。 网络干扰的分类 图1、网络干扰类型 在GMC系统中可以用来发现干扰源的方法有:FAS功能、OMC话务系统、OMC告警、路测、用户申告、扫频仪器等。以下是我们要查找干扰的流程 1、收集全网干扰严重的小区 2、对严重重的小区进行RIR测量 3、通过RIR的测量对小区受的干扰源进行分类,如果是内部干扰则通知优化组处理,如果 是网外干扰则通知干扰小组进行查找。 4、如果是硬件问题,进行硬件更换; 5、如果是频率干扰,进行频点的优化; 6、如果干扰是由于联通的CDMA和直放站造成的,与联通公司协商处理 7、如果干扰是由于直放站或微蜂窝干放造成成的,则通知厂家进行整改处理; 8、如果干扰是通信阻断器造成的,需由移动公司与使用单位进行协商解决。

干扰分析查找流程 图2、干扰分析查找流程 结合重庆的网络和我们查干扰的实际工作,我们主要从一些典型案例分析来阐述重庆网络干扰的情况,所用扫频仪是安捷伦和泰克,下面我们对涉及到的各种干扰进行详细分析。 二:网内干扰: 1、硬件故障: 硬件的显性故障:有时掉话率高、切换成功率低、拥塞率高可能与设备故障有关,检查OMC 告警记录可以节约我们大量的判断分析时间。同样,这也是分析告警记录与这些指标恶化存在时间上的关联性。 硬件的隐性故障:OMC 告警大部分只针对硬件的显形故障,针对优化中绝大多数的隐性故障难以准确检测,这就需要一定的经验。 案例1: 以某小区的查找为例,具体步骤如下: 断

FDDLTE模三干扰对速率影响分析及优化

FDD-LTE模三干扰对速率影响分析及优化 同频组网系统最大的挑战是邻近小区间的同频干扰,对小区边缘用户的性能将造成很大的影响。同频干扰中,由于PCI模三相同造成的干扰是目前最常见的一种干扰,对用户的接入、切换和速率的申请都有一定的影响。因此需要分析总结模三干扰规避原则及优化方法,为今后FDD-LTE网络的大规模建设提供PCI 规划依据。 一、PCI模三干扰原理简介: 1、物理小区标识PCI(Physical Cell ID): PCI=Physical Cell ID,即物理小区 ID,是 LTE 系统中终端区分不同小区的无线信号标识(类似 CDMA 制式下的 PN)。PCI 和 RS 的位置存在一定的映射关系,相同 PCI 的小区,其 RS 位置相同,在同频情况下会产生干扰。 PCI=SSS码序列ID×3+PSS码序列ID,PSS码序列有3个,SSS码序列有168个,因此PCI取值范围为[0,503]共504个值 PCI值是映射到PSS、SSS的唯一组合,其中PSS序列ID决定RS的分布位置。 2、PCI 模3 干扰: 在同频组网、2X2MIMO的配置下,eNodeB间时间同步,PCI 模 3相等,意味着PSS码序列相同,因此RS的分布位置和发射时间完全一致。 LTE对下行信道的估计都是通过测量参考信号的强度和信噪比来完成的,因此当两个小区的PCI 模3相等时,若信号强度接近,由于RS位置的叠加,会产生较大的系统内干扰,导致终端测量RS的SINR值较低,我们称之为“PCI 模3干扰”。 二、PCI模三干扰表现及影响: 1、PCI模三干扰典型表现: 即使在网络空载时也存在“强场强低SINR”的区域,通常导致用户下行速率降低,严重的会导致掉线、切换失败等异常事件。 PCI 模3典型表现如下图所示:

华为上行干扰处理流程

华为上行干扰处理流程浅谈

目录 一、概述 (3) 二、GSM现网干扰类型分析 (3) 三、干扰排查步骤 (4) 四、干扰案例处理流程 (6) 4.1隔离度干扰处理 (6) 4.2直放站干扰处理 (7) 4.3外部干扰处理 (9) 4.4互调干扰处理 (10) 4.5频率干扰处理 (13) 4.6隐性故障干扰处理 (17) 五、给研发人员的一点思路 (18) 六、总结 (20)

一、概述 无线通信干扰的危害非常大,干扰将导致呼叫困难、杂音、掉话等问题,是导致网络质量下降的非常关键问题。干扰分上行干扰和下行干扰,下行干扰主要是网内的频率干扰,而上行干扰的类型较多,处理尤其困难。本文主要针对GSM网络的上行干扰的类型及定位方法进行介绍,并通过案例对每种干扰类型的定位处理进行了详细介绍。 二、GSM现网干扰类型分析 常见的上行干扰和处理建议如下表所示。

?干扰带统计: BTS在时隙空闲时将不断对当前所用频点的上行干扰信号的情况进行扫描并通过资源指示消息按照干扰带的方式进行统计上报。华为BSC中干扰带的缺省设置是: ?实时干扰带显示: 与干扰带统计原理一样,BSC将空闲时隙的上行干扰情况实时显示出来,可以直观的反映小区的实时干扰变化情况,干扰图例如下图: 不支持:是指有用户占用或者数据信道、主B信道。 三、干扰排查步骤 因发射空闲Burst受时间限制,互调小区筛选法主要目标是通过后台话统数据,从前述五类干扰中,筛选出受到互调干扰的小区。在通过其他手段来区分其他干扰。主要流程步骤如下图所示:

上述流程核心是通过比较忙闲时的干扰差值,判断了受干扰小区干扰源的性质。其重要步骤逐一说明如下: 1、关闭跳频和判断是否整小区干扰,是为了区分同邻频干扰等单频点干扰问题。我们也可以通过我们的软件FPO来排查是否有频率干扰,但在实际情况下有许多是过覆盖引起的频点干扰,在软件中只能看到周围的同邻频情况。可以把怀疑频点换成E频点或更干净的频点来测试一下效果。但有时频率干扰也是较难排查的,如射频跳频,长跳频一个载频上有十几块频点。华为系统有频点扫描功能,我们可以通过此功能来判断。 2、比较忙闲时的干扰差,差值超过一定的门限,可以进入下一处理环节。该门限可以根据整治需要自行设定。这个差值反映了互调干扰对网络影响的大小。 3、通过比较门限的方法,已经可以从整网中筛选出疑似互调干扰小区。在“工兵行动”实践中,我们发现,有些异常的用户行为,可能会导致上述判断的不准确,例如,有些用户可能白天业务忙时打开黑直放站或阻断器,夜间业务闲

跨站点实施SFN解决模3干扰问题

跨站点实施SFN解决模3干扰问题 【问题描述】 测试发现,在乌镇老街西面路段存在大量的MOD3干扰区域。 【问题分析】 该路段RSRP均值在-85dbm到-100dbm之间,主要覆盖小区为桐乡乌镇西栅盛庭锅炉房-51和桐乡乌镇西栅枕河度假中心-51,二者RSRP差距在6db以内,覆盖重叠度较大,MOD3干扰较严重。 解决MOD3干扰常用的有效手段有RF优化和PCI优化两种。

勘查现场环境,该区域属于典型的江南古镇场景,房屋建筑密集,室外道路多为狭窄的弄堂,无线环境复杂。从RF调整角度看,控制任何一个扇区的覆盖范围将在部分区域造成弱覆盖。而修改PCI将会对整个景区的MOD3秩序造成影响,引起其他的MOD3干扰问题。因此,无论是RF优化调整或是PCI调整均无法在不引入新问题的前提下有效解决该问题。 考虑到乌镇西栅盛庭锅炉房-51和乌镇西栅枕河度假中心-51两个扇区覆盖的互补性,把两个扇区实施SFN将会在规避干扰的同时提升该区域的覆盖质量。 【解决方案】 乌镇西栅盛庭锅炉房-51和乌镇西栅枕河度假中心-51分别挂接于两个不同的BBU(乌镇西栅机房BBU-西栅盛庭锅炉房和乌镇西栅枕河度假中心BBU),且两个BBU放置与于两个不同的物理站点。 当前阶段华为设备只支持同BBU内的小区实施SFN,因此需要在两个BBU间新放置光缆,将两个RRU挂接到同一个BBU下。

挂接改造示意图 挂接关系改造后,对两个小区实施SFN超级小区。 【解决效果】 调整完毕后,对乌镇景区室外道路进行复测,改路段的MOD3干扰已经基本解决,FTP下

行速率提升明显。 【问题总结】 SFN小区合并在处理模三干扰和重叠覆盖问题方面有独特的优势,消除了干扰的同时可以增强单小区的覆盖效果。在现网应用中,可以根据光缆资源情况,灵活地实施站点内或者站点间的SFN,以达到优化目标。

案例集-TD-LTE网络优化经典案例

TD-LTE网络优化案例

目录 1概述 (1) 2D频段优化案例 (1) 2.1重叠覆盖优化 (1) 2.2PCI优化 (3) 2.3邻区列表优化 (5) 2.4切换优化 (7) 2.4.1切换参数优化 (7) 2.4.2同步参数与切换 (9) 2.5功控参数优化 (12) 2.6天面问题整改 (14) 2.6.1天线抱杆 (14) 2.6.2楼层阻挡 (16) 2.7干扰问题排查 (18) 3F频段优化案例 (20)

1概述 TD-LTE无线网络要实现系统的高性能指标, 需要有合理的网络规划设计、稳定的产品性能、良好的施工工艺以及高质量的网络优化,几者缺一不可。本报告收录了XX市TD-LTE试验网建网以来遇到的一些典型优化案例,旨在为后续优化工作提供帮助和参考。 2D频段优化案例 2.1重叠覆盖优化 【问题描述】 在华兴街靠近中和路区域测试时,UE驻留在华安证券_3(频点:38050,PCI:88),RSRP: -71dBm左右,SINR:25dB左右,但DL Throughput=31Mbps。 【问题分析】 分析路测数据,发现在华兴街靠近中和路的区域,华安证券_2、华安证券_3小区RSRP电平值较接近,如上图所示,对该路段形成了重叠覆盖。而该区域规划的

主覆盖小区为华安证券_3,现场勘察发现,华安证券_2信号经周边楼宇反射至该区域,2、3小区形成重叠覆盖,造成吞吐速率降低。 【解决措施】 调整华安证券_2方位角由120°调至155°,机械下倾角由12°调至6°。 【处理效果】 调整小区方位角后,重叠覆盖问题得到较好解决,下载速率明显提升。

互调干扰详解

互调干扰:是指几个不同频率的信号通过非线性电路时,会产生与有用信号频率相同或相近的频率组合,而对通信系统构成的一种干扰。根据IS95规范和国家无委的检测标准,GSM直放站产生的杂散和互调信号在9KHz-1GHz时小于-36dBm,在1GHz-12.75GHz时小于-30dBm。 在移动通信系统中,互调产生的原因有三方面:发信机互调、接收机互调和外部效应引起的互调。 直放站的杂散和互调的产生主要来自于直放站内部的功放模块。发射机互调是由于直放站在多个发信机(载波)同时工作时,因合路器系统的隔离度不够而导致信号相互耦合,干扰信号侵入发射机末级功率放大器,从而与有用信号之间合成互调产物,并随有用信号发射,造成干扰。接收机互调主要是由高放级以及第一混频级电路的非线性所引起。外部效应引起的互调主要是由于发射机馈线、高频滤波器等无源电路接触不良,以及由于异种金属的接触部分非线性等原因,使强电场的发散信号引起互调,产生干扰源。 当有多个频率信号通过非线性电路时,便会相互调制产生互调失真,以二阶和三阶失真幅度为最大,阶数越高失真越小。二阶互调fa+fb、fa-fb等,因其频率远离主导信号频率fa、fb,可不考虑:三阶互调的两种模型2fa-fb、fa+fb-fc,因其频率接近或等于主导信号频率,对通信的影响最大;三阶以上互调失真幅度较小,均可不考虑。移动通信设备主要考虑三阶互调的影响。 (1)互调干扰对系统的影响:

对其它运营商的影响:当一个运营商(移动或联通)开通了一台杂散和互调较高的直放站时,互调和杂散信号落在本运营商的频带外,会对附近另一个运营商的下行信号造成同频干扰。 如:运营商A欲在一四层楼上安装一台直放站,杂散和互调为-36dBm(满足无委指标),杂散和互调信号和有用信号一起通过17dBi 的业务天线发射,那么杂散和互调信号在天线正面的输出强度为-18dBm,根据自由空间无线信号传播公式可知,相距10米衰减大约50dB,相距100米衰减大约70dB,相距1公里大约衰减90dB;可以算出对其它运营商的下行信号带来的同频干扰。在无阻挡环境下天线正前方100米以内同频干扰大于-88dBm,这时如果另一运营商的信号强度低于-79dBm,使得载波干扰比低于9,就会造成无法接通的情况发生。因此,在做室内或室外直放站工程时,控制各运营商的设备及天线的距离,对避免干扰非常重要。 2)对相邻基站小区的影响: 在使用大功率宽带直放站时,互调指标比较高,由于带宽选择直放站所有的信道都共用一个功放模块,而后级的滤波器是一个宽带滤波器,对通带内的互调信号没有抑制作用,因此很难满足IS95规范对互调信号的要求。如果恰好能接收到附近本运营商基站的同频信号,输出时后级宽带滤波器对它们不产生任何抑制,那么会产生严重的同频干扰。 假设直放站输出功率10W,一般三阶互调40dBc,三阶互调实际输出电平(0dBm),如施主基站使用80、84两个载波,三阶互调信

干扰案例

高碑店金隆商厦干扰问题专题报告

目录 1、常见干扰问题的基本概述 (3) 1.1异常干扰的分类 (3) 1.1.1内部干扰 (3) 1.1.2 异常干扰 (4) 2、干扰查找的基本流程及案例分析 (4) 2.1. 干扰前期判断 (4) 2.2现场定位 (7) 2.3典型案例分析 (8) 3、结论: (13)

1、常见干扰问题的基本概述 在无线通信网络中,各种网络制式的不同决定工作频段的不同,由于无线频率资源的局限性,并且其应用条件也变的日益受限,致使无线通信业界百舸争流,拥挤不堪。同样WCDMA 网络也必须要与其他的移动通信系统(GSM网络,广播电视,无线局域网,寻呼等)共存于一个复杂的无线环境中,由于每种通信系统也都会采用各种复用方式来提高频谱效率,增加容量,势必会引入同/邻频干扰,同时无线系统还存在着电波传播多径效应造成的干扰以及有些无线射频设备也会产生影响通信的信号等。这些干扰信号必定会对网络覆盖区域的通信指标(掉话率,拥塞次数,通话质量等)产生不利的影响。与GSM网络相比,WCDMA网络有其自身设计的复杂性。对各种内,外部的干扰都是非常忌讳的。 1.1异常干扰的分类 WCDMA系统遭受的干扰可以分为两部分,一部分是系统内部的干扰,第二部分是异常干扰; 异常干扰可能对WCDMA系统产生恶劣影响。 1.1.1内部干扰 WCDMA系统是一个自干扰的系统,系统决定了若干小区的基站要工作在同一频率上,同时这些小区内的移动台也要工作在同一频率上,同一小区中的其他用户和周围小区的其他用户所造成的自干扰是限制系统容量和系统性能的主要因素,因此,CDMA系统有严格的功控,干扰功率控制的结果直接影响系统的容量,频率复用效率,链路性能等。前向链路的干扰主要有两种干扰源,第一种源是来自自身小区的干扰,主要是当前服务基站前向业务信道发射的干扰功率,即发送到相同移动台的业务信道的所有的功率总和,这就意味着限制业务信道的可用数是解决此类干扰的有效途径,当用户密度很大时,可以用统计平均值解决这个问题,而当用户数量很小时,则必须通过模拟方法对网络进行动态分析。第二种源是来自相邻小区的干扰,导频污染,频繁切换,越区覆盖等是我们非常熟悉的干扰类型,主要是由于其他基站在下行链路上发射的业务信道而产生的干扰功率,发射功率的提高只能改善某一小区的接收信号,但是付出的代价是增加了对所有相邻小区的干扰,解决此类干扰的方法是在话务统计的基础上,适当的降低其他相邻基站发射到空中的干扰功率,并且合理地对相邻基站的天馈参数作优化调整,降低当前服务小区前向链路的干扰。

相关文档
最新文档