反比函数图像上四种三角形的面积

反比函数图像上四种三角形的面积
反比函数图像上四种三角形的面积

反比函数图像上的四种三角形的面积

襄樊市第四十七中学 熊沙

函数是解决实际生活问题的重要模型,在近几年各省市的考题中,对于函数的考查比例占有相当重的份量,大部分是考查考生对其基本概念、图象性质的理解和应用,甚至成为中考压轴题的大类。

反比例函数的图像经常与三角形的面积联系在一起,下面就举例说明。 一、三角形面积的四个结论

结论1、过反比例函数图像上一点,向x 轴作垂线,则以图像上这个点、垂足,原点为顶点的三角形的面积等于反比例函数k 的绝对值的一半。

设P (a ,b )是反比例函数y=x

k (k ≠0)图像上的一点,过点P 作PA ⊥x

轴,垂足为A ,

三角形PAO 的面积是S ,则S k 2=

结论2、过反比例函数图像上一点,向y 轴作垂线,则以图像上这个点、垂足,原点为顶点的三角形的面积等于反比例函数k 的绝对值的一半。

设P (a ,b )是反比例函数y=x k

(k ≠0)图像上的一点,过点P 作PB ⊥y 轴,垂

足为B ,三角形PBO 的面积是S ,则S k 2=。

k x

襄樊市第四十七中学 熊沙 图(1)

2)

结论3、正比例函数y=k 1x (k 1>0)与反比例函数y=x

k

(k >0)的图像交于A 、

B 两点,过A 点作A

C ⊥x 轴,垂足是C ,三角形ABC 的面积设为S ,则S=|k|,与正比例函数的比例系数k 1无关。

证明:I

因为,正比例函数y=k 1x (k 1>0)与 反比例函数y=x

k (k >0)的图像交于A 、B 两点,

所以,

x k x

k 1=,所以,x=±

1

11

k kk k k =

当x=

11k kk 时,y= k 1x=1kk ,所以,点A 的坐标是(1

1k kk ,1kk ),

当x =-

1

1k kk 时,y= k 1x =-1

kk ,所以,点B 的坐标是(-

1

1k kk ,-1kk ),

所以,OC 的长度是1

1k kk ,

三角形ABC 的面积=三角形AOC 的面积+三角形BOC 的面积 =

2

1×OC ×AC+

2

1×OC ×BD

=2

1

1k kk ×1kk +

2

1

1k kk ×|-1kk |

=2

1

k+

2

1k=k 。所以,与k 1无关。

k

证明II 、

根据结论1,知道三角形AOC 的面积是21

k ,

三角形BOC 的面积=

2

1×OC ×BD 2

1

×

1

1k kk ×|-1kk |=

2

1k

所以,三角形ABC 的面积= k 。

结论4、正比例函数y=k 1x (k 1>0)与反比例函数y=x k

(k >0)的图像交于A 、

B 两点,过A 点作A

C ⊥x 轴,过B 点作BC ⊥y 轴,两线的交点是C ,三角形ABC 的面积设为S ,则S=2|k|,与正比例函数的比例系数k 1无关。

因为,正比例函数y=k 1x (k 1>0)与反比例函数y=x

k (k >0)的图像交于A 、B

两点,所以,

x k x

k 1=,所以,x=±

1

11

k kk k k =

当x=

11k kk 时,y= k 1x=1kk ,所以,点A 的坐标是(1

1k kk ,1kk ),

当x =-

1

1k kk 时,y= k 1x =-1kk ,所以,点B 的坐标是(-1

1k kk ,-1kk ),

所以,OC 的长度是1

1k kk ,三角形ABC 的面积=三角形AOE 的面积+三角形BOD

的面积+矩形ODCE 的面积=2

1×OE ×AE+

2

1×OD ×BD+OD ×DC

k

=2

1

×

1

1k kk ×1kk +

2

1×|-

1

1k kk |×|-1kk |+

1

1k kk ×|-1kk |

=2

1

k+

2

1k+k=2k 。所以,与k 1无关。

二、结论的具体应用

这些结论,在解答中考数学中选择题、填空题都是非常有效的。下面就举例说明。

例1、如图5,若点A 在反比例函数(0)k y k x

=

≠的图象上,A M x ⊥轴于点M

A M O

△的面积为3,则k = .(08年巴中市)

分析:根据结论1,知道面积S 与k 之间有如下的关系: |k |=2S ,S=3, 所以,|k |=6,

所以,k=6或者k=-6,

因为图像分布在二、四象限, 所以,k <0,所以 k=-6. 解:k =-6.

例2、两个反比例函数y=

x

k 和y=

x

1在第一象限内的图象,如图6所示,点P 在

y=

x

k 的图象上,PC ⊥x 轴于点C ,交y=

x

1的图象于点A ,PD ⊥y 轴于点D ,

交y=x

1的图象于点B ,当点P 在y=

x

k 的图象上运动时,以下结论:

① △ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化; ③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点. 其中一定正确的是 (08年湖北省咸宁市)

分析:因为,点A 、B 都在反比例函数y=

x

1的图像上,根

据结论1和结论2,知道;

△ ODB 与△OCA 的面积相等,所以,①是正确的; 如图7所示,连接OP ,

根据结论1知道,三角形POC 的面积为2

1k ,是个常数,三角形OAC 的面积是2

1

所以,三角形PAO 的面积是

2

1k-

2

1,是个常数,

根据结论2知道,三角形POD 的面积为2

1k ,是个常数,三角形OBD 的面积是

2

1,

所以,三角形PBO 的面积是

2

1k-

2

1,是个常数,

所以,四边形PBOA 的面积等于三角形PAO 的面积+三角形PBO 的面积=21

k-2

1+

2

1k-

2

1

=k-1,是一个定值,所以②是正确的; 设点P 的坐标为(m ,n ), 因为,点P 在k y

x

=的图象上,反比例函数在第一象限内,

所以,mn=k ,m >0,n >0, 因为,PC ⊥x 轴于点C ,交1y x

=

的图象于点A ,所以,点A 的横坐标为m ,所

以,点A 的纵坐标为m

1,即点A 的坐标为(m ,m

1);因为,PD ⊥y 轴于点D ,

交1y

x

=的图象于点B ,所以,点B 的纵坐标为n ,所以,点A 的横坐标为

n

1

,即点B 的坐标为(n

1,n ),PA=PC-AC=n-

m

1=

m

mn 1-,PB=PD-BD=m-

n

1=

n

mn 1-,

分数的分子是相同的,但是,分母不同,只有当m=n 时,PA=PB 才能成立,所以,即③是不正确的;

当点A 是PC 的中点时,有PA=AC 即m

mn 1-=

m

1,所以,mn=2,即k=2,

所以,点P 的坐标为(m ,

m

2),即点B 的坐标为(2

m ,

m

2),

所以,点B 是PD 的中点,

所以,当点A 是PC 的中点时,点B 一定是PD 的中点.即④是正确的; 因此,一定正确的是①②④. 解:正确的结论是①②④.

例3、如图8,一次函数12

2y x =

-的图象分别交x 轴、y 轴于A 、B ,P 为AB

上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)k y k x

=

>的图

象于Q ,

32

O Q C S ?=,则k 的值和Q 点的坐标分别为_________________________.

(08年荆州市)

简析:根据结论1知道:

因为k 是大于0的,所以,k=2S=2×23

=3,即y=

x

3,设Q 的坐标为(m ,n ),则

mn=3,因为,一次函数12

2

y x =

-的图象分别交x 轴、y 轴于A 、B ,

所以,点A 的坐标为(4,0),点B 的坐标为(0,-2),

所以,线段OA =4,因为,PC 为△AOB 的中位线,

所以,点C 是线段OA 的中点,所以,OC=2,即点Q 的横坐标为m =2, 所以,n=

2

3,所以点Q 的坐标为(2,

2

3)。

例4、如图9,反比例函数y=

x

5的图象与直线y=kx (k >0)相交于A 、B 两点,

AC ∥轴,BC ∥轴,则△ABC 的面积等于 个面积单位。

简析:

因为,反比例函数y=

x

5中k=5,根据结论4,所以,△ABC 的面积等于2k =10。

A

C

P

B

O

Q

襄樊市第四十七中学 熊沙 图(8)

y

X

A

D

C

E B

O

襄樊市第四十七中学 熊沙 图(9)

y

X

高考数学专题17 三次函数的图像与性质(原卷版)

专题17 三次函数的图像与性质 一、例题选讲 题型一 运用三次函数的图像研究零点问题 遇到函数零点个数问题,通常转化为两个函数图象交点问题,进而借助数形结合思想解决问题;也可转化为方程解的个数问题,通过具体的解方程达到解决问题的目的.前者由于是通过图形解决问题,故对绘制的函数图象准确度和细节处要求较高,后者对问题转化的等价性和逻辑推理的严谨性要求较高.下面的解法是从解方程的角度考虑的. 例1、(2017南通、扬州、泰州、淮安三调)已知函数3()3 .x x a f x x x x a ?=?-,求()y g x =的单调增区间. 例4、(2018无锡期末) 若函数f(x)=(x +1)2|x -a|在区间[-1,2]上单调递增,则实数a 的取值范围是________.

二次函数中常见图形的的面积问题

二次函数中常见图形的的面积问题

二次函数中常见图形的的面积问题说出如何表示各图中阴影部分的面积? 如图1,过△ABC的三个顶点分别作出与水平垂直的三条线,外侧两条直线之间的距离叫△ABC的“水平宽”,中间的这条直线在△ABC内部线段的长度叫△ABC 的“铅垂高h”。三角形面积的新方法:,即三角形面积等于水平宽与铅垂高乘积的一半。 x y O M E N A 图 O x y D C 图 x y O D C E B 图六 P x y O A B D 图 E x y O A B 图 x y O A B 图

抛物线322+--=x x y 与x 轴交与A 、B (点A 在B 右侧),与y 轴交与点C , D 为抛物线的顶点,连接BD ,CD , (1)求四边形BOCD 的面积. (2)求△BCD 的面积.(提示:本题中的三角形没有横向或纵向的边,可以通过添加辅助线进行转化,把你想到的思路在图中画出来,并选择其中的一种写出详细的解答过程) 如图1,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0), 交y 轴于点B 。 (1)求抛物线和直线AB 的解析式;(2)求△CAB 的铅垂高CD 及S △CAB ; (3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △ PAB =S △CAB ,若存在,求出P 点的坐标; 若不存在,请说明理由。

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,4),C(2,4)三点,且与x 轴的另一个交点为E 。 (1)求该抛物线的解析式; (2)求该抛物线的顶点D 的坐标和对称轴; (3)求四边形ABDE 的面积 已知二次函数322--=x x y 与x 轴交于A 、B 两点(A 在B 的左边),与y 轴交于点C ,顶点为在双曲线3 y x =上是否存在点N ,使得ABC NAB S S ??=,若存在直接写出N 的坐标;若不存在,请说明理由. A x y O B C 变式二图

一次函数面积问题专题(含答案)

一次函數面積問題 1、如图,一次函数的图像与x轴交于点B(-6,0),交正比例函数的图像于点A,点A的横坐标为-4,△ABC的面积为15,求直线OA的解析式。 — 2、直线y=x+3的图像与x轴、y轴分别交于A、B两点,直线a经过原点与线段AB交于C,把△ABO的面积分为2:1的两部分,求直线a的函数解析式。 : ¥

3、直线PA是一次函数y=x+n的图像,直线PB是一次函数y=-2x+m(m>n>0)的 图像, (1)用m、n表示A、B、P的坐标 # (2)四边形PQOB的面积是,AB=2,求点P的坐标 ` 4、△AOB的顶点O(0,0)、A(2,1)、B(10,1),直线CD⊥x轴且△AOB 面积二等分,若D(m,0),求m的值 、

5、点B在直线y=-x+1上,且点B在第四象限,点A(2,0)、O(0,0),△ABO 的面积为2,求点B的坐标。 / ' 6、直线y=-x+1与x轴y轴分别交点A、B,以线段AB为直角边在第一象限内作等腰直角△ABC,BAC=90°,点P(a,)在第二象限,△ABP的面积与△ABC 面积相等,求a的值. *

' 7、如图,已知两直线y=+和y=-x+1分别与x轴交于A、B两点,这两直 线的交点为P (1)求点P的坐标 (2)求△PAB的面积 , 8、已知直线y=ax+b(b>0)与y轴交于点N,与x轴交于点A且与直线y=kx交于点M(2,3),如图它们与y轴围成的△MON的面积为5,求 (1)这两条直线的函数关系式 (2)它们与x轴围成的三角形面积 {

# 9、已知两条直线y=2x-3和y=5-x (1)求出它们的交点A的坐标 (2)求出这两条直线与x轴围成的三角形的面积 ? 10、已知直线y=x+3的图像与x轴、y轴交于A、B两点,直线l经过原点,与线段AB交于点C,把△AOB的面积分为2:1的两部分,求直线l的解析式。

三次函数性质总结

三次函数性质的探索 我们已经学习了一次函数,知道图象是单调递增或单调递减,在整个定义域上不存在 最大值与最小值,在某一闭区间取得最大值与最小值.那么,是什么决定函数的单调性呢? 利用已学过的知识得出:当k>0时函数单调递增;当k<0时函数单调递增;b决定函数与y轴相交的位置. 其中运用的较多的一次函数不等式性质是: 在上恒成立的充要条件 接着,我们同样学习了二次函数, 利用已学知识归纳得出:当时(如图1) ,在对称轴的左侧单调递减、右侧单调递增, 对称轴 上取得最小值; 当时(图2) ,在对称轴的左侧单调递增、右侧单调递减, 对称轴 上取得最大值. 在某一区间取得最大值与最小值. 其中决定函数的开口方向,同时决定对称轴,决定函数与轴相交的位置. 总结:一次函数只有一个单调性,二次函数有两个单调性,那么三次函数是否就有三个单调性呢? 三次函数专题 一、定义 定义1 形如的函数,称为“三次函数”(从函数解析式的结构上命名)。 定义 2 三次函数的导数 ,把叫做三次函数导函数的判 别式。 由于三次函数的导函数是二次函数,而二次函数是高中数学中的重要内容,所以三次函数的问题,已经成为高考命题的一个新的热点和亮点。 系列探究1: 从最简单的三次函数开始 反思1 :三次函数的相关性质呢? 反思2 :三次函数的相关性质呢? x y O

反思3 :三次函数的相关性质呢? 例题 1.(2012天津理4) 函数在区间内的零点个数是( ) (A)0 (B)1 (C)2 (D)3 探究一般三次函数的性质: 先求导 1、单调性: (1 )若,此时函数() f x在R上是增函数; (2 )若 ,令两根为 12 ,x x 且, 则 在 上单调递增,在上单调递减。 导函数 图 象 极值点 个数 2 0 2 0 2、零点 (1) 若0 3 2≤ -ac b,则恰有一个实根; (2) 若,且,则恰有一个实根; (3) 若,且,则有两个不相等的实根; (4) 若,且,则有三个不相等的实根. 说明: (1)(2) 有一个实根的充要条件是曲线与轴只相交一次,即在上为单调函数或两极值 同号. x x1x 2 x0x x1x2 x x0 x

高三数学三次函数图象和性质与四次函数问题

三次函数与四次函数 大连市红旗高中王金泽 wjz9589@https://www.360docs.net/doc/54932650.html, 在初中,已经初步学习了二次函数,到了高中又系统的学习和深化了二次函数,三次函数是继二次函数后接触的新的多项式函数类型,它是二次函数的发展,和二次函数类似也有“与x轴交点个数”等类似问题。三次函数是目前高考尤其是文科高考的热点,不仅仅如此,通过深化对三次函数的学习,可以解决四次函数问题。2008年高考有多个省份出现了四次函数高考题,本文的目的就是,对三次函数做个重点的归纳,并且阐述在四次函数中的应用 第一部分:三次函数的图象特征、以及与x轴的交点个数(根的个数)、极值情况 三次函数图象说明 a对图象 的影响 可以根据极限的思想去分析 当a>0时,在x→+∞右向上 伸展,x→-∞左向下伸展。 当a<0时,在x→+∞右向下 伸展,x→-∞左向上伸展。 (可以联系二次函数a对开口的影 响去联想三次函数右侧伸展情况) 与x轴有三 个交点 若0 3 2> -ac b,且 ) ( ) ( 2 1 < ?x f x f,既两个极 值异号;图象与x轴有三个交点 与x轴有二 个交点 若0 3 2> -ac b,且 ) ( ) ( 2 1 = ?x f x f,既有一 个极值为0,图象与x轴有两个 交点 与x轴有一 个交点 1。存在极值时即0 3 2> -ac b, 且0 ) ( ) ( 2 1 > ?x f x f,既两个 极值同号,图象与x轴有一个交点。 2。不存在极值,函数是单调函数 时图象也与x轴有一个交点。

1.()0f x =根的个数 三次函数d cx bx ax x f +++=23)( 导函数为二次函数:)0(23)(2/≠++=a c bx ax x f , 二次函数的判别式化简为:△=)3(412422ac b ac b -=-, (1) 若032 ≤-ac b ,则0)(=x f 恰有一个实根; (2) 若032>-ac b ,且0)()(21>?x f x f ,则0)(=x f 恰有一个实根; (3) 若032>-ac b ,且0)()(21=?x f x f ,则0)(=x f 有两个不相等的实根; (4) 若032>-ac b ,且0)()(21-ac b ,且0)()(21>?x f x f ). (3)0)(=x f 有两个相异实根的充要条件是曲线)(x f y =与X 轴有两个公共点且其中之一为切点,所以 032>-ac b ,且0)()(21=?x f x f . (4)0)(=x f 有三个不相等的实根的充要条件是曲线)(x f y =与X 轴有三个公共点,即)(x f 有一个极大值,一个极小值,且两极值异号.所以032 >-ac b 且0)()(21++=a c bx ax x f , 二次函数的判别式化简为:△=)3(412422ac b ac b -=-, (1) 若032 ≤-ac b ,则)(x f 在),(+∞-∞上为增函数; (2) 若032>-ac b ,则)(x f 在),(1x -∞和),(2+∞x 上为增函数,)(x f 在),(21x x 上为减函数,其中 a ac b b x a a c b b x 33,332221-+-= ---=. 证明:c bx ax x f ++=23)('2, △=)3(41242 2ac b ac b -=-, (1) 当0≤? 即032 ≤-ac b 时,0)('≥x f 在 R 上恒成立, 即)(x f 在),(+∞-∞为增函数.

三角函数 正切、余切图象及其性质

正切、余切函数图象和性质反三角函数[知识要点] 1.正切函数、余切函数的图象与性质 2.反三角函数的图象与性质 3.已知三角函数值求角 [目的要求] 1.类比正、余弦函数的研究,讨论正切函数与余切函数的图象和性质,关注其不同点. 2.从反函数概念入手,引入反三角函数定义,并定性讨论其图象和性质. 3.能熟练运用正、余弦函数性质解决问题. 4.能用反三角函数值表示不同范围内的角. [重点难点] 1.正切函数图象与性质2.已知三角函数值求角 [内容回顾] 一、正切函数与余切函数图象 由前面我们正、余弦函数图象和性质的过程知,在中学阶段,对一个函数的认识,多是“由图识性”.因此,可以先作出正、余切函数的图象. 作三角函数图象的一般方法,有描点法和平移三角函数线法. 与正、余弦函数的五点法作图相类似,我们可以选择正切函数在一个周期内的图象上三点及两条重要的辅导线——渐近线,来作正切函数在区间上的简图,不妨称之为“三点两线法”. 若想迅速作出余切函数y=cotx的图象,如何选择“三点”及“两线”呢?请大家看余切函数的图象,不难得到答案. 二、正、余切函数的性质 由图象可得: y=tanx y=cotx 定义域值域R R 单调性在上单增(k∈Z) 在上单减(k∈Z) 周期性T=π T=π 对称性10 对称中心,奇函数(k∈Z) 20 对称轴;无10 对称中心,奇函数(k∈Z) 20 对称轴;无 注: 1、由定义域知,y=tanx与y=cotx图象都存在无数多个间断点(不连续点). 2、每个单调区间一定是连续的.

3、由单调性可解决比较大小问题,但要务必使两个自变量在同一单调区间内. 三、反三角函数的概念和图象 四种三角函数都是由x到y的多值对应,要使其有反函数,必须缩小自变量x的范围,使之成为由x到y的对应.从方便的角度而言,这个x的范围应该(1)离原点较近;(2)包含所有的锐角;(3)能取到所有的函数值;(4)最好是连续区间.从这个原则出发,我们给出如下定义: 1.y=sinx, x∈的反函数记作y=arcsinx, x∈[-1,1],称为反正弦函数. y=cosx, x∈[0, π]的反函数记作y=arccosx, x∈[-1,1],称为反余弦函数. y=tanx,x∈的反函数记作y=arctanx, x∈R,称为反正切函数. y=cotx,x∈(0, π)的反函数记作y=arccotx, x∈R,称为反余切函数. 2.反三角函数的图象 由互为反函数的两个函数图象间的关系,可作出其图象. 注:(1)y=arcsinx, x∈[-1,1]图象的两个端点是 (2)y=arccosx, x∈[-1,1]图象的两个端点是(1,0)和(-1,π). (3)y=arctanx, x∈R图象的两条渐近线是和. (4)y=arccotx, x∈R图象的两条渐近线是y=0和y=π. 四、反三角函数的性质由图象,有 y=arcsinx y=arccosx y=arctanx y=arccotx 定义域[-1,1] [-1,1] R R 值域[0, π] (0, π) 单调性在[-1,1]上单增在[-1,1]上单减在R上单增在R上单减对称性10对称中心(0,0)奇函数 20对称轴;无10对称中心非奇非偶 20对称轴;无10对称中心 (0,0)奇函数 20对称轴;无10对称中心非奇非偶 20对称轴;无周期性无无无无 另外: 1.三角的反三角运算 arcsin(sinx)=x(x∈)arccos(cosx)=x (x∈[0, π]) arctan(tanx)=x(x∈)arccot(cotx)=x(x∈(0, π)) 2.反三角的三角运算 sin(arcsinx)=x (x∈[-1,1])cos(arccosx)=x (x∈[-1,1])

一次函数之面积问题专题

一次函数之面积问题 班级 姓名 一、知识点睛 坐标系中面积问题的处理方法举例 ①割补求面积(铅垂法): 1()2APB B A S PM x x =??-△ ②转化求面积: l 1 l 2 如图,满足S △ABP=S △ABC 的点P 都在直线l 1,l 2上. ` 二、精讲精练 1、如图,在平面直角坐标系xOy 中,已知A(-1,3),B(3,-2),则△AOB 的面积为___________.

。 2、如图,直线y=-x+4与x轴、y轴分别交于点A、点B,点P的坐标为 (-2,2),则S△PAB=___________. 3、如图,直线AB:y=x+1与x轴、y轴分别交于点A,点B,直线CD:y=kx-2与x轴、y轴分别交于点C,点D,直线AB与直线CD交于点P.若S△APD=,则k=__________. 4、如图,直线 1 1 2 y x =+经过点A(1,m),B(4,n),点C的坐标为(2,5), 求△ABC的面积. 5、如图,在平面直角坐标系xOy中,已知A(2,4),B(6,6), C(8,2),求四边形OABC的面积. 6、如图,直线 1 1 2 y x =-+与x轴、y轴分别交于A,B两点,点C的坐标为 (1,2),坐标轴上是否存在点P,使S△ABP=S△ABC若存在,求出点P的坐标;若不存在,请说明理由. ?

7、已知直线 1 1 2 y x =-+与x轴、y轴分别交于A,B两点,以A为直角顶点, 线段AB为腰在第一象限内作等腰Rt△ABC,P为直线x=1上的动点,且△ABP的面积与△ABC的面积相等. (1)求△ABC的面积; (2)求点P的坐标. ¥ 8、如图,点A在直线l1:y=2x上,过A作AB⊥x轴,交直线l2: 1 2 y x =于 点B.若AB=3,求A点的坐标。)

二次函数的图像和性质第二课时教案

22.1 二次函数(第二课时) 教学目标: 1.会用描点法画出形如y = ax 2 的二次函数图象,了解抛物线的有关概念; 2.通过观察图象,能说出二次函数y = ax 2 的图象特征和性质; 3.在类比探究二次函数y = ax 2 的图象和性质的过程中,进一步体会研究函数图象和性质的基本方法和数形结合的思想 教学重点:会用描点法画出二次函数y=ax2的图象,观察图象,得出二次函数y = ax 2 的图 象特征和性质。 教学难点:抛物线的图像特征。 教学过程: 一、问题引新 1,同学们可以回想一下,一次函数的性质是什么? 2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢? 3.一次函数的图象是什么?二次函数的图象是什么? 二、学习新知 1、例1、画二次函数y=2x2与y=2x2的图象。(有学生自己完成) 解:(1)列表:在x的取值范围内列出函数对应值表: (2)描点(3)连线 x …-3 -2 -1 0 1 2 3 … y …9 4 1 0 1 4 9 … 找一名学生板演画图 提问:观察这个函数的图象,它有什么特点? (让学生观察,思考、讨论、交流,) 2、归纳: 抛物线概念:像这样的曲线通常叫做抛物线。抛物线与它的对称轴的交点叫做抛物线的 顶点.顶点坐标(0,0) 3、运用新知 (1).观察并比较两个图象,你发现有什么共同点?又有什么区别? (2).课件出示:在同一直角坐标系中,y=2x2与y=-2x2的图象,观察并比较 (3).将所画的四个函数的图象作比较,你又能发现什么?(课件出示) 让学生观察y=x2、y=2x2的图象,填空; 当a>0时,抛物线y=ax2开口______,在对称轴的左边,曲线自左向右______;在对称 轴的右边,曲线自左向右______,______是抛物线上位置最低的点。 当X<0时,函数值y随着x的增大而______,当X>O时,函数值y随X的增大而______; 当X=______时,函数值y=ax2 (a>0)取得最小值,最小值y=______

正切函数和余切函数的图像和性质

正切函数和余切函数的 图像和性质 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

正切函数和余切函数的图像和性质知识点: 1.正切函数和余切函数的概念; 2.正切函数与余切函数的图像和性质; 3.正切函数与余切函数性质的应用; 教学过程: 1.正切函数和余切函数的概念: (1)正切函数---形如tan =的函数称为正切函数; y x 余切函数--形如cot =的函数称为余切函数; y x 2.函数的图像和性质: (1)正切函数的图像: 见正切函数图像课件。 (2)正切函数图像: (3)与切函数的图像: 归纳填表格:

例1.求下列函数的周期: (1)tan(3)3 y x π =-+; (2)221tgx y tg x =+ ; (3)cot tan y x x =-; (4)2 2tan 21tan 2 x y x =-; (5)sin 1tan tan 2x y x x ??=+ ?? ? 例2.求下列函数的单调区间: (1)tan(2)24 y x π =++; (2)tan()123 x y π=-+-; (3)12log cot y x ?= ?? 例3.求下列函数的定义域: (1)tan 4y x π??=- ??? ; (2)y = (3)y =

例4.(1)求函数21)tan tan ]y x x =-的定义域; (2)解不等式:23tan (2)(3tan(2)044 x x ππ+-+≤ 例5.已知2tan tan y x a x =-,当1[0,],[0,]34 x a π∈∈时,函数max y =a 的值; 例6.已知函数tan ,(0,)2y x x π=∈,若1212,(0,),2 x x x x π∈≠。 求证:1212()()()22f x f x x x f ++>。

(完整word版)六大基本初等函数图像与性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C(其中C 为常数); α

1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果ma ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

3.(选,补充)指数函数值的大小比较* N ∈a ; a.底数互为倒数的两个指数函数 x a x f =)(, x a x f ? ? ? ??=1)( 的函数图像关于y 轴对称。 b.1.当1>a 时,a 值越大,x a y = 的图像越靠近y 轴; b.2.当10<∈>=n Z n m a a a n m n m (2)) 1,,,0(1 1*>∈>= =- n Z n m a a a a n m n m n m y x f x x x x g ? ? ?=1)(

初中数学 函数图像中的面积问题 精品教案

函数图像中的面积问题 一:教学目标: 1、 通过本节课的学习,巩固一次函数图像与性质,能利用解析式求组合图形的面积,能利用面积求点坐标或直线解析式。 2、通过面积求值和解析式及解析式问题的探究,使学生理解一次函数图像特征与解析式的联系规律,体会数型结合思想,化归思想,方程思想。 3、培养学生主动探究,合作交流的意识,激发学生学习数学的热情,体验学数学的乐趣。 二:教学重难点 重点:一次函数的知识, 图形的面积解法 难点:动态题的面积解决, 三:教学过程 1创设问题,引入主题 师:如图,已知解析式,交y 轴于点B ,交X 轴于点A , 能求A,B 的交点坐标吗? 预设,生:能,A ( ),B ( ) 师:板书:函数解析式---点的坐标 师:追问:你还能得到什么结论? 预设,生:能,Y 随X 的增大而减小,线段OA,OB,AB 的长度,∠A,∠B 的度数,特殊角的三角函数值,△OAB 的面积和周长。。 师:板书 线段OA.OB ∠A,∠B 的度数 三角形OAB 的面积,周长,并标注在图上。 师:出示课题:函数图像中的面积问题” 归纳小结:由解析式可以求得点,线段,角度,面积之类的问题,函数可以将这些几何图形综合一起。 设计意图:通过问1的问题设计,可以将一次函数里的基本知识巩固并有效梳理。 师活动板书:含30度角的直角三角形三边关系标上 变式1: 若直线 433 +- =x y 与 x 轴、y 轴分别交于A 、B 两点,C 是OB 的中点,D 是A 上一点,四边形OEDC 是菱形,连结AE ,你又能得到什么结论? 学生活动:约8分钟,审题并可以合作交流尽可能得出多个结论 老师活动:巡视 师:哪位同学给大家说说你得到的结论 课堂处理:学生没头绪则提示有没有点线面之类的结论 预设:生A :点C ,点D,点E 的坐标,线段BD,AB,OC,OE..的长度, 生B: △BCD 是等边三角形,∠COE,∠DEO …的度数,作DC 的延长线交OA 于点F,则 ∠EOA,∠EAO ,∠DAE …的度数,

二次函数的图像和性质知识点与练习

第二节 二次函数的图像与性质 1.能够利用描点法做出函数y =ax 2 ,y=a(x-h)2,y =a(x-h)2 +k 和c bx ax y ++=2 图象, 能根据图象认识和理解二次函数的性质; 2.理解二次函数c bx ax y ++=2 中a 、b 、c 对函数图象的影响。 一、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定 其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们 选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x , ,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 例1. 在同一平面坐标系中分别画出二次函数y =x 2 ,y =-x 2 ,y =2x 2 ,y =-2x 2 ,y =2(x-1)2 的图像。 一、二次函数的基本形式 1. y =ax 2 的性质: x y O

2. y=ax2+k的性质:(k上加下减) 3. y=a(x-h)2的性质:(h左加右减) 4. y=a (x-h)2+k的性质: 5. y=ax2+bx+c的性质:

二、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式() 2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字 “左加右减,上加下减”. 方法二:

余切函数的图象和性质解读

正切、余切函数的图象和性质 教学目的:(略) 教学过程择录: 一、引题: 师:对比上一节的习题,请同学们看一看自己的作业本,对正弦和余弦函数,在作业中,我们已涉及了多少类型的问题? 生众:P159(11)正弦,余弦函数的定义域: P158(3)正弦,余弦函数的最值(值域): P158(6)正弦,余弦函数的奇偶性 P159(8)正弦,余弦函数的单调性 P159(7)正弦,余弦函数的应用一-----比大小 P158(4)正弦,余弦函数的周期(最小正周期) P159(12)正弦,余弦函数的图象 P160(16、17)正弦,余弦函数性质的应用 教师在黑板上书写:(1)定义域(2)值域(3)奇偶性(4)单调性(5)比大小(6)求最小正周期(7)作图(8)应用 教师:今天我们来学习正切、余切函数的图象和性质,可以想一想,我们要觖决什么问题? 生众:不就是上面这几点问题吗? 教师:说的不错,我们就是要来解决把“正弦、余弦函数”换成“正切、余切函数”后(1)~(7)后面加一个“是什么?”这样一些问题。请同学们带的这些问题看书5分钟(P153~P157)。 [评述]:这里是通过作业小结的方式引入问题。学生常常是很肓目的做作业,很少观察作业所涉及的问题类型和范围。教师有意识地引导学生作这种观察,既培养了学生看课本的习惯,又自然引出了今天的课题和要探索解决的问题。 二、学生自己回顾性设问,(自问自答)

5分钟以后:学生阅读完毕,教师指导第一组学生(7人)为相邻的同桌的同学(第二组学生)就前面七个方向提一个有关正、余切函数性质的问题,要求是后面的同学不要提前面已经提到过的问题,并请同桌同学(起立)对着大家回答。做完后,问、答的两组学生角色交换。其它组的同学一边听,一边作判断,对的放过,不对时请同一行的同学予以更正: 生1:正切函数的定义域是什么?邻生答:除了,k∈Z外的全体实数。 生2:正切函数的值域是整个y轴吗?邻生改正:应说成是全体实数 生3: ……… 生10:学过四种三角函数都是奇数吗?都是增函数吗?邻生答:不对,反例是余弦函数) 生11:正切函数是它定义域上的增函数吗?(好问题!)邻生答:是,其它学生更正:不是。教师追问理由……… 生12:正切函数是一个周期为2的函数吗?(含义不清的问题)邻生回答:准确地说正切函数是最小正周期为的周期函数。 生13:余切函数也是一个以2为周期的周期函数,这个说法对吗?邻生:不对, 另外的学生答:对,……… 学生即席讨论………。 生14:怎样由y=tgx的图象得到y=ctgx的图象?(好问题),邻生答:可以先把y=tgx的图象以x 轴为轴,翻转180度,再向右平移。另一个邻座同学:也可以先把y=tgx的图象以y轴为轴,翻转180度,再向右平移。教师插说:我怎么不懂了?为什么把y=tgx的图象以x轴为轴,翻转180度 和把y=tgx的图象以y轴为轴,翻转180度的效果一样?…学生讨论得到:因为y=tgx是奇函数,f(-x)=-f(x)。教师又插说:非要先翻转后平移吗?…学生讨论略。 [评论]学生自己设计问题,自问他答,其它学生协助判定是否正确,可以在很大程度上调动学生自己学习的主动性。但问题的难易控制有一定难度,先问的人设计问题相对容易些,可以用往复问答的方式来解决(第一个提问的学生将回答最后一个问题)。邻座的学生作答,同一横行同学做答的是非判定,这样做目的是让反馈的更快、更广些。从学生问答情况看,基本达到了目的。 三、自己提出问题,设计问题,当堂练习,自己作评价。 师:下面请第3组同学为大家设计一组课堂练习(2分钟)可以讨论。要求是七个方面都要覆盖。(七人上黑板,学生之间有交流,组长分配协调一人一个题,不使重复,2分钟后题目完成)请第四组同学上

一次函数面积问题

专题复习:一次函数的面积问题教案教学时间:2016年5月25日许发明 一、教学目标 依据课标的要求和学生的认知特点,我制定如下三维教学目标: 1.知识与技能:能利用表达式求三角形或四边形的面积,能利用面积求点坐标或直线表达式。 2.过程与方法:通过对已知图形面积求值及解析式问题的探究,使学生理解一次函数图象特征与表达式的联系规律,体会分类思想、数形结合思想 3.情感、态度与价值观:培养学生主动探究,合作交流的意识,激发学生学习数学的热情,体验学数学的乐趣. 二、教学重点与难点: 1、重点:根据函数表达式求三角形或四边形的面积,会根据面积求点坐标或函数表达式。 难点:不规则图形面积的计算,根据面积求点坐标 三、教学方法 高效6+1教学模式,让学生在自主、合作、探究中学习 四、教学过程 一、导:(创设情景,导入新课) 1、直线y=2x+5与y=0.5x+5的交点坐标是-----------。 2、点A(-1,2)到x轴的距离是------,到y轴的距离是--------。 3、y=2x+4与x轴交于A点,与y轴交于B点,则A的坐标为 ---------, B 点的坐标为---------。则该图像与两坐标轴围成的面积是--------。 师生活动:学生先独立完成,学生口答结果后教师直接导入新课。 设计意图:练习求直线与x轴y轴交点坐标,两直线交点坐标, 为学习本节内容铺垫。 (出示本节学习目标) 设计意图:学生根椐学习目标使学习更有针对性。 二、思:(利用表达式求面积) 自学例1,独立完成下面两个题 例1:已知直线l: 24 y x =-+ ,求此一次函数的图象与两坐标轴所围成的三角形 的面积。

函数图像中的面积问题

专题一 函数图像中的面积问题 一、中考要求 1.学会用代数法表示与函数图象相关的几何图形的面积,并能用函数图象的性质解决相关问题; 2.领会转化、数形结合、分类讨论的数学思想在函数问题中的应用. 二、基础再现 1.直线y=-3x+6的图象与坐标轴交于A 、B 两点,则△ABO 的面积是________. 2.二次函数y=-x 2+2x+3的图象交x 轴于A 、B 两点,交y 轴于点C ,△ABC 的面积为_______. 3.反比例函数x k y =的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为______. 4.如图,已知半径为1的⊙A 、⊙B 关于原点O 中心对称,则反比例函数x k y = 的图象与⊙A 、⊙B 相交组成的阴影部分的面积等于_______(结果保留π). 三、例题解析 例1.如图,直线y=-3x+6交x 轴、y 轴于A 、B 两点,直线y=x+2交x 轴、y 轴于C 、D 两点,两直线交于点E.求四边形ODEA 的面积.

例2.如图,已知点A 在x 轴上,∠OAB=90°,双曲线x k y 与AB 交于点C ,与OB 交于点D. (1)若点B 的坐标为(6,4),点D 为OB 中点,求△AOC 的面积. (2)若OD :DB=1:2,若△OBA 的面积等于9,求k 的值。 例3.已知二次函数y=-x2+2x+3的图像分别交x 轴、y 轴于A 、B 、C 三点. (1)若D 为抛物线上的一动点(点D 与点C 不重合),且S △ABD =S △ABC ;求点D 的坐标. (2)已知点N 为二次函数图象上的一个动点,且点N 在直线BC 的上方(点N 与B 、C 不重合),设点N 的横坐标为m. ①用含m 的代数式表示△NBC 面积; ②求△NBC 面积的最大值. D C E y=x+2 y=-3x+6

一次函数中的面积问题讲义(含答案)

一次函数中的面积问题讲义 一、知识点睛 1. 坐标系中处理面积问题,要寻找并利用_____________的线, 通常有以下三种思路: ①__________________(规则图形); ②__________________(分割求和、补形作差); ③__________________(例:同底等高). 2. 坐标系中面积问题的处理方法举例 ①割补求面积(铅垂法): B A h M a P P a M h A B 12△APB S ah = 1 2△APB S ah = ②转化求面积: h h l 1 l 2 A B C 如图,满足S △ABP =S △ABC 的点P 都在直线l 1,l 2上. 二、精讲精练 1. 如图,在平面直角坐标系中,已知A (-1,3),B (3,-2),则 △AOB 的面积为___________. x A y B O

2. 如图,直线y =-x +4与x 轴、y 轴分别交于点A ,点B ,点P 的坐标为(-2,2),则S △P AB =___________. O B y A P x P D O B y A C x 第2题图 第3题图 3. 如图,直线AB :y =x +1与x 轴、y 轴分别交于点A ,点B ,直线 CD :y =kx -2与x 轴、y 轴分别交于点C ,点D ,直线AB 与直线CD 交于点P .若S △APD =4.5,则k =__________. 4. 如图,直线1 12 y x =+经过点A (1,m ),B (4,n ),点C 的坐标 为(2,5),求△ABC 的面积. C O A B x y

正切、余切函数的图象和性质

正切、余切函数的图象和性质 正切、余切函数的图象和性质张思明教学目的:教学过程择录:一、引题:师:对比上一节的习题,请同学们看一看自己的作业本,对正弦和余弦函数,在作业中,我们已涉及了多少类型的问题?生众:P159正弦,余弦函数的定义域:P158正弦,余弦函数的最值:P158正弦,余弦函数的奇偶性P159正弦,余弦函数的单调性P159正弦,余弦函数的应用一-----比大小P158正弦,余弦函数的周期P159正弦,余弦函数的图象P160正弦,余弦函数性质的应用教师在黑板上书写:定义域值域奇偶性单调性比大小求最小正周期作图应用教师:今天我们来学习正切、余切函数的图象和性质,可以想一想,我们要觖决什么问题?生众:不就是上面这几点问题吗?教师:说的不错,我们就是要来解决把“正弦、余弦函数”换成“正切、余切函数”后~后面加一个“是什么?”这样一些问题。请同学们带的这些问题看书5分钟。[评述]:这里是通过作业小结的方式引入问题。学生常常是很肓目的做作业,很少观察作业所涉及的问题类型和范围。教师有意识地引导学生作这种观察,既培养了学生看课本的习惯,又自然引出了今天的课题和要探索解决的问题。二、学生自己回顾性设问,5分钟以后:学生阅读完毕,教师指导第一组学生为相邻的同桌的同学就前面七个方向提一个有关正、余切函数性质的问题,要求是后面的同学不要提前面已经提到过的问题,并请同桌同学对着大家回答。做完后,问、答的两组学生角色交换。其它组的同学一边听,一边作判断,对的放过,不对时请同一行的同学予以更正:生1:正切函数的定义域是什么?邻生答:除了,k∈Z外的全体实数。生2:正切函数的值域是整个y轴吗?邻生改正:应说成是全体实数生3:.........生10:学过四种三角函数都是奇数吗?都是增函数吗?邻生答:不对,反例是余弦函数)生11:正切函数是它定义域上的增函数吗?邻生答:是,其它学生更正:不是。教师追问理由 (12) 正切函数是一个周期为2的函数吗?邻生回答:准确地说正切函数是最小正周期为的周期函数。生13:余切函数也是一个以2为周期的周期函数,这个说法对吗?邻生:不对,另外的学生答:对,……… 学生即席讨论………。生14:怎样由y=tgx的图象得到y=ctgx的图象?,邻生答:可以先把y=tgx的图象以x轴为轴,翻转180度,再向右平移。另一个邻座同学:也可以先把y=tgx的图象以y轴为轴,翻转180度,再向右平移。教师插说:我怎么不懂了?为什么把y=tgx的图象以x轴为轴,翻转180度和把y=tgx的图象

一元三次函数性质与图象探索

一元三次函数性质与图象探索 高中部宋润生 我们已经学习了一次函数,知道图象是单调递增或单调递减,在整个定义域上不存在最大值与最小值,在某一区间 取得最大值与最小值.那么,是什么决定函数的单调性呢?利用已学过的知识得出:当k>0时函数单调递增;当k<0时函数单调递增;b决定函数与y轴相交的位置. 接着,我们同样学习了二次函数,图象大致如下: 图1 图2 利用已学知识归纳得出:当时(如图1),在对称轴的左侧单调递减、右侧单调递增,对称轴上取得最小值;当时(图2),在对称轴的左侧单调递增、右侧单调递减,对

称轴上取得最大值.在某一区间取得最大值与最小值.其中a决定函数的开口方向,a、b同时决定对称轴,c决定函数与y轴相交的位置. 三次函数的图象有六类.如图: 图3 图4

图5 图6 图7 图8 分析:由图3函数有哪些特点呢?归纳:解析式是,整个定义域上函数单调递增,在图4中解析式是,整个定义域上函数单调递增减.整个定义域上不存在极值,函数必经过原点.单调性又与什么知识相关呢?导数,现在求出函数的导数是 ,验证与0的关系,当时,即 的图象在是单调递增;当时,即 的图象在是单调递减相一致.当 ,根据图象知道,在处不是函数f(x)的极值点.所以 的根是函数取得极值的必要不充分条件.现在思考并验证函数 与函数图象有什么关系?经过验证得 出:函数与相同,当

时函数图象是图象向上平移|d|个单位;当时函数图象是图象向下平移|d|个单位;函数的导数都是. 在图5中解析式是,整个定义域上函数单调递增.在图6中解析式是,整个定义域上函数单调递增减.整个定义域上不存在极值.函数的导数,经过验证在图5中因为即,所以的图象在是单调递增;在图6中因为即,所以 的图象在是单调递减;函数都不存在极大值或极小值.为什么在图5中a>0、,在图6中a<0、呢?a>0、 或a<0、是又有什么结果呢?因为导数是二次函数,当a>0、或a<0、时判别式,导数函数不小于0,方程有一个根.当a>0、或a<0、时 ,方程有两个根.那么函数图象有什么特点呢?猜想如果,那么有两根,函数f(x)应有增也有减,我们来验证一下图7、图8: 在图7中解析式是,在或 上函数单调递增,在上函数单调递减;在处取得极大值,在处取得极小值;在图8中解析式是 ,在或上函数单调递减,在上函数单调递增;在处取得极小值,在处取得极

专题02 函数图象中的面积计算问题(解析版)

专题02 函数图象中的面积计算问题 几种常见面积的计算方法: 1. 三角形的一边在x 轴上时, S △ABC = 1 2 B A C x x y -?; 2. 三角形的一边在y 轴上时, S △ABC = 1 2 B A C y y x -?; 3. 割补法求解 (1)三角形一个顶点在原点处, S △ABO =()1 2A B OE x x ??+; S △ABO =()1 2 A B OF y y ??+. (2)割补法

S △ABO = ()1 2A B OC y y ??-; S △ABO =()1 2 B A OD x x ??-. (3)补法求面积 1. (2019·成都中考)如图,在平面直角坐标系xOy 中,一次函数1 52 y x =+和2y x =-的图象交于点A ,反比例函数k y x = 的图象经过点A . (1)求反比例函数的表达式; (2)设一次函数152y x =+的图象与反比例函数k y x =的图象的另一个交点为B ,连接OB ,求△ABO 的面积. 【答案】见解析. 【解析】解:(1)∵一次函数1 52 y x = +和2y x =-的图象交于点A , ∴15 2 2y x y x ? =+???=-?,解得:24x y =-??=?,

即A (-2,4), 将点A (-2,4)代入k y x = 中,得:k =-8, 故反比例函数的表达式为:8 y x =-; (2)联立152y x =+,8 y x =-得: 1212 2841x x y y =-=-????==??,, 即B (-8,1). 过点B 作BC ⊥x 轴于C ,BD ⊥x 轴于D , ∴S △OAD =S △OBC , ∴S △OAB =S 梯形ABCD , =(BC +AD )×CD ÷2 =(1+4)×6÷2=15. 2.(2019·四川凉山州中考)如图,正比例函数y =kx 与反比例函数y =4 x 的图象相交于A 、C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,则△ABC 的面积等于( ) A .8 B .6 C .4 D .2 【答案】C .

相关文档
最新文档