航空飞行器飞行动力学 部分课后习题答案1-3单元

航空飞行器飞行动力学 部分课后习题答案1-3单元
航空飞行器飞行动力学 部分课后习题答案1-3单元

第一章

第二章

第三章

飞机的空气动力学.

低速、亚音速飞机的空气动力 环境c091 王亚飞 飞机上的空气动力学和现在的流体力学有着相同的特点,研究空气动力学可以间接的学习流体力学,而空气动学上的最突出的应用就是飞机,所以现在着重讲述下飞机的空气学特点, 翼型的升力和阻力 飞机之所以能在空中飞行,最基本的事实是,有一股力量克服了它的重量把它托举在空中。而这种力量主要是靠飞机的机翼与空气的相对运动产生的。 迎角的概念飞行速度(飞机质心相对于未受飞机流场影响的空气的速度)在飞机参考平面上的投影与某一固定基准线(一般取机翼翼根弦线或机身轴线)之间的夹角,称为迎角(图2.3.5(a)),用α表示。当飞行速度沿机体坐标系(见2.4.1节)竖轴的分量为正时,迎角为正。 如果按照相对气流(未受飞机流场影响的气流)方向,则相对气流速度(未受飞机流场影响的空气相对于飞机质心的运动速度)在飞机参考平面上的投影与某一固定基准线之间的夹角就是迎角,且当相对速度沿机体坐标系竖轴的分量为负时,迎角为正(图2.3.5(b))。

图2.3.5 迎角图2.3.6小迎角α下翼剖面上的空气动力 1—压力中心 2—前缘 3—后缘 4—翼弦 升力和阻力的产生根据我们已经讨论过的运动的转换原理,可以认为在空中飞行的飞机是不动的,而空气以同样的速度流过飞机。如图2.3.6所示,当气流流过翼型时,由于翼型的上表面凸些,这里的流线变密,流管变细,相反翼型的下表面平坦些,这里的流线变化不大(与远前方流线相比)。根据连续性定理和伯努利定理可知,在翼型的上表面,由于流管变细,即流管截面积减小,气流速度增大,故压强减小;而翼型的下表面,由于流管变化不大使压强基本不变。这样,翼型上下表面产生了压强差,形成了总空气动力R,R的方向向后向上。根据它们实际所起的作用,可把R分成两个分力:一个与气流速度v垂直,起支托飞机重量的作用,就是升力L;另一个与流速v平行,起阻碍飞机前进的作用,就是阻力D。此时产生的阻力除了摩擦阻力外,还有一部分是由于翼型前后压强不等引起的,称之为压差阻力。总空气动力R与翼弦的交点叫做压力中心(见图 2.3.6)。好像整个空气动力都集中在这一点上,作用在翼型上。 根据翼型上下表面各处的压强,可以绘制出翼型的压强分布图(压力分布图),如图 2.3.7(a)所示。图中自表面向外指的箭头,代表吸力;指向表面的箭头,代表压力。箭头都与表面垂直,其长短表示负压(与吸力对应)或正压(与压力对应)的大小。由图可看出,上表面的吸力占升力的大部分。靠近前缘处稀薄度最大,即这里的吸力最大。

空气动力学期末复习题

第一章 一:绪论;1.1大气的重要物理参数 1、 最早的飞行器是什么?——风筝 2、 绝对温度、摄氏温度和华氏温度之间的关系。——9 5)32(?-T =T F C 15.273+T =T C K 6、摄氏温度、华氏温度和绝对温度的单位分别是什么?——C F K 二:1.1大气的重要物理参数 1、 海平面温度为15C 时的大气压力为多少?——29.92inHg 、760mmHg 、 1013.25hPa 。 3、下列不是影响空气粘性的因素是(A) A 、空气的流动位置 B 、气流的流速 C 、空气的粘性系数 D 、与空气的接触面积 4、假设其他条件不变,空气湿度大(B) A 、空气密度大,起飞滑跑距离长 B 、空气密度小,起飞滑跑距离长 C 、空气密度大,起飞滑跑距离短 D 、空气密度小,起飞滑跑距离短 5、对于音速.如下说确的是: (C) A 、只要空气密度大,音速就大 B 、只要空气压力大,音速就大

C、只要空气温度高.音速就大 D、只要空气密度小.音速就大 6、大气相对湿度达到(100%)时的温度称为露点温度。 三:1.2 大气层的构造;1.3 国际标准大气 1、大气层由向外依次分为哪几层?——对流层、平流层、中间层、电离层和散逸层。 2、对流层的高度.在地球中纬度地区约为(D) A、8公里。 B、16公里。 C、10公里。 D、11公里 3、现代民航客机一般巡航的大气层是(对流层顶层和平流层底层)。 4、云、雨、雪、霜等天气现象集中出现于(对流层)。 5、国际标准大气指定的依据是什么?——国际民航组织以北半球中纬度地区大气物理性质的平均值修正建立的。 6、国际标准大气规定海平面的大气参数是(B) A、P=1013 psi T=15℃ρ=1、225kg/m3 B、P=1013 hPA、T=15℃ρ=1、225 kg/m3 C、P=1013 psi T=25℃ρ=1、225 kg/m3 D、P=1013 hPA、T=25℃ρ=0、6601 kg/m3 7. 马赫数-飞机飞行速度与当地音速之比。 四:1.4 气象对飞行的影响;1.5 大气状况对机体腐蚀的影响

空气动力学试卷及答案

空气动力学试卷A 选择题(每小题2分,共20 分) 1. 温度是表示一个()的特性。 A. 点 B. 线 C. 面 D.体 2. 通常压强下,空气是否有压缩性() A. 无 B. 有 C.不确定 D.以上都有可能 3. 升力系数的 表达式为() A. B. C. D. 4. 矢量的和的矢量积(叉乘) 符合() A. 左手法则 B. 右手法则 C. 左、右手法则都符合 D. 左、 右手法则都不符合 5. 下列哪种情况出现马赫锥:( ) 小扰动在静止空气中传 播小扰动在亚声速气流中传播小扰动在声速气流中传播小扰动在超声速气流 中传播 6. 膨胀波是超声速气流的基本变化之一,它是一种()的过程: A. 压 强上升,密度下降,流速上升 B. 压强下降,密度下降,流速下降 C. 压强下降, 密度下降,流速上升 D. 压强上升,密度下降,流速下降 7. 边界层流动中, 边界层内流体的特性是:( ) A. 流速在物面法向上有明显的梯度,流动是有旋、 耗散的 B. 流速在物面法向上无明显的梯度,流动是有旋、耗散的 C. 流速在物 面法向上有明显的梯度,流动是无旋的 D. 流速在物面法向上无明显的梯度,流 动是无旋的 8. 低速翼型编号NACA2412中的4表示什么:( ) A. 相对弯度为 40% B. 相对弯度的弦向位置为40% C. 相对厚度为40% D. 相对厚度的弦向位置 为40% 9. 对于一个绝热过程,如果变化过程中有摩擦等损失存在,则熵必有 所增加,必然表现为:( ) A. B. C. D.不能确定10. 马赫数Ma的表达式为:( ) A. B. C. D. 二、填空题(每小题3分,共15分) 1. 流体的压强就是气 体分子在碰撞或穿过取定表面时,单位面积上所产生的法向力。定义式是:

飞行器动力工程专业航空概论总复习题

民航概论总复习题 (说明:黑体字题目系分析题和简答题,其余为选择题和填空题) 一、绪论部分 1、飞行器一般分为几类?分别是什么? 2、大气层如何分层,各有什么特点?适合飞机飞行的大气层是哪层? 3、第一架飞机诞生的时间是哪一天,由谁制造的? 4、何谓国际标准大气? 5、目前世界上公认的第一个提出固定机翼产生升力理论的人是谁?哪个国家 的? 6、率先解决滑翔机的稳定和操纵方法的人是谁?哪个国家的? 7、我国飞机和发动机主要设计、制造单位有哪些? 8、目前国际上著名的航空发动机和民用飞机制造企业及其生产的产品型号。 二、空气动力学基础部分 1、何谓飞机机翼的展弦比?根梢比? 2、马赫数和雷诺数的数学表达式和表示意义。 3、连续性方程和伯努利方程的数学表达式,并说明其物理意义。 4、超音速气流经过激波后气流参数将发生何种变化? 5、举例说明亚音速和超音速气流在变截面面积管道中流动,其气流参数将发生 何种变化? 6、在空气中声速的大小主要取决于什么? 7、何谓相对运动原理? 三、飞行原理部分 1.何谓临界马赫数? 2.何谓飞机的安定性? 3.影响飞机稳定性的因素有哪些?如何影响? 4.何谓马赫数?与空气的压缩性有什么关系? 5.低速飞机的飞行阻力有哪些?各自的减阻措施有哪些? 6.飞机的升力是如何产生的?升力如何计算?

7.机翼升力的表达式及各项物理意义,影响机翼升力的因素主要有哪些? 8.何谓升阻比? 9.何谓飞机过载?一般数值是多少? 10.增升的基本方法有哪些?举例说明波音737飞机的增升方法和原理。 11.试分析飞机机翼采用后掠角的利弊 12.飞机采用流线体是为了减小哪一种阻力? 13.扰流板一般在飞机飞行的哪一个阶段打开? 14.增大飞机的翼展可以减小飞机的什么阻力? 15.何谓飞机的主操纵面? 16.机翼后掠角和飞行速度有什么关系? 17.翼梢小翼的作用是什么? 18.飞机如果保持同一马赫数,在高空飞行时的绝对速度大,还是在低空飞行 时的绝对速度大? 四、航空发动机部分 1.航空航天发动机可分为哪几类,各类又如何细分? 2.何谓喷气发动机的推重比?目前先进军用发动机推重比的水平? 3.目前大型客机常用哪种类型的发动机? 主要生产厂家有哪几个? 4.叙述螺旋桨的构成及其工作原理。 5.试说明活塞发动机的工作原理。 6.发动机在飞机上的安装位置主要有哪些?翼下吊挂布局的优点是什么? 7.简述涡喷发动机的工作过程。 8.涡轮喷气发动机的核心机是指哪几个部件,并说出每个部件的作用。 9.发动机进气道的布置主要有哪些? 10.何谓发动机的涵道比?军用机和民用机的发动机的涵道比一般在什么范 围? 11.风扇发动机推进效率高的主要原因是什么?涡扇发动机推力大的原因是 什么? 12.小型直升机为何还使用活塞发动机? 13.试说明涡轮轴发动机的结构特点?带自由涡轮的涡轴发动机的主要用

航空航天概论习题及答案

第1章绪论 1、什么是航空?什么是航天?航空与航天有何联系? 航空是指载人或者不载人的飞行器在地球大气层中的航行活动。 航天是指载人或者不载人的航天器在地球大气层之外的航行活动,又称空间飞行或宇宙航行。 航天不同于航空,航天器主要在宇宙空间以类似于自然天体的运动规律飞行。但航天器的发射和回收都要经过大气层,这就使航空和航天之间产生了必然的联系。 2、飞行器是如何分类的? 按照飞行器的飞行环境和工作方式的不同,可以把飞行器分为航空器、航天器及火箭和导弹三类。 3、航空器是怎样分类的?各类航空器又如何细分? 根据产生升力的基本原理不同,可将航空器分为两类,即靠空气静浮力升空飞行的航空器(通常称为轻于同体积空气的航空器,又称浮空器),以及靠与空气相对运动产生升力升空飞行的航空器(通常称为重于同体积空气的航空器)。 (1)轻于同体积空气的航空器包括气球和飞艇。 (2)重于同体积空气的航空器包括固定翼航空器(包括飞机和滑翔机)、旋翼航空器(包括直升机和旋翼机)、扑翼机和倾转旋翼机。 4、航天器是怎样分类的?各类航天器又如何细分? 航天器分为无人航天器和载人航天器。根据是否环绕地球运行,无人航天器可分为人造地球卫星(可分为科学卫星、应用卫星和技术试验卫星)和空间探测器(包括月球探测器、行星和行星际探测器)。载人航天器可分为载人飞船(包括卫星式载人飞船和登月式载人飞船)、空间站(又称航天站)和航天飞机。 5、熟悉航空发展史上的第一次和重大历史事件发生的时间和地点。 1810年,英国人G·凯利首先提出重于空气飞行器的基本飞行原理和飞机的结构布局,奠定了固定翼飞机和旋翼机的现代航空学理论基础。 在航空史上,对滑翔飞行贡献最大者当属德国的O·李林达尔。从1867年开始,他与弟弟研究鸟类滑翔飞行20多年,弄清楚了许多飞行相关的理论,这些理论奠定了现代空气动力学的基础。 美国的科学家S·P·兰利博士在许多科学领域都取得巨大成就,在世界科学界久负盛名。1896年兰利制造了一个动力飞机模型,飞行高度达150m,飞行时间近3个小时,这是历史上第一次重于空气的动力飞行器实现了稳定持续飞行,在世界航空史上具有重大意义。

飞行器结构动力学-期末考试(大作业)题目及要求

《飞行器结构动力学》 2019年-2020年第二学年度 大作业要求 一、题目: 1.题目一:请围绕一具体动力学结构,给出其完整的动力学研究报告, 具体要求: (1)作业最终上交形式为一个研究报告。 (2)所研究结构应为实际科学发展或生产生活中的真实结构,可对其进行一定程度的简化,但不应过分简化,不可以为单自由度 系统,若为多自由度系统,其自由度应不少于5。 (3)所研究内容应当围绕本学期所讲授的《飞行器结构动力学》课程内容展开,可以包含但不限于:不同研究方法的对比,对结 构动力学响应的参数影响研究,针对结构动力学响应的结构优 化设计,动力学研究方法的改进,结构动力特性影响机理分析 等。 (4)研究报告应至少包含8部分内容:摘要,关键词,引言,问题描述,分析方法,研究结果,结论,参考文献等,正文字号为 小四,1.5倍行距,篇幅不短于3页,字数不少于1500字。 2.题目二:请拟出一份《飞行器结构动力学试卷》并给出正确答案和评 分标准,具体要求: (1)作业最终上交形式为一份考试卷答案及评分标准,具体形式及格式参考附件。 (2)题目应当围绕本学期所讲授的《飞行器结构动力学》课程内容展开,且明确合理无歧义。 (3)卷面总分100分。其中,考察单自由度系统知识点题目应占总分值的30%~40%;考察多自由度系统知识点题目应占总分值的 15%~30%;考察连续弹性体系统知识点题目应占总分值的 15%~30%。考察结构动力学的有限元方法及数值解法占

15%~30%。 (4)试卷可以包含的题目类型为:单选题,填空题,简答题和计算题四类,题目类型应不少于2种,不多于这4种。其中计算题 为必含题目,且分值应不少于40%。 (5)每道题均应给出分值、标准答案和评分标准。 分值的安排应当合理并清晰,需针对每道具体题目给出。 标准答案应当正确无误,且清晰明确,包含整个分析或计算的流程步骤。针对概念或问答等类型题目,应当给出该问题及 答案的来源,并附图以证实。针对计算类型题目,应给出至少 两种不同计算方法及其相应的计算步骤和结果,以证实该结果 的正确性。 评分标准应当合理并清晰地给出标准答案和分值的对应关系,例如:填空题应给出每一空格的分值;简答题应细化给出 题目内所有的关键内容,并给出所有关键内容各自所对应的评 判标准及分值;计算题应依据计算步骤给出每一关键步骤对应 的评判标准及分值。 二、要求 1.大作业题目有两道,请自选其一完成。 2.大作业上交截止时间为2020年6月2日晚12点,逾期则认定为缺考 无成绩。 3.大作业评定分为5个等级,分别为:优(90~100分),良(80~90分), 中等(70~80分),及格(60~70分)和不及格(60分以下)。其中由于 题目难易关系,若无抄袭情况出现,选择题目一的学生可以寻求任课 老师指导,且等级至少为良。 4.抄袭判定:上交作业若出现重复率超过30%情况则判定为抄袭,有7 天时间可以修改,修改后若仍旧为抄袭,则涉及学生均按照不及格处 理。 5.大作业相关参考资料见附件。

西工大航天学院空气动力学试题

诚信保证 本人知晓我校考场规则和违纪处分条例的有关规定,保证遵守考场规则,诚实做人。 本人签字: 编号: 西北工业大学考试试题(卷) 2006 -2007 学年第 二 学期 开课学院 航天学院 课程 空气动力学 学时 52 考试日期 2007-7-9 考试时间2小时 考试形式(闭)(A )卷 题号 一 二 三 四 五 六 七 总分 得分 考生班级 学 号 姓 名 一、名词解释:(15分,1-6题2分,7题3分) 1. 连续介质假设 2. 气体的传热性 3. 不可压流体 4. 流体质点的迹线 5. 流管 6. 涡线 7. 马赫数M 及其物理意义 二、标出下图中翼型的b c f x Y x Y x Y x Y X X f c l u c f ,,),(),(),(),(,,。(10分) 2. 命题教师和审题教师姓名应在试卷存档时填写。 共2 页 第1页

三、简答题(15分,每题3分) 1.写出表征翼型的几个基本参数,并解释他们的意义。 2.解释几何扭转、气动扭转的含意。 3.解释诱导阻力是如何产生的。 4. 驻点压强表示什么? 5. 欧拉运动方程表示气体遵循什么规则? 四、证明: RT d dp a γρ== 2 (10分) 五、已知二维定常流动的速度分布为 bx v x =, by v y -=(b 为常数)。(30分) (1)求流线方程; (2)证明该流动满足不可压缩流动的质量守恒定理; (3)求出该流动是否有速度势存在,若有速度势存在,求出速度势。 六、设有盛液容器(如水库或储液罐),在液面下容器底部有一排液小孔,假定液体粘性可以忽略不计,已知液面上压强为1P ,孔口处压强为2P ,孔口面积为2A ,计算小孔泻出的流量(假定流出截面上的速度是均匀的)。(20分)

飞机气动力参数辨识技术的工程应用

飞机气动力参数辨识技术的工程应用 在介绍飞机气动参数辨识原理的基础上,论述了该技术在飞机气动设计、飞行品质鉴定、飞行模拟机的飞行动力学模型开发等方面的应用情况,提出了涉及飞机试飞、模型开发等技术应用场景中的相关注意事项。 标签:飞机;气动参数辨识;试飞;仿真 引言 目前,常用的飞机气动建模技术手段有三种[1]:流体力学、风洞试验和飞行试验。基于飞行试验数据的飞机气动力参数辨识技术作为最重要的手段之一,受到了越来越多的重视,并被广泛地应用于校正飞机气动参数的流体力学计算和风洞试验结果、飞行品质评价、飞行模拟机建模仿真等方面。本文结合飞机/飞行模工程研制工作,详细介绍该技术的具体应用现状,并提出相关注意事项。 1 气动参数辨识原理 飞机气动力参数辨识作为飞机动力学系统辨识中发展最为成熟的一个分支,是系统辨识理论在飞行动力学系统方面的具体应用。该辨识通过测量飞机的发动机推力(测算)、舵面偏转和飞行状态数据,以飞机气动模型和飞机飞行动力方程作为状态方程,以上述测量得到的数据作为状态量和观测量,以此建立作用于飞机的空气动力(矩)与飞机运动状态参数和控制输入之间的解析关系式[2]。在图1所示的辨识基本原理 中,激励信号、辨识模型、参数估计和结果验证是辨识结果可信度的四大影响因素。 图1 飞机气动力参数辨识的基本原理 激励信号设计是通过舵偏操纵信号的优化设计,充分激励飞机的运动特性,确保飞机的运动模态信息尽可能多地包含在飞机试飞数据中[3]。辨识模型建立是基于空气动力学的先验知识初步确定模型的结构,将模型辨识问题转化为参数估计问题。辨识方法应用是选取合适的参数寻优准则和算法,通过飞机真实响应与模型仿真响应之间的差异进行模型参数的优化。辨识结果验证是确保建立的数学模型能够合理、精确地表征飞机的飞行动力学特性。 2 在飞机气动设计中的应用 在飞机的工程研制中建立准确的飞机气动模型,是飞行控制律参数调整、工程模拟机仿真等工作的前提和基础。而在飞机的初步/详细设计阶段,飞机气动模型的建立通常通过流体力学计算和风洞试验两种技术手段实现,但其模型的精度往往与真实飞机存在明显的差异。因此,飞机制造商多在飞机的研发试飞中开

航空概论试题

航空概论试题 一、绪论部分 1、何谓国际标准大气? 因为大气物理性质(温度、密度、压强等)是随所在地理位置、季节和高度而变化的,为了在进行航空器设计、试验和分析时所用大气物理参数不因地而异,也为了能够比较飞机的飞行性能,所建立的统一标准。它也是由权威机构颁布的一种“模式大气”。 叫做国际标准大气。 2、何谓飞机机翼的展弦比?根梢比? 展弦比:翼展l和平均几何弦长bav的比值叫做展弦比,用λ表示,其计算公式可表示为:λ= l / bav。同时,展弦比也可以表示为翼展的平方于机翼面积的比值。 根梢比:根梢比是翼根弦长b0与翼尖弦长b1的比值,一般用η表示,η=b0/b1。 3、简答:大气层如何分层,各有什么特点?适合飞机飞行的大气 层是哪层? 以大气中温度随高度的分布为主要依据,可将大气层划分为对流层、平流层、中间层、热层和散逸层。( 1 )对流层温度随高度而降低,空气对流明显,集中了全部大气质量的约 3/4 和几乎全部的水气,是天气变化最复杂的层次,其厚度随纬度和季节而变化,低纬度地区平均 16-18km ,中纬度地区平均 10-12km ,高纬度地区平均 8-9km 。( 2 )平流层位于对流层之上,顶部到

50-55km ,随着高度增加,起初气温不变或者略有升高;到20-30km 以上,气温升高很快,可到 270k-290k ;平流层内气流比较稳定,能见度好。( 3 )中间层, 50-55km 伸展到 80-85km ,随着高度增加,气温下降,空气有相当强烈的铅垂方向的运动,顶部气温可低至 160k-190k 。( 4 )热层,从中间层延伸到 800km 高空,空气密度级小,声波已难以传播,气温随高度增加而上升,空气处于高度电离状态。( 5 )散逸层,是地球大气的最外层,空气极其稀薄,大气分子不断向星际空间逃逸。 飞机主要在对流层上部和同温层下部活动。 4、第一架飞机诞生的时间是哪一天? 1903年12月17日 5、目前世界上公认的第一个提出固定机翼产生升力理论的人是 谁?哪个国家的? 乔治·凯利,英国 6、飞行器一般分为几类?分别是什么? 三类:航空器;航天器;火箭和导弹 7、率先解决滑翔机的稳定和操纵方法的人是谁?哪个国家的? 李林达尔,德国 8、我国主要的飞机设计单位有哪些?其代表作品和内部代号是 什么? 601所沈阳飞机设计研究所歼八各型 602所中国直升机设计研究所(景德镇)直升机

(完整版)航空知识手册全集3

第三章 - 飞行空气动力学 飞行空气动力学介绍作用于飞机上的力的相互关系和由相关力产生的效应。作用于飞机的力 至少在某些方面,飞行中飞行员做的多好取决于计划和对动力使用的协调以及为改变推力,阻力,升力和重力的飞行控制能力。飞行员必须控制的是这些力之间的平衡。对这些力和控制他们的方法的理解越好,飞行员执行时的技能就更好。 下面定义和平直飞行(未加速的飞行)相关的力。 推力是由发动机或者螺旋桨产生的向前力量。它和阻力相反。作为一个通用规则,纵轴上的力是成对作用的。然而在后面的解释中也不总是这样的情况。 阻力是向后的阻力,由机翼和机身以及其他突出的部分对气流的破坏而产生。阻力和推力相反,和气流相对机身的方向并行。 重力由机身自己的负荷,乘客,燃油,以及货物或者行礼组成。由于地球引力导致重量向下压飞机。和升力相反,它垂直向下地作用于飞机的重心位置。 升力和向下的重力相反,它由作用于机翼的气流动力学效果产生。它垂直向上的作用于机翼的升力中心。 在稳定的飞行中,这些相反作用的力的总和等于零。在稳定直飞中没有不平衡的力(牛顿第三定律)。无论水平飞行还是爬升或者下降这都是对的。也不等于说四个力总是相等的。这仅仅是说成对的反作用力大小相等,因此各自抵消对方的效果。这点经常被忽视,而导致四个力之间的关系经常被错误的解释或阐明。例如,考虑下一页的图3-1。在上一幅图中的推力,阻力,升力和重力四个力矢量大小相等。象下一幅图显示的通常解释说明(不保证推力和阻力就不等于重力和升

力)推力等于阻力,升力等于重力。必须理解这个基本正确的表述,否则可能误解。一定要明白在直线的,水平的,非加速飞行状态中,相反作用的升力和重力是相等的,但是它们也大于相反作用的推力和阻力。简而言之,非加速的飞行状态下是推力和阻力大小相等,而不是说推力和阻力的大小和升力重力相等,基本上重力比推力更大。必须强调的是,这是在稳定飞行中的力平衡关系。总结如下: ?向上力的总和等于向下力的总和 ?向前力的总和等于向后力的总和 对旧的“推力等于阻力,升力等于重力”公式的提炼考虑了这样的事实,在爬升中,推力的一部分方向向上,表现为升力,重力的一部分方向向后,表现为阻力。在滑翔中,重力矢量的一部分方向向前,因此表现为推力。换句话说,在飞机航迹不水平的任何时刻,升力,重力,推力和阻力每一个都会分解为两个分力。如图3-2

西北工业大学2007至2008第二学期飞行器结构动力学期末考试

至学年第二学期飞行器结构动力学期末考试试题2008西北工业大学2007诚信保证 本人知晓我校考场规则和违纪处分条例的有关规定,保证遵守考场本人签字:规则,诚实做人。 编号:成西北工业大学考试试题(卷)绩 学年第二学期2007-2008 飞行器结构动力学学时开课学院航天学院课程 考试日期2008年6月考试时间小时考试形式()()卷 名姓号考生班级学 一、填空题(共20分) 1、振动系统的固有频率,当刚度一定时,随质量的增大而________;当质量一定时,随刚度的增大而________。 2、系统的初始条件和外激励对系统的固有频率________影响。 β_________时隔振才3.对于弹簧阻尼隔振系统,不论阻尼大小,只有当频率比有效果,弹簧阻尼隔振器在低频区(相对系统固有频率)对隔振________;当频率比ββ_________;但在频率比以后,传递率曲线无穷大时,传递率趋于________βζ增大而________。;__________ 当频率比_________时,传递率随阻尼比 二、简答题(共10分) 1、(5分)简述影响结构动力学分析模型的主要因素及有限元模型的常见模型。

2、(5分)简述位移展开定律。 yYωt,,前轮轴上下运动sin=飞机在跑道上降落滑行的简化模型如图三、(10分)1mkc=5880s·,阻尼系数=294kN/m已知质量N/m=2940kg,弹簧刚度,路面的y=10sin30t(激励cm)(位移),求质量上下振动的振幅。 共3页第1页 图 1 四、(15分)如图2所示导弹头部安装带有减振装置的仪器组件。当垂直发 射时,导弹有随时间直线增加的加速度。其中为常数。如果该组件质量,求发射时组件相对弹体支承板的相对位移和组件的绝对加速度时间函数。为 阻尼忽略不计。 1 仪器组件 2 支承座 图2 带有仪器的弹头示意图 五、(20分)三个质量由两根弹性梁对称的连结在一起,可粗略作为飞机的简 化模型(如图3)。设中间的质量为,两端的质量各为,梁的横向刚度为, 梁本身质量可略去不计,,忽略阻尼。只考虑各个质量沿铅垂方向的运动,初 =[1,0,-1],=[0,0,0],求系统的响应,设=。

西北工业大学2005至2006学年第二学期飞行器结构动力学期末考试试题

西北工业大学2005至2006学年第二学期飞行器结构动力学期末考试试题 诚信保证 本人知晓我校考场规则和违纪处分条例的有关规定,保证遵守考场规则,诚实做人。 本人签字: 编号: 西北工业大学考试试题(卷) 2005 -2006 学年第二学期 开课学院 航天学院 课程 飞行器结构动力学 学时 考试日期 2006年6月 考试时间 小时 考试形式()()卷 考生班级 学 号 姓 名 一、填空题(共20分) 1.如图1所示是一简谐振动曲线,该简谐振动的频率为 Hz ,从A 点算起到曲线上 点表示为完成一次全振动。 图 1 2.一弹簧振子,周期是0.5s ,振幅为2cm ,当振子通过平衡位置向右运动时开始计时,那么2秒内振子完成_________次振动,通过路程_________cm 。 3.单自由有阻尼系统的自由振动中,当阻尼因子ζ_____时,系统为衰减的简谐振动;当阻尼因子ζ_____时,系统为振动与否的临界状态,称为_________情况;当阻尼因子ζ_____时,系统__________________,称为_________情况。 教务处印制 共2页 第1页 成绩

二、问答题:(共20分) 1、(10分)简述子空间迭代法的主要步骤和求解特征值的具体作法? 2、(5分)飞行器结构动态固有特性分析的作用与特点? 3、(5分)飞行器结构动态响应分析的时间域方法主要有哪些?选用它们时主要考虑的问题? 三、(20分)求图2所示系统在右支承端有简谐振动的振动微分方程,并求其稳态响应表达式。 图 2 四、(20分)估算导弹轴向频率的简化模型如图3所示,求图示系统的频率和振型(提示半定系统)。 图 3 五、(20分)如图4一端固定一端自由的纵向杆,杆的抗拉刚度为EA,质量 密度为ρ,长度为L,求解: 1、写出杆的纵向振动方程和边界条件; 2、已知杆的单元刚度矩阵为:,用集中质量方法(两 个质点),求杆的纵向振动频率(两阶频率)。 图 4 教务处印制共 2 页第 2 页

微型飞行器空气动力学研究

2005年9月系统工程理论与实践第9期 文章编号:100026788(2005)0920137205 微型飞行器空气动力学研究 李占科,宋笔锋,张亚锋 (西北工业大学航空学院,陕西西安710072) 摘要: 围绕与微型飞行器相关的低雷诺数空气动力学问题,进行了低雷诺数翼型气动特性的数值分析 研究、低马赫数低雷诺数流场数值计算方法研究、考虑扑翼结构弹性变形的气动特性估算方法研究、微 型飞行器气动特性估算的非定常涡格法研究和微型飞行器的风洞试验研究,取得的研究成果对微型飞 行器的发展具有重要的参考价值和指导意义. 关键词: 微型飞行器;雷诺数;扑翼;风洞试验 中图分类号: V27912 文献标识码: A Aerodynamics Research on M icro Air Vehicles LI Zhan2ke,S ONG Bi2feng,ZHANG Y a2feng (School of Aeronautics,N orthwestern P olytechnical University,X i’an710072,China) Abstract: In the paper,Based on the low Reynolds number aerodynamics of the micro air vehicles(M AVs),s ome researches were done.such as aerodynamics characteristic numerical analysis research on the air foil at low Reynolds numbers,numerical calculation method of low Mach low Reynolds numbers fluid field,estimation method research on aerodynamic characteristic of the aeroelastic flapping wing,unsteady v ortex method of aerodynamics characteristic estimation and wind tunnel test of M AVs.The results of this paper have im portant reference value and instructive meaning to the development of M AVs. K ey w ords: micro air vehicles(M AVs);Reynolds number;flapping wing;wind tunnel test 1 引言 近年来,微型飞行器作为一种新型的航空飞行器,在国内外形成了新的研究热潮.低速和小尺寸共同决定了微型飞行器的飞行雷诺数很低(105左右),这远低于传统飞行器(包括普通的无人驾驶飞机)的飞行雷诺数范围(106~108以上).微型飞行器必须在低雷诺数条件下仍能保持良好的气动性能,而这方面的研究目前尚处在探索阶段.本文主要围绕与微型飞行器有关的低雷诺数空气动力学问题,进行了数值计算和风洞试验等方面的研究,取得了具有一定参考价值的研究成果. 2 微型飞行器空气动力学研究 211 低雷诺数翼型气动特性的数值分析研究 微型飞行器外形尺寸小,速度低,基于微型飞行器尺寸的雷诺数也比较小,粘性效应相对强烈,流动易分离,准确求解这种低雷诺数的流场对湍流模型乃至整个数学模型都是一个极大的挑战.本研究针对低雷诺数问题,利用求解雷诺平均的NS方程,数值模拟了绕翼型的低雷诺数流动,分析了与低雷诺数流动有关的不稳定性.研究表明,分离流动都是不稳定的,会产生周期性的脱出涡.结合绕翼型的低雷诺数流动,对采用的计算模型进行了以下研究: 1)FNS方程与T LNS方程数值准确性的对比研究 分别采用FNS方程和T LNS方程计算了在条件:Ma=012,雷诺数Re=110×105,攻角α=1°时绕 收稿日期:2003207207 资助项目:总装气动预研项目(413130401)及国防基础科研项目(J1500C001)联合资助 作者简介:李占科(1973-),男,陕西岐山人,西北工业大学飞机系博士,主要从事与微型飞行器有关的研究.

飞行力学部分知识要点

空气动力学及飞行原理课程 飞行力学部分知识要点 第一讲:飞行力学基础 1.坐标系定义的意义 2.刚体飞行器的空间运动可以分为两部分:质心运动和绕质心的转 动。描述任意时刻的空间运动需要六个自由度:三个质心运动和三个角运动 3.地面坐标系, O 地面任意点,OX 水平面任意方向,OZ 垂直地面 指向地心,OXY 水平面(地平面),符合右手规则在一般情况下。 4.机体坐标系, O 飞机质心位置,OX 取飞机设计轴指向机头方向, OZ 处在飞机对称面垂直指向下方,OY 垂直面指向飞机右侧,符合右手规则 5.气流(速度)坐标系, O 飞机质心位置,OX 取飞机速度方向且重 合,OZ 处在飞机对称面垂直指向下方,OY 垂直面指向飞机右侧,符合右手规则 6.航迹坐标系, O取在飞机质心处,坐标系与飞机固连,OX轴与飞 行速度V重合一致,OZ轴在位于包含飞行速度V在内的铅垂面内,与OX轴垂直并指向下方,OY轴垂直于OXZ平面并按右手定则确定 7.姿态角, 飞机的姿态角是由机体坐标系和地面坐标系之间的关系 确定的:

8. 俯仰角—机体轴OX 与地平面OXY 平面的夹角,俯仰角抬头为正; 9. 偏航角—机体轴OX 在地平面OXY 平面的投影与轴OX 的夹角,垂直于地平面,右偏航为正; 10. 滚转角—机体OZ 轴与包含机体OX 轴的垂直平面的夹角,右滚转为正 11. 气流角, 是由飞行速度矢量与机体坐标系之间的关系确定的 12. 迎角—也称攻角,飞机速度矢量在飞机对称面的投影与机体OX 轴的夹角,以速度投影在机体OX 轴下为正; 13. 侧滑角—飞机速度矢量与飞机对称面的夹角 14. 常规飞机的操纵机构主要有三个:驾驶杆、脚蹬、油门杆,常规气动舵面有三个升降舵、副翼、方向舵 15. 作用在飞机上的外力,重力,发动机推力,空气动力 16. 重力,飞机质量随燃油消耗、外挂投放等变化,性能计算中,把飞机质量当作已知的常量 17. 空气动力中,升力,阻力,的计算公式,动压的概念。 18. 随迎角增大,升力曲线非线性,迎角分别经历抖动迎角,失速迎角,临界迎角等过程 19. 喷气发动机工作原理f k p ()P m V V =-, 20. 台架推力Pf ,发动机在试车台上测得的推力 21. 可用推力Pky ,飞行中发动机能够实际供给的用以推动飞机前进的推力 22. 推重比γfd ,耗油量qh ,单位时间消耗的燃油质量

飞行器结构力学理论基础讲义

飞行器结构力学理论基础讲义 第一章绪论 1.1 结构力学在力学中的地位 结构力学是飞行器结构计算的理论基础。它研究飞行器在外载荷作用下,结构最合理的组成及计算方法。所谓最合理的结构是指:在满足设计中关于强度与刚度的基本要求下,同时在结构空间允许的情况下,具有最轻的重量。 为了达到以上的目的,对从事结构设计者来说,必须较熟练地掌握结构力学的基本原理与方法。对于本专业的学生来说,结构力学是飞行器强度与刚度计算的基础课程,并且为学习飞行器部件设计及传力分析打下必要的理论基础。 结构力学具体来说由以下四部分组成: (1)研究结构组成是否合理。主要指结构在外力作用下是否几何不变,同时内力与变形又不至于过大。 (2)结构在外载荷作用下,结构内力的计算方法。 (3)结构在外载荷作用下,结构刚度的计算方法。 (4)研究结构中某些元件及组合件的弯曲及稳定性。 1.2 结构力学的研究内容 不同的结构有其不同的结构力学,例如在建筑结构中主要涉及杆系,因此杆系所需的力学知识构成建筑结构力学。船舶结构的设计和制造中,主要涉及开口薄壁杆件,因此开口薄壁杆件的弯曲和扭转便构成船舶结构力学的主要内容。对于航天领域,飞行器结构大多是薄壁结构,薄壁结构力学构成飞行器结构力学的主要内容。 1.3 结构力学的计算模型 工程结构,尤其是飞行器结构往往是很复杂的,要考虑所有的因素来分析其内力和变形

几乎是不可能的,也是没有必要的。为了适应实际计算,首先需要将真实的结构加以简化,保留起主要作用的因素,略去次要因素,用理想化的受力系统代替实际结构,以得到所需要的计算模型。 计算模型选取的原则是: (1)反映实际结构的主要受力和变形特征; (2)便于结构的力学分析。 计算模型的简化大致可分成以下5个方面的内容。 1.外载荷的简化 (1)略去对强度和刚度影响不大的外载荷,着重考虑起主要作用的外载荷。 (2)将作用面积很小的分布载荷简化成集中载荷。 (3)将载荷集度变化不大的分布载荷简化成均布载荷。 (4)将动力效应不大的动力载荷简化成静力载荷。 2.几何形状的简化 飞行器的外形大多由曲线或曲面所构成,计算模型可以简化成用折线代替曲线,用若干平面代替曲面。 3.受力系统的简化 (1)略去结构中不受力或受力不大的元件。 (2)对元件的受力规律或受力类型作某些假设,抽象为理想元件。 4.连接关系的简化 将实际结构中所采用的铆接、螺接或焊接等连接方式,按照其受力及构造特点,可以简化为没有摩擦的铰接或刚接。杆件的汇交点称为结点,其可以简化为图1.1所示的三种形式。 (a)(b)(c) 图1.1 铰结点(见图1.1(a)),特征是被连接的杆件在连接处不能相对移动,但可绕该结点自由转动。铰结点可以传递力,但不能传递力矩。 刚结点(见图1.1(b)),特征是被连接的杆件不能相对移动,且不能相对转动。刚结点既可传递力,也可传递力矩。

空气动力学复习资料

空气动力学复习 一、基本概念 1 粘性 施加于流体的应力和由此产生的变形速率以一定的关系联系起来的流体的一种宏观属性,表现为流体的内摩擦。 以气体为例,气体分子的速度是由平均速度和热运动速度两部分叠加而成,前者是气体团的宏观速度,后者决定气体的温度。若相邻两部分气体团以不同的宏观速度运动,由于它们之间有许多分子相互交换,从而带来动量的交换,使气体团的速度有平均化的趋势,这便是气体粘性的由来。 2 压缩性 流体的压缩性是流体质点在一定压力差或温度差的条件下,其体积或密度可以改变的性质。其物理意义是:单位体积流体的体积对压强的变化率。 气体流速变化时,会引起气体的压强和密度发生变化。在低速气流中,由于气流速度变化而引起的气体密度的相对变化量很小,可以把气体看作不可压缩流体来处理;高速气流压缩性的影响不能忽略,必须按可压流体来处理。一般0.3Ma作为气体是否可压的分界点。 3 理想气体 忽略气体分子的自身体积,将分子看成是有质量的几何点;假设分子间没有相互吸引和排斥,即不计分子势能,分子之间及分子与器壁之间发生的碰撞是完全弹性的,不造成动能损失。这种气体称为理想气体。 严格遵从气体状态方程的气体,叫做理想气体(Ideal gas.有些书上,指严格符合气体三大定律的气体。)从微观角度来看是指:气体分子本身的体积和气体分子间的作用力都可以忽略不计,不计分子势能的气体称为是理想气体。 4 焓 热力学中表征物质系统能量的一个重要状态参量,焓的物理意义是体系中热学能(内能)再附加上PV(压能)这部分能量的一种能量。 5理想流体 不可压缩、不计粘性(粘度为零)的流体。欧拉在忽略粘性的假定下,建立了描述理想流体运动的基本方程。理想流体和理想气体是两个不同的概念,前者指流体没有粘性,后者指气体状态参量满足气体状态方程的气体。 6 音速 音速是介质中弱扰动的传播速度,其大小因媒质的性质和状态而异。在流动的气体中,相对于气流而言,微弱扰动的传播速度也是声速。在温度T不为常数的流场中,各点的声速是不一样的,与某一点的温度相当的声速称为该点的“当

纸飞机地空气动力学

纸飞机的空气动力学 作者:Ken Blac…文章来源:https://www.360docs.net/doc/5b3096253.html,点击数:5666 更新时间:2007-2-4 4:41:01 如果图片太小,你可以在图片上面滚动鼠标滑轮来放大图片观察,也可以在图片上单击右键选择〔图片另存为〕保存图片到你的电脑上面再进行查看。 1.介绍 这里打算介绍关于纸飞机的空气动力学知识。如果你想全面了解为什么飞机能飞行,为什么有时坠毁,可以参阅我的《世界记录纸飞机》和《孩童纸飞机》中的任何一本书。本来打算在这里也用一个章节来写一些这方面的知识,但限于篇幅,不能写了。希望这些内容不会过于专业性,其中一些细节可能比较复杂,但大多数原则是很简单明了的。我的目标是高中生能理解大部分内容。我希望能在不久的将来在我的网站上放一个全面的空气动力学介绍 了解纸飞机和真正的飞机飞行的基本原理很重要。它们同样产生升力和拖力,并且同样会因此而稳定或不稳定。但纸飞机不但外形看上去和真飞机不同,它的空气动力原理也和真飞机有不同之处。这些不同点虽然不明显,但确实影响纸飞机的飞行。 2.为什么纸飞机很真飞机外形不同大多数真飞机有机翼、尾翼和机身(来承载飞行员和乘客)。大多数纸飞机只是将纸折出一对翅膀和一个手可以握住、投掷的部分。有以下几点理由来说明这种不同: 2.1 折纸时间 造成纸飞机和真飞机外形不同的主要原因是折纸飞机的人总想又快又简单地折出一个纸飞机。加一个机尾或其他部分总需要将纸折更多次,有时侯还可能需要剪刀、胶带或胶水。最简单的纸飞机就是一个飞行的

翅膀。 2.2不需要尾翼真飞机的水平尾翼有一个升降系统,飞行员可以通过旋转该系统使飞机抬头而缓慢飞行,或低头加速飞行。纸飞机通过将翅膀后端边缘的纸折起而达到上升缓慢飞行或下降加速飞行的目的。 有一些真飞机没有尾翼也能成功飞行。Northrop XB-35 and B-2、贺顿兄弟的滑翔机都是很稳定,很好的飞行器。许多人都以为飞机尾翼是必要的稳定器,但上面提到的飞机及成百万的纸飞机都证明没有尾翼飞机也能平稳。 飞机通过尾翼向前后不同的方向倾斜来保持飞机的稳定性。飞机只有在重心点上时才能保持平衡,而这个重心点会因承载的人员和货物的多少,甚至燃料的多少而前后移动。如果飞机的重心移到飞机的中点之后,飞机会不平稳,如果重心移到中点之前,又会过于平稳,需要更多的升力。升降系统安装在尾翼比在机翼上更有效。所以有尾翼的飞机比没有尾翼的飞机更好控制重心。纸飞机的重心不移动,所以不需要尾翼。 尾翼也用来在飞机向下俯冲减缓速度时保持平衡,纸飞机飞行不需要减缓速度,所以也不需要尾翼来帮助保持平衡。 真飞机通常还有一个垂直尾翼,用来帮助保持方向。这也叫方向稳定器。纸飞机机身(就是你手拿着进行投掷的地方)的作用类似于真飞机的这个方向稳定器。有时,将纸飞机的翅膀两端(翼尖)向上折有助于飞机的稳定。纸飞机的机身和翼尖共同起到了令飞机稳定的作用,所以不需要垂直尾翼。 2.3机翼的形状 纸飞机通常有短而粗的机翼,我们叫做“低”机翼。从翼尖到另一个翼尖的距离叫机翼跨度,从机翼前端到后端的距离叫弦度。跨度与平均弦度的比例就叫“展弦比”。它是机翼的一个重要的特征。 对于亚音速飞机,增加“展弦比”,(即增大跨度或减小弦度)会减小飞机

飞行器结构力学讲义

飞行器结构力学 郑晓亚王焘 西北工业大学 2011年6月

目录 第一章绪论 (1) 1.1 结构力学在力学中的地位 (1) 1.2 结构力学的研究内容 (1) 1.3 结构力学的计算模型 (1) 1.4 基本关系和基本假设 (3) 第二章结构的组成分析 (5) 2.1 几何可变系统和几何不变系统 (5) 2.2 自由度、约束和几何不变性的分析 (5) 2.3 组成几何不变系统的基本规则、瞬变系统的概念 (7) 2.4 静定结构和静不定结构 (12) 第三章静定结构的内力及弹性位移 (13) 3.1 引言 (13) 3.2 静定桁架的内力 (13) 3.3 静定刚架的内力* (16) 3.4 杆板式薄壁结构计算模型 (19) 3.5 杆板式薄壁结构元件的平衡 (20) 3.6 静定薄壁结构及其内力 (25) 3.7 静定系统的主要特征 (34) 3.8 静定结构的弹性位移 (35) 第四章静不定结构的内力及弹性位移 (45) 4.1 静不定系统的特性 (45) 4.2 静不定系统的解法——力法 (45) 4.3 对称系统的简化计算 (54) 4.4 静不定系统的位移 (57) 4.5 力法的一般原理和基本系统的选取 (60) 第五章薄壁梁的弯曲和扭转 (64) 5.1 引言 (64) 5.2 自由弯曲时的正应力 (65) 5.3 自由弯曲时开剖面剪流的计算 (68) 5.4 开剖面的弯心 (71) 5.5 单闭室剖面剪流的计算 (77) I

5.6 单闭室剖面薄壁梁的扭角 (81) 5.7 单闭室剖面的弯心 (82) 5.8 多闭室剖面剪流的计算* (86) 5.9 限制扭转的概念* (91) 第六章结构的稳定 (94) 6.1 引言 (94) 6.2 压杆的稳定性 (95) 6.3 薄板压曲的基本微分方程 (95) 6.4 薄板的临界载荷 (99) 6.5 板在比例极限以外的临界应力 (102) 6.6 薄壁杆的局部失稳和总体失稳 (103) 6.7 加劲板受压失稳后的工作情况——有效宽度概念 (104) 6.8 加劲板受剪失稳后的工作情况——张力场梁概念 (108) II

相关文档
最新文档