油砂工业废水回收处理1

油砂工业废水回收处理1
油砂工业废水回收处理1

Process water treatment in Canada’s oil sands industry:I.Target pollutants and treatment objectives

Erik W.Allen

Abstract:Process water treatment has become a critical issue for Canada’s oil sands industry.Continuous recycling of tailings pond water(TPW)has contributed to a decline in water quality that has consequences for bitumen recovery,water consumption,and reclamation efforts.Potential roles for water treatment were assessed through a review of process water quality and toxicity data from two long-term oil sands operations.Target pollutants were identified according to exceedan-ces of environmental and industrial water quality guidelines.From1980to2001,the salinity of TPW increased at a rate of75mg/L per year.Recent increases in hardness,sulphate,chloride,and ammonia have raised concerns over scaling and corrosion.Naphthenic acids released during bitumen extraction are the primary source of toxicity in TPW.Biodegradation of naphthenic acids has been demonstrated in pond experiments;however,recalcitrant compounds may contribute to chronic toxicity in reclaimed environments.Water treatment objectives established in this review provide benchmarks for the selection of candidate water treatment technologies.

Key words:oil sands,tailings ponds,naphthenic acids,toxicity,reclamation.

Re′sume′:Le traitement des eaux de proce′de′est devenu une question tre`s importante pour l’industrie canadienne des sa-bles bitumineux.Le recyclage continu de l’eau des parcs a`re′sidus(TPW)contribue a`diminuer la qualite′de l’eau,ce qui impacte la re′cupe′ration du bitume,la consommation d’eau et les efforts de remise en e′tat.Les ro?les potentiels du traite-ment de l’eau ont e′te′e′value′s par un examen de la qualite′de l’eau de proce′de′et des donne′es de toxicite′pour deux exploi-tations a`long terme de sables bitumineux.Les polluants cible′s ont e′te′identifie′s selon les exce′dents aux lignes directrices environnementales et industrielles sur la qualite′de l’eau.Entre1980et2001,la salinite′de la TPW a augmente′a`un rythme de75mg/L par an.Les re′centes augmentations en durete′,en sulfates,en chlorures et en ammoniac ont souleve′des inquie′tudes quant a`l’incrustation et la corrosion.Les acides naphte′niques libe′re′s durant l’extraction du bitume sont la principale source de toxicite′dans la https://www.360docs.net/doc/584224811.html, biode′gradation des acides naphte′niques a e′te′de′montre′e dans des expe′rien-ces dans les parcs a`re′sidus;toutefois,les compose′s re′calcitrants peuvent contribuer a`une toxicite′chronique dans les envi-ronnements remis en e′tat.Les objectifs du traitement de l’eau e′tablis dans cette revue fournissent des points de re′fe′rence pour la se′lection des technologies de traitement des eaux.

Mots-cle′s:sables bitumineux,parcs a`re′sidus,acides naphte′niques,toxicite′,remise en e′tat.

[Traduit par la Re′daction]

Introduction

The oil sands in northern Alberta,Canada,represent one of the largest oil deposits in the world,with proven reserves of174billion barrels of bitumen(Alberta Energy and Util-ities Board2005).As an unconventional fossil fuel,bitumen is more costly to recover and process than conventional oil and gas;however,increased global demand for oil coupled with technological advances in bitumen production have triggered rapid growth in the industry.Oil production from the oil sands has reached1million barrels per day,and is projected to triple over the next decade(National Energy Board2006).

Rapid expansion of Alberta’s oil sands industry presents several challenges with respect to the protection of local freshwater resources such as the Athabasca River basin (Griffiths et al.2006).Oil sands mines consume large vol-umes of water,importing an average of3barrels of river water for every barrel of oil produced(Syncrude Canada Limited2005;Shell Canada2005b;Suncor Energy Incorpo-rated2005b).While only a small fraction(<2%)of the riv-er’s annual flow is currently allocated to the oil sands,it remains unclear whether or not low winter flows can support the expected increase in water consumption over the next decade(Peachey2005).

Most of the freshwater imported by oil sands mines is used in hot water extraction,a flotation process that sepa-rates bitumen from sand and clay.The resulting process water is alkaline,slightly brackish,and acutely toxic to aquatic biota due to high concentrations of organic acids leached from the bitumen during extraction(MacKinnon and Sethi1993).Under a zero discharge policy,oil sands

Received6December2006.Revision accepted28August2007. Published on the NRC Research Press Web site at jees.nrc.ca on 27February2008.

E.W.Allen.Advanced Separation Technologies,CANMET Energy Technology Centre-Devon,Natural Resources Canada, 1Oil Patch Drive,Devon,AB T9G1A8,Canada(e-mail: erallen@nrcan.gc.ca).

Written discussion of this article is welcomed and will be received by the Editor until31July2008.123

producers are required to store all process waters and tail-ings on-site,a condition that has led to the construction of over 70km 2of tailings ponds (Dominski 2007)and a signif-icant inventory of waste.The volume of impounded process water at Syncrude’s Lease 17/22was approaching 1billion m 3in 2004,(MacKinnon 2004);the current total volume of impounded tailings sludge (among all operators)has ex-ceeded 700million m 3(Dominski 2007).At mine closure,process water and tailings will be reintegrated in the land-scape through various reclamation scenarios,with the intent of restoring sustainable aquatic and terrestrial ecosystems.While oil sands producers have made improvements in water use efficiency and have invested in reclamation re-search,the industry still faces several hurdles related to water use.Recycling of tailings pond water (TPW)has slowed the increase in freshwater withdrawals (Syncrude Canada Limited 2005),but has contributed to a long-term decline in process water quality that threatens to affect bitu-men recovery through disruption of extraction chemistry (Kasperski 2003)and scaling and corrosion of extraction fa-cilities (Rogers 2004).

Tailings treatments such as consoli-dated tailings (CT),whereby calcium sulphate is added to mature fine tailings and sand,further enhance the salinity and hardness of process water (Marr et al.1996).As pro-ducers become increasingly dependent on process water re-cycling,the decline in water quality may reduce bitumen recovery rates,leading to increased demand for water.

Many of the operational and environmental challenges re-lated to the management of oil sands process water could be addressed through the selection of appropriate water treat-ment technology.Process water treatment could allow oper-ators to regulate water quality to suit the bitumen extraction process,reduce the need for freshwater withdrawals by recy-cling TPW for utilities and other operational uses,offset withdrawals through discharges of treated water,promote bi-oremediation through the removal of pollutants that contrib-ute to acute and chronic toxicity in aquatic biota,and ensure that downstream sites meet water quality guidelines protection of aquatic ecosystems (e.g.,CCME 2005).

Water treatment technologies are rapidly evolving the water management needs of the oil industry,yet the via-bility of these emerging technologies for oil sands opera-tions remains unclear.As a prerequisite to the evaluation of process water treatment options,process water quality and toxicity data from two long-term oil sands mining projects were reviewed to identify target pollutants and establish water treatment priorities.Target pollutants were identified based on their exceedance of environmental and industrial water quality criteria.Process water quality data were com-piled from published papers,reports,and conference presen-tations.

Oil sands overview

There are three major oil sand deposits in the province of Alberta covering over 140000km 2in the northern half of the province (Alberta Department of Energy 2005)(Fig.1).Oil sands deposits are situated at varying depths beneath an overburden of muskeg,glacial tills,sandstone,and shale.Shallow oil sand deposits (i.e.,up to 75m)are accessed via surface mines,and account for only 18%of the total recov-

erable bitumen,most of which is in the Athabasca deposit (Alberta Department of Energy 2005).For deeper deposits,bitumen is extracted via in situ processes in which steam is injected into a well to heat and loosen the bitumen so that it can be pumped to the surface through a production well.Surface mining currently accounts for 65%of total produc-tion from the oil sands,and is forecast to remain at this level through 2010(Alberta Department of Energy 2005).At present,there are three major producers in mineable oil sands:Suncor Energy Corp.(Suncor),Syncrude Canada Ltd.(Syncrude),and Albian Sands Inc.(Albian).

Surface mined oil sands are transported as a slurry from the mine to the extraction plant.Bitumen extraction follows modified versions of the Clark Hot Water Process,in which bitumen is separated from sand and clay particles by a com-bination of mechanical energy,heat,and the presence of surfactants leached from the bitumen (Kasperski 2003).His-torically,caustic soda (NaOH)was added to promote the re-lease of surfactants and improve bitumen separation.Downstream effects of alkalinity on water chemistry and tailings formation (e.g.,MacKinnon 2001)has led some op-erators to reconsider this method.

The aerated slurry is then piped into the primary separa-tion vessel,where bitumen separated via flotation (froth)is skimmed from the surface and pumped to a froth treatment plant after which it is sent to be upgraded to synthetic sweet crude oil.Residual bitumen is recovered from the middlings of the primary separation vessel.Depending on ore quality,approximately 1m 3of oil sand is required to produce 1bar-rel of oil (Scott et al.1985).A simplified flow diagram and materials balance for an oil sands mining operation is pre-sented in Fig.2.

Tailings

Tailings composed of water,dissolved salts,organics,minerals,and bitumen are pumped from separation vessels and froth treatment facilities to a series of settling basins and tailings ponds.The composition of oil sands tailings varies with ore quality,source,extraction processes,and age,but generally contain ~70to 80wt%water,~20to 30wt%solids (i.e.,sand,silt,and clays)and ~1–3wt%bi-tumen (Kasperski 1992).Upon delivery to settling basins,tailings divide into three fractions:(i )rapidly-settling sand particles;(ii )an aqueous suspension of fine particles (silt and clay);and (iii )a clarified surface water layer (total sus-pended solids =~15–70mg/L)with residual bitumen (MacKinnon and Sethi 1993).The fine tailings settle to 20wt%solids within a few weeks,but require several years to reach 30–35wt%solids,at which point consolidation slows considerably and the sludge is designated as mature fine tailings (MFT)(Scott et al.1985).Evidence from Syn-crude tailings ponds suggests that MFT is settling 30%faster than predicted,but still requires 10years to consoli-date to 44%solids (MacKinnon 2001).

Enhancement of settling rates has been demonstrated with centrifugation,pH adjustment,lime,inorganic coagulants,organic flocculants and other methods (Kasperski 1992;MacKinnon 2001),although only a few of these approaches have been applied at a commercial scale (e.g.,CT,paste technology).The CT process increases the settling rate of the solids,but releases a particle-free pore water with ele-124J.Environ.Eng.Sci.Vol.7,2008

vated concentrations of TDS and hardness (Marr et al.1996).The use

of calcium sulphate as a settling aid requires careful control of calcium levels to prevent scaling of heat exchangers and losses in bitumen extraction efficiency (Kas-perski and Mikula 2003).Paste technology is another re-cently implemented process,in which flocculants are added to thicken and reduce the volume of tailings (Shell Canada 2007).

Water usage

The Athabasca River is the primary source of water for oil sands producers in the Athabasca deposit.Other impor-tant sources of water include groundwater,site runoff,over-burden drainage,and water contained in oil sands (connate water).In 2004,annual freshwater imports by the three ma-jor oil sands mining companies totaled 114million m 3,which corresponds to an average of 3.1barrels of water per barrel of oil produced (Syncrude Canada Limited 2005;Shell Canada 2005b ;Suncor Energy Incorporated 2005a ).The actual volume of water used in extraction is consider-ably higher,given that the process relies largely on recycled water from tailings ponds.In 2004,Syncrude recycled the equivalent of 16.4barrels of water per barrel of oil produced (228million m 3;Syncrude Canada Limited 2005).Recycled water accounts for approximately 80%–85%of the water

used in extraction processes (Syncrude Canada Limited 2005;Suncor Energy Incorporated 2005a ).

Given the large fraction of process water retained in tail-ings after extraction,achieving the levels of freshwater use intensity and process water recycling reported by oil sands producers likely requires a large inventory of process water and (or)the implementation of CT and other technologies to recover process water.This can be demonstrated by calcu-lating the flow rates for a hypothetical oil sands operation where the amount of recycled water available is limited to the free water that forms above tailings,which results in a higher water use intensity and a lower percentage of process water recycled (Fig.2).Note that flow rates will vary among operations depending on ore quality,extraction and upgrading techniques,and tailings treatment.

As of 2005,the total allocation of Athabasca River flow for oil sands producers was 360million m 3per year (11.4m 3/s),roughly 1.7%of the river’s annual flow (Peachey 2005).While the annual flow far exceeds alloca-tion,there are concerns that low winter flows (e.g.,75m 3/s,Dec.2001)(Alberta Environment 2004)may not support the water demand of a rapidly expanding industry.Where im-pacts to aquatic ecosystems are expected,Alberta Environ-ment may limit withdrawals to 10%of natural flow (Alberta Environment 2006).Allocated withdrawals for ex-Fig.1.Major oil sands areas in Alberta,Canada.

Allen

125

isting and planned operations on the Athabasca River corre-spond to an instantaneous pumping rate of 22.3m 3/s,which may account for up 30%of the river volume during low flow periods (Sawatsky 2004).

Tailings pond water quality

Inorganic chemistry

Tailings pond water is moderately hard (15–25mg/L Ca 2+,5–10mg/L Mg 2+)with a pH of 8.0–8.4and an alkalinity of ~800–1000mg/L HCO 3–(Table 1).Total dissolved solids (TDS)concentrations (2000to 2500mg/L)are in the slightly brackish range,having increased in both Syncrude and Sun-cor’s tailings ponds at a rate of 75mg/L per year between 1980and 2000(MacKinnon and Retallack 1981;Nix 1983;MacKinnon and Sethi 1993;Kasperski 2001;MacKinnon

2004)(Fig.3).Dissolved solids are dominated by sodium (~500to 700mg/L),bicarbonate,chloride (~75to 550mg/L),and sulphate (~200to 300mg/L).At Syncrude,chloride and hardness concentrations in the Mildred Lake Settling Basin (MLSB)increased sharply throughout the 1990s,whereas Suncor experienced a rapid increase in sulphate concentration in the same period.Increases in bicarbonate concentrations appear to have leveled off during the early-to mid-nineties,and both operators have reported declining concentrations in recent years.Syncrude have also reported a slight decline in TDS concentrations beginning in 2000(MacKinnon 2001).Similar to the dominant ions,ammonia concentrations in MLSB have increased by 3.5-fold,from an initial concentra-tion of 4mg/L in 1980to 14mg/L in 2001(MacKinnon 2001).Dissolved solids are considerably more concentrated in TPW than in local surface waters:sodium,chloride,

sul-Fig.2.Simplified flow diagram (t/h)for an oil sands mining operation (solid lines =aqueous streams;dashed lines =oil sands and tailings;dotted lines =bitumen/oil;SCO,synthetic crude oil;TPW,tailings pond water;MFT,mature fine tailings).The calculated values for water,tailings,and bitumen are based on the following assumptions:oil production of 200000bpd;ore composition:bitumen (11wt%),sand (70wt%),fines (15%),water (4wt%);fraction of imported freshwater used in extraction =95%;water content in slurry =45wt%;bitumen extraction efficiency =87%,upgrading efficiency =85%.It was also assumed that the only sources of water were the Athabasca River,water contained in the ore,and the free water recovered from tailings.Consolidated tailings or other tailings treatments were not considered in the calculations.Flow rates and paths were based on data compiled from Kasperski (1992),Kasperski (2003),Shell Canada (2005a ),Syncrude Canada Limited (2005),and Suncor Energy Incorporated (2005b ).

126J.Environ.Eng.Sci.Vol.7,2008

phate,bicarbonate,and ammonia concentrations exceed Atha-basca River values by up to40-,90-,30-,8-,and200-fold,re-spectively(Golder Associates Limited2002).

Organic chemistry

Organic compounds detected in tailings pond water in-clude bitumen,naphthenic acids(NAs),asphaltenes,ben-zene,creosols,humic and fulvic acids,phenols,phthalates, polycyclic aromatic hydrocarbons(PAHs),and toluene (Strosher and Peake1978;MacKinnon and Retallack1981; Gulley1992;MacKinnon and Sethi1993;Madill et al. 2001;Rogers et al.2002b).A wide range of bitumen con-centrations(measured as oil and grease)have been detected in tailings ponds.Nix(1983)reported concentrations of9, 31,and12mg/L in Suncor ponds1A,1,and2respectively; Gulley(1992)later reported92mg/L in Pond1A.MacKin-non and Boerger(1986)reported an oil and grease concen-tration of25mg/L in MLSB.Dissolved organic matter (DOM)ranges in concentration from50to100mg/L,and is mostly comprised of organic acids,80%of which are NAs(Nelson et al.1993).

Naphthenic acids are alkyl-substituted cyclic and aliphatic carboxylic acids that are removed from bitumen during the extraction process.Concentrations of NAs range from40to 70mg/L in tailings ponds,but can be has high as130mg/L in fresh tailings water(Holowenko et al.2002;MacKinnon 2004).Naphthenic acids are the main source of acute toxic-ity in TPW(Verbeek et al.1993)and depending on their composition and age,can have toxic effects at relatively low concentrations.For example,Holowenko et al.(2002) reported a Microtox1IC50value of32vol%for MLSB water;the corresponding NA concentration was16mg/L (based on49mg/L NA in the original sample).Natural deg-radation processes have caused NA concentrations in MFT pore water(10–15m depth)to decline over time,from 73mg/L in1995to33mg/L in2003,although concentra-tions in dike seepage have remained relatively high (~75mg/L)(MacKinnon2004).Background concentrations of NAs in surface water are typically less than1mg/L (Headley and McMartin2004).

Among the aromatic compounds detected in process water are several toxicants of concern including benzene,toluene, phenol,and PAHs(Table2).Historical concentrations of benzene and toluene in Suncor process water(e.g.,>0.6–6.3 and1–3mg/L,respectively;Gulley1992)have in some cases far exceeded CCME guidelines for the protection of aquatic life(0.37and0.002mg/L,respectively)(CCME 2005).More recent data from Syncrude indicate much lower concentrations of these and other compounds;for example, surface water concentrations of BTEX(benzene,toluene, ethylbenzene,and xylene)in MLSB were below detection levels(i.e.,<0.010mg/L)in1998(Rogers et al.2002b).To-tal phenol concentrations in MLSB appear to have declined over time,ranging from0.3mg/L in1981,to0.15mg/L in 1985,0.02–0.04mg/L in1992,and0.008mg/L in1998 (MacKinnon and Retallack1981;MacKinnon and Benson 1985;Nelson et al.1993;Rogers et al.2002b).

Toxicity

The toxic effects of oil sands process water on aquatic bi-ota have been documented since the early stages of oil sands development.In1975,it was reported that drainage water from the Great Canadian Oil Sands(GCOS,the precursor to Suncor)lease was acutely toxic to rainbow trout(Oncorhyn-chus mykiss),with an LC50of less than20%(Hrudey1975). MacKinnon and Retallack(1981)described the environmen-tal hazards associated with the Syncrude tailings ponds after 3years of operation,including toxicity to aquatic biota(e.g., 96h LC50=10%for rainbow trout),poor water quality, floating bitumen mats,and the risk of infiltration of TPW

Table1.Inorganic water chemistry of oil sands process waters,the Athabasca River,and regional lakes.

Variable(mg/L unless otherwise noted)Syncrude

MLSB(2003)a

Syncrude de-

monstration

ponds(1997)b

Suncor TPW

(2000)c

Suncor CT

release water

(1996–97)d

Suncor CT

Pond seepage

(1996–97)d

Athabasca

River

(2001)e

Regional

lakes(2001)e

TDS2221400–179218871551116417080–190 COND(m Sácm–1)2400f486–22831113–1160f1700113028070–226

pH8.2g8.25–8.88.48.17.78.27–8.6 Sodium65999–60852036325416<1–10 Calcium1715–41257236302–25 Magnesium89–221215158.51–8 Chloride54040–2588052186<1–2 Bicarbonate775219–6679504707801159–133 Sulphate21870–51329056450221–6 Ammonia14g0.03–0.1614f0.35 3.40.06<0.05–0.57 Note:MLSB,Mildred Lake Settling Basin;TPW,tailings pond water;CT,consolidated tailings;TDS,total dissolved solids;COND,conductivity;data represent mean values from samples collected during the year indicated;ranges indicate mean values for multiple sites.

a(MacKinnon2004).

b(Siwik et al.2000).

c(Kasperski2001).

d(Farrell et al.2004).

e(Golder Associates Limited2002).

f(MacKinnon and Sethi1993).

g(MacKinnon2001).

Allen127

into groundwater.Between 1981and 1992,Microtox 1LC 50values in MLSB ranged from 25%to 43%(Nelson et al.1993).

Early speculation that organic acids were the primary source of toxicity (MacKinnon and Retallack 1981)was confirmed by Verbeek et al.(1993)with the Environmental Protection Agency (EPA)Toxicity Identification and Evalu-ation (TIE)protocol.Acute toxicity in MLSB water was re-moved by adjustment of pH to 2.5followed by centrifugation,or by reverse phase solid phase extraction with C 18,indicating that the toxicants were organic acids with a non-polar component (NAs).Toxicity in Suncor Pond 1A was completely removed by extraction of organic compounds with a non-polar component;however,sparging with nitrogen removed 20%–35%of acute toxicity,indicat-ing the contribution of volatile organic compounds (light hy-drocarbon mixtures released into the tailings as diluent)to acute toxicity (Verbeek et al.1993).

While earlier studies focused mainly on the acute toxicity of TPW,more recent studies have addressed the chronic ef-fects of process waters on aquatic and terrestrial biota in constructed wetlands and ponds (e.g.,van den Heuvel et al.1999b ,2000;Siwik et al.2000;Bendell-Young et al.2000;Pollet and Bendell-Young 2000;Leung et al.2001;Colavec-chia et al.2004)(for a summary see Table 3).This research will be discussed in greater detail after a brief review of the land reclamation options currently under consideration.

Wet landscape reclamation

As part of their licensing agreement with the government of Alberta,oil sands operators must reclaim tailings ponds,mining sites,and other disturbed land to self-sustaining eco-systems with a land use equivalent to the original landscape (Alberta Department of Energy 1995).Reclamation plans in-clude dry and wet landscape options.For the dry landscape option,fine tailings will be dewatered,mixed with sand,buried,and capped with soil.The wet landscape option will feature end-pit lakes (EPLs)in mined-out areas,in which fluid fine tails will be capped with a layer of process water and river water (FTFC 1995).Natural sedimentation in the EPLs is expected to provide a buffer layer at the water:tail-ings interface to reduce the transfer of contaminants from the tailings to the water https://www.360docs.net/doc/584224811.html,ke morphometry will be designed to resist water column mixing during wind events.The reclamation plans are supported by ongoing research on the viability of EPLs and treatment wetlands to form sus-tainable ecosystems and provide effective remediation of NAs and other pollutants.Both Suncor and Syncrude began to conduct research on wet reclamation in the 1980s,build-ing a series of prototype ponds in which mature fine tailings were capped with water (e.g.,Nix 1983).Most studies have demonstrated that small,isolated ponds begin to detoxify naturally over a period of several months to 2years,and are eventually colonized by aquatic plants (e.g.,Nix 1983;Boerger et al.1992;Nix and Martin 1992;Gulley and

Fig.3.Temporal changes in the concentrations of inorganic ions in tailings pond water at Syncrude Canada Ltd.(circles)and Suncor

Energy Corp.(squares);note that Suncor began to implement consolidated tailings (CT)treatment ca.1997(data sources:MacKinnon and Retallack 1981;Nix 1983;MacKinnon and Boerger 1986;MacKinnon and Sethi 1993;Kasperski 2001;MacKinnon 2001;MacKinnon 2004).

128J.Environ.Eng.Sci.Vol.7,2008

MacKinnon1993;Alberta Department of Energy1995; MacKinnon et al.2001).The degradation of NAs in isolated TPW has been shown to occur at a rate of16%per year over the first5years(130to24mg/L)(MacKinnon2004). The same study showed that further degradation of NAs be-yond5years was negligible,but that the toxicity of the sam-ple(Microtox1IC20)continued to decline,reaching100 vol%at10years.Aeration and nutrient additions have been shown to increase detoxification rates by stimulating natural microbial populations that degrade NAs(Nix1983).

There is conflicting evidence as to whether or not wet landscape environments formed from reclaimed tailings and process water can sustain fish populations and other aquatic biota.Although natural detoxification of process water has been demonstrated in small ponds,there is some evidence that larger systems may not detoxify as rapidly.For exam-ple,after being dormant for5years,Suncor’s Pond1A re-mained highly toxic to brook trout(Salvelinus fontinalis) (96h LC50=24%),although some detoxification had oc-curred(<10%LC50values are typical for active tailings ponds)(Nix1983).In a study by Boerger et al.(1992),it was demonstrated that fine tailings retain their toxicity be-yond2years(e.g.,Microtox1EC50of59%),but do not transfer toxicity to the freshwater surface layer.

Another concern is the persistence of chronic toxicity after natural degradation has removed the acutely toxic frac-tion of naphthenic acids.For example,yellow perch(Perca flavescens)stocked in experimental reclamation ponds(MFT capped with surface runoff)for3to10months suffered in-creased mortality rates,gill lesions,tumors,and fin erosion (van den Heuvel et al.2000).In a related study however,yellow perch exhibited positive effects after being stocked for5to11months in the same demonstration pond,includ-ing increased fecundity and body condition,though this may have been linked to reduced competition in the reclamation ponds relative to reference sites(van den Heuvel et al. 1999b).Normal growth rates were reported for larval fat-head minnows(Pimephales promales)raised in experimental reclamation ponds for59days,although elevated mortality rates were detected at certain sites(Siwik et al.2000). Tailings amendment processes such as CT treatment may also contribute to the chronic toxicity of process water.Fat-head minnows exposed to CT release water and dike seep-age from a Suncor CT pond all died within28days(Farrell et al.2004).Bendell-Young et al.(2000)reported low spe-cies diversity among benthic fauna in wetlands receiving dike seepage water,CT release water,or phosphate-amended CT water.The authors also found that fish in the wetlands receiving process waters exhibited signs of stress (based on changes in blood chemistry),and in the case of a wetland receiving dilute dike seepage waters,died within 14days of capture.

Concerns over the viability of proposed wet reclamation options focus on the lengthy residence time required to de-grade naphthenic acids and the incomplete degradation of recalcitrant compounds(Quagraine et al.2005b).Research-ers have made considerable progress in their attempts to characterize the hundreds of individual NAs in oil sands process water,and to isolate the fraction responsible for tox-icity(Holowenko et al.2001,2002;Rogers et al.2002b;Lo et al.2003;Hao et al.2005).A critical finding was that NA compounds vary in terms of toxicity and biodegradability.

https://www.360docs.net/doc/584224811.html,anic chemistry of oil sands process water,the Athabasca River,and regional lakes.

Variable (mg/L)Syncrude MLSB

(1985–1998)

Syncrude demonstration

ponds(1996–97)a

Suncor tailings

ponds(1982–1998)

Athabasca River

(2001)b

Regional

lakes(2001)b

DOC5826–5862–67714–27

BOD25d-<10–70e<2-

COD350d-86–525f40d-

260–973e

OG25d-9–31f<0.5-

92e

NA49g3–5968g<11–2

Phenols0.008h0.001–0.0030.03–1.8f<0.0010.002–0.004

0.03–1.4e

Cyanide0.5d-0.01–0.04e0.004d-

PAHs0.01h----

Toluene--1–3e--

Benzene--<0.6–6e--

BTEX<0.01h----

Note:DOC,dissolved organic carbon;BOD,biochemical oxygen demand;COD,chemical oxygen demand;OG,oil and grease;NA,

naphthenic acids;PAH,polycyclic aromatic hydrocarbon;BTEX,benzene,toluene,ethylbenzene,xylene;MLSB,Mildred Lake Set-

tling Basin;data represent mean values from samples collected during the year indicated;ranges indicate mean values for multiple sites.

a(Siwik et al.2000).

b(Golder Associates Limited2002).

c(MacKinnon and Sethi1993);MLSB and Suncor Ponds1–3.

d(MacKinnon and Boerger1986).

e(Gulley1992);Suncor Ponds1A,4.

f(Nix1983);Suncor Ponds1A,1,and2.

g(Holowenko et al.2002);MLSB and Suncor Pond5.

h(Rogers et al.2002b).

Allen129

Table3.Summary of recent studies on experimental reclamation ponds and treatment wetlands in the oil sands. Study objective Findings Reference

Toxicity of tailings pond sediments to early life stages of fathead min-nows(Pimephales pro-melas)Fathead minnows hatched over sediments from oil sands deposits and

tailings ponds(treatments ranged from0.05to25g sediment/L)ex-

hibited increased mortality,malformations,and reduced size;toxic

effects may be related to PAHs where sediment total PAH concen-

trations>500m g/L

(Colavecchia et al.

2004)

Toxicity of dike seepage to wetland plants Plants exposed to oil sands effluent had higher photosynthetic rates

than plants in reference wetlands;accumulation of stress related pro-

teins in cattail roots may reflect osmotic stress from high salinity;

concluded that cattail and clover can adapt to oil sands effluent(in

the form of dike seepage)

(Crowe et al.2001)

Effects of oil sands wet-land outflow on terres-trial plant growth Effluents from a naturally-formed dike seepage wetland and a CT

pond inhibited the germination of terrestrial plant species such as

rye,wheat,pea,canary grass,and clover

(Crowe et al.2002)

Effects of CT water on survival of fathead min-nows Fathead minnows exposed to CT release water and dike seepage water

did not survive beyond28days,and experienced gill hyperplasia and

decreased lymphocytes;concluded that wastewater will require ame-

lioration to support fish populations

(Farrell et al.2004)

Effects of process water on phytoplankton biomass and community compo-sition Phytoplankton communities were sampled in10water bodies across

the oil sands region;biomass was not correlated with either NAs or

major ions;NA and major ion concentrations explained40%of the

variability in the phytoplankton community

(Leung et al.2003)

Effects of process water on phytoplankton commu-nity Microcosm experiments showed effects of process waters(<5years

old,[NA]>20mg/L)on phytoplankton community composition;the

greatest changes occurred in the microcosms with the highest NA

concentrations and salinity

(Leung et al.2001)

Mutagenicity of polyaro-matic compounds in tail-ings porewater Pore water extracts were not mutagenic based on Ames Salmonella as-

say

(Madill et al.2001)

Effects of seepage ponds and wetlands on growth, development,and survi-val of frogs Tadpoles(Bufo boreas and Rana sylvatica)in wetlands receiving ef-

fluent exhibited reduced growth,prolonged developmental time,and

decreased survival compared to reference sites

(Pollet and Bendell-

Young2000)

Acute and subchronic toxi-city of NAs to rodents Exposure of rats to a wide range of NA dosages(0.6–300mg/kg)in-

dicated hepatotoxicity,but worst-case scenario exposure in tailings

pond water should not cause acute toxicity;subchronic exposure may

cause health problems

(Rogers et al.2002a)

Growth effects on larval fathead minnows Fathead minnow larvae exposed to water from Syncrude demonstration

ponds(5-to9-year old capping experiments)showed no evidence of

impeded growth at7d or56d,although increased mortality was de-

tected at several sites

(Siwik et al.2000)

Physiological endpoints in swallows inhabiting pro-cess water wetlands Found no differences in reproductive success,growth rate,or immune

response between swallows inhabiting oil sands wetlands and refer-

ence sites;elevated hepatic ethoxyresorufin-O-deethylase(EROD)

activity in nestlings living on reclaimed sites indicated the presence

of xenobiotics in their diet,which were likely derived from contami-

nants associated with oil sands processing

(Smits et al.2000)

Effects of aromatic com-pounds on fish hormone levels At river sites within the Athabasca oil sands deposit and adjacent to oil

sands development,fish had lower steroid production and higher ac-

tivity of a hepatic enzyme relative to reference sites,suggesting ex-

posure to aromatic compounds;PAHs could potentially cause

endocrine disruption in aquatic biota

(Tetreault et al.2003)

Chemical indicators of ex-posure to process waters in fish Yellow perch in experimental reclamation ponds(i.e.,water capped

tailings)had elevated mixed-function oxygenase(MFO)activity and

PAH concentrations relative to reference sites;however,these che-

mical endpoints did not appear to be linked to physiological re-

sponses in the fish

(van den Heuvel et al.

1999a)

Effects of reclamation pond water on fish phy-siology Yellow perch living in experimental reclamation ponds had increased

gonad size,fecundity,and condition factors(at5and11months)re-

lative to a reference lake;this may have reflected greater resource

availability or reduced inter-and intraspecific competition in the ex-

perimental ponds

(van den Heuvel et al.

1999b)

130J.Environ.Eng.Sci.Vol.7,2008

Naphthenates in fresh TPW are dominated by a group of compounds with carbon numbers13–16;however,if the water is isolated and aged for several years,the composition of the mixture shifts towards larger molecules(i.e.,C22+) (Holowenko et al.2002).Toxicity has been shown to de-crease with increasing relative abundance of C22+com-pounds,suggesting that the smaller compounds(C13–16)not only degrade faster,but are more toxic than the larger mole-cules(Holowenko et al.2002).Subsequent research has shown that NAs with a high number of multi-ring structures are less toxic and more resistant to microbial degradation than less complex structures(Lo et al.2006).

Due to the variable toxicity among NA compounds,de-creases in acute toxicity may not necessarily correlate with changes in total NA concentration.For example,CT treat-ment has been shown to significantly reduce toxicity(i.e., from IC50of20%–30%in pond water to70%–100%in CT release water)despite only a slight reduction(25%)in NA concentration(Marr et al.1996).Similarly,a38%reduction in NA concentration in1-year old process water(from129 to81mg/L)eliminated LC50toxicity for trout,zooplankton, and Microtox1(LC50)(MacKinnon et al.2001),even though much lower NA concentrations in"fresh"tailings water have proven to be acutely toxic to aquatic biota. Polycyclic aromatic hydrocarbons may also contribute to chronic toxicity in process water.Although water column concentrations of PAHs are predicted to be low in reclaimed environments(Gulley1992),the potential for chronic effects on aquatic biota(e.g.,endocrine disruption,behavioural and growth effects)remains a concern.Tetreault et al.(2003) sampled fish populations in two rivers that drain into the Athabasca River near major oil sands developments,and found evidence of reduced steroid production and increased exposure to natural oil sands compounds(based on hepatic enzyme activity)at sites within the oil sands deposit and ad-jacent to an oil sands development,compared to reference sites.The authors suggested that PAHs detected in river sediments and water may contribute to endocrine disruption, which is supported by numerous studies on the physiological effects of PAH exposure on fish in other regions(e.g.,Lin-telmann et al.2003).Other studies have reported evidence of PAH exposure among fish populations in demonstration ponds(van den Heuvel et al.1999a),and cited PAHs as po-tential stressors causing increased mortality and malforma-tions in fish(Colavecchia et al.2004).

Salinity concentrations in process water are currently in-sufficient to be acutely toxic,but may influence biological productivity,community composition,or act as a stressor that increases the toxicity of other compounds to biota in re-claimed environments.Crowe et al.’s(2001)study on plant growth in process water reported the production of dehy-drin-related proteins in cattail roots that may have been indi-cative of osmotic stress caused by the high salinity. Significant shifts in phytoplankton species composition have been linked to elevated concentrations of salinity and NAs in oil sands process waters(Leung et al.2001).A subse-quent study found no correlation between phytoplankton bi-omass and NA or major ion concentrations,and concluded that major ions had at least as much of an ecological effect as NAs(Leung et al.2003).

Water treatment objectives

Process water recycling

With the exception of chemical additives to promote the settling of fine clay particles,TPW is not treated prior to re-use in the extraction process.The consequent decline in process water quality has raised concerns over the effects of water chemistry on bitumen recovery,scaling,corrosion, and fouling of extraction plant infrastructure.Given that the proposed expansion of mining projects may lead to restric-tions on freshwater imports,operators may eventually need to consider treatment of TPW and other process waters to meet the operational requirements currently served by the Athabasca River(e.g.,extraction,boiler feedwater,upgrad-ing,drinking water,and other domestic uses).In the follow-ing sections,potential treatment objectives for the industrial reuse of tailings pond water are established based on water quality criteria for bitumen extraction and boiler feedwater treatment.

Bitumen extraction chemistry

Process water chemistry strongly influences bitumen ex-traction and froth quality.Bitumen recovery is optimized at alkaline pH due to increased activity of surfactants,negative charges on clay and sand surfaces,and reduced interfacial tension between bitumen droplets and solids(Kasperski 2003).Where needed(e.g.,low or moderate grade ores), process water pH is controlled through the addition of alka-line reagents such as sodium hydroxide(Schramm et al. 1985).Changes in process water pH or alkalinity as a result of water treatment would thus affect the sodium hydroxide dosage,and should be taken into consideration when select-ing treatment technologies.

Divalent cations interfere with bitumen recovery by in-creasing the adhesion of bitumen to sand and clay particles, reducing the adhesion of bitumen to air bubbles,neutralizing surfactants,and increasing the coagulation of clay particles (Kasperski2003).While bitumen recovery rate has been negatively correlated with calcium+magnesium concentra-tion(over a range of~0.1to10mmol/L),the effect is not consistent across ore types(Cuddy et al.2000).Much of the variability in bitumen recovery at different calcium con-centrations may be attributable to differences in fines con-tent and ore chemistry(Kasperski2003).

Table3(concluded).

Study objective Findings Reference

Effects of long-term(3–10 months)exposure of yel-low perch(Perca flaves-cens)to reclamation ponds Increased occurrence of disease and gill lesions in yellow perch from

experimental reclamation ponds may be related to immune system

suppression;incidence of disease was positively correlated with con-

centrations of oil sands-related compounds,did not identify a speci-

fic substance as the stressor

(van den Heuvel et al.

2000)

Allen131

Where hardness concentrations are prohibitive to bitumen extraction,treatment of process water to precipitate calcium carbonate has proven to be effective at preventing the de-cline in bitumen recovery.Magnetic treatment of process water with a total hardness of235ppm improved bitumen recovery from45%to65%,and appeared to reduce the binding of cations to clay particles,possibly as a result of increased precipitation of calcium carbonate(Amiri2006). High concentrations of sodium chloride(1000–2000mg/L and3000–6000mg/L)have also been shown to reduce bitu-men recovery,albeit in low grade ores only(see Kasperski 2003).A positive effect on bitumen recovery was reported for sodium chloride additions up to1149mg/L,which is within the range of reported values from tailings ponds.Ad-ditional water quality requirements for bitumen extraction include low clay content(suspended solids of0.5%to2% are sufficient for extraction process),removal of substances that could flocculate clays,and removal of particulate or dis-solved substances that might deposit on heat exchange surfa-ces(Hall and Tollefson1979).

Based on the process water quality data reviewed herein, there are no significant exceedances of bitumen extraction criteria in process water.Current hardness concentrations are insufficient to reduce bitumen extraction,although long-term trends in TPW quality,coupled with expansion plans and the potential for increased reliance on tailings release water and other streams with high water hardness(e.g.,site runoff,basal aquifer water)point towards an eventual need for water treatment.Scaling,fouling,and corrosion

Prevention of scaling,fouling,and corrosion are major concerns for oil sands operators,particularly at in situ oper-ations where produced water is recycled for steam genera-tion(e.g.,Zalewski and Bulkowski1998;Hart2002), although problems related to scale formation and fouling have also been reported at the extraction facilities of mining operations(https://www.360docs.net/doc/584224811.html,m.,K.Kasperski2006).Recent in-creases in hardness and pH in TPW have translated into sig-nificant increases in the Langelier Saturation Index(a scaling index for calcium carbonate),necessitating the use of anti-scalants(Rose and Rideout2001).Common compo-nents of scales formed from produced water include carbo-nate,silica,sulphate,phosphate,and iron oxides(CH2M Hill Canada1981;Zalewski and Bulkowski1998). Chemicals of concern with respect to process water corro-sivity include TDS,sulphate,chloride,bicarbonate,ammo-nium,NAs,copper,and dissolved oxygen(CONRAD1998; Rogers2004).As previously noted,concentrations of these chemicals,as well as water hardness,have increased consid-erably in the tailings ponds.Applying the strict guidelines of conventional boiler feedwater treatment to prevent scaling, corrosion,and fouling in TPW would require up to100%re-moval of suspended solids,>95%removal of bitumen,99% removal of hardness,85%removal of alkalinity,98%re-moval of copper,33%–94%reduction in conductivity,and 37%–92%removal of iron(Table4),although less aggres-sive treatments would be sufficient to prevent scaling and fouling of hot water extraction facilities.

Table4.Hypothetical treatment objectives for industrial reuse of oil sands tailings pond water.

Variable(mg/L unless otherwise noted)Oil sands tailings

pond water

Industrial water quality guidelines(mg/L)

Treatment objective

(%removal)

Conventional boiler

(900–1500psi)a

Once-through

steam generator b

Bitumen

extraction c

Calcium17–25d0.0050.05~50–140>99

COND(m S cm–1)1506–2400e150–1000--33–94

Copper0.7f0.015--98

DO-0.0070.04--

Hardness91–112d n.d.-0.050.5->99

Iron0.08e-2.4f0.020.05-37–92

Oil25g-92h11-96–99

pH8.2–8.4i8.5–9.59–9.57–9-

Silica 1.75g2–850--

TDS1900–2221d100–6508000-52–95

TSS(%)0.7e-00.5–2100

Note:TPW,tailings pond water;COND,conductivity;DO,dissolved oxygen;TDS,total dissolved solids;TSS,total suspended solids;

MLSB,Mildred Lake Settling Basin;ASME,American Society of Mechanical Engineers;OTSG,once through steam generator.

a(ASME1994).

b(Zaidi and Constable1994).

c(Hall and Tollefson1979;Kasperski2003).

d(Kasperski2001;MacKinnon2004).

e(MacKinnon and Sethi1993).

f(Nix1983).

g(MacKinnon and Boerger1986).

h(Gulley1992).

i(MacKinnon2001).

132J.Environ.Eng.Sci.Vol.7,2008

Environmental discharge and reclamation

For the purposes of environmental discharge and (or)rec-lamation,the goal of water treatment would be to remove toxicity and ensure that biota in reclaimed and downstream aquatic systems are not affected by acute or chronic effects of chemicals associated with oil sands processing.Poor water quality in EPLs could hinder recolonization of re-claimed environments and bioremediation of pollutants (Quagraine et al.2005b ).Although oil sands operators are currently bound to a zero discharge policy,treatment and discharge of process waters could represent an option to off-set water consumption.To identify target pollutants and de-termine hypothetical treatment objectives,TPW quality data were compared to environmental water quality benchmarks such as the CCME’s surface water quality guidelines for the protection of aquatic life (CCME 2005),industrial discharge limits under Alberta’s Environmental Protection and En-hancement Act (EPEA)(Alberta Environment 1999),and background concentrations in local surface waters (Golder Associates Limited 2002).Treatment objectives based on

Table 5.Hypothetical treatment objectives for environmental discharge of oil sands process water.

Pollutant (mg/L)Oil sands tailings pond water a Environmental guideline (mg/L)Treatment objective (%removal)CEQG b EPEA c USEPA d Other Inorganic Ammonia 14

1.450.8–1.3e -64–93Bicarbonate 775–950---500f 50Chloride 80–540-250–500150g 70Sulphate 218–290--50g 80TDS

1900–2221---1340h 50–60Organic Benzene <0.01–6.30.37---<99BOD <10–70-25--<65COD 86–973-200--<80Cyanide

0.01–0.50.005-0.005-50–99Naphthenic acids

50–70

---

30i 20–745j 901k 99Oil and grease 9–92no odour or visi-ble sheen 5–101%of 96-h LC 50for selected biota 35l <90Phenols 0.02–1.50.00410.001-33–99.7Toluene <0.01–30.002

- 1.3m -<99PAHs 0.010.00001–0.00006n --->99Trace metals Aluminum 0.07–0.50.1-0.75-<80Arsenic 0.006–0.0150.005-0.15-<67Chromium 0.003–2--0.074o -<63Copper 0.002–0.90.002-0.009o ->95–99Iron 0.8–30.3 3.51

-<50Lead 0.04–0.19--0.0025o -94–99Nickel 0.006–2.8--0.052o -93–99Zinc

0.01–3.2

-

-

0.12o

-

96

Note:TDS,total dissolved solids;BOD,biochemical oxygen demand;COD,chemical oxygen demand;PAH,polycyclic aromatic hydrocarbons.a (MacKinnon and Boerger 1986;Gulley 1992;Siwik et al.2000;Leung et al.2001;Kasperski 2001;MacKinnon 2004).

b

CEQG,Canadian Environmental Quality Guidelines;surface water quality guidelines for the protection of aquatic life (CCME 2005).c

EPEA,Environmental Protection and Enhancement Act;example maximum discharge limits for various Alberta industries (Alberta Environment 1999);monthly average guideline for BOD (Alberta Environment 1997).d

USEPA,United States Environmental Protection Agency;water quality criteria for the protection of aquatic life;(USEPA 1999).e

USEPA 30-day average concentration at pH 8.0–8.3.f

NaHCO 3toxicity (zooplankton)of 10mequiv.HCO 3/L (Mount et al.1997).g

Ambient water quality guidelines (Government of British Columbia 2000).h

General guideline cited by SETAC (2004);effects vary with ionic composition.i

Microtox 1LC 50value for a commercial mixture of naphthenic acids (Herman et al.1994).j

Toxicity to fish from a commercial mixture of naphthenic acids (Patrick et al.1968).k

Background concentration in surface waters (Headley and McMartin 2004).l

USEPA Efluent Limitation Guideline,Agriculture and Wildlife Category,National Pollutant Discharge Elimination System (NPDES).m

USEPA drinking water guideline.n

Criteria for individual compounds.o

Continuous concentration at hardness =100mg/L CaCO 3.

Allen

133

exceedances of these criteria were then determined for target chemicals(Table5).

Naphthenic acids

As the principal source of toxicity in the tailings ponds, NAs represent the main pollutant of concern with respect to reclamation or environmental discharge.Although the acutely toxic fraction of NAs have been shown to degrade naturally over time in experimental pits and wetlands,the lengthy water residence time required for degradation may not be practical where the direct discharge of water is re-quired.Also,high molecular weight NA compounds appear to be resistant to biodegradation and could persist in re-claimed environments.Further research is needed to deter-mine if recalcitrant NAs in reclaimed environments pose a chronic toxicity risk.Since concentration-based limits have not been established in Canada,background concentrations in local surface-and groundwater(i.e.,~1–5mg/L)are sug-gested as a target for NA removal.Given typical NA con-centrations of50–70mg/L in TPW,the corresponding water treatment objective would be90%–99%removal. Bitumen

Residual bitumen in the tailings ponds poses a hazard to aquatic biota,and its biodegradation could be a source of NAs in EPLs(Quagraine et al.2005a).Bitumen slicks would not only interfere with the establishment of aquatic communities in reclamation ponds,but would also contrib-ute to the fouling of advanced treatment technologies.Previ-ously reported bitumen concentrations in tailings ponds water have been at least 2.5-to9-fold higher than the EPEA maximum discharge limit of10mg/L(Table5),thus up to90%removal may be required.

Volatile organic compounds

Based on historical data,concentrations of benzene,cya-nide,PAHs,phenols,and toluene in TPW have previously exceeded CCME guidelines for the protection of aquatic ecosystems by at least an order of magnitude(Table5). While there is little evidence that aromatic compounds con-tribute significantly to acute toxicity in process waters,cer-tain compounds have been detected in fish(van den Heuvel et al.1999a)and there are concerns over endocrine disrup-tion and other chronic effects(Tetreault et al.2003).To re-duce aromatic hydrocarbon concentrations in process water below CCME guidelines,removal rates of up to99%may be required.Volatilization,dilution,and natural degradation may sufficiently reduce the concentrations of certain com-pounds in proposed wet landscape systems;for example,to-tal phenol concentrations in demonstration ponds(0.001–0.003mg/L;Siwik et al.2000)are well below the EPEA discharge limit(1mg/L)and slightly below the CCME sur-face water quality guideline(0.004mg/L).

Total dissolved solids

High concentrations of TDS in process water may affect zooplankton community structure and contribute to acute or chronic toxicity in aquatic biota.Total dissolved solids con-centrations in excess of1340mg/L are generally considered sufficient to cause toxicity in aquatic biota due to ion imbal-ance(SETAC2004).Ion imbalance refers to a condition in which common ions occur in different ratios or at concentra-tions above or below tolerance levels for aquatic biota, which can induce chronic stress that impairs normal meta-bolic functions.As such,the toxic effects of TDS are strongly dependent on the ionic composition of the water (e.g.,Mount et al.1997).

The dominant ions in tailings pond water exceed several water quality criteria.Current concentrations of chloride and sulphate in TPW exceed water quality guidelines for the protection of aquatic life by3-to4-fold(USEPA1999; Government of British Columbia2000),and sodium chlor-ide concentrations may be sufficient to induce chronic ef-fects in zooplankton(Harmon et al.2003).In other systems, sodium bicarbonate concentrations comparable to those of TPW have been shown to cause acute toxicity in zooplank-ton(Mount et al.1997).To date,evidence of toxic effects from salinity levels in TPW has been limited to osmotic stress in plants(Crowe et al.2001)and shifts in phytoplank-ton community structure(Leung et al.2003).Salinity could contribute to the acute toxicity of TPW because osmotic stress is an important component of the toxic effect of NAs on aquatic biota(see Quagraine et al.2005b).Based on cur-rent concentration,removal rates of up to50%–60%for TDS,70%for chloride,and80%for sulphate would be re-quired to meet the criteria cited above.

Ammonia

Ammonia is highly toxic to fish and other aquatic biota. Total ammonia nitrogen concentrations of14mg/L in TPW (MacKinnon2004)exceed both the USEPA’s criterion con-tinuous concentration(0.8–1.3mg/L for pH range of8.0–8.3),which is a guideline for long-term exposure(i.e.,30-day average)(USEPA1999),and the EPEA maximum daily discharge limit for refineries in Alberta(5mg/L)(Table5). For TPW,ammonia removal rates of64%–93%would be required to meet surface water guidelines.

Trace metals

Trace metals detected in TPW include aluminum(Al),ar-senic(As),cadmium(Cd),chromium(Cr),copper(Cu),iron (Fe),lead(Pb),molybdenum(Mo),titanium(Ti),vanadium (V),and zinc(Zn)(Hall and Tollefson1979;MacKinnon and Retallack1981;MacKinnon1981;Nix1983;Gulley 1992;FTFC1995;Siwik et al.2000).Among these ele-ments are toxic metals that have been labeled as priority pollutants under the USEPA’s Clean Water Act(e.g.,As, Cd,Cr,Cu,Ni,Pb,and Zn)(USEPA2006).Historical data from tailings ponds indicate some exceedances of CCME water quality guidelines for trace metals(Table5),however the scarcity of recent data makes it difficult to determine if current concentrations are problematic.Trace metal concen-trations in experimental reclamation ponds do not exceed surface water quality guidelines(e.g.,Siwik et al.2000;Far-rell et al.2004).Trace metals that have previously exceeded CCME guidelines in oil sands process water include Al,As, Cr,Cu,Fe,Pb,Ni,and Zn(exceedances ranging from50% to100%)(MacKinnon and Retallack1981;Nix1983;Gul-ley1992).

Conclusions

Target pollutants for the operational reuse of oil sands process water include suspended solids,bitumen,hardness,

134J.Environ.Eng.Sci.Vol.7,2008

sulphate,chloride,ammonium,and iron.Increasing concen-trations of water hardness in recycled water may eventually exceed bitumen extraction criteria and saturation points for scaling,necessitating some form of water treatment to sus-tain bitumen recovery without increasing the consumption of freshwater.

Chemicals of environmental concern in oil sands process water include NAs,bitumen,ammonia,sulphate,chloride, aromatic hydrocarbons,and trace metals.While NAs are the main contributors of acute toxicity to aquatic biota,various compounds have exceeded CCME water quality guidelines at some point during oil sands operations and could contrib-ute to chronic toxicity in reclaimed aquatic environments. Proposed reclamation procedures rely on natural processes to ameliorate the process water quality in proposed artificial aquatic ecosystems comprised of mature fine tailings capped with process water.Small-scale versions of the proposed systems have demonstrated natural detoxification over a pe-riod of months;however,it remains unclear whether or not full-scale systems will be as effective,or how residual pollu-tants will affect aquatic and terrestrial food webs in the re-claimed landscape.Alternative forms of water treatment may offer more effective and rapid removal of environmen-tal contaminants.The target pollutants and treatment objec-tives proposed herein provide a framework for the assessment of emerging water treatment technologies and their potential to minimize environmental impacts while op-timizing bitumen production from oil sands deposits. Acknowledgements

The author thanks Dr.Kim Kasperski for reviewing the manuscript and Nancy Aikman for technical assistance with research materials.

References

Alberta Department of Energy.1995.Fine tails and process water reclamation.In Advances in Oil Sands Tailings Research.Al-berta Department of Energy,Oil Sands and Research Division, Edmonton,Alta.pp.3–17.

Alberta Department of Energy.2005.Alberta’s oil sands2004.[on-line].Available from https://www.360docs.net/doc/584224811.html,.ab.ca/docs/oilsands/ pdfs/PUB_osgenbrf.pdf[cited1March2006].

Alberta Energy and Utilities Board.2005.Alberta’s reserves2004 and supply/demand outlook2005–2014.Report no.ST98–2005.

Alberta Energy and Utilities Board,Calgary,Alta.

Alberta Environment.1997.Domestic wastewater management guidelines for industrial operations.Industrial Waste and Waste-water Branch,Air and Water Approvals Division,Alberta Envir-onment,Edmonton,Alta.

Alberta Environment.1999.Summary of Alberta industrial waste-water limits and monitoring requirements.Report No.0–7785–0911–7.Environmental Sciences Division,Environmental Ser-vice,Alberta Environment,Edmonton,Alta.

Alberta Environment.2004.Water in the oil sands industry.In Pro-ceedings of the Canadian Oil Network for Research and Devel-opment(CONRAD)Water Usage Workshop,Feb.24–25,2004, Fort McMurray,Alta.

Alberta Environment.2006.Draft interim framework:Instream flow needs and water management system for specific reaches of the Lower Athabasca River.Alberta Environment,Edmonton,Alta. ASME.1994.Consensus operating practices for the control of feedwater and boiler water chemistry in modern industrial boi-

lers.American Society of Mechanical Engineers,ASME Books, New York,NY.

Amiri,M.C.2006.Efficient separation of bitumen in oil sand ex-traction by using magnetic treated process water.Sep.Purif.

Technol.47:126–134.doi:10.1016/j.seppur.2005.06.016. Bendell-Young,L.I.,Bennett,K.E.,Crowe,A.,Kennedy,C.J.,Ker-mode,A.R.,Moore,M.M.,Plant,A.L.,and Wood,A.2000.

Ecological characteristics of wetlands receiving an industrial ef-fluent.Ecol.Appl.10:310–322.doi:10.2307/2641005. Boerger,H.,MacKinnon,M.,Van Meer,T.,and Verbeek,A.1992.

Wet landscape option for reclamation of oil sands fine tails.In Proceedings of the Second International Conference on Environ-mental Issues and Management of Waste in Energy and Mineral Production.A.A.Balkema,Rotterdam.pp.1249–1261. CCME.2005.Canadian Environmental Quality Guidelines.Cana-dian Council of Ministers of the Environment,Winnipeg,Man. CH2M Hill Canada.1981.Review of treatment and recycling of produced water from heavy oil fields.Report prepared for the Alberta Oil Sands Technology and Research Authority (AOSTRA),Edmonton,Alta.

Colavecchia,M.V.,Backus,S.M.,Hodson,P.V.,and Parrott,J.L.

2004.Toxicity of oil sands to early life stages of fathead min-nows(Pimephales promelas).Environ.Toxicol.Chem.23: 1709–1718.doi:10.1897/03-412.PMID:15230323. CONRAD.1998.Naphthenic acids background information:Dis-cussion report.Canadian Oil Sands Network for Research and Development(CONRAD)Environmental Aquatics Technical Advisory Group(CEATAG),Edmonton,Alta.

Crowe,A.U.,Han,B.,Kermode,A.R.,Bendell-Young,L.I.,and Plant,

A.L.2001.Effects of oil sands effluent on cattail and clover:photo-

synthesis and the level of stress proteins.Environ.Pollut.113:311–322.doi:10.1016/S0269-7491(00)00187-1.PMID:11428139. Crowe,A.U.,Plant,A.L.,and Kermode,A.R.2002.Effects of an industrial effluent on plant colonization and on the germination and post-germinative growth of seeds of terrestrial and aquatic plant species.Environ.Pollut.117:179–189.doi:10.1016/ S0269-7491(01)00131-2.PMID:11843534.

Cuddy,G.,Farwell,K.,and Wright,B.2000.Empirical studies on the relationship between process water chemistry and oil sands processability.Problem Ores,1st Extraction Fundamentals Seminar,Canadian Oil Sands Network for Research and Devel-opment(CONRAD),Fort McMurray,AB[online].Available from http://www.conrad.ab.ca/seminars/problem_ores/Agenda.

htm[cited1Feb2006].

Dominski,M.2007.Surface mined oil sand:tailings practices,per-formance,and projections.Alberta Energy and Utilities Board.In Proceedings of the3rd International Heavy Oil Conference,March 5–7,2007,Calgary,Alta.Alberta Energy and Utilities Board. Farrell,A.P.,Kennedy,C.J.,and Kolok,A.2004.Effects of waste-water from an oil-sand-refining operation on survival,hematol-ogy,gill histology,and swimming of fathead minnows.Can.J.

Zool.82:1519–1527.doi:10.1139/z04-128.

FTFC.1995.Advances in Oil Sands Tailings Research,Vol.II: Fine tailings and process water reclamation.Fine Tailings Fun-damental Consortium,Alberta Department of Energy,Oil Sands and Research Division,Edmonton,Alta.pp.2.1–2.52.

Golder Associates Limited.2002.Oil sands regional aquatics mon-itoring program(RAMP)2001.Vol.1:Chemical and biological monitoring.Report prepared for the RAMP Steering Committee, Fort McMurray,Alta.

Government of British Columbia.2000.Ambient water quality guidelines.Water,Air and Climate Branch,Environmental Pro-tection Division,Ministry of the Environment,Victoria,BC. Griffiths,M.,Taylor,A.,and Woynillowicz,D.2006.Troubled

Allen135

waters,troubling trends:Technology and policy options to re-duce water use in oil and oil sands development in Alberta.The Pembina Institute,Drayton Valley,Alta.

Gulley,J.R.1992.Study of oil sands sludge reclamation under the tailings sludge abandonment research program.Final Report.Canada Centre for Mineral and Energy Technology (CANMET),Energy,Mines and Resources Canada,Edmonton,Alta.

Gulley,J.R.,and MacKinnon,M.1993.Fine tails reclamation uti-lizing a wet landscape approach.In Proceedings of Oil Sands-Our Petroleum Future Conference,Fine Tailings,Fundamentals Consortium,Edmonton,Alta.pp.1–24.

Hall,E.S.,and Tollefson,E.L.1979.Hydrocarbon removal from and upgrading of aqueous waste water from oil sands recovery operations.Report prepared for Alberta Environmental Research Trust,Alberta Environment,Edmonton,Alta.

Hao,C.,Headley,J.V.,Peru,K.M.,Frank,R.,Yang,P.,and Solo-mon,K.R.2005.Characterization and pattern recognition of oil-sand naphthenic acids using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry.J.Chroma-togr. A.1067:277–284.doi:10.1016/j.chroma.2005.01.041.PMID:15844533.

Harmon,S.M.,Chandler,G.T.,and Specht,W.L.2003.A compar-ison of the Daphnids,Ceriodaphnia dubia and Daphnia ambi-gua ,for their utilization in routine toxicity testing in the southeastern United States.Arch.Environ.Contam.Toxicol.45:79–85.doi:10.1007/s00244-002-0116-8.PMID:12948176.

Hart,P.R.2002.Chemical removal of organic foulants from pro-duced water recycled as steam.Soc.Petrol.Eng.J.SPE,78966:1–7.doi:10.2118/78966-MS.

Headley,J.V.,and McMartin,D.W.2004.A review of the occur-rence and fate of naphthenic acids in aquatic environments.J.Environ.Sci.Health A Tox.Hazard.Subst.Environ.Eng.39:1989–2010.PMID:15332664.

Herman,D.C.,Fedorak,P.M.,MacKinnon,M.D.,and Costerton,J.W.1994.Biodegradation of naphthenic acids by microbial po-pulations indigenous to oil sands tailings.Can.J.Microbiol.40:467–477.PMID:8050066.

Holowenko, F.M.,MacKinnon,M.D.,and Fedorak,P.M.2001.Naphthenic acids and surrogate naphthenic acids in methano-genic microcosms.Water Res.35:2595–2606.

S0043-1354(00)00558-3.PMID:11456157.

Holowenko, F.M.,MacKinnon,M.D.,and Fedorak,P.M.Characterization of naphthenic acids in oil sands wastewaters by gas chromatography-mass spectrometry.Water Res.36:2843–2855.doi:10.1016/S0043-1354(01)00492-4.PMID:12146873.Hrudey,S.E.1975.Characterization of wastewaters from the Great Canadian Oil Sands bitumen extraction and upgading plant.Sur-veillance Report.Environment Canada,Environmental Protec-tion Service,Ottawa,Ont.

Kasperski,K.L.1992.A review of properties and treatment of oil sands tailings.AOSTRA J.Res.8:11–53.

Kasperski,K.L.2001.Extraction and water chemistry.Canadian Oil Sands Network for Research and Development (CONRAD)Oil Sands Extraction Fundamentals and Process Water Work-shop,May 7–8,2004[online].Available from http://www.conrad.ab.ca/seminars/process_water/Agenda.htm [cited 1Febru-ary 2006].

Kasperski,K.L.2003.Review of research on aqueous extraction of bitumen from mined oil sands.Unpublished report.CANMET Energy Technology Centre,Natural Resources Canada,Devon,Alta.

Kasperski,K.L.,and Mikula,R.J.2003.Water treatment in oil sands:a novel approach to calcium control.In Proceedings of Corrosion 2003Conference,San Diego,Calif.p.7.

Leung,S.S.,MacKinnon,M.D.,and Smith,R.E.H.2001.Aquatic reclamation in the Athabasca,Canada,oil sands:naphthenate and salt effects on phytoplankton communities.Environ.Toxi-col.Chem.20:1532–1543.doi:10.1897/1551-5028(2001)020<1532:ARITAC>2.0.CO;2.PMID:11434295.

Leung,S.S.,MacKinnon,M.D.,and Smith,R.E.H.2003.The eco-logical effects of naphthenic acids and salts on phytoplankton from the Athabasca oil sands region.Aquat.Toxicol.62:11–26.doi:10.1016/S0166-445X(02)00057-7.PMID:12413790.

Lintelmann,J.,Katayama,A.,Kurihara,N.,Shore,L.,and Wenzel,A.2003.Endocrine disruptors in the environment.Pure Appl.Chem.75:631–681.doi:10.1351/pac200375050631.

Lo,C.C.,Brownlee,B.G.,and Bunce,N.J.2003.Electrospray-mass spectrometric analysis of reference carboxylic acids and Atha-basca oil sands naphthenic acids.Anal.Chem.75:6394–6400.doi:10.1021/ac030093d.PMID:16465694.

Lo,C.C.,Brownlee,B.G.,and Bunce,N.J.2006.Mass spectro-metric and toxicological assays of Athabasca oil sands naphthe-nic acids.Water Res.40:655–664.doi:10.1016/j.watres.2005.12.008.PMID:16434073.

MacKinnon,M.D.1981.A study of the chemical and physical properties of Syncrude’s tailings pond,Mildred Lake,1980.En-vironmental Research Report 1981–1.Syncrude Canada Ltd.,Edmonton,Alta.

MacKinnon,M.D.2001.Process-affected waters:impact of operat-ing factors on recycle water quality [online].Canadian Oil Sands Network for Research and Development (CONRAD)Oil Sands Extraction Fundamentals and Process Water Workshop,May 7–8,2004.Available from http://www.conrad.ab.ca/seminars/process_water/Agenda.htm [cited 1February 2005].MacKinnon,M.D.2004.Oil sands water quality issues:properties,treatment,and discharge options [online].Canadian Oil Sands Network for Research and Development (CONRAD)Oil Sands Water Usage Workshop,February 24–25,2005.Available from http://www.conrad.ab.ca/seminars/water_usage/2004/Agenda.htm [cited 1February 2006].

MacKinnon,M.D.,and Benson,W.1985.Chemical treatment of tailings pond water:clarification and detoxification.Unpub-lished report.Syncrude Canada Research,Edmonton,Alta.

MacKinnon,M.D.,and Boerger,H.1986.Description of two treat-ment methods for detoxifying oil sands tailings pond water.Water Pollut.Res.J.Can.21:496–512.

MacKinnon,M.D.,and Retallack,J.T.1981.Preliminary character-ization and detoxification of tailings pond water at the Syncrude Canada Ltd Oil Sands Plant.In Land and Water Issues Related to Energy Development.Ann Arbor Science,Denver,Colo.pp.185–210.

MacKinnon,M.D.,and Sethi,A.1993.A comparison of the physi-cal and chemical properties of the tailings ponds at the Syncrude and Suncor oil sands plants.In Proceedings of Our Petroleum Future Conference,Alberta Oil Sands Technology and Research Authority (AOSTRA),Edmonton,Alta.

MacKinnon,M.D.,Gulley,J.R.,and Van Meer,T.2001.Role of wetlands in attenuation of process-related components [online].Environmental Research Group (EnRG)Research Symposium,May 3,2001,Edmonton,Alta.Available from http://www.conrad.ab.ca/seminars/research_sym/Agenda.htm [cited 1Febru-ary 2006].

Madill,R.E.,Orzechowski,M.T.,Chen,G.,Brownlee,B.G.,and Bunce,N.J.2001.Preliminary risk assessment of the wet land-scape option for reclamation of oil sands mine tailings:bioas-says with mature fine tailings pore water.Environ.Toxicol.16:197–208.doi:10.1002/tox.1025.PMID:11409191.

Marr,J.B.,Mohammed,M.,MacKinnon,M.,and Rogers,M.1996.

136

J.Environ.Eng.Sci.Vol.7,2008

Removal of naphthenic acid from water via pH adjustment,coa-gulation and sand filtration.In Proceedings of the International Water Conference,Engineer’s Society of Western Pennsylvania,Pittsburgh,Pa.pp.738–754.

Mount,D.R.,Gulley,D.D.,Hockett,J.R.,Garrison,T.D.,and Evans,J.M.1997.Statistical models to predict the toxicity of major ions to Ceriodaphnida dubia,Daphnia magna ,and Pimephales prome-las (fathead minnows).Environ.Toxicol.Chem.16:2009–2019.doi:10.1897/1551-5028(1997)016<2009:SMTPTT>2.3.CO;2.National Energy Board.2006.Canada’s oil sands.Opportunities and challenges to 2015:An update.National Energy Board,Cal-gary,Alta.

Nelson,L.R.,MacKinnon,M.,and Gulley,J.R.1993.Application of toxicity testing in the evaluation of reclamation options for oil sands fine tails.In Proceedings of Oil Sands-Our Petroleum Future Conference,Fine Tailings Fundamentals Consortium,Ed-monton,Alta.pp.1–11.

Nix,P.G.1983.Detoxification of tailings pond top water.Report prepared for Suncor Energy Inc.,Fort McMurray,Alta.

Nix,P.G.,and Martin,R.W.1992.Detoxification and reclamation of Suncor’s oil sand tailings ponds.Environ.Toxicol.Water,7:171–188.doi:10.1002/tox.2530070208.

Patrick,R.,Cairns,J.,and Scheier,A.1968.The relative sensitivity of diatoms,snails,and fish to twenty common constituents of industrial wastes.Prog.Fish-Cult.30:137–140.

Peachey,B.2005.Strategic needs for energy related water use technologies.Water and the EnergyINet.Report prepared for the Alberta Energy Research Institute,Calgary,Alta.

Pollet,I.,and Bendell-Young,L.2000.Amphibians as indicators of wetland quality in wetlands formed from oil sands effluent.En-viron.Toxicol.Chem.19:2589–2597.doi:10.1897/1551-5028(2000)019<2589:AAIOWQ>2.3.CO;2.

Quagraine,E.K.,Headley,J.V.,and Peterson,H.G.2005a .Is bio-degradation of bitumen a source of recalcitrant naphthenic acid mixtures in oil sands tailing pond waters?J.Environ.Sci.Health A Tox.Hazard.Subst.Environ.Eng.40:671–684.doi:10.1081/ESE-200046637.

Quagraine,E.K.,Peterson,H.G.,and Headley,J.V.2005b .In situ bioremediation of naphthenic acids contaminated tailing pond wates in the Athabasca Oil Sands Region-

studies and plausible options:a review.J.Environ.Sci.A Tox.Hazard.Subst.Environ.Eng.40:685–722.ESE-200046649.

Rogers,M.E.2004.Issues with using process-affected water (scaling,corrosion and fouling)[online].Canadian Oil Sands Network for Research and Development (CONRAD)Water Usage Workshop,Feb.24–25,Fort McMurray,Alta.Available from http://www.conrad.ab.ca/seminars/water_usage/2004[cited 1February 06].

Rogers,V.V.,Wickstrom,M.,Liber,K.,and MacKinnon,M.D.2002a .Acute and subchronic mammalian toxicity of naphthenic acids from oil sands tailings.Toxicol.Sci.66:347–355.doi:10.1093/toxsci/66.2.347.PMID:11896302.

Rogers,V.V.,Liber,K.,and MacKinnon,M.D.2002b .Isolation and characterization of naphthenic acids from Athabasca oil sands tailings pond water.Chemosphere,48:519–527.doi:10.1016/S0045-6535(02)00133-9.PMID:12146630.

Rose,D.,and Rideout,B.2001.Antiscalant use at Suncor Energy Inc.[online].CONRAD Oil Sands Process Water Workshop,May 7–8,Fort McMurray,AB.Available from http://www.conrad.ab.ca/seminars/process_water/Agenda.htm [cited 1February 2006].Sawatsky,L.2004.Water Supply Security for the oil sands mines by upstream offsite storage [online].Canadian Oil Sands Net-work for Research and Development (CONRAD)Oil Sands

Water Usage Workshop,Feb.24–25,Fort McMurray,Alta.Available from http://www.conrad.ab.ca/seminars/water_usage/2004/Water_supply_security_for_oil_sands_mines_Sawatsky.pdf [cited 1February 2006].

Schramm,L.L.,Smith,R.G.,and Stone,J.A.1985.On the proces-sibility of mixtures of oil sands.AOSTRA J.Res.1:147–161.Scott,J.D.,Dusseault,M.B.,and Carrier,W.D.,III.1985.Beha-viour of the clay/bitumen/water sludge system from oil sands extraction plants.J.Appl.Clay Sci.1:207–218.doi:10.1016/0169-1317(85)90574-5.

Shell Canada.2005a .Application for the approval of the Muskeg River mine expansion project.Shell Canada Ltd.,Calgary,Alta.Shell Canada.2005b .The Athabasca Oil Sands Project.2004Sus-tainability Report [online].Available from https://www.360docs.net/doc/584224811.html,/static//ca-en/downloads/about_shell/what_we_do/aosp_s-d_report.pdf [cited 1February 2006].

Shell Canada.2007.2006Sustainable Development Report [on-line].Available from https://www.360docs.net/doc/584224811.html,/static//ca-en/down-loads/society_environment/sd06.pdf [cited 1July 2007].

Siwik,P.L.,Van Meer,T.,MacKinnon,M.D.,and Paszkowski,C.A.2000.Growth of fathead minnows in oilsand-processed wastewater in laboratory and field.Environ.Toxicol.Chem.19:1837–1845.doi:10.1897/1551-5028(2000)019<1837:GOFMIO>2.3.CO;2.Smits,J.E.,Wayland,M.E.,Miller,M.J.,Liber,K.,and Trudeau,S.2000.Reproductive,immune,and physiological end points in tree swallows on reclaimed oil sands mine sites.Environ.Toxi-col.Chem.19:2951–2960.doi:10.1897/1551-5028(2000)019<2951:RIAPEP>2.0.CO;2.

SETAC.2004.Whole effluent toxicity testing:Ion imbalance.[on-line].Society of Environmental Toxicology and Chemistry,Pen-sacola,Fla.Available from https://www.360docs.net/doc/584224811.html,/htdocs/files/TIP-Ion.pdf [cited 1February 2006].

Strosher,M.T.,and Peake,E.1978.Characterization of organic constituents in waters and wastewaters of the Athabasca Oil Sands mining area.Report No.20.Alberta Oil Sands Environ-mental Research Program (AOSERP),Alberta Environment,Ed-monton,Alta.

Suncor Energy Incorporated.2005a .Performance indicators [on-line].Available from https://www.360docs.net/doc/584224811.html,/data/1/rec_docs/618_Indicators.pdf [cited 1February 2006].

Suncor Energy Incorporated.2005b .Suncor Energy 2005Report on sustainability [online].Available from https://www.360docs.net/doc/584224811.html,/data/1/rec_docs/616_Suncor%20SD%20Report_2005%20.pdf [cited 1February 2006].

Syncrude Canada Limited.2005.Syncrude Canada Limited 2004sustainability report [online].Available from http://sustainability.syncrude.ca/sustainability2004/download/SyncrudeSD2004.pdf [cited 1February 2006].

Tetreault,G.R.,McMaster,M.E.,Dixon,D.G.,and Parrott,https://www.360docs.net/doc/584224811.html,ing reproductive endpoints in small forage fish species to evalu-ate the effects of Athabasca Oil Sands activities.Environ.Toxicol.Chem.22:2775–2782.doi:10.1897/03-7.PMID:14587921.

USEPA.1999.National recommended water quality criteria-Cor-rection.Report EPA 822-Z-99–001.Office of Water 4304,Uni-ted States Environmental Protection Agency,Wash.

USEPA.2006.Water quality standards database [online].Available from https://www.360docs.net/doc/584224811.html,/wqsdatabase/wqsi_epa_criteria.rep_parameter [cited 1October 2006].

van den Heuvel,M.R.,Power,M.,MacKinnon,M.D.,and Dixon,D.G.1999a .Effects of oil sands related aquatic reclamation on yellow perch (Perca flavescens ).II.Chemical and biochemical indicators of exposure to oil sands related waters.Can.J.Fish.Aquat.Sci.56:1226–1233.doi:10.1139/cjfas-56-7-1226.

van den Heuvel,M.R.,Power,M.,MacKinnon,M.D.,Van Meer,

Allen

137

T.,Dobson,E.P.,and Dixon,D.G.1999b.Effects of oil sands related aquatic reclamation on yellow perch(Perca flavescens).

I.Water quality characteristics and yellow perch physiological

and population responses.Can.J.Fish.Aquat.Sci.56:1213–1225.doi:10.1139/cjfas-56-7-1213.

van den Heuvel,M.R.,Power,M.,Richards,J.,MacKinnon,M., and Dixon,D.G.2000.Disease and Gill lesions in yellow perch (Perca flavescens)exposed to oil sands mining-associated waters.Ecotoxicol.Environ.Saf.46:334–341.PMID:10903831.Verbeek,A.,McKay,W.,and MacKinnon,M.1993.Isolation and characterization of the acutely toxic compounds in oil sands pro-cess water from Syncrude and Suncor.In Proceddings of Oil Sands-Our Petroleum Future Conference,Fine Tails Fundamen-tals Consortium,Edmonton,Alta.pp.F10–1-F10–11.

Zaidi,A.,and Constable,T.1994.Produced water treatment design manual.Wastewater Technology Centre,Burlington,Ont. Zalewski,W.,and Bulkowski,P.1998.Lithium silicate scale in oilfield steam generation.J.Can.Petrol.Technol.37:51–55.

138J.Environ.Eng.Sci.Vol.7,2008

常见工业废水的处理方法

常见工业废水的处理方法 常见工业废水的处理方法 摘要主要介绍几种现代常用的工业废水处理方法 关键词:工业废水、处理 1.造纸厂废水处理 2019 年中国造纸工业纸浆消耗总量为5 992 万t ,其中废纸浆为3 380 万t ,占总 浆量的 56. 4 %[1 ] ,废纸回收持续增长,使废纸造纸生产废水成了近年来工业废水处理的热 点之一。 1.1 废水来源与污染物成分 经分析,废水中的主要污染物包括半纤维素、木质素及其衍生物、细小纤维、无机填料、油墨、染料等污染物。木质素及其衍生生物、半纤维素、油墨等是形成COD 及BOD 的主要成分;细小纤维、无机填料等主要形成SS ;而色度主要来自油墨和染料等。 1.2废纸造纸生产废水的处理[2] 废纸造纸生产废水的预处理的主要目的:在于回收废水中的纤维、降低生化系统负荷。一般厂家均在车间内部对白水进行纸浆回收,下面介绍的预处理主要是混合废水的厂外处理,主要包括纸浆回收、物化处理及生化处理。 1.3 纸浆回收 常用设备有斜筛、重力自流式筛网过滤机、普通旋转过滤机、反切单向流旋转过滤机等,常用的为斜筛。近年来出现多圆盘回收混合废水纤维。多圆盘运行费用低、基本不需 加药、回收纤维质量高、出水悬浮物含量低( SS 1.4 物化处理 物化预处理常用的有气浮法和沉淀法。气浮法主要为机械法和溶气法。机械法以涡凹 气浮为代表,溶气气浮以普通溶气气浮和浅层气浮为代表。 1.5生化处理 生化处理是废纸造纸生产废水处理的关键部分“, 厌氧+ 好氧”工艺具有耐冲击负荷、COD 去除率高、动力消耗低、运行费用低等优点,被广泛采用。厌氧处理一般采用水解酸 化或完全厌氧反应器(UASB、IC、PAFR 等) 。好氧处理一般采用活性污泥法、接触氧化法

食品工业废水处理常见工艺[文献综述]

文献综述 食品工业废水处理常见工艺 一、前言部分 食品工业是以农、牧、渔、林业产品为主要原料进行加工的工业。食品工业作为中国经济增长中的低投入、高效益产业正在引人注目的发展、扩大;这种扩大对中国的经济发展无疑有促进作用,但从环境保护的角度来讲,食品工业废水对环境的影响也要引起有关方面的高度重视。 食品工业废水主要来源于三个生产工段。一、原料清洗工段:大量沙土杂物、叶、皮、磷、肉、羽、毛等进入废水中,使废水中含大量悬浮物。二、生产工段:原料中很多成分在加工过程中不能全部利用,未利用部分进入废水中,使废水含大量有机物。三、成形工段:为增加食品色香味,延长保存期,使用了各种食品添加剂,一部分流失进入废水,使废水化学成分复杂[1]。 食品工业废水本身无毒性,但含有大量可降解的有机物,废水若不经过处理排入水体会消耗水中大量的溶解氧,造成水体缺氧,使鱼类和水生生物死亡。废水中的悬浮物沉入河底,在厌氧条件下分解,产生臭水恶化水质,污染环境。若将废水引入农田进行灌溉,会影响农业果实的食用,并污染地下水源。废水中夹带的动物排泄物,含有虫卵和致病菌,将导致疾病传播,直接危害人畜健康[2]。 二、食品工业废水处理常见工艺 我国从20世纪80年代开始,各有关部门积极开展食品工业废水治理工作,已开发出多种有关这类废水的高效、低耗的处理工艺。包括好氧生物处理工艺、厌氧生物处理工艺、稳定塘工艺、光合细菌工艺、土地处理工艺以及上述工艺组合而成的各种各样的工艺。除此之外,膜分离技术及膜与生物法相结合的工艺也有研究。 2.1 典型工艺流程 目前国内外,食品工业废水的处理以生物处理[3]为主,较成熟的有厌氧接触法、厌氧污泥床法、酵母菌生物处理法等利用生物技术治理食品工业废水的方法。 2.1.1 废水处理典型工艺流程

工业废水处理的七大基本原则

工业废水处理的七大基本原则 由于工业废水对环境的影响大,而且处理难度大,所以在生产和处理时应该遵循一些基本原则。大致总结为以下7点: 1、优先选用无毒生产工艺代替或改革落后生产工艺,尽可能在生产过程中杜绝或减少有毒有害废水产生。 2、在使用有毒原料以及产生有毒中间产物和产品的过程中,应严格操作、监督,消除滴漏,减少流失,采用合理流程和设备。 3、含有剧毒物质的废水,如含有一些重金属、放射性物质、高浓度酚、氰废水应与其他废水分流,以便处理和回收有用物质。 4、流量较大而污染较轻的废水,应经适当处理循环使用,不宜排入下水道,以免增加城市下水道和城市污水处理负荷。 5、类似城市污水的有机废水,如食品加工废水、制糖废水、造纸废水,可排入城市污水系统进行处理。 6、一些可以生物降解的有毒废水,如酚、氰废水,应先经处理后,按允许排放标准排入城市下水道,再做进一步生化处理。 7、含有难以生物降解的有毒废水,应单独处理,不应排入城市下水道。工业废水处理的发展趋势是把废水和污染物作为有用资源回收利用或实行闭路循环。 找准难点重点攻克分类处置

我国工业行业繁多,每个行业产生的废水不同,甚至一个行业中不同工艺产生的废水也有所不同。因此,将废水分类,寻找处理每个类别废水的难点、重点攻克,将能更为有效地处理工业废水。 通常情况下,工业废水按照不同分类方式可以分为3种。 第一种是按工业废水中所含主要污染物的化学性质分类,即含无机污染物为主的为无机废水,含有机污染物为主的为有机废水。例如,电镀废水和矿物加工过程的废水是无机废水;食品或石油加工过程的废水是有机废水。 第二种是按工业企业的产品和加工对象分类,如冶金废水、造纸废水、炼焦煤气废水、金属酸洗废水、化学肥料废水、纺织印染废水、染料废水、制革废水、农药废水、电站废水等。 第三种是按废水中所含污染物的主要成分分类,如酸性废水、碱性废水、含氰废水、含铬废水、含镉废水、含汞废水、含酚废水、含醛废水、含油废水、含硫废水、含有机磷废水和放射性废水等。 3种分类中的前两种分类方法不涉及废水中所含污染物的主要成分,也不能表明废水的危害性。而第三种分类法清楚地反映了废水中主要污染物的成分,能表明废水一定的危害性。以第三种方法分类,可以明确废水处理的重点和关键,使废水处理更有针对性。 重点工业行业废水该如何处理? 按照工业废水的第二种分类方法,可以分出各工业行业废水。在这里,我们选取了几个比较重要的工业行业,讨论其废水特点和处理方法。 01 食品工业废水特点及处理方法 食品工业原料广泛,制品种类繁多,排出废水的水量、水质差异很大。由于废水中主要污染物成分复杂,漂浮在废水中的固体物质,如菜叶、果皮、碎肉、禽羽等;悬浮在废水中的物质,如油脂、蛋白质、淀粉、胶体物质等;溶解在废水中的酸、碱、盐、糖类等;原料夹带的泥沙及其他有机物等;致病菌毒等。

工业废水处理的十大方法详解

工业废水处理的十大方法详解 中国对废水污染的治理与西方发达国家相比起步较晚,在借鉴国外先进处理技术经验的基础上,以国家科技攻关课题为平台,引进和开发了大量的废水处理新技术,某些项目已达到国际先进水平。这些新技术的投产运行为缓解中国严峻的水污染现状,改善水环境发挥了至关重要的作用。 1膜技术 膜分离法常用的有微滤、纳滤、超滤和反渗透等技术。由于膜技术在处理过程中不引入其他杂质,可以实现大分子和小分子物质的分离,因此常用于各种大分子原料的回收。 如利用超滤技术回收印染废水的聚乙烯醇浆料等。目前限制膜技术工程应用推广的主要难点是膜的造价高、寿命短、易受污染和结垢堵塞等。伴随着膜生产技术的发展,膜技术将在废水处理领域得到越来越多的应用。 2铁碳微电解处理技术 铁碳微电解法是利用Fe/C原电池反应原理对废水进行处理的良好工艺,又称内电解法、铁屑过滤法等。铁炭微电解法是电化学的氧化还原、电化学电对对絮体的电富集作用、以及电化学反应产物的凝聚、新生絮体的吸附和床层过滤等作用的综合效应,其中主要是氧化还原和电附集及凝聚作用。 铁屑浸没在含大量电解质的废水中时,形成无数个微小的原电池,在铁屑中加入焦炭后,铁屑与焦炭粒接触进一步形成大原电池,使铁屑在受到微原电池腐蚀的基础上,又受到大原电池的腐蚀,从而加快了电化学反应的进行。 此法具有适用范围广、处理效果好、使用寿命长、成本低廉及操作维护方便等诸多优点,并使用废铁屑为原料,也不需消耗电力资源,具有“以废治废”的意义。目前铁炭微电解技术已经广泛应用于印染、农药/制药、重金属、石油化工及油分等废水以及垃圾渗滤液处理,取得了良好的效果。 3Fenton及类Fenton氧化法

工业废水处理工艺

工业废水处理工艺 近年来,不断有新的方法和技术用于处理工业废水,但各有利弊。单纯的生物氧化法出水中含有一定量的难降解有机物,COD值偏高,不能完全达到排放标准。吸附法虽能较好地除去COD,但存在吸附剂的再生和二次污染的问题。催化氧化法虽能降解难以生物降解的有机物,但实际的工业应用中存在运行费用高等问题。本文介绍一些典型的工业废水处理工艺。 一、工业废水处理超导磁分离工艺 超导磁分离法与传统的化学法、生物法以及普通电磁体磁分离不同,不仅具有投资小、占地少、处理周期短、处理效果好等优点,还可达到普通电磁体3倍以上的磁场强度,从而提高磁分离能力,是未来极具潜在应用价值的技术。 一项超导磁体应用技术研究表明,采用超导高梯度磁分离技术可用于造纸、化工、医药工业废水的净化分离。与传统的超导磁分离技术只能分离矿物、煤、高岭土中磁性杂质不同,该技术通过预先加入改性的磁种子颗粒材料,从而分离工业废水中无磁性的有机、无机污染物,实现工业污水的达标排放。 工业废水如不达标排放,危害颇多。然而,目前使用的化学法和生物化学法存在投资大、运行成本高、反应时间长、占地面积大、效率低、能耗高等诸多问题。对于小型排污企业废水处理,这些问题则愈加突出,厂家若因建立污水处理设施投资过高,大多可能采取直排或偷排,给环境造成了更大危害。因此,开展新型、高效、低成本工业废水处理技术的研究显得重要而迫切。———技术解析——— 铁磁颗粒与污染物絮接 工业废水中一般皆为有机、无机污染物,由于这些污染物本身没有磁性,靠磁场产生的磁吸引力无法分离。研究人员设计并研制出制冷机直接冷却的超导磁体,磁场可达 3.92T。利用该超导磁体对造纸厂废水进行了磁分离处理。 实验采用预先在废水中加入经过表面等离子有机聚合改性的铁磁性颗粒并与污水中非磁性有害物质絮接,通过强磁场实现水中污染物的分离。实验结果表明,经磁分离处理的废水其COD值由起始的1780mg/L降到147mg/L,净化效果良好。 ———技术背景——— 磁分离的发展 磁分离是一种通过磁体提供的磁场吸力来实现物质分离的技术,属于物理分离法,是上世纪

常见工业废水处理技术介绍

常见工业废水处理技术介绍 在电子、塑胶、电镀、五金、印刷、食品、印染等行业, 从废水的排放量和对环境污染的危害程度来看, 电镀、线路板、表面处理等以无机类污染物为主的废水和食品、印染、印刷及生活污水等以有机类污染物为主的废水是处理的重点。本文主要介绍几种比较典型的工业废水的处理技术。 一、表面处理废水 1.磨光、抛光废水 在对零件进行磨光与抛光过程中, 由于磨料及抛光剂等存在, 废水中主要污染物为COD、BOD、SS。 一般可参考以下处理工艺流程进行处理: 废水→调节池→混凝反应池→沉淀池→水解酸化池→好氧池→二 沉池→过滤→排放 2.除油脱脂废水 常见的脱脂工艺有: 有机溶剂脱脂、化学脱脂、电化学脱脂、超声波脱脂。除有机溶剂脱脂外, 其它脱脂工艺中由于含碱性物质、表面活性剂、缓蚀剂等组成的脱脂剂, 废水中主要的污染物为pH、SS、COD、BOD、石油类、色度等。 一般能够参考以下处理工艺进行处理: 废水→隔油池→调节池→气浮设备→厌氧或水解酸化→好氧生化→沉淀→过滤或吸附→排放

该类废水一般含有乳化油, 在进行气浮前应投加CaCl2破乳剂, 将乳化油破除, 有利于用气浮设备去除。当废水中COD浓度高时, 可先采用厌氧生化处理, 如不高, 则可只采用好氧生化处理。 3.酸洗磷化废水 酸洗废水主要在对钢铁零件的酸洗除锈过程中产生, 废水pH 一般为2-3, 还有高浓度的Fe2+, SS浓度也高。 可参考以下处理工艺进行处理: 废水→调节池→中和池→曝气氧化池→混凝反应池→沉淀池→过 滤池→pH回调池→排放 磷化废水又叫皮膜废水, 指铁件在含锰、铁、锌等磷酸盐溶液中经过化学处理, 表面生成一层难溶于水的磷酸盐保护膜, 作为喷涂底层, 防止铁件生锈。该类废水中的主要污染物为: pH、SS、PO43-、COD、Zn2+等。 可参考以下处理工艺进行处理: 废水→调节池→一级混凝反应池→沉淀池→二级混凝反应池→二 沉池→过滤池→排放 4.铝的阳极氧化废水所含污染物主要为pH、COD、PO43-、SS等, 因此可采用磷化废水处理工艺对阳极氧化废水进行处理。二、电镀废水 电镀生产工艺有很多种, 由于电镀工艺不同, 所产生的废水也各不相同, 一般电镀企业所排出的废水包括有酸、碱等前处理废水,

某工业废水处理工程设计(9页)

更多资料请访问(.....) 2006级环境工程课程设计 指导书 题目:某工业废水处理工程设计

系别:环境工程系_ 专业:环境工程 年级: 2 0 0 6级 设计指导书 一、确定废水处理工艺流程 在对工业废水的水质特点,生产过程以及废水的产生情况的调研基础上,参考典型工艺流程,通过方案比较,确定工艺流程。 在选取工艺流程过程中,要考虑污水的水质、水量特点,污水中污染物状况,可生化性,污水处理程度,经处理后污水的排放问题。这是污水处理工艺流程选定的主要依据,根据处理水的排放去向及国家或地方制定的污水各类排放标准,确定应去除的污染物及其处理程度,再选择处理方法。 二、构筑物的设计计算 (一)预处理系统构筑物的设计计算 预处理系统包括格栅、筛网、沉淀池等,预处理系统主要用于去除悬浮物和大的漂浮物等,减轻后续生物处理负担。根据废水特点设计预处理系统。 根据工业废水水质、水量变化大的特点,工业废水处理系统往往需要设置调节池,用于调节水质水量。

(二)、主体构筑物的设计计算 依据废水水质,选择相应的处理工艺。主体构筑物可以是物理处理、化学处理或生物处理,或三者的相互结合,以经济、新颖、处理效果满足出水排放要求为准。 (三)污泥处理构筑物的设计计算 污泥处理的基本问题是通过适当的技术措施,为污泥提供出路。对于预处理和生物处理过程中产生的污泥需要经过适当的处理,达到污泥的减量化。工业废水处理站,由于处理的水量较小,污泥产生量较少,污泥处理一般采用污泥浓缩或机械脱水,风干外运等方法。 机械脱水主要的方法是转筒离心机、板框压滤机、带式压滤机和真空过滤机。 板框压滤机一般为间歇操作,基建设备投资大,过滤能力也较低,但由于其泥饼的含固率高,滤液清澈,固体物质回收率高.调理药品消耗量少。对运输、进一步干燥或焚烧以及卫生填埋的污泥、可以降低运输费用,减少燃料消耗、降低填埋场用地。板框压滤机的选用,主要根据污泥量、过滤机的处理能力来确定所需过滤面积和压滤机的台数! 带式压滤机具有连续生产、机器制造容易、操作管理简单、附属设备较少等特点,从而使投资、劳动力、能源消耗和维护费用都较低,在国内外的污水脱水中得到广泛应用,在国内的发展尤其迅速,新建城市污水处理厂的脱水设备几乎都采用带式压滤机。但由于我国的合成有机聚合物价格昂贵,致使污泥带式压滤机的运行费用很高。带式压滤机是根据生产能力、污泥量来确定所需压滤机的宽度和台数。 转筒离心机具有处理量大、基建费用少、占地少、工作环境卫生、操作简单、自动化程度高等优点,特别重要的是可以不投加或少投加化学调理剂。其动力费用虽然较高,但总运行费用较低。是世界各国较多采用的机种.转筒离心机的选择是根据它的处埋能力,即每台机每小时处理污泥立方数,或每台机每小时处理干污泥千克数和每日需要处理的湿污泥立方数或干污泥千克数来决定。至少选择二至三台(其中一台备用)。 三、污水处理厂布置

工业污水处理方法有哪些

工业废水处理是指将废水中所含有的污染物分离出来(或将其分解,转化为无害物质),使废水得到净化。目前常用的处理方法有: 1.一级处理采用物理处理方法即用格栅、筛网、沉沙池、沉淀池、隔油池等构筑物,去除废水中的固体悬浮物、浮油,初步调整pH值,减轻废水的腐化程度。废水经一级处理后,一般达不到排放标准(BOD去除率仅25-40%)。故通常为预处理阶段,以减轻后续处理工序的负荷和提高处理效果。 2.二级处理是采用生物处理方法及某些化学方法来去除废水中的可降解有机物和部分胶体污染物。经过二级处理后,废水中BOD的去除率可达80-90%,即BOD合量可低于30mg/L。经过二级处理后的水,一般可达到农灌标准和废水排放标准,故二级处理是废水处理的主体。 但经过二级处理的水中还存留一定量的悬浮物、生物不能分解的溶解性有机物、溶解性无机物和氮磷等藻类增值营养物,并含有病毒和细菌。因而不能满足要求较高的排放标准,如处理后排入流量较小、稀释能力较差的河流就可能引起

污染,也不能直接用作自来水、工业用水和地下水的补给水源。 3.三级处理是进一步去除二级处理未能去除的污染物,如磷、氮及生物难以降解的有机污染物、无机污染物、病原体等。废水的三级处理是在二级处理的基础上,进一步采用化学法(化学氧化、化学沉淀等)、物理化学法(吸附、离子交换、膜分离技术等)以除去某些特定污染物的一种“深度处理”方法。 三利环保设备制造有限公司是集倡导、开发绿色环保技术研究、研发、生产各种消烟脱硫除尘器、污水处理设备、承接环境保护工程的设计、安装及工程配套、生产各种除尘器配件、控制仪器及各种工业滤布的综合型环保高新技术企业。

14种工业废水特点及处理方法

14种工业废水特点及处理方法_环保在线 导读:重金属废水主要来自矿山、冶炼、电解、电镀、农药、医药、油漆、颜料等企业排出的废水。废水中重金属的种类、含量及存在形态随不同生产企业而异。 1、含酚废水有何危害,怎样处理? 含酚废水主要来自焦化厂、煤气厂、石油化工厂、绝缘材料厂等工业部门以及石油裂解制乙烯、合成苯酚、聚酰胺纤维、合成染料、有机农药和酚醛树脂生产过程。含酚废水中主要含有酚基化合物,如苯酚、甲酚、二甲酚和硝基甲酚等。酚基化合物是一种原生质毒物,可使蛋白质凝固。水中酚的质量浓度达到0.1一0.2mg/L时,鱼肉即有异味,不能食用;质量浓度增加到1mg/L,会影响鱼类产卵,含酚510mg/L,鱼类就会大量死亡。饮用水中含酚能影响人体健康,即使水中含酚质量浓度只有0.002mg/L,用氯消毒也会产生氯酚恶臭。通常将质量浓度为1000mg/L的含酚废水.称为高浓度含酚废水,这种废水须回收酚后,再进行处理。质量浓度小于1000mg/L的含酚废水,称为低浓度含酚废水。通常将这类废水循环使用,将酚浓缩回收后处理。回收酚的方法有溶剂萃取法、蒸汽吹脱法、吸附法、封闭循环法等。含酚质量浓度在300mg/L以下的废水可用生物氧化、化学氧化、物理化学氧化等方法进行处理后排放或回收。 2、含汞废水怎样治理,含汞化合物有何特性? 含汞废水主要来源于有色金属冶炼厂、化工厂、农药厂、造纸厂、染料厂及热工仪器仪表厂等。从废水中去除无机汞的方法有硫化物沉

淀法、化学凝聚法、活性炭吸附怯、金属还原法、离子交换法和微生物法等。一般偏碱性含汞废水通常采用化学凝聚法或硫化物沉淀法处理。偏酸性的含汞废水可用金属还原法处理。低浓度的含汞废水可用活性炭吸附法、化学凝聚法或活性污泥法处理,有机汞废水较难处理,通常先将有机汞氧化为无机汞,而后进行处理。各种汞化合物的毒性差别很大。元素汞基本无毒;无机汞中的升汞是剧毒物质,有机汞中的苯基汞分解较快,毒性不大;甲基汞进入人体很容易被吸收,不易降解,排泄很慢,特别是容易在脑中积累。毒性zui大,如水俣病就是由甲基汞中毒造成的。 3、含油废水有何特性,怎样治理? 含油废水主要来源于石油、石油化工、钢铁、焦化、煤气发生站、机械加工等工业部门。废水中油类污染物质,除重焦油的相对密度为1.1以上外,其余的相对密度都小于1。油类物质在废水中通常以三种状态存在。(1)浮上油,油滴粒径大于100m,易于从废水中分离出来。(2)分散油.油滴粒径介于10一100m之间,恳浮于水中。(3)乳化油,油滴粒径小于10m,不易从废水中分离出来。由于不同工业部门排出的废水中含油浓度差异很大,如炼油过程中产生废水,含油量约为150一1000mg/L,焦化废水中焦油含量约为500一800mg/L,煤气发生站排出废水中的焦油含量可达2000一3000mg/L。因此,含油废水的治理应首先利用隔油池,回收浮油或重油,处理效率为60%一80%,出水中含油量约为100一200mg/L;废水中的乳化油和分散油较难处理,故应防止或减轻乳化现象。方法之一,是在生产过程中

常见工业废水处理方法

常见工业废水处理方法 目录 一、表面处理废水 (2) 1.磨光、抛光废水 (2) 2.除油脱脂废水 (2) 3.酸洗磷化废水 (3) 4.铝的阳极氧化废水 (4) 二、电镀废水 (4) 1.含氰废水 (4) 2.含铬废水 (5) 3.综合重金属废水 (5) 4.多种电镀废水综合处理 (6) 三、线路板废水 (7) 1.络合含铜废水(铜氨络合废水) (7) 2.油墨废水 (8) 3.线路板综合废水 (8) 4. 多种线路板废水综合处理 (8) 四、常见有机类污染物废水的处理技术 (9) 1.生活污水 (9) 2.印染废水 (9) 3.印刷油墨废水 (9)

附件1造纸工业废水处理中的预处理 (10) 1.格栅、筛网 (10) 2.纤维回收系统 (11) 3.调节 (12) 4、结论 (13) 常见的工业废水主要分布在电子、塑胶、电镀、五金、印刷、食品、印染等行业。从废水的排放量和对环境污染的危害程度来看,电镀、线路板、表面处理等以无机类污染物为主的废水和食品、印染、印刷及生活污水等以有机类污染物为主的废水是处理的重点。本文主要介绍几种比较典型的工业废水的处理技术。 一、表面处理废水 1.磨光、抛光废水 在对零件进行磨光与抛光过程中,由于磨料及抛光剂等存在,废水中主要污染物为COD、BOD、SS。一般可参考以下处理工艺流程进行处理:废水→调节池→混凝反应池→沉淀池→水解酸化池→好氧池→二沉池→过滤→排放 2.除油脱脂废水

常见的脱脂工艺有:有机溶剂脱脂、化学脱脂、电化学脱脂、超声波脱脂。除有机溶剂脱脂外,其它脱脂工艺中由于含碱性物质、表面活性剂、缓蚀剂等组成的脱脂剂,废水中主要的污染物为pH、SS、COD、BOD、石油类、色度等。一般可以参考以下处理工艺进行处理: 废水→隔油池→调节池→气浮设备→厌氧或水解酸化→好氧生化→沉淀→过滤或吸附→排放 该类废水一般含有乳化油,在进行气浮前应投加CaCl2破乳剂,将乳化油破除,有利于用气浮设备去除。当废水中COD浓度高时,可先采用厌氧生化处理,如不高,则可只采用好氧生化处理。 3.酸洗磷化废水 酸洗废水主要在对钢铁零件的酸洗除锈过程中产生,废水pH一般为2-3,还有高浓度的Fe2+,SS浓度也高。可参考以下处理工艺进行处理:废水→调节池→中和池→曝气氧化池→混凝反应池→沉淀池→过滤池→pH 回调池→排放 磷化废水又叫皮膜废水,指铁件在含锰、铁、锌等磷酸盐溶液中经过化学处理,表面生成一层难溶于水的磷酸盐保护膜,作为喷涂底层,防止铁件生锈。该类废水中的主要污染物为:pH、SS、PO43-、COD、Zn2+等。可参考以下处理工艺进行处理:

工业废水处理概述

第四章工业废水处理概论 第一节概述 一、工业废水的分类 工业企业各行业生产过程中排出的废水,统称工业废水,其中包括生产污水、冷却水和生活污水3种。 为了区分工业废水的种类,了解其性质,认识其危害,研究其处理措施,通常进行废水的分类,一般有3种分类方法。 1、按行业的产品加工对象分类。如冶金废水、造纸废水、炼焦煤气废水、金属酸洗废水、纺织印染废水、制革废水、农药废水、化学肥料废水等。 2、按工业废水中所含主要污染物的性质分类。含无机污染物为主的称为无机废水,含有机污染物为主的称为有机废水。例如,电镀和矿物加工过程的废水是无机废水,食品或石油加工过程的废水是有机废水。这种分类方法比较简单,对考虑处理方法有利。如对易生物降解的有机废水一般采用生物处理法,对无机废水一般采用物理、化学和物理化学法处理。不过,在工业生产过程中,一种废水往往既含无机物,也含有机物。 3、按废水中所含污染物的主要成分分类。如酸性废水、碱性废水、含酚废水、含镉废水、含铬废水、含锌废水、含汞废水、含氟废水、含有机磷废水、含放射性废水等。这种分类方法的优点是突出了废水的主要污染成分,可有针对性地考虑处理方法或进行回收利用。 除上述分类方法外,还可以根据工业废水处理的难易程度和废水的危害性,将废水中的主要污染物分为3类。 1、易处理危害小的废水。如生产过程中产生的热排水或冷却水,对其稍加处理,即可排放或回用。 2、易生物降解无明显毒性的废水。可采用生物处理法。 3、难生物降解又有毒性的废水。如含重金属废水,含多氯联苯和有机氯农药废水等。 上述废水的分类方法只能作为了解污染源时的参考。实际上,一种工业可以排出几种不同性质的废水,而一种废水又可能含有多种不同的污染物。例如染料工业,既排出酸性废水,又排出碱性废水。纺织印染废水由于织物和染料的不同,其中的污染物和浓度往往有很大差别。 二、工业废水对环境的污染 水污染是我国面临的主要环境问题之一。随着我国工业的发展,工业废水的排放量日益增加,达不到排放标准的工业废水排入水体后,会污染地表水和地下水。水体一旦受到污染,要想在短时间内恢复到原来的状态是不容易的。水体受到污染后,不仅会使其水质不符合饮用水、渔业用水的标准,还会使地下水中的化学有害物质和硬度增加,影响地下水的利用。我国的水资源并不丰富,若按人口平均占有径流量计算,只相当于世界人均值的四分之一。

工业污水处理流程

工业污水处理流程 工业企业主要分布在电子、塑胶、电镀、五金、印刷、食品、印染等行业。从废水的排放量和对环境污染的危害程度来看,电镀、线路板、表面处理等以无机类污染物为主的废水和食品、印染、印刷及生活污水等以有机类污染物为主的废水是处理的重点。本文主要介绍几种比较典型的工业废水的处理技术。 一、表面处理废水 1.磨光、抛光废水 在对零件进行磨光与抛光过程中,由于磨料及抛光剂等存在,废水中主要污染物为COD、BOD、SS。 一般可参考以下处理工艺流程进行处理: 废水→调节池→混凝反应池→沉淀池→水解酸化池→好氧池→二沉池→过滤→排放 2.除油脱脂废水 常见的脱脂工艺有:有机溶剂脱脂、化学脱脂、电化学脱脂、超声波脱脂。除有机溶剂脱脂外,其它脱脂工艺中由于含碱性物质、表面活性剂、缓蚀剂等组成的脱脂剂,废水中主要的污染物为pH、SS、COD、BOD、石油类、色度等。 一般可以参考以下处理工艺进行处理: 废水→隔油池→调节池→气浮设备→厌氧或水解酸化→好氧生化→沉淀→过滤或吸附→排放 该类废水一般含有乳化油,在进行气浮前应投加CaCl2破乳剂,将乳化油破除,有利于用气浮设备去除。当废水中COD浓度高时,可先采用厌氧生化处理,如不高,则可只采用好氧生化处理。 3.酸洗磷化废水 酸洗废水主要在对钢铁零件的酸洗除锈过程中产生,废水pH一般为2-3,还有高浓度的Fe2+,SS浓度也高。 可参考以下处理工艺进行处理: 废水→调节池→中和池→曝气氧化池→混凝反应池→沉淀池→过滤池→pH回调池→排放

磷化废水又叫皮膜废水,指铁件在含锰、铁、锌等磷酸盐溶液中经过化学处理,表面生成一层难溶于水的磷酸盐保护膜,作为喷涂底层,防止铁件生锈。该类废水中的主要污染物为:pH、SS、PO43-、COD、Zn2+等。 可参考以下处理工艺进行处理: 废水→调节池→一级混凝反应池→沉淀池→二级混凝反应池→二沉池→过滤池→排放 4.铝的阳极氧化废水所含污染物主要为pH、COD、PO43-、SS等,因此可采用磷化废水处理工艺对阳极氧化废水进行处理。 二、电镀废水 电镀生产工艺有很多种,由于电镀工艺不同,所产生的废水也各不相同,一般电镀企业所排出的废水包括有酸、碱等前处理废水,氰化镀铜的含氰废水、含铜废水、含镍废水、含铬废水等重金属废水。此外还有多种电镀废液产生。 对于含不同类型污染物的电镀废水有不同的处理方法,分别介绍如下: 1.含氰废水 目前处理含氰废水比较成熟的技术是采用碱性氯化法处理,必须注意含氰废水要与其它废水严格分流,避免混入镍、铁等金属离子,否则处理困难。 该法的原理是废水在碱性条件下,采用氯系氧化剂将氰化物破坏而除去的方法,处理过程分为两个阶段,第一阶段是将氰氧化为氰酸盐,对氰破坏不彻底,叫做不完全氧化阶段,第二阶段是将氰酸盐进一步氧化分解成二氧化碳和水,叫完全氧化阶段。 反应条件控制: 一级氧化破氰:pH值10~11;理论投药量:简单氰化物CN-:Cl2=1:2.73,复合氰化物CN-:Cl2=1:3.42。用ORP 仪控制反应终点为300~350mv,反应时间10~15分钟。 二级氧化破氰:pH值7~8(用H2SO4回调);理论投药量:简单氰化物CN-:Cl2=1:4.09,复合氰化物 CN-:Cl2=1:4.09。用ORP仪控制反应终点为600~700mv;反应时间10~30分钟。反应出水余氯浓度控制在3~5mg/1。 处理后的含氰废水混入电镀综合废水里一起进行处理。 2.含铬废水

21种污水处理中常见污染物的来源及处理方法

21种污水处理中常见污染物的来源及处理方法 科邦达环保 废水中各种污染物众多,来源也比较广泛,都是如何处理的呢?一起来看看这21种常见污染物的来源以及处理方法。 目录 1、耗氧有机物(易生化) (2) 2、难生物降解有机物 (3) 3、有机氮和氨氮 (3) 4、磷和有机磷 (4) 5、酸碱废水 (4) 6、油类污染物 (5) 7、致病微生物 (7) 8、硝酸盐和亚硝酸盐 (7) 9、氟化物 (9) 10、硫化物 (9) 11、氰化物 (10) 12、酚 (10) 13、银 (11) 14、镍 (11) 15、铅 (12) 16、铬 (12) 17、汞 (13) 18、有机氯 (13) 19、苯并芘 (14) 20、镉 (14) 21、砷 (15)

1、耗氧有机物(易生化) 污水中耗氧有机物(易生化)主要有腐植酸、蛋白质、酯类、糖类、氨基酸等化合物,这些物质以悬浮或溶解状态存在于废水中。在微生物的作用下,这些有机物可以分解为简单的CO2等无机物,但因为在天然水体中分解时需要消耗水中的溶解氧,因而称为耗氧有机物。 含有这些物质的污水一旦进入水体,会引起溶解氧含量降低进而导致水体变黑变臭。生活污水和食品、造纸、石油化工、化纤、制药、印染等企业排放的工业废水都含有大量的耗氧有机物。 据统计,我国造纸业排放的耗氧有机物约占工业废水排放总量的1/4,城市污水的有机物浓度不高,但因水量较大,城市污水排放的耗氧有机物总量也很大。污水二级生物处理要重点解决的问题就是将这些物质的绝大部分从污水中去 除掉。 耗氧有机物成分复杂分别测定其中各种胶有机物的浓 度相当困难,实际工作中常用cODCr、BOD5、TOC、TOD 等指标来表示。一般来说上述指标值越高,消耗水中的溶解氧越多,水质越差。自然水体中BOD5低于3mg/L时,水质良好达到7.5 mg/L时,水质已较差超过10mg/L,表明水质已经很差其中的溶解氧已接近于零。

几种工业废水处理工艺流程

几种工业废水处理工艺流程 一、表面处理废水1磨光、抛光废水 在对零件进行磨光与抛光过程中,由于磨料及抛光剂等存在,废水中主要污染物为COD、BOD、SS。 参考工艺流程废水→调节池→混凝反应池→沉淀池→水解 酸化池→好氧池→二沉池→过滤→排放 2除油脱脂废水 常见的脱脂工艺有:有机溶剂脱脂、化学脱脂、电化学脱脂、超声波脱脂。除有机溶剂脱脂外,其它脱脂工艺中由于含碱性物质、表面活性剂、缓蚀剂等组成的脱脂剂,废水中主要的污染物为pH、SS、COD、BOD、石油类、色度等。 参考工艺流程废水→隔油池→调节池→气浮设备→厌氧或 水解酸化→好氧生化→沉淀→过滤或吸附→排放 该类废水一般含有乳化油,在进行气浮前应投加CaCl2破乳剂,将乳化油破除,有利于用气浮设备去除。 当废水中COD浓度高时,可先采用厌氧生化处理,如不高,则可只采用好氧生化处理。3酸洗磷化废水 酸洗废水主要在对钢铁零件的酸洗除锈过程中产生,废水pH 一般为2-3,还有高浓度的Fe2+,SS浓度也高。 参考工艺流程废水→调节池→中和池→曝气氧化池→混凝 反应池→沉淀池→过滤池→pH回调池→排放

4磷化废水 磷化废水又叫皮膜废水,指铁件在含锰、铁、锌等磷酸盐溶液中经过化学处理,表面生成一层难溶于水的磷酸盐保护膜,作为喷涂底层,防止铁件生锈。该类废水中的主要污染物为:pH、SS、PO43-、COD、Zn2+等。 参考工艺流程废水→调节池→一级混凝反应池→沉淀池→二级混凝反应池→二沉池→过滤池→排放 5铝的阳极氧化废水 所含污染物主要为pH、COD、PO43-、SS等,因此可采用磷化废水处理工艺对阳极氧化废水进行处理。 二、电镀废水 电镀生产工艺有很多种,由于电镀工艺不同,所产生的废水也各不相同,一般电镀企业所排出的废水包括有酸、碱等前处理废水,氰化镀铜的含氰废水、含铜废水、含镍废水、含铬废水等重金属废水。此外还有多种电镀废液产生。对于含不同类型污染物的电镀废水有不同的处理方法,分别介绍如下: 1含氰废水 目前处理含氰废水比较成熟的技术是采用碱性氯化法处理,必须注意含氰废水要与其它废水严格分流,避免混入镍、铁等金属离子,否则处理困难。该法的原理是废水在碱性条件下,采用氯系氧化剂将氰化物破坏而除去的方法,处理过程

常见的工业废水及处理

废水处理简介和基本概念 废水处理(sewage treatment,wastewater treatment):为使污水达到排水某一水体或再次使用的水质要求,并对其进行净化的过程。污水处理被广泛应用于建筑、农业,交通、能源、石化、环保、城市景观、医疗、餐饮等各个领域,也越来越多地走进寻常百姓的日常生活。 按污水来源分类,污水处理一般分为生产污水处理和生活污水处理。生产污水包括工业污水、农业污水以及医疗污水等,而生活污水就是日常生活产生的污水,是指各种形式的无机物和有机物的复杂混合物,包括:①漂浮和悬浮的大小固体颗粒;②胶状和凝胶状扩散物;③纯溶液。 按污水的性质来分,水的污染有两类:一类是自然污染;另一类是人为污染。当前对水体危害较大的是人为污染。水污染可根据污染杂质的不同而主要分为化学性污染、物理性污染和生物性污染三大类。污染物主要有:(1)未经处理而排放的工业废水;(2)未经处理而排放的生活污水;(3)大量使用化肥、农药、除草剂的农田污水;(4)堆放在河边的工业废弃物和生活垃圾;(5)水土流失;(6)矿山污水。 由于在污水中,工业废水占了很大比重,而且对环境的影响更加严重,所以工业废水的处理也收到了更大的关注。本文主要通过几个具体的例子,介绍目前工业产业中常见的污水类型,并且提供相应的解决方案。 橡胶产业的废水处理 近年来,我国天然橡胶产业快速发展,橡胶加工企业废水处理难题日益凸显。作为生产四大工业基础原料之一的天然橡胶行业,在我国经济社会发展中一直发挥着不可替代的作用。但制胶废水处理问题始终是行业难点,也是行业研究热点,因为制胶废水是造成水环境污染的重要原因之一。 据了解,天然橡胶制胶过程会产生大量高浓度有机废水,若不经处理直接排入水体,会耗尽水中的溶解氧,导致鱼虾灭迹、水体恶臭。特别是废水中高含量的氮成分,不但对人体有害,还可能造成水体富营养化。云南省各级政府高度重视制胶废水处理问题,曾经采取过多种措施治污,效果却不尽人意,这与行业治污基础薄弱有着直接关系。 最常用的工艺有3种,即自然氧化塘工艺、厌氧塘+兼性塘+一体化氧化沟工艺、厌氧+好氧生物接触氧化工艺。 自然氧化塘工艺较为传统,运用得最早,也最普遍,目前仍有80%左右的企业使用。这项工艺投资较少,采用机械设备少,运行管理简便,不需要对污泥进行处理;但其占地面积大,废水处理停留时间长,抗冲击负荷能力弱,处理效果和系统稳定性较差。厌氧塘+兼性塘+一体化氧化沟工艺在稳定塘后增加了一体化氧化沟处理,以提高废水处理的稳定性。虽然稳定性好、运行管理方便,但这项工艺对污泥控制有较严格的要求,控制不当易出现污泥膨胀、泡沫、上浮、沉积等现象。厌氧+好氧生物接触氧化工艺在稳定塘后增加生物膜法,进一步处理废水。这项工艺系统同样具有良好的稳定性和简便的运行管理,且设备故障率低,即使生物膜自行脱落也不会造成堵塞。 以上三种工艺没有完全的优胜策略,需要根据不同企业的情况,结合自身特点进行分布。 纺织业的污水处理 纺织印染废水工业是一个用水量大、废水有机含量高,污染高的行业。纺织印染废水主要来源于浆(织布)废水、精炼废水、漂白废水、丝光废水、染色废水、印花废水、整理废水等工序。对纺织印染废水的治理,首先也应该以防为主,积极改造生产工艺和设备,减少废物和废料的产生;通过逆流用水和重复用水来减少污染物的排放量,提高水的回用率;回用染化原料,降低生产成本,又减轻环境污染,一举多得,最终的废水再经处理排放。 纺织印染废水由于具有废水量大、水质复杂、水质水量变化大的特点,其治理比较复杂,它的处理一般也划分一级,二级,三级三个处理阶段。一级处理多采用格栅、预沉池或初沉池,用简单的物理机械法或化学法使废水中悬浮物或块状体分离出来,或中和废水的酸碱度。二级处理多是生物化学处理,可有效地去除胶状的溶解性有机污染物,有效地改善水质,废水可生化性较好时,可选择生化法;当废水可生化性较差时,可选择化学法,如混凝沉淀或加压气浮等方法。三级处理多采用物理法或化学法,对其进行深度处理,达标排放或回用。

14种工业污水的处理原则与方法汇总

14种工业污水的处理原则与方法汇总! 工业废水是指工业生产过程中产生的废水、污水和废液,其中含有随水流失的工业生产用料、中间产物和产品以及生产过程中产生的污染物。随着工业的迅速发展,废水的种类和数量迅猛增加,对水体的污染也日趋广泛和严重,威胁人类的健康和安全。对于保护环境来说,工业废水的处理比城市污水的处理更为重要。工业废水的处理虽然早在19世纪末已经开始,并且在随后的半个世纪进行了大量的试验研究和生产实践,但是由于许多工业废水成分复杂,性质多变,至今仍有一些技术问题没有完全解决。这点和技术已臻成熟的城市污水处理是不同的。

1、第一种是按工业废水中所含主要污染物的化学性质分类,含无机污染物为主的为无机废水,含有机污染物为主的为有机废水。例如电镀废水和矿物加工过程的废水,是无机废水;食品或石油加工过程的废水,是有机废水。 2、第二种是按工业企业的产品和加工对象分类,如冶金废水、造纸废水、炼焦煤气废水、金属酸洗废水、化学肥料废水、纺织印染废水、染料废水、制革废水、农药废水、电站废水等。 3、第三种是按废水中所含污染物的主要成分分类,如酸性废水、碱性废水、含氰废水、含铬废水、含镉废水、含汞废水、含酚废水、含醛废水、含油废水、含硫废水、含有机磷废水和放射性废水等。 前两种分类法不涉及废水中所含污染物的主要成分,也不能表明废水的危害性。第三种分类法,明确地指出废水中主要污染物的成分,能表明废水一定的危害性。 此外也有从废水处理的难易度和废水的危害性出发,将废水中主要污染物归纳为三类:第一类为废热,主要来自冷却水,冷却水可以回用;第二类为常规污染物,即无明显毒性而又易于生物降解的物质,包括生物可降解的有机物,可作为生物营养素的化合物,以及悬浮固体等;第三类为有毒污染物,即含有毒性而又不易生物降解的物质,包括重金属、有毒化合物和不易被生物降解的有机化合物等。 实际上,一种工业可以排出几种不同性质的废水,而一种废水又会有不同的污染物和不同的污染效应。例如染料工厂既排出酸性废水,又排出碱性废水。纺织印染废水,由于织物和染料的不同,其中的污染物和污染效应就会有很大差别。即便是一套生产装置排出的废水,也可能同时含有几种污染物。如炼油厂

100吨每天工业废水处理方案

100T/D清洗废水处理 设 计 方 案 设计单位:北京东江顺达科技有限公司 单位地址:北京大兴区黄村工业园 联系方式: 二零一五年七月十八日 目录 一、项目必要性: (1) 二、治理单位简介: (1) 三、设计依据: (2) 四、设计原则: (2)

五、废水处理工艺设计: (3) 1、设计水量: (3) 2、原水水质: (3) 3、处理目标: (3) 4、废水处理工艺简述: (3) 5、工艺流程图如下: (4) 6、工艺特点: (5) 六、处理工艺设施及性能参数说明: (5) 1、酸碱中和调节池: (5) 2、曝气氧化池: (6) 3、沉淀池: (7) 4、溶气气浮机: (7) 5、罗茨鼓风机: (8) 6、潜污提升泵: (8) 7、多介质过滤器介绍: (9) 七、主要设备及部件配置清单: (11) 八、售后服务: (12) 九、附件 (13) 废水处理部分设备图片

一、项目必要性: 本废水处理项目,配合本市环境的进一步发展,适应当今我国科学发展的实际需要,对改善厂区环境,营造亲水文化氛围,提高人民的生活环境,提升本公司的形象都具有重要的现实意义和社会效益。污水的处理不仅为公司减少了排污费同时还会为公司带来一定的经济效益,同时对同行业废水的处理具有示范与推广作用,具有重要的现实意义。 二、治理单位简介: 北京东江顺达科技有限公司,是一家以营造绿色未来为宗旨的环保高新技术企业,集环保工程设计、施工、产品开发、设备制造、安装、调试及管理等于一体的专业水处理工程企业。公司坚持以科技兴业、以质量赢得客户、以信誉占领市场为原则,秉承以人为本,服务社会的宗旨,在国内取得良好的信誉。公司成立于2012年,技术力量雄厚,现拥有员工30余名,其中高级技术人员占35%;设备精良,拥有国内比较先进的水处理检验、安装、调试等设备。公司已经与上海、沈阳等多家科研院校及企业成为技术联合共同体,共同攻克技术难关并取得了可喜的成绩。几年来公司在总经理与全体员工共同的努力下,在化工污水处理、屠宰污水处理、造纸污水处理、城市生活污水处理与中水回用、医院污水处理及生活饮用水等工程方面,取得了宝贵的工程技术经验和良好的客户满意度。放眼未来,我们将以真诚的服务、先进科学的技术、务实求精的精神,与广大用户各界朋友携

常见工业废水处理技术

常见工业废水处理技术介绍 1 企业,主要分布在电子、塑胶、电镀、五金、印刷、食品、印染等行业。从废水的排放量和对环境污染的危害程度来看,电镀、线路板、表面处理等以无机类污染物为主的废水和食品、印染、印刷及生活污水等以有机类污染物为主的废水是处理的重点。本文主要介绍几种比较典型的工业废水的处理技术。 一、表面处理废水 1.磨光、抛光废水 在对零件进行磨光与抛光过程中,由于磨料及抛光剂等存在,废水中主要污染物为COD、BOD、SS。 一般可参考以下处理工艺流程进行处理: 废水→调节池→混凝反应池→沉淀池→水解酸化池→好氧池→二沉池→过滤→排放 2.除油脱脂废水 常见的脱脂工艺有:有机溶剂脱脂、化学脱脂、电化学脱脂、超声波脱脂。除有机溶剂脱脂外,其它脱脂工艺中由于含碱性物质、表面活性剂、缓蚀剂等组成的脱脂剂,废水中主要的污染物为pH、SS、COD、BOD、石油类、色度等。 一般可以参考以下处理工艺进行处理: 废水→隔油池→调节池→气浮设备→厌氧或水解酸化→好氧生化→沉淀→过滤或吸附→排放 该类废水一般含有乳化油,在进行气浮前应投加CaCl2破乳剂,将乳化油破除,有利于用气浮设备去除。当废水中COD浓度高时,可先采用厌氧生化处理,如不高,则可只采用好氧生化处理。 3.酸洗磷化废水 酸洗废水主要在对钢铁零件的酸洗除锈过程中产生,废水pH一般为2-3,还有高浓度的Fe2+,SS浓度也高。 可参考以下处理工艺进行处理: 废水→调节池→中和池→曝气氧化池→混凝反应池→沉淀池→过滤池→pH回调池→排放磷化废水又叫皮膜废水,指铁件在含锰、铁、锌等磷酸盐溶液中经过化学处理,表面生成一层难溶于水的磷酸盐保护膜,作为喷涂底层,防止铁件生锈。该类废水中的主要污染物为:pH、SS、PO43-、COD、Zn2+等。 可参考以下处理工艺进行处理: 废水→调节池→一级混凝反应池→沉淀池→二级混凝反应池→二沉池→过滤池→排放 4.铝的阳极氧化废水所含污染物主要为pH、COD、PO43-、SS等,因此可采用磷化废水处理工艺对阳极氧化废水进行处理。 二、电镀废水 电镀生产工艺有很多种,由于电镀工艺不同,所产生的废水也各不相同,一般电镀企业所排出的废水包括有酸、碱等前处理废水,氰化镀铜的含氰废水、含铜废水、含镍废水、含铬废水等重金属废水。此外还有多种电镀废液产生。 对于含不同类型污染物的电镀废水有不同的处理方法,分别介绍如下: 1.含氰废水 目前处理含氰废水比较成熟的技术是采用碱性氯化法处理,必须注意含氰废水要与其它

相关文档
最新文档