图像边缘检测方法研究综述

图像边缘检测方法研究综述
图像边缘检测方法研究综述

第31卷第3期2005年5月光学技术

OP T ICA L T ECHN IQ U E

V ol.31No.3

M ay2005

文章编号:1002-1582(2005)03-0415-05

图像边缘检测方法研究综述X

段瑞玲,李庆祥,李玉和

(清华大学精密仪器及机械学系,北京100084)

摘要:图像的边缘是图像最基本也是最重要的特征之一。边缘检测一直是计算机视觉和图像处理领域的经典研究课题之一。图像分析和理解的第一步常常是边缘检测。边缘检测的目的是去发现图像中关于形状和反射或透射比的信息,是图像处理、图像分析、模式识别、计算机视觉以及人类视觉的基本步骤之一。其结果的正确性和可靠性将直接影响到机器视觉系统对客观世界的理解。对一些传统的边缘检测方法和近年来广泛收到关注的边缘检测算法进行了简单介绍。综述中只涉及到检测方面,而没有讨论滤波、边缘定位、算法的复杂程度和边缘检测器性能的评价。

关键词:图像处理;边缘检测;梯度算法;差分边缘检测

中图分类号:T P751文献标识码:A

Summary of image edge detection

DU AN Rui_ling,LI Qing_xian g,LI Yu_he

(Department of Pr ecisio n Instrument and M echanology,T sing hua U niversit y,Beijing100084,China) Abstract:Edg e is one of the most fundamental and sig nificant features.Edge detection is alw ays one of the most classical studying projects o f computer vision and image processing field.T he fist step of imag e analysis and understanding is edg e detec-tion.T he g oal of edge detection i s to r ecover information about shapes and reflectance or transmittance in an image.It is one of the fundamental steps in image processing,mage analysis,image patter recognition,and computer vision,as well as in human vision.T he correctness and reliability of its results affect directly the comprehension machine system made for object ive w orld. T he summar y for basic edge detection metho ds was made.It involv ed the detection methods only but not filtering,edge loca-tion,analysis of algor ithm complex ity and functional evaluation about a detector.

Key words:image processing;imag e detection;gradient arithmetic;

1引言

早在本世纪初,人类为了用图片及时传输世界各地发生的新闻事件,便开始了对图像处理技术的研究。用计算机进行图像处理,改善图像质量的有效应用开始于1964年美国喷气推进实验室对太空传回的大批月球照片进行处理,并收到了明显的效果。然而,图像处理技术的真正发展还是在上世纪60年代末,其原因一方面是由于受到航天技术发展的刺激,另一方面是作为图像处理工具的数字计算机和各种不同类型的数字化仪器及显示器的突飞猛进发展。迄今为止,数字图像作为一门崭新的学科,日益受到人们的重视,并且在科学研究、工农业生产、军事技术和医疗卫生等领域发挥着越来越重要的作用。

机器视觉主要是利用计算机实现人类的视觉功能,对客观世界的三维场景的感知、识别和理解。边缘是图像的最基本特征,边缘检测通常是机器视觉系统处理图像的第一个阶段,是机器视觉领域内经典的研究课题之一,其结果的正确性和可靠性将直接影响到机器视觉系统对客观世界的理解。

2图像边缘定义

图像的大部分信息都存在于图像的边缘中,主要表现为图像局部特征的不连续性,即图像中灰度变化比较剧烈的地方。因此,我们把边缘定义为图像中灰度发生急剧变化的区域边界。根据灰度变化的剧烈程度,通常将边缘划分为阶跃状和屋顶状两种类型[1]。阶跃边缘两边的灰度值变化明显,而屋顶边缘位于灰度值增加与减少的交界处。那么,对阶跃边缘和屋顶边缘分别求取一阶、二阶导数就可以表示边缘点的变化。因此,对于一个阶跃边缘点,其灰度变化曲线的一阶导数在该点达到极大值,二阶导数在该点与零交叉;对于一个屋顶边缘点,其灰

415

X收稿日期:2004-06-01;收到修改稿日期:2004-10-20E-mail:duanrl03@mails.tsi https://www.360docs.net/doc/5a6510038.html, 作者简介:段瑞玲(1979_),女,山西人,清华大学博士研究生,从事装配系统及微观图像处理研究。

度变化曲线的一阶导数在该点与零交叉;二阶导数在该点达到极大值。

3边缘检测步骤及要求

3.1边缘检测的步骤

边缘检测主要包括以下四个步骤:

(1)图像滤波

边缘检测算法主要是基于图像亮度的一阶和二阶导数,但是导数的计算对噪声很敏感,因此必须使用滤波器来改善与噪声有关的边缘检测器的性能。

(2)图形增强

增强边缘的基础是确定图像各点邻域强度的变化值。增强算法可以将邻域强度值有显著变化的点突出显示。

(3)图像检测

在图像中有许多点的梯度幅值比较大,而这些点在特定的应用领域中并不都是边缘,应该用某些方法来确定那些是边缘点。最简单的边缘检测判据是梯度幅值阈值判据。

(4)图像定位

如果某一应用场合要求确定边缘位置,则边缘的位置可以在子像素分辨率上来估计,边缘的方位也可以被估计出来。

3.2边缘检测要求

对于图像的边缘检测来说,一般在识别过程中有如下的要求:

(1)首先能够正确的检测出有效的边缘;

(2)边缘定位的精度要高;

(3)检测的响应最好是单像素的;

(4)对于不同尺度的边缘都能有较好的响应并尽量减少漏检;

(5)对噪声应该不敏感;

(6)检测的灵敏度受边缘方向影响应该小。

这些要求往往都很矛盾,很难在一个边缘检测器中得到完全的统一。判断边缘检测器性能的方法是先看边缘图像,再评价其性能,边缘检测器的响应中主要有三种误差:丢失的有效边缘、边缘定位误差和将噪声误判断为边缘。为了定量的评价边缘检测器的性能,1991年Pratt提出了一种综合考虑上述三种因素的品质因数因素公式)Pratt品质因数[2]

FM=

1

max(I A,I I)

E I A

i=1

1

1+A d2i

(1)

其中I A,I I,d,A分别是检测到的边缘、理想边缘、实际边缘与理想边缘间的距离和用于惩罚错误边缘的设计常数。但是由于包括了丢失的边缘点、边缘点的位置和错误的边缘,因此,只能用于有限的几种图像。

4传统边缘检测算子

边缘检测的实质是采用某种算法来提取出图像中的对象与背景间的交界线。图像灰度的变化情况可以用图像灰度分布的梯度来反映,因此我们可以利用局部图像微分技术获得边缘检测算子。经典的边缘检测方法是对原始图像中像素的某小邻域来构造边缘检测算子。以下是对几种经典算子[3)7]的理论介绍以及各自性能特点的比较与评价。

4.1基于灰度直方图的边缘检测

基于灰度直方图门限法的边缘检测是一种最常用、最简单的边缘检测方法。对检测图像中目标的边缘效果很好。图像在暗区的像素较多,而其他像素的灰度分布比较平坦。为了检测出图像物体的边缘,把直方图用门限T分割成两个部分,然后对图像f(i,j)实施以下操作[5]:

(1)扫描图像f(i,j)的每一行,将所扫描的行中每一个像素点的灰度与T比较后得g1(i,j);

(2)再扫描图像f(i,j)的每一列,将所扫描的列中每一个像素点的灰度与T比较后得g2(i,j);

(3)将g1(i,j)与g2(i,j)合并,即得到物体的边界图像g(i,j)。

在以上过程中,门限T的选择将直接影响边缘检测的质量。由于直方图往往很粗糙,再加上噪声的影响更是参差不齐。这样就使得求图像极大、极小值变得困难。因此,可以用两条二次高斯曲线对目标和景物所对应的峰进行拟合,然后求二者的交点,并作为谷底,选取对应的灰度值为门限T,或用一条二次曲线拟合直方图的谷底部分,门限T可取为T=-b/2a。

4.2基于梯度的边缘检测

梯度对应一阶导数,梯度算子就是一阶导数算子。在边缘灰度值过渡比较尖锐,且在图像噪声比较小时,梯度算子工作的效果较好,而且对施加的运算方向不予考虑。对于一个连续图像函数f(x, y),其梯度可表示为一个矢量

¨f(x,y)=[G x,G y]T=5f5x5f5y

T

(2)

这个矢量的幅度和方向角分别为

|¨f(2)|=mag(¨f)

=

5f

5x

2

+

5f

5y

21/2

(3)

416

光学技术第31卷

<(x ,y )=arctan

5f 5x

5f 5y

(4)

以上各式的偏导数需对每个像素的位置计算,在实际中常用小区域模板进行卷积来近似计算。对G x 和G y 各用一个模板,将两个结合起来就构成一个梯度算子。根据模板的大小和元素值的不同,已提出许多不同的算子,常见的有Roberts 边缘检测算子、Sobel 边缘检测算子、Prewitt 边缘检测算子、Robinson 边缘检测算子等。

4.2.1 Roberts 边缘算子

Roberts 边缘检测算子是根据任意一对互相垂直方向上的差分可用来计算梯度的原理,采用对角线方向相邻像素之差

$x f =f (i,j )-f (i +1,j +1)(5)$y f =f (i,j +1)-f (i +1,j )

(6)R (i,j )=

$2x f

+$2y f

(7)对图像f (x ,y )求Roberts 梯度为

G R f (x ,y )=max {f (x ,y )-f (u ,v )}(8)

式中(u ,v )为点(x ,y )的四邻域。或用差分近似

G R f (x ,y )=max [f (x ,y )-f (x +1,y +1)]2+[

f (x +1,y )-f (x ,y +1)]

21/2

(9)

图1 Roberts 边缘算子

它的两个2@2卷积模板见

图1,有了这两个卷积算子就可以计算出Roberts 梯度幅值R (i,j ),再取适当门限TH ,如果R (i,j )\TH 则为阶跃边缘点。

Roberts 边缘检测算子采用对角线方向相邻像素之差近似检测边缘,定位精度高,在水平和垂直方向效果较好,但对噪声敏感。

4.2.2 Sobel 边缘检测算子

将图像中的每个像素的上、下、左、右四邻域的灰度值加权差,与之接近的邻域的权最大。因此,Sobel 算子定义如下

s x ={f (x +1,y -1)+2f (x +1,y )+

f (x +1,y +1)}-{f (x -1,y -1)+2f (x -1,y )+f (x -1,y +1)}s y ={f (x -1,y +1)+2f (x ,y +1)+

f (x +1,y +1)}-{f (x -1,y -1)+

2f (x ,y )+f (x +1,y -1)}

(10)

那么,利用图2所示的两个核做卷积,一个核对通常的垂直边缘影响最大,而另一个核对水平边缘影响最大,两个卷积的最大值都作为像素点的输出值,运算结果就是一幅边缘图像。适当取门限TH ,

如果R (i,j )\TH 则为阶跃边缘点。

Sobel 算子利用像素的上、下、左、右邻域的灰度图2 sobel 边缘算子

加权算法,根据在边缘点处达到极值这一原理进行边缘检测。该方法

不但产生较好的检测效果,而且对噪声具有平滑作用,可以提供较为精确的边缘方向信息。但是,在抗

噪声好的同时增加了计算量,而且也会检测伪边缘,定位精度不高。如果检测中对精度的要求不高,该方法较为常用。

4.2.3 Prew itt 边缘算子

Prew itt 边缘算子是一种边缘样板算子。样板算子由理想的边缘子图像构成,依次用边缘样板去检测图像,与被检测区域最为相似的样板给出最大值,用这个最大值作为算子的输出。p x ={f (x +1,y -1)+f (x +1,y )+

f (x +1,y +1)}-{f (x -1,y -1)+f (x -1,y )+f (x -1,y +1)}

p y ={f (x -1,y +1)+f (x ,y +1)+

f (x +1,y +1)}-{f (x -1,y -1)+f (x ,y -1)+f

(x +1,y -1)}(11)

图3 Pr ew itt 边缘算子

由图3所示的两个卷积算子形成了Prew itt 边缘算子,与使用Sobel 边

缘算子的方法一样,图像中每个像素都用这两个核做卷积,取最大值作为输出,运算结果就是一幅边缘图像。适当取门限TH ,如果R (i,j )\TH 则为阶跃边缘点。

Robinson 边缘算子也是一种边缘样板算子,其算法和Prewitt 边缘算子相似,只是边缘样板不同。4.3 Laplacan 边缘算子

Laplacan 算子是二阶微分算子,它具有旋转不变性,即各向同性的性质。表达公式为

¨2

f (x ,y )=52f (x ,y )5x 2+

52f (x ,y )

5y 2

(12)

在数字图像中可用数字差分近似为

417

第3期段瑞玲,等: 图像边缘检测方法研究综述

¨2

f (x ,y )=f (x +1,y )+f (x ,y +1)+

f (x ,y -1)-4f (x ,y )(13)

数字图像函数的拉普拉斯算法也是借助各种模板卷积实现的。这里对模板的基本要求是对应中心像素的系数应是正的,而对应中心像素临近像素的系数应是负的,且所有系数的和应该是零,这样不会产生灰度偏移,实现拉普拉斯运算的几种模板见图4

图4 L aplacan 边缘算子

拉普拉斯边缘算子的缺点是:由于为二阶差分,双倍加强了噪声

的影响;另外它产生双像素宽的边缘,且不能提供边缘方向的信息,因此,拉普拉斯算子很少直接用于边缘检测,而主要用于已知边缘像素,确定该像素是在图像的暗区还是在明区。其优点是各向同性,不但可以检测出绝大部分边缘,同时基本没有出现伪边缘,可以精确定位边缘。

5 C anny 边缘检测算子

Canny 算子的基本思想是先将图像使用高斯函数Gauss 进行平滑,再由一阶微分的极大值确定边缘点。二阶微分的零交叉点不仅对应着一阶导数的极大值,而且也对应着一阶导数的极小值。换句话说,图像中灰度变化剧烈的点与变化缓慢的点都对应着二阶导数零交叉点。因此,Canny 算子可能会引入伪边缘点。

其定义为:对图像f (x ,y )进行高斯函数滤波后得到f (x ,y )*G A (x ,y ),其中A 为相应的尺度因子。计算其梯度矢量的模M A 和方向A A 为

M A =+f (x ,y )*¨G A (x ,y )+(14)A A =

f (x ,y )*¨G A (x ,y )

+f (x ,y )*¨G A (x ,y )+

(15)

图像的边缘点即为在A A 方向上使M A 取得局部极大值的点。

6 模糊推理的边缘检测

随着计算机速度和存储的飞速发展,图像量化像素点的宽度将越来越小,即使在边缘处,相邻像素灰度值的差异将越来越小,从而制约了建立在以梯度为主的边缘检测算子的发展。这样,国内外不少的学者都在寻求新的边缘检测方法,其中基于模糊理论的图像边缘检测技术就是非常有效的一种。下面主要介绍一种基于多特征和模糊推理的边缘检测算法,其基本思路如下:

(1)按灰度变化方式不同,边缘点可分为4类,如图5(a),(b),(c),(d)所示。

(a)类:两灰度之间,边缘是直线或光滑曲线;

(b)类:角形灰度区域的顶点

;图5 边缘点分类

(c)类:两灰度区域相差较小的边缘;

(d)类:多个

灰度区域的交点;

(2)根据不同类别边缘点定义多种边缘特征,边缘点特征包括:

1)对称度:像素点在线素方向法线两边灰度分布的对称程度

sy mm =sy mm max -

E

|p ij -p c i j |N

(16)

其中p ij 和p c i j 分别表示在窗口内关于法线对称的点对的灰度;

E

含义为窗口内所有点对的灰度差之

和;N 为窗口内所有点对的个数。

2)线素梯度:表示像素点线素方向两侧灰度变化率

g rad =grad max -|

E p i j -E p c i j

|

N

(17)

其中

E p ij

表示线素方向一侧所有点灰度和;

E p c

i j

表示线素方向另一侧所有点灰度和。

3)线素方向标准差:表示在像素点的线素方向上,各点灰度值的差异程度

sub0=E

|p ij -p c

i j |

N

(18)

该标准差越小,说明线素方向上的点灰度差异越小,即该线素方向越合理。

(3)确定模糊规则,用m in_max 重心法模糊推理边缘隶属度,进而实现边缘检测。

针对不同边缘点,用不同的特征组合分别制定识别不同类别边缘点的模糊规则。在确定了每个像素点的线素方向后,分别计算以上的特征参数,然后按模糊规则计算每点的模糊边缘隶属度。

7 Mallat 小波边缘检测算子

在图像处理中,物体的几何边缘、光照阴影以及物体表面纹理等因素都表现为边缘,即图像中灰度发生不连续变化。而且噪声信号与之类似,同样为高频信号,因此正确的检测出边缘是非常困难的。传统算法都是单一尺度的边缘检测算子,不可能正

418

光 学 技 术

第31卷

确与准确的检测出所有的边缘,同时在滤除噪声时影响边缘检测的正确性,因此用多尺度方法检测边缘越来越引起人们的重视。在各种多尺度边缘检测算法中,利用小波进行多尺度边缘检测是比较常用的方法之一。

M allat小波边缘检测算子是Mallat在1992年基于Canny检测算子提出的,是一种多尺度小波变换极大值的方法,可以用于信号奇异性的分析和图像的边缘检测。其基本思想为:

在边缘提取中,一般取小波函数为

71(x,y)=5H(x,y)

5x,72(x,y)=5H(x,y)

5y

(19)

其中H(x,y)为平滑函数,满足

k

R2

H(x,y)d x d y=1,且H(x,y)\0(20)则相应的二进小波变换为

W12j f(x,y)=f*712j f(x,y)=2j 5[f*H2j(x,y)]

5x

W22j f(x,y)=f*722j f(x,y)=2j 5[f*H2j(x,y)]

5y

(21)

固定尺度2j,梯度向量的模和相角为

M2j f(x,y)=|W12j f(x,y)|2+|W22j f(x,y)|2

(22)

U2j f(x,y)=arctg W22j f(x,y)

W12j f(x,y)

(23)

模M2j沿U2j f(x,y)方向的局部极大值点对应于平滑后图像灰度的突变点。图像边缘点也应是这样的点。因此,将模值相近和相角相近的相邻的奇异点连接去除可能是由噪声引起的长度小于一定阈值的短链,就可得到相应尺度下的边缘链。这样的链接应该是连续的、光滑的、单像素宽的。

8总结

图像工程技术由高级到简单分为图像理解、图像分析和图像处理三个层次,边缘检测就属于图像分析的范畴。在实际的处理问题中,图像的边缘作为图像的一种基本特征,经常应用到较高层次的特征描述、图像识别、图像分割、图像增强以及图像压缩等处理技术中,从而可对图像做进一步分析和理解。通过对图像边缘检测算法的总结中可以看到,在图像的边缘检测中有如下一些要求:

(1)首先能够正确的检测出有效的边缘;

(2)边缘定位的精度要高;

(3)检测的响应最好是单像素的;

(4)对于不同尺度的边缘都能有较好的响应并尽量减少漏检;

(5)对噪声应该不敏感;

(6)检测的灵敏度受边缘方向影响应该小。

这些要求往往都是矛盾的,很难在一个边缘检测器中得到完全的统一。

参考文献:

[1]徐建华.图像处理与分析[M].北京:科学出版社,1992.

[2]Pratt W K.Digi tal Image Processing[M].New York:W i ley,

1991.

[3]章毓晋.图像分割[M].北京:科学出版社,2001.

[4]马颂德,张正友.计算机视觉[M].北京:科学出版社,1998.

[5]章毓晋.图像处理和分析基础[M].北京:高等教育出版社,

2002.

[6]荆仁杰,等.计算机图像处理[M].浙江:浙江大学出版社,1990.

[7]王兆华.计算机图像处理方法[M].北京:宇航出版社,1993.

(上接第414页)

为310V。采用降低半导体激光器的工作电压,模拟半导体激光器发光强度变弱,实验数据如表1,表2。

表1不加校正系统的实验结果

半导体激光器的工作电压/V 3.0 2.95 2.90 2.85 2.80

0.3L m的计数值/颗40674002385537103162

表2加校正系统的实验结果

半导体激光器的工作电压/V 3.0 2.95 2.90 2.85 2.80

0.3L m的计数值/颗42964304419142064136

实验结果表明:当半导体激光器的工作电压发生617%的变化,不加校正系统时其接收数据将发生2213%的变化;加校正系统其接收数据仅产生317%的变化。校正的效果非常明显。

这种自动校正是利用对光源强度的监视了以及对静噪声的接收并作相应的处理相结合的方法,构成系统的自动校正。校正的范围只能控制在? 715%范围内,一旦超过这个范围,接收系统必定存在故障。

该自动校正方法已成功地应用在BCJ_1型尘埃粒子计数器中。通过用标准粒子的定标测试,其校正的误差在5%以内,如果要使校正精度进一步提高,则可以将图3中R f分得更细。

参考文献:

[1]伏尔坚斯坦m B.分子光学(上册)[M].北京:高等教育出版社,

1958.

[2]黄惠杰,赵永凯.尘埃粒子计数器的半导体激光散射测量[J].中

国激光,2002,29(12).

[3]康华光.电子技术基础(模拟部分)[M].北京:高等教育出版社,

2002.

[4]邹丽新,翁桂荣.单片微型计算机原理[M].苏州:苏州大学出版

社,2001.

419

第3期段瑞玲,等:图像边缘检测方法研究综述

建筑节能检测方法综述

建筑节能现场检测方法 田斌守 摘要本文综述了几种建筑物围护结构传热系数现场检测方法的原理、操作方法、适用条件,指出各种方法的优缺点及注意事项。 关键词建筑节能检测热流计法热箱法控温箱-热流计法非稳态法当今飞速发展的国民经济活动必然导致前所未有的资源能源消耗速度。而许多资源能源是不可再生的,为了人类的可持续发展,节约能源刻不容缓。据介绍,我国目前单位建筑面积采暖能耗相当于气候条件相近的发达国家的2~3倍,而建筑能耗也占全国能耗总量的27.5%。随着人民生活水平的不断提高、城市化进程的加快以及住房体制改革的深化,建筑能耗在我国增长趋势很大,很可能是我国今后能耗的一个主要增长点。为建设节约型社会,促进经济社会可持续发展,国家发展委员会发布了“节能中长期专项规划”,建筑节能作为三大重点领域中的一项,受到高度重视。建设部也相继发布了一系列建筑节能标准,其中包括若干强制性条款,目前正在建设领域逐步实施。 建筑节能工作从流程上可分为设计审查、现场检测、竣工验收三个大的阶段。对节能建筑的评价,从建设前期对施工图纸审查计算阶段、向现场检测和竣工验收转移是大势所趋。建筑节能现场检测也是落实建筑节能政策的重要保证手段。目前,全国范围内建筑节能检测都执行JGJ132-2001《采暖居住建筑节能检验标准》,它是最具权威性的检测方法,它的发布实施,为建筑节能政策的执行提供了一个科学的依据,使得建筑节能由传统的间接计算、目测定性评判到现在的直接测量,从此这项工作进入了由定性到定量、由间接到直接、由感性判断到科学检测的新阶段。 根据我们对建筑节能影响因素和现场检测的可实施性的分析,我们认为能够在实验室检测的宜在实验室检测(如门窗等作为产品在工程使用前后它的性状不会发生改变),除此之外,只有围护结构是在建造过程中形成的,对它的检测只能在现场进行。因此建筑节能现场检测最主要的项目是围护结构的传热系数,这也是最重要的项目。如何准确测量墙体传热系数是建筑节能现场检测验收的关键。目前对建筑节能现场检测的、围护结构(一般测外墙和屋顶、架空地板)的

基于小波变换的图像边缘检测算法

基于小波变换的图像边缘检测算法仿真实 现 学生姓名:XX 指导教师:xxx 专业班级:电子信息 学号:00000000000 学院:计算机与信息工程学院 二〇一五年五月二十日

摘要 数字图像边缘检测是图像分割、目标区域识别和区域形态提取等图像分析领域中十分重要的基础,是图像识别中提取图像特征一个重要方法。 目前在边缘检测领域已经提出许多算法,但是提出的相关理论和算法仍然存在很多不足之处,在某些情况下仍然无法很有效地检测出目标物的边缘。由于小波变换在时域和频域都具有很好的局部化特征,并且具有多尺度特征,因此,利用多尺度小波进行边缘检测既能得到良好的抑制噪声的能力,又能够保持边缘的完备。 本文就是利用此方法在MATLAB环境下来对数字图像进行边缘的检测。 关键词:小波变换;多尺度;边缘检测

Abstract The boundary detection of digital image is not only the important foundation in the field of image segmentation and target area identification and area shape extraction, but also an important method which extract image feature in image recognition. Right now, there are a lot of algorithms in the field of edge detection, but these algorithms also have a lot of shotucuts, sometimes, they are not very effective to check the boundary of the digital image. Wavelet transform has a good localization characteristic in the time domain and frequency domain and multi-scale features, So, the boundary detection of digital image by using multi-scale wavelet can not only get a good ability to suppress noise, but also to maintain the completeness of the edge. This article is to use this method in the environment of MATLAB to detect the boundary of the digital image. Keywords: wavelet transform; multi-scale; boundary detection.

图像处理文献综述

文献综述 理论背景 数字图像中的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显着的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 、图像边缘检测技术研究的目的和意义 数字图像边缘检测是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像边缘检测也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像边缘检测和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像边缘检测中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速度更快,图像特征识别更准确。早期的经典算法有边缘算子法、曲面拟合法、模版匹配法、门限化法等。 早在1959年Julez就曾提及边缘检测技术,Roberts则于1965年开始了最早期的系统研究,从此有关边缘检测的理论方法不断涌现并推陈出新。边缘检测最开始都是使用一些经验性的方法,如利用梯度等微分算子或特征模板对图像进行卷积运算,然而由于这些方法普遍存在一些明显的缺陷,导致其检测结果并不尽如人意。20世纪80年代,Marr和Canny相继提出了一些更为系统的理论和方法,逐渐使人们认识到边缘检测的重要研究意义。随着研究的深入,人们开始注意到边缘具有多分辨性,即在不同的分辨率下需要提取的信息也是不同的。通常情况下,小尺度检测能得到更多的边缘细节,但对噪声更为敏感,而大尺度检测

Matlab做图像边缘检测的多种方法

Matlab做图像边缘检测的多种方法 1、用Prewitt算子检测图像的边缘 I = imread('bacteria.BMP'); BW1 = edge(I,'prewitt',0.04); % 0.04为梯度阈值 figure(1); imshow(I); figure(2); imshow(BW1); 2、用不同σ值的LoG算子检测图像的边缘 I = imread('bacteria.BMP'); BW1 = edge(I,'log',0.003); % σ=2 imshow(BW1);title('σ=2') BW1 = edge(I,'log',0.003,3); % σ=3 figure, imshow(BW1);title('σ=3') 3、用Canny算子检测图像的边缘 I = imread('bacteria.BMP'); imshow(I); BW1 = edge(I,'canny',0.2); figure,imshow(BW1); 4、图像的阈值分割 I=imread('blood1.tif'); imhist(I); % 观察灰度直方图,灰度140处有谷,确定阈值T=140 I1=im2bw(I,140/255); % im2bw函数需要将灰度值转换到[0,1]范围内 figure,imshow(I1); 5、用水线阈值法分割图像 afm = imread('afmsurf.tif');figure, imshow(afm); se = strel('disk', 15); Itop = imtophat(afm, se); % 高帽变换 Ibot = imbothat(afm, se); % 低帽变换 figure, imshow(Itop, []); % 高帽变换,体现原始图像的灰度峰值 figure, imshow(Ibot, []); % 低帽变换,体现原始图像的灰度谷值 Ienhance = imsubtract(imadd(Itop, afm), Ibot);% 高帽图像与低帽图像相减,增强图像figure, imshow(Ienhance); Iec = imcomplement(Ienhance); % 进一步增强图像

图像处理文献综述

文献综述 1.1理论背景 数字图像中的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 1.2、图像边缘检测技术研究的目的和意义 数字图像边缘检测是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像边缘检测也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像边缘检测和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像边缘检测中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速度更快,图像特征识别更准确。早期的经典算法有边缘算子法、曲面拟合法、模版匹配法、门限化法等。 早在1959年Julez就曾提及边缘检测技术,Roberts则于1965年开始了最早期的系统研究,从此有关边缘检测的理论方法不断涌现并推陈出新。边缘检测最开始都是使用一些经验性的方法,如利用梯度等微分算子或特征模板对图像进行卷积运算,然而由于这些方法普遍存在一些明显的缺陷,导致其检测结果并不

几种常用边缘检测算法的比较

几种常用边缘检测算法的比较摘要:边缘是图像最基本的特征,边缘检测是图像分析与识别的重要环节。基于微分算子的边缘检测是目前较为常用的边缘检测方法。通过对Roberts,Sobel,Prewitt,Canny 和Log 及一种改进Sobel等几个微分算子的算法分析以及MATLAB 仿真实验对比,结果表明,Roberts,Sobel 和Prewitt 算子的算法简单,但检测精度不高,Canny 和Log 算子的算法复杂,但检测精度较高,基于Sobel的改进方法具有较好的可调性,可针对不同的图像得到较好的效果,但是边缘较粗糙。在应用中应根据实际情况选择不同的算子。 0 引言 边缘检测是图像分析与识别的第一步,边缘检测在计算机视觉、图像分析等应用中起着重要作用,图像的其他特征都是由边缘和区域这些基本特征推导出来的,边缘检测的效果会直接影响图像的分割和识别性能。边缘检测法的种类很多,如微分算子法、样板匹配法、小波检测法、神经网络法等等,每一类检测法又有不同的具体方法。目前,微分算子法中有Roberts,Sobel,Prewitt,Canny,Laplacian,Log 以及二阶方向导数等算子检测法,本文仅将讨论微分算子法中的几个常用算子法及一个改进Sobel算法。 1 边缘检测

在图像中,边缘是图像局部强度变化最明显的地方,它主要存在于目标与目标、目标与背景、区域与区域( 包括不同色彩) 之间。边缘表明一个特征区域的终结和另一特征区域的开始。边缘所分开区域的内部特征或属性是一致的,而不同的区域内部特征或属性是不同的。边缘检测正是利用物体和背景在某种图像特征上的差异来实现检测,这些差异包括灰度、颜色或纹理特征,边缘检测实际上就是检测图像特征发生变化的位置。边缘的类型很多,常见的有以下三种: 第一种是阶梯形边缘,其灰度从低跳跃到高; 第二种是屋顶形边缘,其灰度从低逐渐到高然后慢慢减小; 第三种是线性边缘,其灰度呈脉冲跳跃变化。如图1 所示。 (a) 阶梯形边缘(b) 屋顶形边缘 (b) 线性边缘 图像中的边缘是由许多边缘元组成,边缘元可以看作是一个短的直线段,每一个边缘元都由一个位置和一个角度确定。边缘元对应着图像上灰度曲面N 阶导数的不连续性。如果灰度曲面在一个点的N 阶导数是一个Delta 函数,那么就

图像边缘检测方法研究综述_段瑞玲

第31卷第3期2005年5月 光学技术 OP T ICA L T ECHN IQ U E V ol.31No.3 M ay 2005 文章编号:1002-1582(2005)03-0415-05 图像边缘检测方法研究综述 段瑞玲,李庆祥,李玉和 (清华大学精密仪器及机械学系,北京 100084) 摘 要:图像的边缘是图像最基本也是最重要的特征之一。边缘检测一直是计算机视觉和图像处理领域的经典研究课题之一。图像分析和理解的第一步常常是边缘检测。边缘检测的目的是去发现图像中关于形状和反射或透射比的信息,是图像处理、图像分析、模式识别、计算机视觉以及人类视觉的基本步骤之一。其结果的正确性和可靠性将直接影响到机器视觉系统对客观世界的理解。对一些传统的边缘检测方法和近年来广泛收到关注的边缘检测算法进行了简单介绍。综述中只涉及到检测方面,而没有讨论滤波、边缘定位、算法的复杂程度和边缘检测器性能的评价。 关键词:图像处理;边缘检测;梯度算法;差分边缘检测 中图分类号:T P751 文献标识码:A Summary of image edge detection DU AN Rui_ling,LI Qin g_xiang,LI Yu_he (Department of P recisio n I nstrument and M echanology,Tsing hua University,Beijing 100084,China) Abstract:Edg e is one of the most fundamental and sig nificant features.Edge detection is alw ay s one of the most classical studying projects o f computer vision and image processing field.T he fist step of image analy sis and understanding is edg e de tec-tion.T he g oal of edge detection is to recover information about shapes and reflectance o r transmittance in an image.I t is one of the fundamental steps in image processing,mage analy sis,image patter recognition,and computer vision,as well as in human vision.T he correctness and reliability of its results affect directly the comprehension machine system made fo r objective w orld. T he summary for basic edge de tection metho ds was made.It involv ed the detection methods only but no t filtering,edge loca-tion,analy sis of algorithm complexity and functional evaluation about a detecto r. Key words:image processing;imag e detection;gradient arithmetic; 1 引 言 早在本世纪初,人类为了用图片及时传输世界各地发生的新闻事件,便开始了对图像处理技术的研究。用计算机进行图像处理,改善图像质量的有效应用开始于1964年美国喷气推进实验室对太空传回的大批月球照片进行处理,并收到了明显的效果。然而,图像处理技术的真正发展还是在上世纪60年代末,其原因一方面是由于受到航天技术发展的刺激,另一方面是作为图像处理工具的数字计算机和各种不同类型的数字化仪器及显示器的突飞猛进发展。迄今为止,数字图像作为一门崭新的学科,日益受到人们的重视,并且在科学研究、工农业生产、军事技术和医疗卫生等领域发挥着越来越重要的作用。 机器视觉主要是利用计算机实现人类的视觉功能,对客观世界的三维场景的感知、识别和理解。边缘是图像的最基本特征,边缘检测通常是机器视觉系统处理图像的第一个阶段,是机器视觉领域内经典的研究课题之一,其结果的正确性和可靠性将直接影响到机器视觉系统对客观世界的理解。 2 图像边缘定义 图像的大部分信息都存在于图像的边缘中,主要表现为图像局部特征的不连续性,即图像中灰度变化比较剧烈的地方。因此,我们把边缘定义为图像中灰度发生急剧变化的区域边界。根据灰度变化的剧烈程度,通常将边缘划分为阶跃状和屋顶状两种类型[1]。阶跃边缘两边的灰度值变化明显,而屋顶边缘位于灰度值增加与减少的交界处。那么,对阶跃边缘和屋顶边缘分别求取一阶、二阶导数就可以表示边缘点的变化。因此,对于一个阶跃边缘点,其灰度变化曲线的一阶导数在该点达到极大值,二阶导数在该点与零交叉;对于一个屋顶边缘点,其灰 415 收稿日期:2004-06-01;收到修改稿日期:2004-10-20 E-mail:duanrl03@mails.ts https://www.360docs.net/doc/5a6510038.html, 作者简介:段瑞玲(1979_),女,山西人,清华大学博士研究生,从事装配系统及微观图像处理研究。

图像边缘检测方法比较研究

图像边缘检测方法比较研究 作者:关琳琳孙媛 来源:《现代电子技术》2008年第22期 摘要:边缘检测在数字图像处理中有着重要的作用。系统分析目前具有代表性的边缘检测方法,并用IDL6.3软件实现各种算法。实验结果表明,各种方法均有各自的优缺点和适用条件,在做图像边缘检测之前,应对图像进行分析,针对图像的特点和应用需求选用合适的方法。 关键词:边缘检测;检测算子;高通滤波;小波变换 中图分类号:TP391文献标识码:A 文章编号:1004-373X(2008)22-096-03 Comparison of Image Edge Detection Methods GUAN Linlin1,SUN Yuan2 (1.Department of Resource Science and Technology,Beijing Normal University,Beijing,100875,China; 2.96656 Unit of Second Artillery F orces,Chinese People′s Liberation Army,Beijing,100820,China) Abstract:Edge detection plays an important role in digital image processing.This paper comprehensively analyze the representative methods of edge detection at present,and realizes each algorithm with the IDL6.3 software.Results indicate that each method has some advantages and limitations.It should be carefully selected according to the characteristics of the image as well as application needs before conducting edge detection. Keywords:edge detection;detective operators;high-pass filtering;wavelet transform 1 引言 边缘检测技术是图像特征提取中的重要技术之一,也是图像分割、目标区域识别、区域形状提取等图像分析方法的基础。近年来,边缘检测技术被广泛地应用在各个领域,例如工程技术中零件检查[1]、医学中器官病变状况观察[2]、遥感图像处理中道路等典型地物的提取[3]以及估算遥感平台的稳定精度[4]等。这使得如何快速、准确地获得边缘信息成为国内外研究的热点。边缘检测方法在空间域和频域中均可以实现,而且不断涌现出新技术新方法。这些方法

红外热像无损检测图像处理研究现状与进展

红外热像无损检测图像处理研究现状与进展 来源:《红外技术》 引言 红外热像(infrared thermography)是目前运用非常广泛的一种快速高效的无损检测技术,通过外部施加的热或冷激励使被测物体内的异性结构以表面温度场变化的差异形式表现出来,从而达到缺陷部位的定性和定量分析。其成像原理是利用红外探测仪将接受到的被测物体的红外辐射映射成灰度值,再转化为可视温度分布图(红外热像图)。最早在二战末期应用于军事侦察领域,因其本身具有快速高效、无需停运、无需取样、可进行无污染、非接触、大面积检测、以及其直观成像等优点,而被作为复合材料的无损检测技术应用于工业领域,如航空航天、机械、油气、建筑等领域。 1 、红外热像技术的发展现状 自20世纪以来,红外热像技术得到快速发展。20世纪90年代,美国无损检测协会和材料试验协会针对红外热成像技术指定了相应标准,并在无损检测手册红外与热检测分册中描述了基于红外热像的无损检测技术在各个领域的运用。目前美国、俄罗斯、法国、德国、加拿大、澳大利亚等国已将红外热像技术广泛运用于航空航天复合材料构件内部缺陷及胶接质量的检测、蒙皮铆接质量检测等。近年来,红外热像技术与智能手机、无人机等设备充分结合,并在各个领域广泛使用,如美国的Fluke和FLIR、德国Testo、国内武汉高德、浙江大立等企业。 国内的红外热像检测技术比欧美、俄罗斯等发达国家起步较晚,但经过十几年的发展,目前也取得较为显著的成果。中国特种设备研究院和武汉工程大学将红外热像技术运用于压力设备缺陷检验,取得了一系列显著的成果。西南交通大学、昆明物理研究所、北京航空材料研究院、北京理工大学、西北工业大学等将红外热像技术运用于航空航天夹层结构件的缺陷检测,取得了有效进展。在石油化工领域,各位学者将红外热像技术用于高温高压容器和管道的缺陷、保温层破损、以及内部液体流动情况的检测,也取得了许多成果。 2 、红外图像预处理 红外技术应用的核心工作在于图像的处理及利用,不仅在无损检测领域,在军事监测、人脸识别等领域的应用更加重要。红外图像的处理主要分为图像预处理和图像识别,预处理是开展后续工作的基础,其主要分为图像的非均匀性校正和图像增强两个方面。 2.1 图像的非均匀性校正

水中油类测定分析方法的综述

水中油类测定分析方法的综述 李海州 (浙江海洋学院海洋与技术学院,浙江舟山316004) [摘要]:本文对国内外学者有关水中油类的测定方法做了比较系统的综述。对几种水中油类的常用方法,重量法、紫外分光光度法、荧光分光光度法、红外分光光度法和非分散红外光度法做了简要介绍,并对其优劣进行了评价。另外,介绍了测定水中油类含量存在的难点、发展趋势和技术改进等。 关键词:水;油类;测定分析 油类是指任何类型的(矿物油、植物油等)及其炼制品(汽油、柴油、机油、煤油等)、油泥和油渣[1]。油类主要有漂浮油、分散油、乳化油、溶解油和油类附着在固体悬浮物表面而形成油膜---固体物5种形式。全世界每年至少有500—1000吨油类通过各种途径进入水体,由于漂浮于水体表面的油将会影响空气和水体表面氧的交换,而分散于水体中以及吸附于悬浮颗粒上或以乳化状态存在于水体的油易被微生物氧化分解,并将消耗水中的溶解氧,从而使水质恶化;油膜还能附着于鱼鳃上,使鱼类窒息而死;当鱼类产卵期,在含有油类污染物质废水中孵化的鱼苗,多数为畸形,生命力低下,易于死亡;含有油类污染物的废水进入水体后,造成的危害很为严重,不仅影响水生生

物的生长,降低水体的自我净化能力,而且影响水体附近的环境,因此,油类是水体环境中的主要污染物之一,在水质监测中,也是一项重要的监测项目。要消除油类对环境的污染和危害,首先就必须能够准确的测定水中油类的含量。 然而,水中油类含量测定又是比较复杂的,因为水中的油类成分是相当复杂的,此外不同地区、不同行业水体中油类污染的成分也不同,无法有用单一的油标准进行对照,无法准确测定,所以水体中油类物质含量的测定问题是环境分析化学一个古老、重要而又困难的问题。目前水体中油类测定常用的方法有重量法、紫外分光光度法、荧光分光光度法、非分散红外光度和国家最新颁布的国家标准方法红外分光光度法等[2],本文简要介绍以上几种方法的原理和优劣,及人们对水体中油类监测分析方法的创新和改进。 1.重量法 重量法是用有机萃取剂(石油醚或正己烷)提取酸化了的样品中的油类,将溶剂蒸发掉后,称重后计算油类含量。重量法应用范围不受油品的限制,可测定含油量较高的污水,不需要特殊的仪器和试剂,测定结果的准确度较高、重复性较好。缺点是损失了沸点低于提取剂的油类成分,方法操作复杂,灵敏度低,分析时间长,并要耗费大量的提取剂,而且方法的精密度随操作条件和熟练程度不同差异很大。因此,水体中动植物油含量较高的,采用该方法较适合,可以得到比较准确的结果;工业废水、石油开采及炼制行业中含油量较高,此方

图像边缘检测算法体验步骤

图像边缘检测算法体验步骤 图像边缘检测算法体验步骤(Photoshop,Matlab)1. 确定你的电脑上已经安装了Photoshop和Matlab2. 使用手机或其他任何方式,获得一张彩色图像(任何格式),建议图像颜色丰富,分辨率比较高,具有比较明显的图像边界(卡通图像,风景图像,桌面图像)3. 将图像保存到一个能够找到的目录中,例如img文件夹(路径上没有汉字)4. 启动Photoshop,打开img文件夹中的图像5. 在工具箱中选择“矩形选择”工具,到图面上选择一个区域(如果分辨率比较高,建议不要太大,否则计算过程比较长)6. 点击下拉菜单【文件】-【新建】,新建一个与矩形选择框同样尺寸的Photoshop图像,不要求保存该图像7. 将该彩色图像转换为亮度图像,即点击下拉菜单【图像】-【模式】-【灰度】,如提示是否合并,选择“Yes”8. 将该单色的亮度图像另存为Windows的BMP文件,点击下拉菜单【文件】-【存储为】,在“存储为”窗口中,为该文件起一个名字,例如test1(保存为test1.bmp)9. 启动Matlab,将当期路径(Current Directory)定位到图像文件夹,例如这里的img文件夹10. 使用imread命令读入该图像,在命令行输入:>> f = imread(test1.bmp);11. 在Matlab中显示该图像,在命令行输入:>> figure, imshow(f)12. 然后,分别使用Matlab图像工具箱中的Edge函数,分别使用Sobel算法,高斯-拉普拉斯(Log)算法和Canny算法得到的边缘图像:在命令行输入:>> g_sobel = edge(f, sobel, 0.05); >> g_log = edge(f, log, 0.003, 2.25); >> g_canny = edge(f, canny, [0.04 0.10], 1.5);13 得到边缘图像计算结果后,显示这些边缘图像: >> figure, imshow(g_sobel) >> figure, imshow(g_log) >> figure, imshow(g_canny)14 可以用不同的图像做对比,后续课程解释算法后,可以变换不同的阈值,得到不同的边缘图像

图像边缘检测技术综述

第 42 卷增刊 1 中南大学学报(自然科学版) V ol.42 Suppl. 1 2011 年 9 月 Journal of Central South University (Science and Technology) Sep. 2011 图像边缘检测技术综述 王敏杰 1 ,杨唐文 1, 3 ,韩建达 2 ,秦勇 3 (1. 北京交通大学 信息科学研究所,北京,100044; 2. 中国科学院沈阳自动化研究所 机器人学国家重点实验室,辽宁 沈阳,110016; 3. 北京交通大学 轨道交通控制与安全国家重点实验室,北京,100044) 摘要:边缘检测是图像处理与分析中最基础的内容之一。首先介绍了几种经典的边缘检测方法,并对其性能进行 比较分析;然后,综述了近几年来出现的一些新的边缘检测方法;最后,对边缘检测技术的发展趋势进行了展望。 关键词:数字图像;边缘检测;综述 中图分类号:TP391.4 文献标志码:A 文章编号:1672?7207(2011)S1?0811?06 Review on image edge detection technologies W ANG Min-jie 1 , Y ANG Tang-wen 1,3 , HAN Jian-da 2 ,QIN Y ong 3 (1.Institute of Information Science,Beijing Jiaotong University, Beijing 100044, China? 2.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academic of Science,Shenyang 110016, China? 3.State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China) Abstract: Edge detection is one of the most fundamental topics in the research area of image processing and analysis. First, several classical edge detection methods were introduced, and the performance of these methods was compared? then, several edge detection methods developed in the latest years were reviewed? finally, the trend of the research of the image edge detection in the future was discussed. Key words:digital image?edge detection?review 图像是人们从客观世界获取信息的重要来源 [1?2] 。 图像信息最主要来自其边缘和轮廓。所谓边缘是指其 周围像素灰度急剧变化的那些象素的集合,它是图像 最基本的特征。边缘存在于目标、背景和区域之 间 [3?4] ,它是图像分割所依赖的最重要的依据。边缘检 测 [5?8] 是图像处理和计算机视觉中的基本问题, 图像边 缘检测是图像处理中的一个重要内容和步骤,是图像 分割、目标识别等众多图像处理的必要基础 [9?10] 。因 此,研究图像边缘检测算法具有极其重要的意义。 边缘检测是计算机视觉和图像处理领域的一项基 本内容。准确、高效地提取出边缘信息一直是该领域 研究的重点内容 [11] 。最初的经典算法可分为边缘算子 法、曲面拟合法、模板匹配法、门限化法等。近年来, 随着数学理论和人工智能的发展,又出现了一些新的 边缘检测的算法 [12?13] ,如基于数学形态学的边缘检 测 [14] 、小波变换和小波包变换的边缘检测法 [15] 、基于 模糊理论的边缘检测法 [16?17] 、基于神经网络的边缘检 测法 [18] 、基于分形几何的边缘检测算法 [19] 、基于遗传 算法的边缘检测法 [20?21] 、漫射边缘的检测方法 [22] 、多 尺度边缘检测技术 [23] 、亚像素边缘的定位技术 [24] 、 收稿日期:2011?04?15;修回日期:2011?06?15 基金项目:轨道交通控制与安全国家重点实验室开放基金资助项目(RCS2010K02);机器人学国家重点实验室开放基金资助项目(RLO200801);北 京交通大学基本科研业务费资助项目(2011JBM019) 通信作者:王敏杰(1988-), 女, 黑龙江五常人, 硕士研究生, 从事图像处理和计算机视觉研究; 电话: 010-51468132; E-mail: wangminjie1118@https://www.360docs.net/doc/5a6510038.html,

图像边缘检测方法的研究与实现刘法200832800066

图像边缘检测方法的研究与实现刘法200832800066

青岛大学专业课程设计 院系: 自动化学院 专业: 电子信息工程 班级: 08级电子信息工程3班学生姓名: 刘法 指导教师: 王汉萍庄晓东 日期: 2011年12月23日

题目:图像边缘检测方法的研究与实现 一、边缘检测以及相关概念 1.1边缘,边缘检测的介绍 边缘(edge)是指图像局部强度变化最显著的部分.边缘主要存在于目标与目标、目标与背景、区域与区域(包括不同色彩)之间,是图像分割、纹理特征和形状特征等图像分析的重要基础.图像分析和理解的第一步常常是边缘检测(edge detection). 边缘检测是指使用数学方法提取图像像元中具有亮度值(灰度)空间方向梯度大的边、线特征的过程。 在讨论边缘算子之前,首先给出一些术语的定义: 边缘点:图像中具有坐标] ,[j i且处在强度显著变化的位置上的点.边缘段:对应于边缘点坐标] i及其方位 ,边缘的方位可能是梯度角. ,[j 边缘检测器:从图像中抽取边缘(边缘点和边缘段)集合的算法. 轮廓:边缘列表,或是一条表示边缘列表的拟合曲线. 边缘连接:从无序边缘表形成有序边缘表的过程.习惯上边缘的表示采用顺时针方向序. 边缘跟踪:一个用来确定轮廊的图像(指滤波后的图像)搜索过程. 边缘点的坐标可以是边缘位置像素点的行、列整数标号,也可以在子像素分辨率水平上表示.边缘坐标可以在原始图像坐标系上表示,但大多数情况下是在边缘检测滤波器的输出图像的坐标系上表示,因为滤波过程可能导致图像坐标平移或缩放.边缘段可以用像素点尺寸大小的小线段定义,或用具有方位属性的一个点定义.请注意,在实际中,边缘点和边缘段都被称为边缘.边缘连接和边缘跟踪之间的区别在于:边缘连接是把边缘检测器产生的无序边缘集作为输入,输出一个有序边缘集;边缘跟踪则是将一幅图像作为输入,输出一个有序边缘集.另外,边缘检测使用局部信息来决定边缘,而边缘跟踪使用整个图像信息来决定一个像素点是不是边缘. 1.2 边缘检测算子 边缘检测是图像特征提取的重要技术之一, 边缘常常意味着一个区域的终结和另一个区域的开始. 图像的边缘包含了物体形状的重要信息,它不仅在分析图像时大幅度地减少了要处理的信息量,而且还保护了目标的边界结构. 因此,边缘检测可以看做是处理许多复杂问题的关键. 边缘检测的实质是采用某种算法来提取出图像中对对象与背景间的交界线。图像灰度的变化情况可以用图像灰度分布的梯度来反映,因此可以用局部图像微分技术来获取边缘检测算子。经典的边缘检测方法是对原始图像中的像素的某个邻域来构造边缘检测算子。以下是对几种经典的边缘检测算子进行理论分析,并对各自的性能特点做出比较和评价。 边缘检测的原理是:由于微分算子具有突出灰度变化的作用,对图像进行微分运算,在图像边缘处其灰度变化较大,故该处微分计算值教高,可将这些微分值作为相应点的边缘强度,通过阈值判别来提取边缘点,即如果微分值大于阈值,则为边缘点。

数字图像处理技术的现状及其发展方向(笔记)

数字图像处理技术的现状及其发展方向 一、数字图像处理历史发展 数字图像处理(Digital Image Processing)将图像信号转换成数字信号并利用计算机对其进行处理。 1.起源于20世纪20年代。 2.数字图像处理作为一门学科形成于20世纪60年代初期,美国喷气推进实验室(JPL)推动了数字图像处理这门学科的诞生。 3.1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置即CT(Computer Tomograph),1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。 4.从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展,人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论。 二、数字图像处理的主要特点 1.目前数字图像处理的信息大多是二维信息,处理信息量很大,对计算机的计算速度、存储容量等要求较高。 2.数字图像处理占用的频带较宽,在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本也高,这就对频带压缩技术提出了更高的要求。 3.数字图像中各个像素是不独立的,其相关性大。因此,图像处理中信息压缩的潜力很大。 4.由于图像是三维景物的二维投影,一幅图像本身不具备复现三维景物的全部几何信息的能力,要分析和理解三维景物必须作合适的假定或附加新的测量。在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。 5.一方面,数字图像处理后的图像一般是给人观察和评价的,因此受人的因素影响较大,作为图像质量的评价还有待进一步深入的研究;另一方面,计算机视觉是模仿人的视觉,人的感知机理必然影响着计算机视觉的研究,这些都是心理学和神经心理学正在着力研究的课题。 三、数字图像处理的优点 1.再现性好;图像的存储、传输或复制等一系列变换操作不会导致图像质量的退化。 2.处理精度高;可将一幅模拟图像数字化为任意大小的二维数组,现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高。 3.适用面宽;图像可以来自多种信息源,图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像组合而成,因而均可用计算机来处理。 4.灵活性高;数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 四、数字图像处理过程及其主要进展 常见的数字图像处理有:图像的采集、数字化、编码、增强、恢复、变换、

目标检测方法简要综述

龙源期刊网 https://www.360docs.net/doc/5a6510038.html, 目标检测方法简要综述 作者:栗佩康袁芳芳李航涛 来源:《科技风》2020年第18期 摘要:目标检测是计算机视觉领域中的重要问题,是人脸识别、车辆检测、路网提取等领域的理论基础。随着深度学习的快速发展,与基于滑窗以手工提取特征做分类的传统目标检测算法相比,基于深度学习的目标检测算法无论在检测精度上还是在时间复杂度上都大大超过了传统算法,本文将简单介绍目标检测算法的发展历程。 关键词:目标检测;机器学习;深度神经网络 目标检测的目的可分为检测图像中感兴趣目标的位置和对感兴趣目标进行分类。目标检测比低阶的分类任务复杂,同时也是高阶图像分割任的重要基础;目标检测也是人脸识别、车辆检测、路网检测等应用领域的理论基础。 传统的目标检测算法是基于滑窗遍历进行区域选择,然后使用HOG、SIFT等特征对滑窗内的图像块进行特征提取,最后使用SVM、AdaBoost等分类器对已提取特征进行分类。手工构建特征较为复杂,检测精度提升有限,基于滑窗的算法计算复杂度较高,此类方法的发展停滞,本文不再展开。近年来,基于深度学习的目标检测算法成为主流,分为两阶段和单阶段两类:两阶段算法先在图像中选取候选区域,然后对候选区域进行目标分类与位置精修;单阶段算法是基于全局做回归分类,直接产生目标物体的位置及类别。单阶段算法更具实时性,但检测精度有损失,下面介绍这两类目标检测算法。 1 基于候选区域的两阶段目标检测方法 率先将深度学习引入目标检测的是Girshick[1]于2014年提出的区域卷积神经网络目标检测模型(R-CNN)。首先使用区域选择性搜索算法在图像上提取约2000个候选区域,然后使用卷积神经网络对各候选区域进行特征提取,接着使用SVM对候选区域进行分类并利用NMS 回归目标位置。与传统算法相比,R-CNN的检测精度有很大提升,但缺点是:由于全连接层的限制,输入CNN的图像为固定尺寸,且每个图像块输入CNN单独处理,无特征提取共享,重复计算;选择性搜索算法仍有冗余,耗费时间等。 基于R-CNN只能接受固定尺寸图像输入和无卷积特征共享,He[2]于2014年参考金字塔匹配理论在CNN中加入SPP-Net结构。该结构复用第五卷积层的特征响应图,将任意尺寸的候选区域转为固定长度的特征向量,最后一个卷积层后接入的为SPP层。该方法只对原图做一

实验三图像分割与边缘检测

数字图像处理实验报告 学生姓名王真颖 学生学号L0902150101 指导教师梁毅雄 专业班级计算机科学与技术1501 完成日期2017年11月06日

计算机科学与技术系信息科学与工程学院

目录 实验一.................................................................................................. 错误!未定义书签。 一、实验目的.................................................................................................... 错误!未定义书签。 二、实验基本原理 ........................................................................................... 错误!未定义书签。 三、实验内容与要求....................................................................................... 错误!未定义书签。 四、实验结果与分析....................................................................................... 错误!未定义书签。实验总结............................................................................................... 错误!未定义书签。参考资料.. (3) 实验一图像分割与边缘检测 一.实验目的 1. 理解图像分割的基本概念; 2. 理解图像边缘提取的基本概念; 3. 掌握进行边缘提取的基本方法;

相关文档
最新文档