温度对两种海洋微藻生长与多糖含量的影响

温度对两种海洋微藻生长与多糖含量的影响
温度对两种海洋微藻生长与多糖含量的影响

温度对两种海洋微藻生长与多糖含量的影响

祁秋霞

(淮海工学院海洋学院,江苏连云港222005)

微藻是指那些在显微镜下才能辨别其形态的小型藻类类群,约2万余种。作为贝类和虾、蟹类等多种海洋水产苗种不可或缺的基础生物饵料,海洋微藻在苗种培育生产中的地位和作用正日益为人们所重视。温度是影响海洋微藻生长和繁殖的重要生态因子,对酶的活性、营养物的吸收利用效率、细胞含糖量及细胞分裂的周期等诸多方面都存在不同程度的影响[1]。

实验通过对不同温度条件下,扁藻和骨条藻微藻的生长和胞内多糖含量的测定,研究温度对微藻的生长和胞内多糖产生的影响,以期为海洋微藻的开发和利用提供依据。

1

材料与方法

1.1

藻种和藻类培养

扁藻和骨条藻由淮海工学院海洋学院水生生

物学开放实验室提供。选择无原生物污染的,生长良好的藻种进行扩种培养。

海水处理:海水取自连云港墟沟西大堤的天然海水,经脱脂棉过滤后煮沸。培养方法:选择处于指数生长期的藻种进行扩种培养。培养的配方是f/2培养基[2]。将纯种接种于

250mL 三角瓶中,

控制温度20~22℃,光照2500lx ,

光暗循环设置为光∶暗=D ∶L=12h ∶12h 。培养期间每天摇瓶3~4次[3]。

1.2

实验测定方法

每种藻设置4个温度实验组,分别为10、15、

20、25℃,每个温度均设置2个平行组,分别测定扁藻和骨条藻生长和多糖含量。

1.2.1微藻细胞生长测定取定量培养液,

采用722S 分光光度计,在波长680nm ,测定其OD 值。OD 值

与细胞密度的关系:

骨条藻的细胞密度:Y=212.46×OD 680-0.813(r=0.9413)

扁藻的细胞密度:Y =3.73+74.58×OD 680(r=0.9995)

1.2.2多糖测定

葡萄糖标准曲线的建立:经回归

分析,可得直线为y=0.7719X +0.1789,回归率R2=

0.9878,其中y 为吸光度,x 为多糖含量

(mg )。微藻胞内多糖含量的测定:取40mL 藻液离心,弃上清液。藻泥破碎冻融3次,加入PBS 3mL ,充分振荡后,在3000r/min 离心10min ,取1mL 上

清液,加入0.1mL ZnSO 4,沸水浴5min ,立即加入亚铁氰化钾0.1mL ,离心10min ,取上清液1mL 加到

3mL 蒽酮中,

沸水浴10min ,用冷水迅速冷却至室温,稳定后测定620nm 波长处的吸光度。根据标准

葡萄糖曲线确定样品中多糖的含量[4-6]。

2结果

2.1

不同温度条件下骨条藻的生长情况

由图1看出温度对骨条藻的生长有显著的影响。在培养的7d 中,骨条藻每天都在快速的生长、繁殖。骨条藻在20℃情况下,OD 值增加最快,

由0.075增至第7天的0.473,说明在20℃条件下,骨条藻密度最大,生长速度是最快的。25℃时每天测

定的OD 值增长次之,第7天时OD 值为0.346,说明此时骨条藻生长速度较20℃条件下稍慢。15℃时每天测定的OD 值低于25℃时的OD 值,OD 由第

摘要:通过对不同温度条件下的海洋微藻的生物量和多糖含量的研究,探索海洋微藻在不同温度下生长和多糖含量的变化规律,提高海洋微藻多糖的产量,增加其饵料价值。实验结果:20~25℃有利于微藻的生长,10~15℃则有利于微藻多糖的积累。不同的温度对微藻生长及体内多糖含量的变化有重要的影响。

关键词:温度;海洋微藻;多糖;蒽酮法中图分类号:Q176

文献标识码:A

文章编号:1004-2091(2011)01-0020-04

资助项目:江苏高校高新技术产业发展项目(JHB04-020)

作者简介:祁秋霞(1976-),女,实验师,主要从事水产养殖及水产品生化分析.E-mail:qiuxia7608@https://www.360docs.net/doc/536912522.html,

第32卷第1期2011年1月1日

水产养殖Journal of Aquaculture

Vol.32,No.1Jan.1,

2011doi :10.3969/j.issn.1004-2091.2011.01.006

1天的0.076增至第7天的0.232,

说明此温度下骨条藻的生长速度较25℃时慢。10℃时OD 值最低,仅由0.075增至0.163,即10℃时骨条藻生长速度最慢。

2.2不同温度条件下扁藻的生长情况

由图2可以看出在培养的7d 中,扁藻在不同

温度下生长情况不同。10℃条件下,扁藻的OD 值几乎没有改变,基本处于同一条水平线上,第5天

OD 值为0.118,

第7天OD 值最大,也仅为0.124,说明细胞密度基本没有增加。15℃时扁藻的OD 值在

前4d 与10℃时基本一致,到第5天OD 值为0.155,第7天OD 值为0.170,

略高于10℃时的OD 值,说明细胞密度略有增大。20℃时扁藻的OD 值在第2天开始出现直线增长,细胞密度增加较快,第5天以后OD 值趋于水平,细胞密度不再增加,最大OD 值为0.318。25℃时扁藻的OD 值随培养时间一直处于上升状态,说明此温度条件下,细胞密度急

剧增大。由图可以看出,25℃培养条件下,扁藻的细胞密度增长最快,第7天时OD 值为0.406,细胞密度为10℃时的3倍。

2.3不同温度条件下骨条藻含糖量的变化

图3显示温度对骨条藻胞内多糖的含量有一定的影响。图中的1、3、5、7分别表示骨条藻培养第

1天、

第3天、第5天的、第7天时胞内多糖含量的测量结果。由图可以看出,在培养的前3d ,骨条藻的含糖都是在不断减少的。培养5d 时骨条藻的多糖含量出现不同,10℃条件下培养5d 的骨条藻多糖含量达到44mg/L ,其次为15℃(41mg/L ),都高于第1天的检测值。而20℃和25℃培养5d 后,多糖含量接近于第1天的多糖含量,分别为31mg/L 和29mg/L 。培养7d 的骨条藻的多糖含量都有所下降,各温度条件下都低于第1天的多糖含量。2.4不同温度条件下扁藻含糖量的变化

图4显示温度对扁藻多糖的含量影响显著。图中的1、2、3、4分别表示扁藻培养第1天、第3天

第1期21

祁秋霞温度对两种海洋微藻生长与多糖含量的影响图1不同温度条件下骨条藻的生长情况

图2不同温度条件下扁藻的生长情况

图3不同温度下骨条藻含糖量的变化

图4不同温度条件下扁藻含糖量变化

的、第5天、第7天时胞内多糖的测量结果。前3d 扁藻的含糖都是在不断减少的,从第3天到第5天,在15℃、20℃、25℃条件下,扁藻的多糖含量都处于增长状态,分别增长了19、18、3mg/L,而10℃条件下从39mg/L增至40mg/L。从第5天到第7天各温度条件培养的扁藻,胞内多糖含量都出现不同程度的下降。

3讨论

温度是影响海洋微藻生长和繁殖的重要生态因子。温度对海洋微藻的生长和发育有调节作用[6],对酶的活性、营养物的吸收利用效率及细胞分裂的周期等诸多方面都存在不同程度的影响。实验中可以看出,温度对骨条藻和扁藻的生长影响显著。骨条藻的细胞密度在10~20℃条件下,随温度的增加而增加,25℃时较20℃时密度稍低,约为20℃细胞密度的75%,可能是骨条藻对最适生长温度偏低的原因。而扁藻的细胞密度在10~25℃条件下,随温度的增加一直增加,10℃最低,OD值为0.124;25℃,OD值最高为0.406。

温度影响着海洋微藻细胞的生长繁殖,进而影响其胞内多糖含量。温度低的情况下细胞内的多糖含量高。由实验可以得到骨条藻和扁藻在前3d的含糖都是在不断减少的,微藻在前3d生长和繁殖较快,同化作用小于异化作用,细胞内的养分被消耗,多糖用于藻的生长和繁殖。从第3天到第5天细胞的含糖量在不断的增加,说明这段时间分裂速度下降,细胞内的同化作用大于异化作用,胞内多糖进行积累。从第5天开始细胞内的多糖含量又开始下降,此时细胞开始衰老,生长、繁殖的速度减慢,同化作用减弱,也可能是糖在细胞内转变为其他能源物质(比如油脂)[7]。

由图3可以看出,在培养的第3天到第5天,温度较低时骨条藻胞内多糖含量较高,随温度升高,胞内多糖含量降低。10℃条件下骨条藻胞内多糖含量最高,为44mg/L,15℃时胞内多糖含量为41mg/L,20℃时为31mg/L,25℃条件最低,多糖含量为29mg/L。10℃条件下的多糖含量为25℃条件下的151.72%。

由图4可以看出,温度对扁藻的多糖含量的影响同样显著。除10℃(多糖含量为40mg/L)外,其他条件下扁藻的胞内多糖的含量同样随着温度的降低而升高。15℃条件下扁藻多糖含量最高49mg/L,20℃时多糖含量为45mg/L,25℃条件下多糖含量最低为36mg/L。

由上述现象可以推出,温度对海洋微藻生长和多糖含量有显著影响。在一定的温度范围内,随温度的升高,微藻的细胞密度增加,而胞内多糖的含量下降。同时可以看出,同一条件下,不同培养时间也影响着微藻的多糖含量。培养初期,多糖含量降低,而生长的中期,多糖增长。

微藻多糖产品的开发及应用,都依赖于多糖藻种的选育和培养条件的优化。本实验仅就温度条件对微藻的生长和多糖含量影响进行一定研究,在生产和实验室研究均有一定的意义,同时为进一步培养和优化微藻提供一定的实验依据和前提条件。

温度影响着海洋微藻细胞的生长繁殖,进而影响其胞内多糖含量。温度低的情况下细胞内的多糖含量高。

由实验可以得到骨条藻和扁藻在前3d的含糖都是在不断减少的,微藻在前三天生长和繁殖较快,同化作用小于异化作用,细胞内的养分被消耗,多糖用于藻的生长和繁殖。从第3天到第5天细胞的含糖量在不断的增加,说明这段时间分裂速度下降,细胞内的同化作用大于异化作用,胞内多糖进行积累。从第5天开始细胞内的多糖含量又开始下降,此时细胞开始衰老,生长、繁殖的速度减慢,同化作用减弱,也可能是糖在细胞内转变为其它能源物质(比如油脂)[7]。由图3可以看出,在培养的第3天到第5天,温度较低时骨条藻胞内多糖含量较高,10℃条件下骨条藻下多糖含量最高,25℃条件最低,10℃条件下的多糖含量为25℃条件下的151.72%。由图4可以看出,温度对扁藻的多糖含量的影响同样显著。除10℃外,其它条件下扁藻的胞内多糖的含量同样随着温度的降低而升高。15℃条件下扁藻多糖含量是25℃条件下的136.11%[7]。

由上述现象可以推出,温度对海洋微藻生长和多糖含量有显著影响。在一定的温度范围内,随温度的升高,微藻的细胞密度增加,而胞内多糖的含量下降。同时可以看出,同一条件下,不同培养时间也影响着微藻的多糖含量。培养初期,多糖含量降低,而生长的中期,多糖增长。

微藻多糖产品的开发及应用,都依赖于多糖藻种的选育和培养条件的优化。实验就温度条件对微藻的生长和多糖含量影响进行一定研究,在生产和

22水产养殖32卷

The influences of temperature on two marine microalgae

growth and polysaccharide content

Qi Qiuxia

(OceanDepartmentofHuaihaiInstituteofTechnology,LianyungangJiangsu222005,China)

Abstract:Byresearchingtwomarinemicroalgaebiomassandpolysaccharidecontentatdifferenttemperatures,

thestudyexploresmarinemicroalgaegrowthstateandchangesofpolysaccharideatdifferenttemperaturesinordertoenhancetheproductionofmarinemicroalgaepolysaccharideandtoincreasetheirfeedvalue.Fromtheexperimentalresultswecancometoconclusionthatdifferenttemperatureshavesignificantimpactsonthegrowthofmicroalgaeandchangesinpolysaccharidecontent.Highertemperature(20 ̄25℃)benefitstothegrowthofmicroalgae,lowtemper-ature(10 ̄15℃)ishelpfulforpolysaccharideaccumulation.

Keywords:temperature ;marine microalgae ;polysaccharide ;anthrone method 实验室研究均有一定的意义,同时为进一步培养和优化微藻提供一定的实验依据和前提条件。

参考文献:

[1]李文权,

李芊,廖启斌,等.温度对四种海洋微藻脂肪酸组成的影响[J].台湾海峡,2003,2(1):9-12

[2]Guillard R R L ,

Ryther J H.Studies of marine planktonic di -atom.I.Cyclotella nana H.and Detecnula confervacea (Clever)Gran[J].Can J Phycol ,1962,17:309-314

[3]陈必链,

庄惠如,王明兹,等.培养方法对钝顶螺旋藻生长的影响[J].福建师范大学学报,2001,3:72-74

[4]钟建平,

钟春艳,赵道辉,等.苯酚-硫酸比色法测定保健食品中多糖的研究[J].中国卫生检验杂志,2001,11(6):675[5]朱

英,罗永明,严喜鸾,等.螺旋藻多糖含量测定[J].时

珍国医国药,1999,10(2):34-36

[6]王长海,

温少红,鞠宝.紫球藻多糖的提取和测定[J].中国海洋药物,1999,69(1):22-25

[7]Ramus J.Cell surface polysaccharides of the red alga rides [J].Biogemwsis of Plant Cell Wall Polysaccarides.New York:Academic Press.1973,333

(收稿日期:2010-06-28

)第1期23

祁秋霞温度对两种海洋微藻生长与多糖含量的影响无线感测于水产养殖的应用─Akvasmart 智慧水产养殖系统

环境监控已逐渐成为无线感测的应用主流领域,举凡气候监测、农作物种植、都市空气污染观察等,生活周遭处处可见相关的技术应用。

随着水产养殖面积的扩大与高经济价值鱼种的引入,世界上许多国家的养殖户需要更为便利且高品质的养殖设备与技术辅导。挪威AKVA 集团为水产养殖设备的全球领导厂商,旗下产品除含括养殖网、箱、管道等工程设备外,同时也提供生物学与养殖技术咨询,更设计了养殖管理、水产食品相关的软体服务。为了提升水产养殖品质与效益,该集团提供结合感测科技的水产养殖的创新应用─Ak -vasmart 智慧水产养殖系统。

除了既有的养殖网箱与工程设备外,Akvasmart 同时配置水面及水底摄影机与各类型感测装置,可对养殖环境与鱼群进行监测。由网箱视讯单元(CVU )与网箱感测单元(CSU )取得如水温、溶氧量等资讯,透过SmartBox 无线发射器,将资讯以无线方式传输至SmartControl 后台管理系统;而透过管理系统分析搜集而的环境资讯即可选择设定投饵器进行喂食动作,或是启动循环水系统以确保养殖区域的水质。(中国水产网)

自升式海洋平台海水提升系统综合设计【文献综述】

文献综述 建筑环境与设备工程 自升式海洋平台海水提升系统综合设计 1 引言 众所周知,海洋中生存着千百万种的海洋生物,包括各种各样的微生物、海洋植物和海生生物。这些生物中有上千种会给海洋设施带来危害,特别是在海下3~40米处的海水层,更是海洋附着生物生存繁殖的天堂,对于海洋平台,它们就会随着海水的取用,附着于平台各个用水管系中,并分泌出酸性物质,造成管路堵塞与腐蚀,直接影响着平台的生产、生活正常运行。 在海洋平台海水提升系统综合设计过程中,为达到节能降耗目的,将以往的大型风冷机组全部改设为海水冷却,这些设备包括四台主发电柴油机组、一台中央空调机组和一台冷冻机组,要求海水管系所供应的海水清洁无污,任何一条管系若发生堵塞,都可能严重影响到冷却机组正常生产工作,甚至造成平台停产,因此,本平台的防海生物系统设置显得尤为关键。 2 常用防海生物的方式 通常防海生物的方法有三种,包括机械法、物理法及化学法: (1)机械法,即为定期对海洋设施进行机械清洗的方式。 (2)物理法包括:①电解法,②超声波法,③辐射法。 (3)化学法包括:①通氯气,即用氯气来毒杀海生物的方式;②低表面能材料,在需保护层面覆盖一层低表面能材料,使海生物不宜附着于表面上;③保护涂层,即用保护涂层防污(涂料中添加有杀生剂、防霉剂等海生物毒素)[1]。 上述三种方法中,机械法在海上操作不易进行,且耗资较多;化学法对水资源污染严重,且水源不能充分利用,而物理法能有效弥补以上两种方法的缺陷,因此,在实际操作过程中,采用较多的是物理法中的电解法,该方式又主要分为电解海水法和电解铜、铝法。

3电解法原理及特点 3.1 电解海水防海生物法 电解海水法,即通过电解海水来达到防海生物目的。海水中含量最多的是以氯化钠为主的盐类物质,其中氯离子在海水中含量最高,其浓度占19%左右,氯化钠与氯化镁占总盐度88.7%左右。电解海水防海生物装置采用镀铂钛电极或特制的电极将海水电解,产生次氯化钠、次氯酸及氯气,这些强氧化剂可杀死海生物的幼虫及孢子,达到防污染目的[2]。 电解海水防海生物装置不仅具有安全可靠,防污彻底,而且具有对环境无污染特点。但在电解过程中,会产生大量的氢气、氢氧化镁、碳酸钙等电解副产物。其中氢气是易燃气体,而氢氧化镁、碳酸钙等电解副产物经过长时间的积累会附着或聚集在电解槽内部,阻塞电解槽,甚至造成电源烧毁。根据《2005海上移动平台入级与建造规范》第三章第八节中3.8.2.4条规定:“具有阴极保护的舱柜,应在其前、后端设置空气管”,在使用过程中,需要对氢气进行安全排放,并定期清洁电解槽内部,以此来保证使用的安全性。因而,对石油海洋平台,尤其应该注意其安全使用,以防因氢气排放不当而引起着火、爆炸等危险。 3.2 电解铜、铝防海生物法 电解铜、铝防海生物法,即采用电解铜、铝方式来进行海水防污处理。其工作原理是利用电解铜铝所产生的有毒物质Cu2O和絮状载体Al(OH)3,随着海水流动分布并附着于海底门和海水管路的内壁上,有效抑制海生物的栖息和生长。在海水进入平台入口处安装防海生物阳极和防腐蚀阳极,通电进行电解,产生防海生物离子和防腐蚀Ⅱ型离子,形成电解液,再由海水泵抽出,分布到整个海水冷却管系中,达到既防止海生物附着又防止管系腐蚀的目的。 电解铜、铝防海生物装置又可分为直接式电解铜、铝防海生物装置与间接式电解铜、铝防海生物装置。 (1)直接式电解铜、铝防海生物装置将电解阳极直接安装在海水过滤器或海水管路,电解产生铜离子和氢氧化铝直接混合在海水中。该装置具有结构简单、安装方便、成本低等特点,不需要专门的摆放空间。 (2)间接式电解铜、铝防海生物装置是将电解槽内的铜铝阳极进行电解,电解所产生的铜离子和氢氧化铝被抽送进入海水管路。该装置具有处理量大,耗电量小,可随时更换阳极

微藻制油技术

微藻制油技术 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

微藻制油 在全球变暖、能源危机的大背景下,世界各国都在积极寻找新的可替代能源。 提起全球变暖,大多数的企业为如何减少二氧化碳排放,为封存二氧化碳而投入了大量研发资金和人力;提起生物柴油的原料,人们会想到玉米和大豆,从它们“体内”提炼出的乙醇和生物柴油,能有效降低碳排放,减少环境污染。但与此同时,由于这两种作物的培育周期较长、占地面积较大,会产生“与粮争地”问题,从而导致“解决了能源危机,却出现粮食危机”的尴尬结果; 通过科学家的不断研究,一种新的技术进入了人们的视野:培养微藻吸收二氧化碳,并进行光合作用,最终形成生物柴油、类胡萝卜素等衍生品,将二氧化碳变废为宝,这就是“微藻制油”技术。 光合作用 光合作用(Photosynthesis)是绿色植物和藻类利用叶绿素等光合色素和某些细菌(如带紫膜的嗜盐古菌)利用其细胞本身,在可见光的照射下,将二氧化碳和水(细菌为硫化氢和水)转化为有机物,并释放出氧气(细菌释放氢气)的生化过程。植物之所以被称为食物链的生产者,是因为它们能够通过光合作用利用无机物生产有机物并且贮存能量。通过食用,食物链的消费者可以吸收到植物及细菌所贮存的能量,效率为10%~20%左右。对于生物界的几乎所有生物来说,这个过程是它们赖以生存的关键。而地球上的碳氧循环,光合作用是必不可少的。

微藻 微藻是指一些微观的单细胞群体,是最低等的、自养的释氧植物,微藻个体较小,除个别种类之外,一般只有十几个微米大小。它是低等植物中种类繁多、分布及其广泛的一个类群。无论是在海洋、淡水湖泊等水域,或在潮湿的土壤、树干等处,几乎在有光和潮湿的任何地方微藻都能生存。微藻很像一个太阳光光能驱动的细胞工厂,可以旺盛地消耗高浓度的CO2和NO2,源源不断地将CO2转化为潜在的生物燃料、食物、饲料以及高价值的生物活性物质。 微藻制油 微藻制油的原理其实就是利用光合作用,将二氧化碳转化为微藻自身的生物质从而固定了碳元素,再通过诱导反应使微藻自身的碳物质转化为油脂,然后利用物理或化学方法把微藻细胞内的油脂转化到细胞外,进行提炼加工从而生产出生物柴油。 据专家介绍,微藻的产油效率相当高,在一年的生长期内,一公顷玉米能产172升生物质燃油,一公顷大豆能产446升,一公顷油菜籽能产1190升,一公顷棕榈树能产5950升,而一公顷的微藻能产生物质燃油95000升。 微藻的个体小,木素含量很低,易被粉碎和干燥,用微藻来生产液体燃料所需的处理和加工条件相对较低,生产成本低。而且微藻热解所得生物质燃油热值高,平均高达33MJ/kg,是木材或农作物秸秆的1.6倍。 微藻在生长过程中还可利用废弃二氧化碳,从而与二氧化碳的处理和减排相结合,国外已经有利用发电厂排放的废弃二氧化碳生

微藻

微藻制备生物柴油的研究 一、微藻概述 藻类,尤其是海洋单细胞藻类,即微藻,是地球上最早的生物物种,它们中的某些物种已经在地球上生存了35亿年之久。它们能十分有效地利用太阳能将H2O、CO2和无机盐类转化为有机资源,是地球有机资源的最初级生产力,有了它们才有了大气中的氧气,才有了海洋和陆地的其他生物,也才有了人类。随着科技水平的不断提高,人口的不可逆性增长、人类生活水平的不可逆性提高、陆地资源和可耕种面积的不可逆性减少,全球性食品资源短缺压力日益增加。开发和利用海洋微藻是最长远的解决人类食品资源和能源的重要途径。因为藻类不仅富含蛋白质、脂肪和碳水化合物这三大类人类所必需的要素,而且还含有可燃性油类、各种氨基酸、多种维生素、抗生素、高不饱和脂肪酸以及其他多种生物活性物质,是人类向海洋索取食品、药品、燃料、生化试剂、精细化工产品以及其他重要材料的一把金钥匙。 微藻是一类单细胞生物,与陆地微生物相比,微藻具有如下特点: (1)微藻具有叶绿素等光合器官,是非常有效的生物系统,能有效地利用太阳能通过光合作用将H2O、CO2和无机盐转化为有机化合物,因其固定和利用CO2可以减少温室效应。 (2) 微藻一般是以简单的分裂式繁殖,细胞周期较短,易于进行大规模培养,由于微藻通常无复杂的生殖器官,使整体生物量容易采收和利用。 (3)可以用海水、咸水或半咸水培养微藻,因此是淡水短缺、土地贫瘠地区获得有效生物资源的重要途径。 (4) 微藻富含蛋白质、脂肪和碳水化合物,某些种类还富含油料、微量元素和矿物质,是人类未来重要的食品及油料的来源。 (5)微藻,尤其是海洋微藻,因其独特的生存环境使其能合成许多结构和生理功能独特的生物活性物质。特别是经过一定的诱导手段微藻可以高浓度地合成这些具有商业化生产价值的化合物,是人类未来医药品、保健品和化工原料的重要资源。 1、小球藻简介 小球藻(Chlorella)是小球藻属绿藻门,绿藻纲,绿球藻目,卵孢藻科,小球藻属,包括大约10 个种. 小球藻细胞组成中的蛋白质含量为7.3%~88%,碳水化合物为5.7%~38%,脂类为 4.5~86%。小球藻细胞中脂类含量的增加主要是由于脂肪酸积累的结果。在氮饥饿条件下,蛋白核小球藻在生长时可形成高达86%的脂类,而在正常的小球藻细胞中,脂类含量为25%。在正常和氮饥饿条件下生长的小球藻在脂肪酸组成上没有明显的差异。此外,小球藻的异养培养技术,特别是高细胞浓度培养技术的研究得到了较深入的发展,这对于我们制备生物柴油需要高生物量的微藻来说,也是具有重要价值的。 2、微藻油脂 美国国家可更新实验室(NREL)通过现代生物技术建成“工程微藻”,即硅藻类的一种“工程小球藻”,其利用“工程微藻”生产生物柴油,为生物柴油生产开辟了一条新的技术途径。在实验室条件下可使“工程微藻”中脂质含量增加到60%以上,户外生产也可增加到40%以上,而一般自然状态下微藻的脂质含量为5%-20%。“工程微藻”中脂质含量的提高主要由于乙酰辅酶A 羧化酶(ACC)基因在微藻细胞中的高效表达,在控制脂质积累水平方面起到了重要作用。目前,正在研究选择合适的分子载体,使ACC 基因在细菌、酵母和植物中充分表达,还进一步将修饰的ACC 基因引入微藻中以获得更高效表达。在国内,清华大学吴庆余,缪晓玲等也报道利用微藻快速热解的方法制备生物柴油。 利用微藻或“工程微藻”生产生物柴油的优越性在于:微藻生产能力高、用海水作为天然培养基可节约农业资源;比陆生植物单产油脂高出几十倍;生产的生物柴油不含硫,燃烧

深海平台技术的研究现状与发展趋势

深海平台技术的研究现状与发展趋势 (一)背景知识 随着地球陆地上化石燃料煤、石油和天然气的日益浅少,人们把目光转向了海洋。如大阳、月球引力作用形成的潮汐能、深海中的锰结核都有很好的发展前景。近些年探明海底“可燃冰”储量极其丰富,且其开发技术亦日趋成熟。 目前已探明的世界海洋石油储量的 80%以上在水深 500m 以内 , 而全部海洋面积的 90%以上水深在 200~6000m 之间 , 因而大量的海域面积有待探明。此外 , 世界上除了少数海域以外 , 大部分地区的近海油气资源已日趋减少 , 向深海发展已成必然趋势 , 深海平台技术已成为国际海洋工程界的一个热点 , 进行了大量的研究 , 新的深海平台结构不断涌现。世界上主要海洋国家 ,诸如美国、英国、法国、日本、韩国、加拿大、澳大利亚等 ,相继制定了“国家海洋发展战略” ,提出了“海洋是能源之源、立国之本”、“保证海洋的可持续发展” 等政策。 我国拥有 300 万 km2 的海疆 , 深海油气资源以及其他海洋资源储 量十分丰富。然而 , 目前我们国家海洋油气资源的开发主要是在200m 水深以下的海域 , 深海平台技术的开发研究尚处于起步阶段。在 面临世界各国对人类共同拥有的深海资源激烈竞争的形势下,我们必须高度重视对深海平台技术的研究与发展,密切关注国际上深海平台设计与建造技术的发展,开展相应的研究工作,并力争参与到国际深海平的设计建造中去,已逐步掌握国外先进的技术水平,这对我国未来深海资源的开发和我国海洋工程事业的发展都具有重要意义。

( 二) 国外深海平台技术的研究现状 1、张力腿平台 1984 年世界上第一座张力腿平台由 CONOCO公司建造 , 并正式安装在欧洲北海的 Hutton 油田。此后,张力腿平台获得了迅速发展。最近投入使用的 URSA 张力腿 平台的工作水深已达 1250m。目前海洋工程界正不断对张力腿平台的新型式进行探索 , 以适应不同海上作业条件要求。例如浮力塔平台技术的研究。 这种平台具有以下特点 : (1)将平台的浮体置于水面以下超过150 英尺 , 使 得平台在升沉方向的大部分流体动力和95% 的纵荡的流体动力被消除; (2) 通过调整压载使整个平台的重心位于浮心之下, 以保证平台有足够的稳性; (3)采用 垂直的拉索和斜拉索组合的系泊系统, 以提高平台在台风和循环海流作用下的系 泊有效性和系泊系统安全性; (4) 平台在六个自由度上的固有周期均大于30s, 从 而可避开波浪能量集中的频率范围; (5)浮体的底部面积很大,有利于平台浅水 拖航或用重大件潜水起重船进行干运; (6) 平台 ( 包括大型浮体、垂直桁架和甲板 ) 可整体建造、运输和安装。 浮力塔平台虽然只是处于概念研究阶段, 但它综合了自升式平台和张力腿平台的优点 , 不失为一种很好的概念。这种平台的浮力舱置于水下, 浮力舱上竖立的 空间刚架支撑着平台甲板及其上的设备, 浮力舱下端用四组钢管张力腿将平台固 定于海底 , 张力腿与海底的连接用筒型基础( 吸力锚 ) 。通过理论与试验研究表明,这种平台具有良好的运动性能, 完全能满足海上油气开发对平台运动的要求,将 是中深水边际油田开发的一种很好的平台形式。 2、单柱式 (Spar)生产平台 作为运输中转装置,单柱式生产平台技术在存储和卸载上的应用已有30多年的历史。 1987 年 , Edward E. Horton在柱形浮标(Spar)和张力腿平台概 念的基础上提出一种用于深水的生产平台,即单柱平台。1996年, Oryx能源公 司委托 J. Ray McDermott公司在墨西哥建造安装了世界上第一座单柱生产平台, 当地水深为 588m。近几年以来 , Chevron 公司和 Exxon公司又在该地区的 Genesis 和 Diana 油田分别安装投产了两座单柱平台 , 当地水深分别为 789m 和 1311m。最 近 BP公司又委托 McDrmott、Alker 等公司共同设计建造五座桁架式单柱平台 (Truss Spar), 用于水深为 1220~ 1830m 的墨西哥湾海域。

微藻制油

微藻制油 一、目前的能源现状 1. 石油、煤炭等目前大量使用的传统化石能源接近枯竭,而且这些 传统能源造成大量的环境污染如 2.新能源太阳能、风能、地热能、生物质能等应用极具有局限性不能大规模的应用,不足以满足人们的需要。 3.生物能源不仅具有资源再生、技术可靠的特点,而且还具有对环境无害、经济可行、利国利农的发展优势。 总而言之,未来将是生物能源的天下。生物能源将会是人类不二的选择,未来生源的前景将不可估量。 二、微藻概述 1.海洋单细胞藻类,即微藻,是地球上最早的生物物种,它们中的某些物种已经在地球上生存了35亿年之久。它们能十分有效地利用太阳能将H2O、CO2和无机盐类转化为有机资源,是地球有机资源的最初级

生产力,有了它们才有了大气中的氧气,才有了海洋和陆地的其他生物,也才有了人类。 2.微藻的特点 (1)微藻具有叶绿素等光合器官,是非常有效的生物系统,能有效地利用太阳能通过光合作用将H2O、CO2和无机盐转化为有机化合物,因其固定和利用CO2可以减少温室效应。 (2) 微藻一般是以简单的分裂式繁殖,细胞周期较短,易于进行大规模培养,由于微藻通常无复杂的生殖器官,使整体生物量容易采收和利用。 (3)可以用海水、咸水或半咸水培养微藻,因此是淡水短缺、土地贫瘠地区获得有效生物资源的重要途径。 (4) 微藻富含蛋白质、脂肪和碳水化合物,某些种类还富含油料、微量元素和矿物质,是人类未来重要的食品及油料的来源。 (5)微藻,尤其是海洋微藻,因其独特的生存环境使其能合成许多结构和生理功能独特的生物活性物质。特别是经过一定的诱导手段微藻可以高浓度地合成这些具有商业化生产价值的化合物,是人类未来医药品、保健品和化工原料的重要资源。 3.微藻的种类 微藻的国内外研究发展概况,重点探讨了4种主要的可利用微藻螺旋藻、小球藻、杜氏藻和红球藻

微生物多糖的研究进展样本

微生物多糖的研究进展 生命科学技术学院08级2班杜长蔓 摘要: 就微生物多糖的种类, 生物合成、提取与纯化、实现了工业化的微生物多糖及其应用进行了综述, 展望了微生物多糖开发利用的前景。微生物多糖主要指大部分细菌、少量的真菌和藻类产生的多糖。微生物多糖由于具有安全性高、副作用小、理化特性独特等优点而使其在食品和非食品工业备受关注,特别在医药领域具有巨大的应用潜力。微生物多糖在细胞内主要有三种存在形式: ①黏附在细胞表面上,即胞壁多糖; ②分泌到培养基中,即胞外多糖; ③构成微 生物细胞的成分,即胞内多糖。而其中的胞外多糖具有产生量大、易于与菌体分离、可经过深层发酵实现工业化生产。一般微生物多糖的生产主要是利用淀粉为碳源,经过微生物的发酵进行生产,也有经过利用微生物产生的酶作用制成的。能够产生微生物胞外多糖的微生物种类较多,可是真正有应用价值并已进行或接近工业化生产的仅十几种。近几年,随着对微生物多糖研究的深入,世界上微生物多糖的产量和年增长量在10 %以上,而一些新兴多糖年增长量在30 %以上。到当前为止,已大量投产的微生物胞外多糖有黄原胶(Xant han gum) 、结冷胶 ( Gellan gum) 、小核菌葡聚糖(Scleeroglucan) 、短梗霉多糖( Pullulan) 、热凝多糖(Curdlan) 等。微生物多糖和植物多糖相比较具有以下优势:①生产周期短,不受季节、地域、病虫害等条件的限制; ②具有较强的市场竞争力和广阔的发展前景; ③ 应用广泛,例如已作为胶凝剂、成膜剂、保鲜剂、乳化剂等广泛应用于食品、制药、石油、化工等多个领域。据估计,当前全世界微生物多糖年加工业产值可达80 亿左右。 关键词: 微生物多糖; 生物合成; 提取与纯化;开发应用 0引言

微藻培养方法汇总

微藻的培养方式,有多种类型,现介绍一些主要的培养方式。 (一)纯培养与单种培养 纯培养与单种培养是按培养的纯度来划分的。 纯培养:是指排除了细菌在内的一切生物的条件下进行的培养。纯培养要求有无菌室、超净工作台等设备条件,容器、工具、培养液等必须严格灭菌。纯培养是科研工作中不可缺少的技术。 单种培养:生产性的培养中,是不排除细菌存在的,为了区别于纯培养而称之为单种培养。 二)一次培养、连续培养和半连续培养该类培养是按采收方式划分的一次培养:又称有限培养,是在一定的容器中,根据藻类需要加入无机和有机营养,配成培养液,把少量的藻种接种进去,然后在适宜于藻类生长的环境条件(温度、盐度、光照、PH 值等)下培养,待藻液达到一定的密度后,便一次性采收或作进一步扩大培养。 连续培养:一般在室内进行,采用自动控温、人工光源、封闭式通气培养。在培养容器内,新的培养液不断流入,达到一定密度的培养液不断流出。培养液的流入量和流出量可根据微藻的生长情况及需要进行人不控制,并保持平衡。在培养过程中,营养物质浓度和藻类细胞相对稳定,产量高,在国外应用较多,我国目前生产上很少采用。 半连续培养:是指在一次培养的基础上,当藻类细胞达到一定密度后,每天收获一部分浓藻液,并加入新的营养液继续培养。半连续培养是生产中常用的方法,每天的收获量根据育苗的需要及藻液的生长情况确定。 三)藻种培养、中继培养和生产性培养该类培养是按培养的规模和目的来划分的藻种培养:在室内进行,一般采用一次性培养法。培养容器为100-3000 毫升的三角烧瓶,瓶口用消毒的纸或纱布包扎。目的是培养和供应藻种。 中继培养:目的在于培养较大量的高密度纯种藻液,供应生产性培养接种使用。中继培养一般在室内用大的玻璃容器或塑料大袋中进行。根据需要可分为一级中继培养和二级中继培养。一级中继培养的容器为10 升的大口玻璃缸(南方各省多用)、10-20 升的细口瓶或鱼苗袋,以封闭式不通气培养为主。二级中继培养的容器为0.2-0.4 立方米的水族箱、0.5-1.0 立方米的玻璃钢水槽、0.5-1.0 立方米的小型水泥池等,以开放式通气一次性培养为主;利用塑料大袋进行二级中继培养也是新兴的、有效的好方法(见图2-13 )。 生产性培养:可在室内也可在室外,有封闭式培养和开放式培养两种类型。目的是供给育苗中的饵料。培养容器为大型水泥池、大型玻璃钢水槽的塑料大袋;也有用土池

利用微藻生产生物柴油的研究进展

收稿日期:2009-11-02;修回日期:2010-05-07 基金项目:国家杰出青年科学基金项目(20625308);西北师范大学青年教师基金项目(NWNU -LK QN -09-20)作者简介:孔维宝(1981),男,讲师,在读博士,主要从事微藻生物柴油和酶催化方面的研究工作。 通讯作者:夏春谷,研究员,博士生导师(E 2mail )cgxia@lzb . ac .cn 。 生物柴油 利用微藻生产生物柴油的研究进展 孔维宝 1,2,3 ,华绍烽1,宋 昊1,夏春谷 1 (11中国科学院兰州化学物理研究所,羰基合成与选择氧化国家重点实验室,兰州730000;21中国科学院研究生院,北京100049;31西北师范大学生命科学学院,兰州730070) 摘要:在世界能源危机的影响下,生物质能源由于可再生、低污染等优势,被认为是在未来一个较短时期内最有潜力缓解能源危机的石油替代品。而微藻由于具有生物量大、光合效率高、生长周期短、油脂含量高和环境友好等优点,有望破解后石油时代的能源危机。重点阐述了产油微藻的种类,提高微藻油脂含量的策略,微藻细胞的采收技术,微藻油脂的提取和转酯化反应等内容;分析了微藻生物柴油产业发展中亟待解决的一些问题。关键词:微藻;能源;生物燃料;生物柴油;油脂 中图分类号:T Q645;TK6 文献标志码:A 文章编号:1003-7969(2010)08-0051-06 Progress on b iod i esel producti on using m icroa lgae K ONG W eibao 1,2,3,HUA Shaofeng 1,S ONG Hao 1,X IA Chungu 1 (11State Key Laborat ory of Oxo Synthesis and Selective Oxidati on,Lanzhou I nstitute of Che m ical Physics, Chinese Acade my of Sciences,Lanzhou 730000,China;21Graduate University of Chinese Acade my of Sciences,Beijing 100049,China;31College of L ife Sciences, North west Nor mal University,Lanzhou 730070,China ) Abstract:B i omass energy was considered as the most potential petr oleum substitute in a shorter peri od of ti m e,f or its rene wable ability and l ower polluti on .M icr oalgae could s olve the energy crisis in the post -petr oleu m era because of its large bi omass,high phot osynthetic efficiency,short gr owth cycle,high li p id content,and envir on mental friendliness .The current situati on of bi odiesel p r oducti on fr om m icr oalgae was revie wed .The s pecies of li p id -p r oducing m icr oalgae,strategies t o i m p r ove the li p id content of m i 2cr oalgae,techniques f or cell harvesting,li p id extracti on and transesterificati on of m icr oalgae were dis 2cussed .The p r oble m s in m icr oalgae bi odiesel industry were analyzed .Key words:m icr oalgae;energy;bi ofuel;bi odiesel;li p id 在能源危机对各行业影响日益加剧的今天,社会各界对可再生能源的关注度不断提高。对于生物质能源的原料,人们的目光在一段时期内集中在传 统的油料经济作物(大豆、油菜)、粮食(玉米)、农林废弃物(木质素、纤维素和半纤维素)、动植物油脂等领域。其中,生物柴油作为化石能源的替代燃料, 已成为国际上发展最快、应用最广的环保可再生能源。但是,生物燃料“与粮争地、与人争粮”的情况及较高的原料成本限制了它的进一步推广。藻类作为一种重要的可再生资源,具有分布广、生物量大、光合效率高、环境适应能力强、生长周期短、油脂含量高和环境友好等突出特点 [1] 。藻类尤其是微型 藻类将会成为提供新能源和新资源的“明星”,微藻的能源化利用有望成为“后石油时代”破解能源危机的一把金钥匙。在最近两年,不管是国内外有关利用微藻生产生物燃料的基础研究,还是应用开发报道都呈现大幅增长的态势 [2] 。 本文结合国内外在微藻生物燃料研发方面的新近报道,综述微藻开发生物燃料的显著优势,能源微

极端环境微生物的研究进展

[摘要]极端微生物通常分为六个类群:嗜热微生物、嗜冷微生物、嗜酸微生物、嗜碱微生物、嗜盐微生物、嗜压微生物。极端环境中的微生物为了适应生存,逐步形成了独特的结构和生理机能,以适应环境。因此,研究适应机理并利用其特殊生理机能具有重要的理论和实际意义,极端微生物能产生多种极端酶和其他生物活性物质,极端微生物资源的开发利用有着广阔的前景。 极端环境(extreme environment) 泛指存在某些特殊物理和化学状态的自然环境,包括高温、低温、强酸、强碱、高盐、高压、高辐射和极端缺氧环境等,适合在极端环境中生活的微生物称为极端微生物(extremophiles)( Margesin and Schinner,2001【1】; Rothschild and Mancinelli,2001【2】;骏等,2006【3】;敏和东秀珠,2006【4】).海洋极端环境一般是指与正常海洋环境绝然不同的物理化学环境,主要包括海底热泉、海底冷泉和泥火山环境,其次还包括高盐度(卤水)、强酸化、缺氧和滞流等海洋环境。海洋极端微生物通常为化能自养生物(chemoautotroph),在分类体系上属于细菌和古细菌类,生活在无光、无氧或少氧环境,能利用一些海底热催化反应过程中产生的还原性小分子(H2、H2S和CH4 等)合成能量进行有机碳固定和新代,具有独特的基因类型、特殊生态群落、特殊生理机理和特殊代产物,有些属于共生生物(endosymbiont)。 一、极端微生物的种类及其生理特点 1.1 极端嗜热菌(Thermophiles) 一般最适生长温度在90℃以上的微生物,被称做极端嗜热菌【5,6】。已发现的极端嗜热菌有20多个属,大多是古细菌,生活在深海火山喷口附近或其周围区域【7】。如斯坦福大学科学家发现的古细菌,最适生长温度为100℃,8O℃以下即失活;德国的斯梯特(K Stette)研究组在意大利海底发现的一族古细菌,能生活在110℃以上高温中,最适生长温度为98℃,降至84℃即停止生长;美国的巴罗斯(J.Baroos)发现一些从火山喷口中分离出的细菌可以生活在250℃的环境中,嗜热菌的营养围很广。多为异养菌,其中许多能将硫氧化以取得能量。 1.2 极端嗜酸菌(Acidophiles) 一般指生活环境pH值在1以下的微生物,往往生长在火山区或含硫量极为丰富的地区。多为古细菌,其体环境保持pH值7左右。能氧化硫,硫酸作为代产物排出体外。嗜酸菌往往也是嗜高温菌。 1.3 极端嗜盐菌(Extremehalophiles)

多糖提取外文文献以及中文翻译

绝对是极品,一字一句翻译的,都有点不舍得上传 说明:下面提供的是中文翻译,对应的英文原文下载方式: ①谷歌学术搜索搜“Optimization of polysaccharides extraction from Gynostemma pentaphyllum Makino using Uniform Design”进入相关链接下载 ②中国知网搜索“Optimization of polysaccharides extraction from Gynostemma pentaphyllum Makino using Uniform Design”下载 ③大学里的图书馆网站外文数据库搜索“Optimization of polysaccharides extraction from Gynostemma pentaphyllum Makino using Uniform Design”下载 ④百度直接搜索“Optimization of polysaccharides extraction from Gynostemma pentaphyllum Makino using Uniform Design”进入相关链接下载 ⑤实在懒得不想下载的,和我联系。注明需要英文原文QQ:1025325761 原文的部分截图 应用均匀设计优化提取绞股蓝多糖工艺的研究 罗巅辉王昭晶蔡婀娜

摘要:本文应用均匀设计优化提取绞股蓝多糖提取率的工艺条件,对以下四个工艺条件进行了研究,包括水提时间(min),料液比(g/ml),浸泡时间(min),水提温度(℃) 。确定了优化条件,并通过数学模型绘制了三维响应曲面图。T检验和P值表明浸泡时间和水提时间(X2X4)在响应值中出现了互动效应,接着还出现了水萃取时间 (X4)的线性项,浸泡时间和水提温度(X2X3)的互动效应。考虑到效率因素,绞股蓝萃多糖提取的优化条件是:料液比比为1:67,浸泡时间10分钟,水提温度为95℃,水提时间为15分钟。在优化条件下,多糖提取率为11.29%,接近预测提取率。因此,应用均匀设计法从绞股蓝中提取多糖,能够极大缩短提取时间。 关键词:绞股蓝;多糖;提取;均匀设计

微藻培养条件研究

微藻培养条件浅析 摘要:微藻利用光和CO 合成蛋白质、糖类、脂类以及色素等大分子物质并放出O2,在人 2 类食品、保健、医药、环保和生物炼制领域具有广阔的应用前景。本文针对目前微藻培养中存在的生产成本高、产率低的问题,主要从营养盐方面入手,浅析了碳、氮、磷等营养元素对微藻生长的影响,并在此基础上,概述了开放式及封闭式两种微藻培养系统。 关键词:微藻;营养盐;培养系统 1引言 藻类是地球上最早进行光合作用的生物体,具有太阳能利用效率高、适应环境能力强等特点。微藻细胞富含蛋白质、多糖、脂类以及色素等,在食品、饲料、医药、精细化工及染料领域己得到广泛的应用。目前,由于培养技术不成熟导致的生产成本高、效率低是限制微藻产业化培养的主要因素。高效、低成本、规模化的微藻培养技术,是实现微藻产业化培养的关键。降低微藻生产成本主要有两种途径:一是降低培养原材料成本,二是提高产量。营养盐成本占微藻培养原料成本比重很大,是影响微藻生长及产物积累的重要因素。在微藻培养中,通过优化营养盐的种类,监控培养中营养盐的水平,能够提高藻细胞或目标产物的产量,同时提高营养盐的利用率,是高效、低成本、规模化微藻培养的基础。 2微藻概述 微藻是指一些微观的单细胞群体,是最低等的、自养的水生生物。微藻能够利用阳光和CO2进行光合作用,合成有机物质并释放出O2,是自然界中光合效率最高、生长最为迅速的原始生物种类之一,其种类繁多,分布广泛。微藻富含蛋白质、氨基酸、多糖、维生素、不饱和脂肪酸和色素等多种高附加值的生物物质,可以概括为以下四类:蛋白质、糖类、脂类、核酸及各种矿物质[1]。不同种类的微藻,各种组分的含量不同。 3营养盐对微藻生长的影响 碳、氮、磷等营养元素是微藻细胞合成的基础。微藻光合作用的底物为CO2和水,产物除了糖类之外,还合成蛋白质、核酸及脂类等一系列生物活性物质,因此,需要氮、磷等元素的参与。碳源、氮源、磷源以及一些微量元素的种类和供应水平,在一定程度上影响着微藻光合作用的能力和水平,从而直接影响微藻的生长。营养盐的形态会影响微藻的生长。Chu 等[2]分别在BBM培养基中添加0.1%的乙酸钠、柠檬酸钠、碳酸氢钠作为碳源培养卷曲纤维藻(Ankistrodesmus convolutus),发现添加乙酸钠作为碳源有利于藻细胞的生长,而添加柠檬酸钠和碳酸氢钠作为碳源对藻细胞的生长没有促进作用。Berman等[3]采用N03-N,NH3-N 以及次黄嘿吟、尿素、赖氨酸等有机氮源培养微藻,发现当使用尿素作为氮源时,蓝藻的生长最快且氮源得率系数最高。 许多研究表明,培养基中碳源、氮源、磷源的水平是影响微藻营养组成的主要因素。微藻对碳源的需求量很大,碳源主要影响藻细胞生长和脂类、糖类等物质的积累。Tang等[4]研究了不同CO2浓度对斜生栅藻(Scenedesmyus obliquus)和蛋白核小球藻(Chlorella pyrenoidosa)总脂含量的影响,发现高CO2水平(30%~50%)有利于总脂和不饱和脂肪酸的积累。然而,Chen等[5]研究异养小球藻(Chorella sorokiniana )在不同的碳氮比(C/N )下细胞内总脂含量和脂肪酸组成时发现:碳源限制或者氮源限制均能促进细胞内油脂合成,且前者更为

利用微藻制取生物柴油的方法

利用微藻制取生物柴油的研究进展 朱晗生物技术07Q2 20073004104 摘要:随着人口增长的加速,自然资源日益短缺,而且面临着枯竭的危险。传统能源枯竭的焦虑,引起了人们对可再生的生物资源浓厚的兴趣。本文主要讨论了微藻,生物柴油以及利用微藻发酵制取生物柴油的研究进展。 关键词: 微藻; 生物柴油; 发酵 0 前言 生物柴油(Biodiesel)即脂肪酸甲酯, 是指以油料作物、野生油料植物和工程微藻等水生植物油脂以及动物油脂、餐饮垃圾油等为原料油通过酯交换工艺制成的可代替石化柴油的再生性柴油燃料,是一种可生物降解、无毒的可再生能源。生物柴油是生物质能的一种,作为一种清洁的低碳燃料,其含硫和含氮量均较低,同时灰分含量也很小,所以燃烧后SO2 、NO 和灰尘排放量比化石燃料要小得多,是可再生能源中理想的清洁燃料之一[1]。但是由于较高的原材料成本,生物柴油的价格高于传统柴油,因此选取合适的、低成本的植物油脂资源来积极发展和生产生物柴油是发展的总趋势。利用微藻制取生物柴油,不仅能够降低成本,另外,有些微藻会引起水华,赤潮等爆发,消耗水中大量的溶解氧,并会上升至水面而形成一层绿色的黏质物,使水体严重恶臭,水体中生物大量死亡,因此,如果利用此类微藻资源,还减轻环境负荷。自1988 年以来,许多欧洲国家就已经开始将生物柴油作为传统柴油的替代品加以利用,并取得了较好的效果。本文就利用微藻发酵生物柴油的制取进行综述,并讨论了存在的问题及其应用前景。 1 生物柴油

生物柴油是典型“绿色能源”,它以大豆和油菜籽等油料作物、油棕和黄连木等油料林木果实、工程微藻等油料水生植物以及动物油脂、废餐饮油等为原料制成的液体燃料,是优质的石油柴油代用品。大力发展生物柴油对经济可持续发展,推进能源替代,减轻环境压力,控制城市大气污染具有重要的战略意义。 目前生物柴油的制取方法主要有以下几种:利用油脂原料合成生物柴油的方法;用动物油制取的生物柴油及制取方法;生物柴油和生物燃料油的添加剂;废动植物油脂生产的轻柴油乳化剂及其应用;低成本无污染的生物质液化工艺及装置;低能耗生物质热裂解的工艺及装置;利用微藻快速热解制备生物柴油的方法;用废塑料、废油、废植物油脚提取汽、柴油用的解聚釜,生物质气化制备燃料气的方法及气化反应装置;以植物油脚中提取石油制品的工艺方法;用等离子体热解气化生物质制取合成气的方法,用淀粉酶解培养异养藻制备生物柴油的方法;用生物质生产液体燃料的方法;用植物油下脚料生产燃油的工艺方法,由生物质水解残渣制备生物油的方法,植物油脚提取汽油柴油的生产方法;废油再生燃料油的装置和方法;脱除催化裂化柴油中胶质的方法;废橡胶(废塑料、废机油)提炼燃料油的环保型新工艺,脱除柴油中氧化总不溶物及胶质的化学精制方法;阻止柴油、汽油变色和胶凝的助剂;废润滑油的絮凝分离处理方法。 生物柴油优点很多,如具有良好的环境属性;具有较好的低温发动机启动性能;具有较好的润滑性能;具有较好的安全性能;具有良好的燃料性能;具有可再生性能。 综观国际上的发达国家如美国、德国、日本,到次发达的南非、巴西、韩国,到发展中的印度、泰国等,均在发展石油替代产业的国际政策制度、技术完善、装置建设和车辆制造等方面提供了良好的借鉴,为中国走特色石油替代之路铺平了道路。特别是巴西经验,更具实际意义[2]。

食用菌多糖研究进展

微生物专题报告——食用菌多糖功能的研究概况 141201019 微生物学魏华 食用菌作为天然食药资源,营养丰富,含蛋白质、必需氨基酸、多糖、维生素等多种成分。食用菌多糖虽然含量比例仅占0.48-0.87%,却具特异的生物学功能活性。如具有抗肿瘤活性;可显著提高巨噬细胞吞噬量,刺激抗体产生,增强人体免疫功能;可降血糖、降血脂;可显著增加脑和肝脏组织中的过氧化物歧化酶SOD酶活力,抗氧化、抗衰老;保肝、抗辐射等等。 1971 年,Maeda 等从香菇中分离出一种具有抗肿瘤活性的多糖,这个研究发现影响重大,使更多的科学家开始研究真菌中的活性多糖[14]。截至目前,国内外已从食用菌中筛选出200 种有生物活性的多糖。同时,对于多糖的研究不仅只是研究其的生物学活性,更多的是利用生物学手段研究多糖分子的化学结构及结构与功能之间的关系[13]。国内对多糖的研究起步较晚,但在研究糖类的作用机理时,紧密与中医药的理论相结合,进展甚快。70 年代以来,我国在云芝、银耳、灵芝、黑木耳、裂褶菌、冬虫夏草、猴头菌和竹荪等中分离得到具有显著生理活性的、单一成分的多糖物质。目前,我国对药用多糖的研究仍多偏重于提取、分离、纯化、和研究药理活性等方面。虽然已有用于治疗癌症的商业化产品,但积累的临床资料仍很缺乏,大部分多糖产品尚处于实验阶段或仅用于保健品,还需重视新兴的糖生物学及工程学,提高研究水平。 1.食用菌多糖的种类 近年来研究报道的真菌多糖,主要有四类,葡聚糖、甘露聚糖、杂多糖、糖蛋白。 1.1葡聚糖 葡聚糖(Glucan),尤其是β(1-3)连接的葡聚糖具有多种活性[15-20]。如从金顶侧耳(Pleurotus citrinopileatus)子实体中分离的多糖,分子量为1.89×104,可能的结构是主链为β(1-3)连接的葡聚糖,支链为β(1-6)连接的葡萄糖[21]。从黑石耳(Dermatocarpon miniatum)子实体中分离的具有抗氧化功能的多糖,主要结构为α(1-4)(1-6)连接的葡聚糖,分子量为1.80×106[22]。从栓菌(Trametes suareclens)中分离的多糖分子量5.0×10 4,主链为β(1-3)-D-Glucan,支链为β(1—6)连接的葡萄糖。从斜顶菌(Clitopilus caepitosus))多糖分子量1.32×106,主链为β(1-3)连接的葡聚糖,支链有较多的β(1-6)连接的葡聚糖链和较少的β(1-4)连接的葡聚糖链,分别连在主链的O-6 位和O-4 位。 1.2甘露聚糖

利用微藻制备生物能源的研究进展

利用微藻制备生物能源的研究进展 郝国礼刘佳陈超李兴杰姜峰 (唐山师范学院,生物技术,唐山063000) 摘要:随着全球范围内的能源需求不断增加,化石燃料日趋枯竭,环境污染日益严重,因此开发可再生、环保的替代燃料已成为经济可持续发展最重要课题之一。微藻具有巨大的生物能源生产潜力。本文结合目前能源微藻在藻种选育、影响微藻产油因素以及生产工艺方面的研究现状和微藻综合利用发展中存在的问题,综述了近年来各国在微藻能源开发方面的重要科研工作,以及微藻能源与低碳的关系,并对微藻能源开发的相关研究方向和进展进行了评述。 关键字:能源微藻;低碳;影响因素;工艺流程;综合利用 Advances in production of bio-energy from microalgae Hao Guoli Liu Jia Chen Chao Li Xingjie Jiang Feng (Tangshan Teachers College, Department of Biological Sciences, 08 Technical Class)Abstract:With the increasing demand of worldwide energy, depletion of fossil fuels, and the increasingly serious environmental pollution, the exploration of renewable and environmentally friendly alternative fuels has become one of the most important subjects of sustainable economic development .Microalgae has enormous potential for bio-energy production. In this paper, algae species selection, factors that affect the oil-production of microalgae, current situation of production process and problems in the development of utilization are all included to review the recent scientific effort of many countries in exploring microalgae. Furthermore, the relationship between microalgae energy and low carbon life, and direction and progress of microalgae-energy were also made a comment. Keywords: Energy Microalgae; low-carbon; Factors; Process; Utilization 1研究背景 世界经济的现代化,得益于化石燃料的开发与应用。然而,由于人们的过度开采,化石燃料终将会枯竭。化石燃料的利用,也造成环境的严重污染,因此,清洁的可再生能源的开发成为了各国研究的重点, 目前专家学者研究的主要范围包括风能、水能、太阳能、生物能源等。根据国际能源总署统计,生物能源是目前最被广泛使用的可再生能源。生物质能是绿色植物通过叶绿体将太阳能转化为化学能而贮存在生物质内部的能量。生物能源是可再生能源的一种,它具有潜在大规模替代汽油和柴油的可能性,因此一直是国内外研究的热点。到目前为止,生物能源的发展

相关文档
最新文档