第1章-等离子体动力学方程

第1章-等离子体动力学方程
第1章-等离子体动力学方程

第第一一章章等等离离子子体体动动力力学学方方程程

§1.1 引言

在单粒子理论中,认为等离子体是由一些无相互作用的带电粒子组成的,而且带电粒子仅在外电磁场作用下发生运动。但是,我们知道:等离子体与通常的中性气体的最大差别在于带电粒子的运动能够产生电磁场,反过来这种电磁场又要影响带电粒子的运动,这种电磁场称为自恰电磁场。因此,带电粒子的运动不仅受外电磁场的作用,而且还要受自洽场的影响。由于这种原因,用单粒子理论来描述等离子体的行为有很大的局限性,有必要用一种能够反映出带电粒子相互作用的理论来描述等离子体的状态,这就是等离子体动力学理论。

基本上有两种方法来描述等离子体动力学过程。一种是BBGKY (Bogoliubov,Born,Green,Kirkwood 及Yvon)的方程链方法。我们已经在《非平衡态统计力学》课程中对该方法进行了较详细地介绍,它是从系统的正则运动方程出发,通过引入系综分布函数及约化分布函数,可以得到一系列关于约化分布函数的方程链,即BBGKY方程链。该方程链是不封闭的,为了得到动力学方程,必须对该方程链进行截断。另一种方法是由前苏联科学家Klimontovich引入的矩方法。在该方法中,同样可以得到一系列关于各阶矩函数的不封闭的方程链。用这种方法描述一些较复杂的等离子体系统,例如有外电磁场存在,是非常有用的。该方法自60年代被提出后,一直在不断的发展。本章将利用后一种方法描述等离子体的动力学过程。可以说,等离子体动力学是把等离子体的微观状态描述引入宏观状态描述的一个桥梁。等离子体的微观状态可用正则运动方程来描述。如果系统有N个粒子组成,则有6N个运动方程。如此多的方程是难以进行求解的,而且包含的微观信息太多。但是

我们知道等离子体的宏观状态只需要为数不多的状态参量来描述,如温度、密度、流速及电磁场等。如何把等离子体的微观状态描述向宏观状态描述过渡,这正是等离子体动力学的任务。 §1.2 Klilmontovich 方程

一个带电粒子在t 时刻的微观状态可以用其位矢)(t X

及速度)(t V

来描述。在经典力学中,可以引入六维相空间(x,v

)来描述粒子的微观状态,每一个粒子在t 时刻的状态对应于六维相空间的一点。对于第i 个带电粒子,它在相空间的密度为

(,,)[()][()]i i i N x v t x X t v V t δδ=--

(1.2.1)

其中[()]()()()i i i i x X t x X y Y z Z δδδδ-≡---

是 Dirac delta 函数。

对于等离子体中第s 类粒子有0N 个,则在相空间中其密度为

01

(,,)[()][()]N s i i i N x v t x X t v V t δδ==

--∑

(1.2.2)

(1.2.2)式表示在相点(x ,v

)处观察N 0个粒子的运动,若它们均不“占据”该点,则对应的相密度为零;若其中某一个粒子位于该点,则相密度为无穷大。因此,函数s N (x ,v,t)

具有奇异性,它充分地体现出“点粒子”的性质。函数

s N (x ,v,t)

是由Klimontovich 引入的,有时称它为精确分布函数。因为它与用

粒子的坐标及速度描述粒子的状态是等价的,没有做任何统计近似。 下面我们建立相函数s N (x ,v,t)

所满足的方程。第s 类粒子中第i 个粒子的运动规律服从正则运动方程:

i i X (t)V (t)=

(1.2.3)

m m s i s i i i m V (t)q [E (X ,t)V (t)B (X ,t)]=+?

(1.2.4)

其中s s m ,q 是s 类粒子的电荷及质量。m m

E ,B 分别是总电场和总磁场,既包括外

电磁场和带电粒子运动产生的自恰电磁场。电磁场随时空的演化遵从Maxwell 方程组:

m m

m m m m m m E (x ,t)

(x ,t)/B (x ,t)

E (x ,t)

B (x ,t)/t

B (x ,t)

(J (x ,t)E (x ,t)/t)

ρεμε??=??=??=-????=+??

000

(1.2.5) 其中,με00是真空磁导率和真空介电常数,m

m

,J

ρ 分别是微观电荷密度及微观电

流密度:

m

s s s

m s s s

(x ,t)q dvN (x ,v,t)

J (x ,t)q dvvN (x ,v,t)

ρ=

=

?∑

?

(1.2.6) In order to obtain an exact equation for the evolution of a plasma one can take the time derivative of the density s N ,

from (1.2.2)

s N i x

i i i 1N i v

i i

i 1

N (x ,v,t)

t X [x X (t)][v V (t)]V [x X (t)][v V (t)]δδδδ==?=

?-??---??--∑

(1.2.7a) where we have used the relations

f [g(t)]f f (a b)

f (a b)

g,

t

g a

b

???-?-=?=-

????

and where x

y

z

x

x y z v v

v v (,,),(,,)?≡?≡????≡??? . Using (1.2.4) we can write

i i X ,V

in terms of m m i V ,E ,B

, whereupon (1.2.7a) becomes

结构力学第五章习题及答案

第五章 习题 5—2 试用力法计算下列结构,并会出弯矩图。 解:1.判断超静定次数:n=1 2. 确定(选择)基本结构。 3.写出变形(位移)条件: (a ) 根据叠加原理,式(a )可写成 (b ) 4 .建立力法基本方程 将? 11 = 11 x 1代入(b)得 F P A B C l/2 l/2 (a) F P X 1 X 1=1 M 1图 基本体系 M P 图 l F P F P l /2 1=?0 1111=?+?=?P

(c ) 5. 计算系数和常数项 EI l l l l EI 332)21(1311= ???=δ 6. 将d11、 ?11代入力法方程式(c ) 7.作弯矩图 3FP P l /16 1111=?+P X δEI l F l F l l l F l l EI P P P P 4852322212312221(13 1= ???+????=?) (1651111↑=?-=P P F X δp M X M M +=116 32165l F l F l F M P P P A = -?=

解:1.判断超静定次数:n=1 2. 确定(选择)基本结构。 3.写出变形(位移)条件: (a ) 根据叠加原理,式(a )可写成 (b ) 4 .建立力法基本方程 将?11 = 11 x 1代入(b)得 (c ) EI 2 EI 1 F P A B X 1 X 1=1 F P C (b) M 1图 基本体系 M P 图 l F P (l -a ) 1=?0 1111=?+?=?P 0 1111=?+P X δ

5. 计算系数和常数项 1 33)3221(1)]332()(21)332()(21[13 2331211EI a EI a l a a a EI a l a a l l a a a l EI + -=???++??-?++??-?= δ2 2216)2()(]3 )(2)(213)()(21 [1EI a l a l F a l F a a l a l F a a l EI P P P P +--= -??-?+-??-?=? 6. 将d11、 ?11代入力法方程式(c ) 31 23 3 231)1(322a I I l a al l F X P --+-= 7.作弯矩图 (d )解: 超静定次数为2 选择基本结构如图(1)所示力法典型方程为: d 11X 1+d 12X 2+△1P =0 d 21X 1 + d 22X 2+△2P =0 计算系数和常数项,为此作作出X 1=1、X 2=1和荷载单独作用下的弯矩图如(2)(3)(4)所示计 p M X M M +=1 1(a)

结构动力学习题解答(一二章)

第一章 单自由度系统 1.1 总结求单自由度系统固有频率的方法和步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m && ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析和动量距分析; (2) 利用动量距定理J ∑=M θ &&,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θθ ??- ???L L dt )(&=0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= ,

结构力学题库答案

1 : 图 a 桁 架, 力 法 基 本 结 构 如 图 b ,力 法 典 型 方 程 中 的 系 数 为 :( ) 3. 2:图示结构用力矩分配法计算时,结点A 的约束力矩(不平衡 力矩)为(以顺时针转为正) ( ) 4.3Pl/16 3:图示桁架1,2杆内力为: 4. 4:连续梁和 M 图如图所示,则支座B 的竖向反力 F By 是:

4.17.07(↑) 5:用常应变三角形单元分析平面问题时,单元之间()。 3.应变、位移均不连续; 6:图示体系的几何组成为 1.几何不变,无多余联系; 7:超静定结构在荷载作用下的内力和位移计算中,各杆的刚度为() 4.内力计算可用相对值,位移计算须用绝对值 8:图示结构用力矩分配法计算时,结点A之杆AB的分配系数

μAB 为(各杆 EI= 常数)( ) 4.1/7 9:有限元分析中的应力矩阵是两组量之间的变换矩阵,这两组量是( )。 4.单元结点位移与单元应力 10:图示结构用位移法计算时,其基本未知量数目为( ) 4.角位移=3,线位移=2 11:图示结构,各柱EI=常数,用位移法计算时,基本未知量数 目是( ) 3.6 12:图示结构两杆长均为d,EI=常数。则A 点的垂直位移为( ) 4.qd 4/6EI (↓) 13:图示桁架,各杆EA 为常数,除支座链杆外,零杆数为:

1.四 根 ; 14:图示结构,各杆线刚度均为i,用力矩分配法计算时,分配 系数μAB 为( ) 2. 15:在位移法中,将铰接端的角位移,滑动支撑端的线位移作为基本未知量: 3.可以,但不必; 1:用图乘法求位移的必要条件之一是:( ) 2.结构可分为等截面直杆段; 2:由于静定结构内力仅由平衡条件决定,故在温度改变作用下静定结构将( ) 2.不产生内力 3:图示结构,各杆EI=常数,欲使结点B 的转角为零,比值P1/P2应 为( ) 2.1

结构动力学习题解答一二章

第一章 单自由度系统 1、1 总结求单自由度系统固有频率的方法与步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法与能量守恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m && ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析与动量距分析; (2) 利用动量距定理J ∑=M θ &&,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 与势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θθ ??- ???L L dt )(&=0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 与势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1、2 叙述用衰减法求单自由度系统阻尼比的方法与步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法与共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期与相邻波峰与波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= ,

结构动力学习题解答(三四章)

第三章 多自由度系统 试求图3-10所示系统在平衡位置附近作微振动的振动方程。 图3-10 解:(1)系统自由度、广义坐标 图示系统自由度N=2,选x1、x2和x3为广义坐标; (2)系统运动微分方程 根据牛顿第二定律,建立系统运动微分方程如下: ;)(;)()(;)(3 4233332625323122222121111x K x x K x m x K x K x x K x x K x m x x K x K x m ---=------=---=&&&&&& 整理如下 ; 0)(;0)(;0)(3432333332653212222212111=++-=-++++-=-++x K K x K x m x K x K K K K x K x m x K x K K x m &&&&&& 写成矩阵形式 ;000)(0)(0) (0 0000321433365322221321321 ?? ????????=????????????????????+--+++--++????????????????????x x x K K K K K K K K K K K K x x x m m m &&&&&&(1) (3)系统特征方程 设)sin(,)sin(,)sin(332211?ω?ω?ω+=+=+=t A x t A x t A x 代入系统运动微分方程(1)得系统特征方程 ;000)(0)(0)(321234333 2 26532222121?? ????????=????????????????????-+---+++---+A A A m K K K K m K K K K K K m K K ωωω(2) (4)系统频率方程 系统特征方程(2)有非零解的充要条件是其系数行列式等于零, 即 ;0) (0)(0)(234333226532222121=-+---+++---+ωωωm K K K K m K K K K K K m K K 展开得系统频率方程

第二章 质点动力学 南京大学出版社 习题解答

第二章 习题解答 2-17 质量为2kg 的质点的运动学方程为 j t t i t r ?)133(?)16(22+++-= (单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。 解:∵j i dt r d a ?6?12/22+== , j i a m F ?12?24+== 为一与时间无关的恒矢量,∴质点受恒力而运动。 F=(242+122)1/2=125N ,力与x 轴之间夹角为: '34265.0/?===arctg F arctgF x y α 2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为: j t b i t a r ?sin ?cos ωω+= ,a,b,ω为正常数,证明作用于质点的合力总指向原点。 证明:∵r j t b i t a dt r d a 2222)?sin ?cos (/ωωωω-=+-== r m a m F 2ω-==, ∴作用于质点的合力总指向原点。 2-19在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可 伸长。 解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g , f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律: ②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ ①+②可求得:g m m g m F a μμ-+-= 2 112 将a 代入①中,可求得:2 111) 2(m m g m F m T +-= μ 2-20天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为m 1,m 2 的物体(m 1≠m 2),天平右端的托盘上放有砝码. 问天平托盘和砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴承摩擦,绳不伸长。 解:隔离m 1,m 2及定滑轮,受力及运动情况如图示,应用牛顿第二定律: f 1 N 1 m 1 g T a F N 2 m 2g T a N 1 f 1 f 2 T' T'

结构力学试题及参考答案

《结构力学》作业参考答案 一、判断题(将判断结果填入括弧内,以 √表示正确 ,以 × 表示错误。) 1.图示桁架结构中有3个杆件轴力为0 。(×) 2.图示悬臂梁截面A 的弯矩值是ql 2。 (×) l l 3.静定多跨梁中基本部分、附属部分的划分与所承受的荷载无关。(√ ) 4.一般来说静定多跨梁的计算是先计算基本部分后计算附属部分。(× ) 5.用平衡条件能求出全部内力的结构是静定结构。( √ ) 6.求桁架内力时截面法所截取的隔离体包含两个或两个以上的结点。(√ ) 7.超静定结构的力法基本结构不是唯一的。(√) 8.在桁架结构中,杆件内力不是只有轴力。(×) 9.超静定结构由于支座位移可以产生内力。 (√ ) 10.超静定结构的内力与材料的性质无关。(× ) 11.力法典型方程的等号右端项不一定为0。 (√ ) 12.计算超静定结构的位移时,虚设力状态可以在力法的基本结构上设。(√) 13.用力矩分配法计算结构时,汇交于每一结点各杆端分配系数总和为1,则表明分配系 数的计算无错误。 (× ) 14.力矩分配法适用于所有超静定结构的计算。(×) 15.当AB 杆件刚度系数i S AB 3 时,杆件的B 端为定向支座。 (×)

二、单项选择题(在每小题的四个备选答案中选出一个正确答案,并将其代号填在题干后面的括号内。不选、错选或多选者,该题无分。) 1.图示简支梁中间截面的弯矩为( A ) q l A . 82ql B . 42ql C . 22 ql D . 2ql 2.超静定结构在荷载作用下产生的内力与刚度(B ) A . 无关 B . 相对值有关 C . 绝对值有关 D . 相对值绝对值都有关 3.超静定结构的超静定次数等于结构中(B ) A .约束的数目 B .多余约束的数目 C .结点数 D .杆件数 4.力法典型方程是根据以下哪个条件得到的(C )。 A .结构的平衡条件 B .结构的物理条件 C .多余约束处的位移协调条件 D .同时满足A 、B 两个条件 5. 图示对称结构作用反对称荷载,杆件EI 为常量,利用对称性简化后的一半结构为(A )。 6.超静定结构产生内力的原因有(D ) A .荷载作用与温度变化 B .支座位移 C .制造误差 D .以上四种原因

动力学方程

1问题一:什么是非等温试验? 通常有等温法(也称静态法)和非等温法(也称动态法), 等温法是较早研究化学动力学时普遍采用的方法,该法的缺点在于比较费时,并且研究物质分解时,往往在升到一定的试验温度之前物质己发生初步分解,使得结果不很可靠。在非等温法中,试样温度随时间按线性变化,它在不同温度下的质量由热天平连续记录下来。非等温法是从反应开始到结束的整个温度范围内研究反应动力学,测得的一条热重曲线与不同温度下测得的多条等温失重曲线提供的数据等同,相比于等温法,非等温法只需一个微量的试验样品,消除了样品间的误差以及等温法将样品升至一定温度过程中出现的误差,并节省了试验时间。在目前的热重分析中常采用非等温法来进行动力学的研究。 问题二:文献中常用热解动力学表达式 d (a)/dt=kf(a) ——(1) a为t时刻的分解率(材料的失重百分率)又称转化率。a=(m0-m)/(m0-m∞) k=A exp(-E/RT)——(2)β=dT/dt ——(3) 采用coats-Readferm积分法推到 Ln[g(a)/T2]=ln(AR/βE)-E/RT f(a)=(1-a)2 f(a)为分饵的固体反应物与反应速率的函数关系。设Y= Ln[g(a)/T2] X=1/T 做X,Y直线曲线,求出斜率即可得到活化能E,同时得到结局求出指前因子A。 确定g(a)的值就能得到活化能E,常用g(a)的形式很多,有的是模型,有的是反应级数,总之尝试多种方法,找到最合适的,得到更精确的线性关系。 问题三: 1单条升温速率曲线的Coats-Redfern法,跟上述方程表达式一样,可得, ln[-ln( 1 -a)/T 2] = ln[AR/βE( 1-2RT/ E) ]-E/RT( n = 1) ,(4) ln[-( 1 -a)1 -n/T2( 1 -n ) ] = ln [AR/βE (1-2RT/ E) ]-E/RT( n≠1) . (5) 因为,一般活化能 E 的数值远大于温度T,所以(1?2RT/E)≈1,则式(4)和式(5)右端第1项几乎是常数。因此,可分别取n等于0.5, 0.6, 0.7, 0.8, 1.0, 1.2和1.5,结合热重实验的数据得到式(4)和式(5)的左端数值,并对1/T作图,得到这些直线的线性相关系数和标准误差数据,通过对比确定出线性较好的直线,由其斜率得到活化能E。 2,多条升温速率曲线的Flynn-Wall-Ozawa 法 Flynn-Wall-Ozawa(FWO)法通过多条升温速率曲线确定动力学参数,是等转化率法、积分法的一种。 根据式(1)(2)(3)进行移项积分得到, Logβ=log[AE/RG(a)]-2.315-0.4567E/RT 由不同升温速率βi的TG 实验数据,在同一反应深度a下,找到相应的温度Ti,则lgβi 与Ti可以拟合得到一条直线,由其斜率可以得到活化能E,并且可以得到活化能随反应深度a的变化关系。(例如excel蒙古栎的四种升温速率)

结构动力学例题复习题

第十六章结构动力学 【例16-1】不计杆件分布质量和轴向变形,确定图16-6 所示刚架的动力自由度。 图16-6 【解】各刚架的自由度确定如图中所示。这里要注意以下两点: 1.在确定刚架的自由度时,引用受弯直杆上任意两点之间的距离保持不变的假定。根据这个假定并加入最少数量的链杆以限制刚架上所有质量的位置,则刚架的自由度数目即等于所加链杆数目。 2.集中质量的质点数并不一定等于体系的自由度数,而根据自由度的定义及问题的具体情形确定。

【例16-2】 试用柔度法建立图16-7a 所示单自由度体系,受均布动荷载)t (q 作用的运动方程。 【解】本题特点是,动荷载不是作用在质量上的集中荷载。对于非质量处的集中动荷载的情况,在建立运动方程时,一般采用柔度法较为方便。 设图a 质量任一时刻沿自由度方向的位移为y (向下为正)。把惯性力I 、阻尼力R 及动荷载)(t P ,均看作是一个静荷载,则在其作用下体系在质量处的位移y ,由叠加原理(见图b 、c 、d 及e ),则 )(R I y P D I P +δ+?=?+?+?= 式中,)t (q EI 38454P =?,EI 483 =δ。将它们代入上式,并注意到y m I -=,y c R -=,得 )(48)(38453 4y c y m EI t q EI y --+= 图16-7 经整理后可得 )(t P ky y c y m E =++ 式中,3EI 481k =δ= ,)(8 5)(t q k t P P E =?= )(t P E 称为等效动荷载或等效干扰力。其含义为:)(t P E 直接作用于质量上所产生的位移和 实际动荷载引起的位移相等。图a 的相当体系如图f 所示。 【例16-3】 图16-8a 为刚性外伸梁,C 处为弹性支座,其刚度系数为k ,梁端点A 、D 处分别有m 和 3 m 质量,端点D 处装有阻尼器c ,同时梁BD 段受有均布动荷载)t (q 作用,试建立刚性梁的运动方程。 【解】 因为梁是刚性的,这个体系仅有一个自由度,故它的动力响应可由一个运动方程来表达,方程可以用直接平衡法来建立。 这个单自由度体系可能产生的位移形式如图b 所示,可以用铰B 的运动)t (α作为基本

质点动力学的基本方程

第十章 质点动力学基本方程 10-3 半径为R 的偏心轮绕O 轴以匀角速度ω转动,推动导板沿铅直轨道运动,如图所示。导板顶部放有一质量为m 的物块A ,设偏心距e OC =,开始时OC 沿水平线。求:(1)物块对导板的最大压力;(2)使物块不离开导板的ω最大值。 解:建立如图所示直角坐标系Oxy ,导板与物块均沿y 轴线作直 线运动,导板作平动,其运动规律为 t e R y ωsin += 对时间求二阶导数得 t e a y ωωsin 2-= 物块A 受重力m g 和导板的约束反力N F 作用如图)a (。 物块对导板的压力与N F 等值、反向、共线。由图(a)得物块A 的运动微分方程在y 轴的投影式为 ) sin (2N N t e g m F ma mg F y ωω-==- 1)物块对导板的最大压力 )(2N ωe g m F += 2)要使物块不离开导板,则应有 0)(2min N ≥-=ωe g m F 即 2ωe g ≥ 故 e g =max ω 10-7 销钉M 的质量为0.2 kg ,水平槽杆带动,使其在半径为mm 200=r 的固定半圆槽内运动。设水平槽杆以匀速mm/s 400=v 向上运动,不计摩擦。求在图示位置时圆槽对销钉M 的作用力。 解:以水平槽为动系,速度分析如图)a (,v v =e 3 24.02 330cos e a ?==?=v v v 受力与加速度分析如图(b), 2222a n m/s 07.132.044.04 3=??=?==r v r v a M r t n a a a =+M M 向铅直方向投影,得 2t n 2 n t t n m/s 23.13079.09238.030sin 30cos m/s 616.03 30cos 30sin =+=?+?====?-?M M Mx M M M M a a a a a a a 设水平槽对M 的反力为F N ,圆槽对M 的反力为F ,则

理论力学习题-质点动力学基本方程.

第9章 质点动力学基本方程 一、是非题(正确的在括号内打“√”、错误的打“×”) 1. 凡是适合于牛顿三定律的坐标系称为惯性参考系。 ( √ ) 2. 一质点仅受重力作用在空间运动时,一定是直线运动。 ( × ) 3. 两个质量相同的物体,若所受的力完全相同,则其运动规律也相同。 ( × ) 4. 质点的运动不仅与其所受的力有关,而且还和运动的初始条件有关。 ( √ ) 5. 凡运动的质点一定受力的作用。 ( × ) 6. 质点的运动方向与作用于质点上的合力方向相同。 ( × ) 二、填空题 1.质点是指大小可以忽略不计,但具有一定质量的物体。 — 2.质点动力学的基本方程是∑= i m F a ,写成自然坐标投影形式为∑=τF dt s d m 2 2 ∑= n F v m ρ 2 ∑ =b F 0。 3.质点保持其原有运动状态不变的属性称为惯性。 4.质量为m 的质点沿直线运动,其运动规律为0ln(1)v t x b b =+,其中0v 为初速度,b 为常数。则作用于质点上的力=F 20 2 0() mbv b v t - +。 5.飞机以匀速v 在铅直平面内沿半径为r 的大圆弧飞行。飞行员体重为P ,则飞行员对座椅的最大压力为2 (1)v P gr +。 三、选择题 1.如图所示,质量为m 的物块A 放在升降机上, 当升降机以加速度a 向上运动时,物块对地板的压力等于( B )。 (A) mg (B) )(a g m + (C) )(a g m - (D) 0 2.如图所示一质量弹簧系统,已知物块的质量为m ,弹簧的刚度系数为c ,静伸长量为s δ,原长为0l ,若以弹簧未伸长的下端为坐标原点,则物块的运动微分方程可写成( B )。 , (A) 0=+x m c x (B) 0)(=-+s x m c x δ 、 、

结构力学计算题及答案

《结构力学》计算题61.求下图所示刚架的弯矩图。 a a 62.用结点法或截面法求图示桁架各杆的轴力。 63.请用叠加法作下图所示静定梁的M图。 64.作图示三铰刚架的弯矩图。 65.作图示刚架的弯矩图。

66. 用机动法作下图中E M 、L QB F 、R QB F 的影响线。 1m 2m 2m Fp 1 =1m E B A 2m C D 67. 作图示结构F M 、QF F 的影响线。 68. 用机动法作图示结构影响线L QB F F M ,。 69. 用机动法作图示结构R QB C F M ,的影响线。 70. 作图示结构QB F 、E M 、QE F 的影响线。

71. 用力法作下图所示刚架的弯矩图。 l B D P A C l l EI =常数 72. 用力法求作下图所示刚架的M 图。 73. 利用力法计算图示结构,作弯矩图。 74. 用力法求作下图所示结构的M 图,EI=常数。 75. 用力法计算下图所示刚架,作M 图。

76. 77. 78. 79. 80. 81. 82.

83. 84. 85.

答案 取整体为研究对象,由 0A M =,得 2220yB xB aF aF qa +-= (1)(2分) 取BC 部分为研究对象,由 0C M =∑,得 yB xB aF aF =,即yB xB F F =(2)(2分) 由(1)、(2)联立解得2 3 xB yB F F qa ==(2分) 由 0x F =∑有 20xA xB F qa F +-= 解得 4 3xA F qa =-(1分) 由0y F =∑有 0yA yB F F += 解得 2 3 yA yB F F qa =-=-(1分) 则222 4222333 D yB xB M aF aF qa qa qa =-=-=()(2分) 弯矩图(3分) 62. 解:(1)判断零杆(12根)。(4分) (2)节点法进行内力计算,结果如图。每个内力3分(3×3=9分) 63. 解:

第9章 质点动力学基本方程

·104· 第9章 质点动力学基本方程 一、是非题(正确的在括号内打“√”、错误的打“×”) 1. 凡是适合于牛顿三定律的坐标系称为惯性参考系。 ( √ ) 2. 一质点仅受重力作用在空间运动时,一定是直线运动。 ( × ) 3. 两个质量相同的物体,若所受的力完全相同,则其运动规律也相同。 ( × ) 4. 质点的运动不仅与其所受的力有关,而且还和运动的初始条件有关。 ( √ ) 5. 凡运动的质点一定受力的作用。 ( × ) 6. 质点的运动方向与作用于质点上的合力方向相同。 ( × ) 二、填空题 1.质点是指大小可以忽略不计,但具有一定质量的物体。 2.质点动力学的基本方程是∑= i m F a ,写成自然坐标投影形式为∑=τF dt s d m 2 2 ∑= n F v m ρ 2 ∑ =b F 0。 3.质点保持其原有运动状态不变的属性称为惯性。 4.质量为m 的质点沿直线运动,其运动规律为0ln(1)v t x b b =+,其中0v 为初速度,b 为常数。则作用于质点上的力=F 20 2 0() mbv b v t - +。 5.飞机以匀速v 在铅直平面内沿半径为r 的大圆弧飞行。飞行员体重为P ,则飞行员对座椅的最大压力为2 (1)v P gr +。 三、选择题 1.如图9.6所示,质量为m 的物块A 放在升降机上, 当升降机以加速度a 向上运动时,物块对地板的压力等于( B )。 (A) mg (B) )(a g m + (C) )(a g m - (D) 0 2.如图9.7所示一质量弹簧系统,已知物块的质量为m ,弹簧的刚度系数为c ,静伸长量为s δ,原长为0l ,若以弹簧未伸长的下端为坐标原点,则物块的运动微分方程可写成( B )。 (A) 0=+x m c x (B) 0)(=-+s x m c x δ (C) g x m c x s =-+)(δ (D) 0)(=++s x m c x δ 3.在介质中上抛一质量为m 的小球,已知小球所受阻力R kv =-, A a 图9.6 、 、

结构动力学习题分析

第九章 结构动力计算 一、是非题 1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。 2、忽略直杆的轴向变形,图示结构的动力自由度为4个。 3、仅在恢复力作用下的振动称为自由振动。 4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。 5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。 l /2 l /2 l /2 l /2 (a)(b) 6、单 自 由 度 体 系 如 图 ,W =98 .kN ,欲 使 顶 端 产 生 水 平 位 移 ?=001 .m ,需 加 水 平 力 P =16kN ,则 体 系 的 自 振 频 率 ω=-40s 1 。 ? 7、结构在动力荷载作用下,其动内力 与动位移仅与动力荷载的变化规律有关。 8、由于阻尼的存在,任何振动都不会长期继续下去。 9、桁 架 ABC 在 C 结 点 处 有 重 物 W ,杆 重 不 计 , EA 为 常 数 ,在 C 点 的 竖 向 初 位 移 干 扰 下 ,W 将 作 竖 向 自 由 振 动 。 A C 10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 : m m X X h EI EI EI EI X X P t 00148242424012312????????????+--????????????=?????? () 二、选择题 1、图 示 体 系 ,质 点 的 运 动 方 程 为 :

A .()()()y l P s in m y EI =-77683θ t /; B .()()m y EI y l P s in /+=19273 θ t ; C .()()m y EI y l P s in /+=38473θ t ; D .()()()y l P s in m y EI =-7963θ t / 。 l l 0.50.5 2、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以 A .增 大 P ; B .增 大 m ; C .增 大 E I ; D .增 大 l 。 l t ) 3、单 自 由 度 体 系 自 由 振 动 的 振 幅 取 决 于 : A .初 位 移 ; B .初 速 度 ; C .初 位 移 、初 速 度 与 质 量 ; D .初 位 移 、初 速 度 与 结 构 自 振 频 率 。 4、考 虑 阻 尼 比 不 考 虑 阻 尼 时 结 构 的 自 振 频 率 : A .大 ; B .小 ; C .相 同 ; D .不 定 ,取 决 于 阻 尼 性 质 。 5、已 知 一 单 自 由 度 体 系 的 阻 尼 比 ξ=12.,则 该 体 系 自 由 振 动 时 的 位 移 时 程 曲 线 的 形 状 可 能 为 : D. C. B. A. 6、图 a 所 示 梁 ,梁 重 不 计 ,其 自 振 频 率 () ω=76873 EI ml /;今 在 集 中 质 量 处 添 加 弹 性 支 承 ,如 图 b 所 示 ,则 该 体 系 的 自 振 频 率 ω为 : A .() 76873 EI ml k m //+; B . ()76873EI ml k m //-; C .()76873 EI ml k m //-; D . () 76873 EI ml k m //+ 。 l l /2 /2 l l /2 /2(a)(b) 7、图 示 结 构 ,不 计 阻 尼 与 杆 件 质 量 ,若 要 其 发 生 共 振 ,θ 应 等 于 A . 23k m ; B .k m 3;

9 质点动力学的基本方程自测题

Page 1 of 2 Created by JiangFang, School of Technology, BJFU (a ) (b ) (c ) x O 第九章 质点动力学的基本方程 自测题 1. 判断正误 (1)只要知道作用在质点上的力,那么质点在任一瞬时的运动状态就可以确定。 ( ) (2) 一个质点只要有运动,就一定有力的作用,而且运动方向就是它受力的方向。 ( ) (3)在同一地点、同一坐标系内,以相同大小的初速度0v 斜抛两质量相同的小球,若不 计空气阻力,则两者的运动微分方程一定相同。 ( ) (4)质点受到的力越大,其运动的速度就越大。 ( ) (5)在惯性参考系中,不论初始条件如何变化,只要质点不受力的作用,则该质点应保 持静止或匀速直线运动状态。 ( ) 2. 选择题 (1)求解质点动力学问题时,质点的初始条件是用来 。 A .分析力的变化规律 B. 建立质点运动微分方程 C. 确定积分常数 D. 分离积分变量 (2)三个质量相同的质点,在相同的力F 作用下。若初始位置都在坐标原点O (如图所示),但初速度不同,则三个质点的运动微分方程 , 三个质点的运动轨迹 。 A .相同 B. 不同 C. 无法确定 (3) 距地面高为H 的质点M ,具有水平初速度0v ,则该质点落地时的水平距离l 与 成正比。 A . H B. C. 2 H D. 3 H

Page 2 of 2 Created by JiangFang, School of Technology, BJFU x O (4)一铅垂上抛的小球,可视为质点,已知质量为m ,空气阻力v R k ?=(k 为常数),则对图示坐标轴Ox ,小球的运动微分方程为 。 A. x k mg x m ?= B. x k mg x m ??= C. x k mg x m +?= D. x k mg x m += (5)如图,已知A 物重20N ,B 物重30N ,不计滑轮C 、D 的质量,并忽略各处的摩擦,则绳水平段的拉力为 。 A. 30N B. 20N C. 16N D. 24N 3. 填空题 (1)质量为10kg 的质点,受水平力F 的作用在光滑水平面上运动,设F =3+4t (t 的单位为s ,F 的单位为N ),初瞬时(t = 0)质点位于坐标原点,且其初速度为0。则t = 3s 时,质点的位移= m ,速度= m/s 。 (2) 质量为m 物体自高H 处水平抛出,运动中受到与速度一次方成正比的R km =?F v (k 为常数),则该质点的运动微分方程式为 , 。 O M x v

理论力学动力学知识点汇总

理论力学动力学知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

质点动力学的基本方程 知识总结 1.牛顿三定律适用于惯性参考系。 质点具有惯性,以其质量度量; 作用于质点的力与其加速度成比例; 作用与反作用力等值、反向、共线,分别作用于两个物体上。 2.质点动力学的基本方程。 质点动力学的基本方程为,应用时取投影形式。 3.质点动力学可分为两类基本问题。 质点动力学可分为两类基本问题: (1). 已知质点的运动,求作用于质点的力; (2). 已知作用于质点的力,求质点的运动。 求解第一类问题,需先求得质点的加速度;求解第二类问题,一般是积分的过程。质点的运动规律不仅决定于作用力,也与质点的运动初始条件有关,这两类的综合问题称为混合问题。 动量定理 知识点总结 1.牛顿三定律适用于惯性参考系。 质点具有惯性,以其质量度量; 作用于质点的力与其加速度成比例; 作用与反作用力等值、反向、共线,分别作用于两个物体上。 2.质点动力学的基本方程。 质点动力学的基本方程为,应用时取投影形式。 3.质点动力学可分为两类基本问题。 质点动力学可分为两类基本问题: (1). 已知质点的运动,求作用于质点的力; (2). 已知作用于质点的力,求质点的运动。

求解第一类问题,需先求得质点的加速度;求解第二类问题,一般是积分的过程。质点的运动规律不仅决定于作用力,也与质点的运动初始条件有关,这两类的综合问题称为混合问题。 常见问题 问题一在动力学中质心意义重大。质点系动量,它只取决于质点系质量及质心速度。 问题二质心加速度取决于外力主失,而与各力作用点无关,这一点需特别注意。 动量矩定理 知识点总结 1.动量矩。 质点对点O 的动量矩是矢量。 质点系对点O 的动量矩是矢量。 若z 轴通过点O ,则质点系对于z 轴的动量矩为 。 若 C 为质点系的质心,对任一点O 有。 2.动量矩定理。 对于定点O 和定轴z 有 若 C 为质心,C z 轴通过质心,有

武汉理工大学结构力学典型例题

第2章平面体系的几何构造分析典型例题 1. 对图 2.1a体系作几何组成分析。 图2.1 分析:图2.1a等效图2.1b(去掉二元体)。 对象:刚片Ⅰ、Ⅱ和Ⅲ; 联系:刚片Ⅰ、Ⅲ有虚铰A(杆、2);刚片Ⅱ、Ⅲ有虚铰C(无穷远)(杆3、4);刚片Ⅰ、Ⅱ有虚铰B(杆5、6); 结论:三铰共线,几何瞬变体系。 2. 对图2.2a体系作几何组成分析。 图2.1 分析:去掉二元体(杆12、杆34和杆56图2.1b),等效图2.1c。 对象:刚片Ⅰ和Ⅱ; 联系:三杆:7、8和9; 结论:三铰不共线,无多余约束的几何不变体系。

3. 对图2.3a体系作几何组成分析。 图2.3 分析:图2.3a 对象:刚片Ⅰ(三角形原则)和大地Ⅱ; 联系:铰A和杆1; 结论:无多余约束的几何不变体系。 对象:刚片Ⅲ(三角形原则)和大地Ⅱ; 联系:杆2、3和4; 结论:无多余约束的几何不变体系。 第3章静定结构的受力分析典型题

1. 求图3.1结构的内力图。 图3.1 解(1)支座反力(单位:kN) 由整体平衡,得=100.= 66.67,=-66.67.(2)内力(单位:kN.m制) 取AD为脱离体: ,,; ,,。取结点D为脱离体: ,, 取BE为脱离体: ,,。

取结点E为脱离体: ,, (3)内力图见图3.1b~d。 2. 判断图 3.2a和b桁架中的零杆。 图3.2 分析: 判断桁架零杆的常用方法是找出桁架中的L型结点和T型结点。如果这两种结点上无荷载作用.那么L型纪点的两杆及T型结点的非共线杆均为零杆。 解:图3.2a: 考察结点C、D、E、I、K、L,这些结点均为T型结点,且没有荷载作用,故杆件CG、DJ、EH、IJ、KH、LF 均为零杆。 考察结点G和H,这两个结点上的两竖向链杆均已判断为零杆,故这两个结点的受力也已成为T型结点的情形.由于没有荷载作用,故杆件AG、BH也为零杆。 整个结构共有8根零杆.如图3.2c虚线所示。 图3.2b: 考察结点D,为“K”型结点且无荷载作用,故;对称结构对称荷载(A支座处的水平反力为零),有 ,故杆件DE和DF必为零杆。

《结构动力学》复习题

年《结构动力学》复习题

————————————————————————————————作者:————————————————————————————————日期:

2016年《结构动力学》复习题 一、(概念题) (1) (填空题)某等效单自由度振动系统具有下列参数:17.5m kg =,70/k N cm =,阻尼比 0.2ξ=, 则系统的固有频率ω为 rad/s ,等效阻尼系数c 为 N. s/m 。 (2) (填空题)某振动系统具有下列参数:17.5m kg =,70/k N cm =,0.7/c N s cm =?,则系统的固有频率ω为 ,阻尼比ξ为 ,衰减系数n 为 。 (3) (简单计算题)一弹簧悬挂某质量块,弹簧产生了静变形mm 4=?st ,试确定系统作自由振动的固有频率 (重力加速度取2s m /10=g )。(10分) (4) (填空题)当系统受简谐力作用发生共振时,系统所受的外力是由 来平衡。 (5) (问答题)某单自由度系统具有非线性的弹簧,其运动方程为:()()mx cx f x F t ++=,能否用杜哈美积分计算该系统的受迫振动响应?并说明理由。 (6) (填空题)同种材料的弦承受相同的张力,如果长度增加到原来的4倍,截面积减小到原来的4倍,则作该弦横向振动的各阶固有频率将 。 (7) (填空题)图示两个系统,已知各质点的质量 i m ,刚架的质量不计,忽略杆的轴向变形,试分别确定两系统的动力自由度: (1) n = ; (2) n = 。 (8) (作图题) 0.1ξ=时单自由度系统受迫振动的相频曲线如图所示,其中ω为系统的固有频 率,p 为激振力的频率,?为位移响应滞后于激振力的相位角。试大致绘出0.05ξ=和0.2ξ=时相频曲线的形状。 (9) (问答题)模态分析法能否求解多自由度系统的弹塑性地震响应?并说明理由。 (10) (选择题) 对于一个单自由度系统而言,其临界阻尼与系统的固有特性参数 ,与 系统所受的阻尼力 。 (a) 有关,有关;(b) 无关,无关;(c) 有关,无关;(d) 无关,有关 1 m 2 m 3 m ( 2 m 3 m ( 1 m ω p ? 10.1 ξ=π 2 π

《结构动力学》考试复习题

《结构动力学》考试复习题 一、(概念题) (1) (填空题)某等效单自由度振动系统具有下列参数:17.5m kg =,70/k N cm =,阻尼比 0.2ξ=, 则系统的固有频率ω为 rad/s ,等效阻尼系数c 为 N. s/m 。 (2) (填空题)某振动系统具有下列参数:17.5m kg =,70/k N cm =,0.7/c N s cm =?,则系统的固有频率ω为 ,阻尼比ξ为 ,对数衰减率n 为 。 (3) (简单计算题)一弹簧悬挂某质量块,弹簧产生了静变形mm 4=?st ,试确定系统作自由振动的固有频率 (重力加速度取2s m /10=g )。(10分) (4) (填空题)当系统受简谐力作用发生共振时,系统所受的外力是由 来平衡。 (5) (问答题)某单自由度系统具有非线性的弹簧,其运动方程为:()()mx cx f x F t ++= ,能否用杜哈美积分计算该系统的受迫振动响应?并说明理由。 (6) (填空题)同种材料的弦承受相同的张力,如果长度增加到原来的4倍,截面积减小到原来的4倍,则作该弦横向振动的各阶固有频率将 。 (7) (填空题)图示两个系统,已知各质点的质量 i m ,刚架的质量不计,忽略杆的轴向变形,试分别确定两系统的动力自由度: (1) n = ; (2) n = 。 (8) (作图题) 0.1ξ=时单自由度系统受迫振动的相频曲线如图所示,其中ω为系统的固有频 率,p 为激振力的频率,?为位移响应滞后于激振力的相位角。试大致绘出0.05ξ=和0.2ξ=时相频曲线的形状。 (9) (问答题)模态分析法能否求解多自由度系统的弹塑性地震响应?并说明理由。 (10) (选择题) 对于一个单自由度系统而言,其临界阻尼与系统的固有特性参数 ,与 系统所受的阻尼力 。 (a) 有关,有关;(b) 无关,无关;(c) 有关,无关;(d) 无关,有关 2 ω p π π

相关文档
最新文档