2018届高三数学二轮复习解答题专练 导数与函数

2018届高三数学二轮复习解答题专练 导数与函数
2018届高三数学二轮复习解答题专练 导数与函数

导数与函数专练

1.(2017·深圳调研二)已知函数f(x)=(x -2)e x -a

2x 2,其中a∈R ,e 为自然对数的底数.

(1)函数f(x)的图像能否与x 轴相切?若能与x 轴相切,求实数a 的值;否则,请说明理由; (2)若函数y =f(x)+2x 在R 上单调递增,求实数a 能取到的最大整数值. 解析 (1)f ′(x)=(x -1)e x -ax.

假没函数f(x)的图像与x 轴相切于点(t ,0),

则有???f (t )=0,

f ′(t )=0.

即???(t -2)e t -a 2t 2=0. ①(t -1)e t -at =0. ②

由②可知at =(t -1)e t , 代入①中可得(t -2)e t -t (t -1)2

e t

=0. ∵e t >0,

∴(t -2)-t (t -1)

2=0,即t 2-3t +4=0.

∵Δ=9-4×4=-7<0. ∴方程t 2-3t +4=0无解.

∴无论a 取何值,函数f(x)的图像都不与x 轴相切. (2)方法1:记g(x)=(x -2)e x -a

2

x 2+2x.

由题意知,g ′(x)=(x -1)e x -ax +2≥0在R 上恒成立. 由g ′(1)=-a +2≥0,可得g ′(x)≥0的必要条件是a≤2. 若a =2,则g ′(x)=(x -1)e x -2x +2=(x -1)(e x -2). 当ln2

下面证明:当a =1时,不等式(x -1)e x -x +2≥0在R 上恒成立. 令h(x)=(x -1)e x -x +2,则h ′(x)=xe x -1. 记H(x)=xe x -1,则H ′(x)=(x +1)e x . 当x>-1时,H ′(x)>0,H(x)单调递增, 且H(x)>H(-1)=-1

e

-1;

当x<-1时,H′(x)<0,H(x)单调递减,

且-1

e

-1=H(-1)

∵H(1

2

)=

e

2

-1<0,H(1)=e-1>0.

∴存在唯一的x

0∈(

1

2

,1)使得H(x

)=0,

且当x∈(-∞,x

)时,H(x)=h′(x)<0,h(x)单调递减;

当x∈(x

,+∞)时,H(x)=h′(x)>0,h(x)单调递增.

∵h(x)

min =h(x

)=(x

-1)ex

-x

+2,

∵H(x

0)=0,∴ex

1

x

∴h(x

0)=(x

-1)

1

x

-x

+2=3-(

1

x

+x

).

∵1

2

<1,∴2<

1

x

+x

<

3

2

.

从而(x-1)e x-x+2>0在R上恒成立,∴a能取得的最大整数为1.

方法2:记g(x)=(x-2)e x-a

2

x2+2x,

由题意知g′(x)=(x-1)e x-ax+2≥0在R上恒成立.

∵g′(1)=-a+2≥0,

∴g′(x)≥0的必要条件是a≤2.

若a=2,则g′(x)=(x-1)e x-2x+2=(x-1)(e x-2).

当ln2

下面证明:当a=1时,不等式(x-1)e x-x+2≥0在R上恒成立,即(x-1)e x≥x-2. 先证?x∈R,e x≥x+1.

令k(x)=e x-x-1,则k′(x)=e x-1.

当x>0时,k′(x)>0,k(x)单调递增;

当x<0时,k′(x)<0,k(x)单调递减.

∴k(x)

min

=k(0)=0,∴e x≥x+1恒成立.

当x≥1时,(x-1)e x≥(x-1)(x+1)=x2-1>x-2;

当x<1时,由e x ≥x +1得e -x ≥-x +1>0, 即e x ≤

11-x

. ∴(x -1)e x ≥(x -1)×

1

1-x

=-1>x -2. 综上所述,(x -1)e x -x +2≥0在R 上恒成立,故a 能取得的最大整数为1. 2.(2017·湖北四校联考)已知函数f(x)=lnx -a(x -1),g(x)=e x . (1)求函数f(x)的单调区间;

(2)若函数h(x)=f(x +1)+g(x),当x>0时,h(x)>1恒成立,求实数a 的取值范围. 解析 (1)函数f(x)的定义域为(0,+∞),f ′(x)=1x -a =1-ax

x

(x>0)

①若a≤0,对任意的x>0,均有f ′(x)>0,所以f(x)的单调递增区间为(0,+∞),无单调递减区间;

②若a>0,当x∈(0,1a )时,f ′(x)>0,当x∈(1

a ,+∞)时,f ′(x)<0,所以f(x)的单调递增

区间为(0,1a ),单调递减区间为(1

a

,+∞).

综上,当a≤0时,f(x)的单调递增区间为(0,+∞),无单调递减区间;当a>0时,f(x)的单调递增区间为(0,1a ),单调递减区间为(1

a

,+∞).

(2)因为h(x)=f(x +1)+g(x)=ln(x +1)-ax +e x ,所以h ′(x)=e x +

1

x +1

-a. 令φ(x)=h ′(x),因为x∈(0,+∞),φ′(x)=e x

-1(x +1)2=(x +1)2e x -1

(x +1)2

>0,

所以h ′(x)在(0,+∞)上单调递增,h ′(x)>h ′(0)=2-a ,①当a≤2时,h ′(x)>0,所以h(x)在(0,+∞)上单调递增,h(x)>h(0)=1恒成立,符合题意;

②当a>2时,h ′(0)=2-a<0,h ′(x)>h ′(0),所以存在x 0∈(0,+∞),使得h ′(x 0)=0, 所以h(x)在(x 0,+∞)上单调递增,在(0,x 0)上单调递减,又h(x 0)1不恒成立,不符合题意.

综上,实数a 的取值范围是(-∞,2].

3.(2017·郑州预测一)设函数f(x)=(1-mx)ln(1+x).

(1)若当0

(2)求证:e>(

1 0011 000

)1 000.4

. 解析 (1)令F(x)=f(x)-x =(1-mx)ln(1+x)-x ,x ∈(0,1),则 F ′(x)=-mln(1+x)+

1-mx 1+x -1,x ∈(0,1),[F ′(x)]′=-mx +2m +1

(1+x )2

. ①当m≤-12时,由于x∈(0,1),有[F ′(x)]′=-mx +2m +1

(1+x )2

>0,

于是F ′(x)在x∈(0,1)上单调递增,从而F ′(x)>F ′(0)=0,因此F(x)在x∈(0,1)上单调递增,即F(x)>0;

②当m≥0时,由于x∈(0,1),有[F ′(x)]′=-

mx +2m +1

(1+x 2)

<0,

于是F ′(x)在x∈(0,1)上单调递减,从而F ′(x)

m },当x∈(0,x 0)时,

[F ′(x)]′=-

mx +2m +1

(1+x )2

<0,于是F ′(x)在x∈(0,x 0)上单调递减,

从而F ′(x)

综上可知,所求实数m 的取值范围是(-∞,-1

2].

(2)对要证明的不等式等价变形如下:

对于任意大于1的正整数n ,不等式(1+1n )n +2

5

(1+

25n )ln(1+1n )-1n <0,相当于(1)的③中m =-25,x 0=1

2

的情形, F(x)在x∈(0,1

2]上单调递减,即F(x)

取x =1n (n≥2),都有(1+25n )ln(1+1n )-1

n <0成立,

令n =1 000,原不等式得证.

4.(2017·武汉4月调研)已知函数f(x)=(x -a)2lnx ,a ∈R .

(1)若a =3e ,其中e 为自然对数的底数,求函数F(x)=

f (x )

x

的单调区间; (2)若函数f(x)既有极大值,又有极小值,求实数a 的取值范围. 解析 (1)由已知,得F(x)=(x -a )2lnx

x ,

F ′(x)=(x 2-a 2)lnx +(x -a )2

x 2=

(x -a )[(x +a )lnx +x -a]

x 2.

当a =3e 时,

F ′(x)=(x -3e )[(x +3e )lnx +x -3e]

x 2.

设m(x)=(x +3e)lnx +x -3e , 则m ′(x)=lnx +3e

x

+2, 设n(x)=lnx +

3e x +2,则n ′(x)=1x -3e x 2=x -3e

x 2

. ∵当x∈(0,3e)时,n ′(x)<0;当x∈(3e ,+∞)时,n ′(x)>0. ∴当x =3e 时,m ′(x)=n(x)取得最小值. ∴m ′(x)≥m′(3e)=ln(3e)+3>0,

∴m(x)在(0,+∞)上单调递增,观察知m(e)=0, ∴当x∈(0,e)时,F ′(x)>0,F(x)单调递增; 当x∈(e ,3e)时,F ′(x)<0,F(x)单调递减; 当x∈(3e ,+∞)时,F ′(x)>0,F(x)单调递增. (2)f(x)=(x -a)2lnx ,

f ′(x)=2(x -a)lnx +(x -a)2·1x =(x -a)(2lnx +x -a

x ).

由2lnx +x -a

x =0,得2xlnx +x =a.

设h(x)=2xlnx +x ,则h ′(x)=3+2lnx. 由h ′(x)=0,得x =e -3

2

.

当x∈(0,e -3

2)时,h ′(x)<0,h(x)单调递减;

当x∈(e -3

2,+∞)时,h ′(x)>0,h(x)单调递增.

∴h(x)min =h(e -32)=-2e -3

2

又x→0时,h (x)→0,x →+∞时,h (x)→+∞, ∴a ≥-2e -3

2

,这是必要条件.

检验:当a =-2e -3

2时,f(x)既无极大值,也无极小值;

当-2e -3

2

当a =0时,f(x)只有-个极值点,舍去; 当a>0时,2lna +a -a

a

≠0,则a≠1.

综上,符合题意的a 的取值范围为{a|a>-2e -3

2且a≠0,a ≠1}.

5.已知函数f(x)=lnx +a

2x 2-(a +1)x.

(1)判断f(x)的单调性;

(2)若函数g(x)=f(x)+x 有两个极值点x 1,x 2(x 1

2-lna.

解析 (1)由已知得f(x)的定义域为(0,+∞),f ′(x)=1x +ax -(a +1)=ax 2-(a +1)x +1

x .

当a =0时,f ′(x)=

-x +1

x

,当x∈(0,1)时,f ′(x)>0,f(x)单调递增, 当x∈(1,+∞)时,f ′(x)<0,f(x)单调递减. 当a<0时,由f ′(x)=

(ax -1)(x -1)x =0,得x =1

a

<0,

因而当x∈(0,1)时,f ′(x)>0,f(x)单调递增, 当x∈(1,+∞)时,f ′(x)<0,f(x)单调递减. 当0

(ax -1)(x -1)x =0,得x =1或x =1

a

>1,

因而当x∈(0,1)与x∈(1

a

,+∞)时,f′(x)>0,f(x)单调递增,当x∈(1,

1

a

)时,f′(x)<0,

f(x)单调递减.

当a=1时,由f′(x)=(x-1)2

x

≥0,因而当x∈(0,+∞)时,f(x)单调递增.

当a>1时,由f′(x)=(ax-1)(x-1)

x

=0,得x=1或x=

1

a

<1,因而当x∈(0,

1

a

)与x∈(1,

+∞)时,f′(x)>0,f(x)单调递增,

当x∈(1

a

,1)时,f′(x)<0,f(x)单调递减.

综上所述,当a≤0时,f(x)在(0,1)上单调递增,在(1,+∞)上单调递减;

当0

a

,+∞)上单调递增,在(1,

1

a

)上单调递减;

当a=1时,f(x)在(0,+∞)上单调递增;

当a>1时,f(x)在(0,1

a

)与(1,+∞)上单调递增,在(

1

a

,1)上单调递减.

(2)g(x)=f(x)+x=lnx+a

2

x2-ax,则g(x)的定义域为(0,+∞),g′(x)=

1

x

+ax-a=

ax2-ax+1

x

.

若g(x)有两个极值点x

1,x

2

(x

1

2

),则方程ax2-ax+1=0的判别式Δ=a2-4a>0,

且x

1+x

2

=1,x

1

x

2

1

a

>0,

因而a>4,又x

1

2

,∴x

1

2

1

x

2

1

a

,即0

1

<

1

a

g(x

1)-g(x

2

)=lnx

1

a

2

x

1

2-ax

1

-lnx

2

a

2

x

2

2+ax

2

=lnx

1

+ln(ax

1

)+

a

2

-ax

1

.

设h(t)=lnt+ln(at)+a

2

-at,其中t=x

1

∈(0,

1

a

),

由h′(t)=2

t

-a=0,得t=

2

a

,由于

2

a

1

a

2-a

a

<0,

即h(t)在(0,2

a

)上单调递增,在(

2

a

1

a

)上单调递减,

即h(t)的最大值为h(2a )=2ln2-lna +a 2-2

2-lna ,

从而g(x 1)-g(x 2)

2

-lna 成立.

6.(2017·西宁检测一)已知函数f(x)=e x -ax -1(a>0). (1)若f(x)≥0对任意的x∈R 恒成立,求实数a 的值; (2)在(1)的条件下,证明:

(1n )n +(2n )n +…+(n -1n )n +(n n )n 0,f ′(x)=e x -a , 令f ′(x)=e x -a =0,得x =lna. 当x∈(-∞,lna)时,f ′(x)<0; 当x∈(lna ,+∞)时,f ′(x)>0.

则f(x)在(-∞,lna)上单调递减,在(lna ,+∞)上单调递增. 所以f(x)min =f(lna)=a -alna -1.

设g(a)=a -alna -1(a>0),所以要满足g(a)≥0. g ′(a)=1-lna -1=-lna ,令g ′(a)=0,得a =1. 当a∈(0,1)时,g ′(a)>0;当a∈(1,+∞)时,g ′(a)<0. 则g(a)在(0,1)上单调递增,在(1,+∞)上单调递减. 所以g(a)在a =1处取得最大值,而g(1)=0. 所以g(a)≥0的解为a =1,故a =1.

(2)证明:由(1)可知,对任意实数x 均有e x ≥x +1, 令x =-k

n (n∈N *,k =0,1,2,3,…,n -1),

则0<1-k n ≤e -k

n

所以(1-k n )n ≤(e -k n

)n

=e -k ,

所以(1n )n +(2n )n +…+(n -1n )n +(n n )n ≤e -(n -1)+e -(n -2)+…+e -2+e -1

+1=1-e -n 1-e -1<11-e -1

e e -1

. 7.(2017·广州模拟)函数f(x)=(mx +n)lnx.若曲线y =f(x)在点P(e ,f(e))处的切线方程为y =2x -e(e 为自然对数的底数). (1)求函数f(x)的单调区间; (2)若a ,b ∈(0,+∞),试比较

f (a )+f (b )2与f(a +b

2

)的大小,并予以证明.

解析 (1)函数f(x)的定义域为(0,+∞). f ′(x)=mlnx +

mx +n

x

. 依题意得f(e)=e ,f ′(e)=2,

即?

??me +n =e m +me +n e =2,

所以m =1,n =0.

所以f(x)=xlnx ,f ′(x)=lnx +1. 当x∈(0,1

e )时,

f ′(x)<0;

当x∈(1

e

,+∞)时,f ′(x)>0.

所以函数f(x)的单调递减区间是(0,1e ),单调递增区间是(1

e ,+∞).

(2)当a ,b ∈(0,+∞)时,f (a )+f (b )2≥f(a +b

2).

f (a )+f (b )2≥f(a +b 2)等价于alna +blnb 2≥a +b 2ln a +b

2,

也等价于a b ln 2a b -(1+a b )ln(1+a

b )+ln2≥0.

不妨设a≥b,

设g(x)=xln(2x)-(1+x)ln(1+x)+ln 2(x∈[1,+∞)), 则g ′(x)=ln(2x)-ln(1+x).

当x∈[1,+∞)时,g ′(x)>0,所以函数g(x)在[1,+∞)上为增函数, 即g(x)=xln(2x)-(1+x)ln(1+x)+ln 2≥g(1)=0,

故当x∈[1,+∞)时,g(x)=xln(2x)-(1+x)ln(1+x)+ln2≥0 (当且仅当x=1时取等号).

令x=a

b

≥1,则g(

a

b

)≥0,

即a

b

ln

2a

b

-(1+

a

b

)ln(1+

a

b

)+ln2≥0(当且仅当a=b时取等号),

综上所述,当a,b∈(0,+∞)时,f(a)+f(b)

2

≥f(

a+b

2

)(当且仅当a=b时取等号).

8.(2017·东北四市一模)已知函数f(x)=(x-1)e x+ax2有两个零点.

(1)当a=1时,求f(x)的最小值;

(2)求a的取值范围;

(3)设x

1,x

2

是f(x)的两个零点,证明:x

1

+x

2

<0.

解析(1)当a=1时,由题知f′(x)=x(e x+2),

令f′(x)>0,得x>0,

∴y=f(x)在(0,+∞)上单调递增;

令f′(x)<0,得x<0,

∴y=f(x)在(-∞,0)上单调递减,

∴f(x)

min

=f(0)=-1.

(2)由题可知,f′(x)=e x+(x-1)e x+2ax=x(e x+2a),

①当a=0时,f(x)=(x-1)e x,此时函数f(x)只有一个零点,不符合题意,舍去.

②当a>0时,由f′(x)>0,得x>0;

由f′(x)<0,得x<0,

∴f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,

∴f(x)

min

=f(0)=-1<0,

又f(2)=e2+4a>0,

取b满足b<-1且b

则f(b)>a

2

(b-1)+ab2=

a

2

(b+1)(2b-1)>0,故f(x)存在两个零点.

③当a<0时,由f′(x)=0,得x=0或x=ln(-2a).

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

高三数学专题复习:导数及其应用

【考情解读】 导数的概念及其运算是导数应用的基础,这是高考重点考查的内容.考查方式以客观题为主,主要考查: 一是导数的基本公式和运算法则,以及导数的几何意义; 二是导数的应用,特别是利用导数来解决函数的单调性与最值问题、证明不等式以及讨论方程的根等,已成为高考热点问题; 三是应用导数解决实际问题. 【知识梳理】 1.导数的几何意义 函数y=f(x)在点x=x0处的导数值就是曲线y=f(x)在点处的切线的,其切线方程是. 注意:函数在点P0处的切线与函数过点P0的切线的区别:. 2.导数与函数单调性的关系 (1)() '>0是f(x)为增函数的条件. f x 如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0. (2)() '≥0是f(x)为增函数的条件. f x 当函数在某个区间内恒有() '=0时,则f(x)为常数,函数不具有单调 f x 性. 注意:导数值为0的点是函数在该点取得极值的条件.

3. 函数的极值与最值 (1)函数的极值是局部范围内讨论的问题,函数的最值是对整个定义域而言的,是在整个范围内讨论的问题. (2)函数在其定义区间的最大值、最小值最多有 个,而函数的极值可能不止一个,也可能没有. (3)闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,若有唯一的极值,则此极值一定是函数的 . 4. 几个易误导数公式及两个常用的运算法则 (1)(sin x )′= ; (2)(cos x )′= ; (3)(e x )′= ; (4)(a x )′= (a >0,且a ≠1); (5)(x a )′= ; (6)(log e x )′= ; (7)(log a x )′= (a >0,且a ≠1); (8)′= ; (9)??????? ? f (x ) g (x )′= (g (x )≠0) .

高中数学(函数和导数)综合练习含解析

高中数学(函数和导数)综合练习含解析 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释) 1.已知函数2()ln ()f x x ax a x a R =--∈.3253()422 g x x x x =-+-+ (1)当1a =时,求证:()12,1,x x ?∈+∞,均有12()()f x g x ≥ (2)当[)1,x ∈+∞时,()0f x ≥恒成立,求a 的取值范围. 2.已知定义域为R 的奇函数)(x f y =的导函数为)(x f y '=,当0≠x 时,0)()(>+'x x f x f ,若)1(f a =,)2(2--=f b , )21(ln )21(ln f c =,则c b a ,,的大小关系正确的是( ) A .b c a << B .a c b << C .c b a << D .b a c << 3.函数3()3f x x ax a =-+在()0,2内有最小值,则实数a 的取值范围是( ) A .[)0,4 B .()0,1 C .()0,4 D .()4,4- 4.在函数()y f x =的图象上有点列(),n n x y ,若数列{}n x 是等差数列,数列{}n y 是等比数列,则函数()y f x =的解析式可能为( ) A .()21f x x =+ B .()2 4f x x = C .()3log f x x = D .()34x f x ??= ??? 5.设:x p y c =是R 上的单调递减函数;q :函数()() 2lg 221g x cx x =++的值域为R .如果“p 且q ”为假命题,“p 或q ”为真命题,则正实数c 的取值范围是( ) A .1,12?? ??? B .1,2??+∞ ??? C .[)10,1,2??+∞ ??? D .10,2?? ??? 6.如果函数y ||2x =-的图像与曲线22:C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围 是( ) A .{2}∪(4,)+∞ B .(2,)+∞ C .{2,4} D .(4,)+∞

导数练习题 含答案

导数练习题 班 级 姓名 一、选择题 1.当自变量从x 0变到x 1时函数值的增量与相应自变量的增量之比是函数( ) A .在区间[x 0,x 1]上的平均变化率 B .在x 0处的变化率 C .在x 1处的变化量 D .在区间[x 0,x 1]上的导数 2.已知函数y =f (x )=x 2 +1,则在x =2,Δx =0.1时,Δy 的值为( ) A .0.40 B .0.41 C .0.43 D .0.44 3.函数f (x )=2x 2-1在区间(1,1+Δx )上的平均变化率Δy Δx 等于( ) A .4 B .4+2Δx C .4+2(Δx )2 D .4x 4.如果质点M 按照规律s =3t 2 运动,则在t =3时的瞬时速度为( ) A . 6 B .18 C .54 D .81 5.已知f (x )=-x 2+10,则f (x )在x =32处的瞬时变化率是( ) A .3 B .-3 C . 2 D .-2 6.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直 D .与x 轴相交但不垂直 7.曲线y =-1 x 在点(1,-1)处的切线方程 为( ) A .y =x -2 B .y =x C .y =x + 2 D .y =-x -2 8.已知曲线y =2x 2上一点A (2,8),则A 处的切线斜率为( ) A .4 B .16 C .8 D .2 9.下列点中,在曲线y =x 2上,且在该点 处的切线倾斜角为π 4的是( ) A .(0,0) B .(2,4) C .(14,1 16) D .(12,1 4) 10.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b = 1 B .a =-1,b =1 C .a =1,b =- 1 D .a =-1,b =-1 11.已知f (x )=x 2,则f ′(3)=( ) A .0 B .2x C . 6 D .9 12.已知函数f (x )=1 x ,则f ′(-3)=( ) A . 4 B.1 9 C .-14 D .-1 9 13.函数y =x 2 x +3 的导数是( )

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

函数与导数解答题训练

函数与导数解答题训练2 1.设函数ax x x a x f +-=22ln )(,0>a . (1)求)(x f 的单调区间; (2)求所有实数a ,使2)(1e x f e ≤≤-对],1[e x ∈恒成立.注:e 为自然对数的底数. 2.已知函数322()4361,f x x tx t x t x R =+-+-∈,其中t R ∈. (1)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)当0t ≠时,求()f x 的单调区间; (3)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 3.设01a <<,集合{|0}A x R x =∈>,2{|23(1)60}B x R x a x a =∈-++>,D A B =. (1)求集合D (用区间表示); (2)求函数32()23(1)6f x x a x ax =-++在D 内的极值点.

4.已知函数321()3 f x x x ax =++. (1)讨论()f x 的单调性; (2)设()f x 有两个极值点12,x x ,若过两点11(,())x f x ,22(,())x f x 的直线l 与x 轴的交点在曲线()y f x =上,求a 的值. 5.已知函数32()f x x ax bx c =+++在23 x =-与1x =时都取得极值. (1)求a 、b 的值与函数()f x 的单调区间; (2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围. 6.设函数2()ln f x x ax b x =++,曲线()y f x =过(1,0)P ,且在P 点处的切斜线率为2. (1)求,a b 的值; (2)证明:()2 2.f x x ≤-

高二数学 几种常见函数的导数

高二数学 几种常见函数的导数 一、教学目标:熟记公式(C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x , 2'11x x -=??? ??.x x 21 )'(= 二、教学重点:牢固、准确地记住五种常见函数的导数,为求导数打下坚实的基础. 教学难点:灵活运用五种常见函数的导数. 三、教学过程: (一)公式1:(C )'=0 (C 为常数). 证明:y =f (x )=C , Δy =f (x +Δx )-f (x )=C -C =0, ,0=??x y .0lim ')('0=??==∴→?x y C x f x 也就是说,常数函数的导数等于0. 公式2: 函数x x f y ==)(的导数 证明:(略) 公式3: 函数2)(x x f y ==的导数 公式4: 函数x x f y 1)(==的导数 公式5: 函数x x f y ==)(的导数 (二)举例分析 例1. 求下列函数的导数. ⑴3x ⑵21x ⑶x 解:⑴=')(3x 133-x 23x = ⑵='?? ? ??21x )(2'-x 32--=x 32x -= ⑶=')(x )(2 1'x 12121-=x 2121-=x .21x = 练习

求下列函数的导数: ⑴ y =x 5; ⑵ y =x 6; (3);13x y = (4).3x y = (5)x x y 2= 例2.求曲线x y 1=和2x y =在它们交点处的两条切线与x 轴所围成的三角形的面积。 例3.已知曲线2x y =上有两点A (1,1),B (2,2)。 求:(1)割线AB 的斜率; (2)在[1,1+△x ]内的平均变化率; (3)点A 处的切线的斜率; (4)点A 处的切线方程 例4.求抛物线y =x 2上的点到直线x -y -2=0 的最短距离. (三)课堂小结 几种常见函数的导数公式 (C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x , 2'11x x -=?? ? ??.x x 21)'(= (四)课后作业 《习案》作业四

2020届高考数学导数的11个专题

目录 导数专题一、单调性问题 (2) 导数专题二、极值问题 (38) 导数专题三、最值问题 (53) 导数专题四、零点问题 (77) 导数专题五、恒成立问题和存在性问题 (118) 导数专题六、渐近线和间断点问题 (170) 导数专题七、特殊值法判定超越函数的零点问题 (190) 导数专题八、避免分类讨论的参变分离和变换主元 (201) 导数专题九、公切线解决导数中零点问题 (214) 导数专题十、极值点偏移问题 (219) 导数专题十一、构造函数解决导数问题 (227)

导数专题一、单调性问题 【知识结构】 【知识点】 一、导函数代数意义:利用导函数的正负来判断原函数单调性; 二、分类讨论求函数单调性:含参函数的单调性问题的求解,难点是如何对参数进行分类讨论, 讨论的关键在于导函数的零点和定义域的位置关系. 三、分类讨论的思路步骤: 第一步、求函数的定义域、求导,并求导函数零点; 第二步、以导函数的零点存在性进行讨论;当导函数存在多个零点的时,讨论他们的大小关系及与 区间的位置关系(分类讨论); 第三步、画出导函数的同号函数的草图,从而判断其导函数的符号(画导图、标正负、截定义域);第四步、(列表)根据第五步的草图列出f '(x),f (x)随x 变化的情况表,并写出函数的单调区间; 第五步、综合上述讨论的情形,完整地写出函数的单调区间,写出极值点,极值与区间端点函数 值比较得到函数的最值. 四、分类讨论主要讨论参数的不同取值求出单调性,主要讨论点: 1.最高次项系数是否为0; 2.导函数是否有极值点; 3.两根的大小关系; 4.根与定义域端点讨论等。 五、求解函数单调性问题的思路: (1)已知函数在区间上单调递增或单调递减,转化为f '(x) ≥ 0 或f '(x) ≤ 0 恒成立; (2)已知区间上不单调,转化为导函数在区间上存在变号零点,通常利用分离变量法求解参 变量的范围; (3)已知函数在区间上存在单调递增或单调递减区间,转化为导函数在区间上大于零或小于 零有解. 六、原函数单调性转化为导函数给区间正负问题的处理方法 (1)参变分离; (2)导函数的根与区间端点直接比较;

高考数学函数与导数

回扣2 函数与导数 1.函数的定义域和值域 (1)求函数定义域的类型和相应方法 ①若已知函数的解析式,则函数的定义域是使解析式有意义的自变量的取值范围; ②若已知f (x )的定义域为[a ,b ],则f [g (x )]的定义域为不等式a ≤g (x )≤b 的解集;反之,已知f [g (x )]的定义域为[a ,b ],则f (x )的定义域为函数y =g (x )(x ∈[a ,b ])的值域; ③在实际问题中应使实际问题有意义. (2)常见函数的值域 ①一次函数y =kx +b (k ≠0)的值域为R ; ②二次函数y =ax 2+bx +c (a ≠0):当a >0时,值域为????4ac -b 2 4a ,+∞,当a <0时,值域为? ???-∞,4ac -b 2 4a ; ③反比例函数y =k x (k ≠0)的值域为{y ∈R |y ≠0}. 2.函数的奇偶性、周期性 (1)奇偶性是函数在其定义域上的整体性质,对于定义域内的任意x (定义域关于原点对称),都有f (-x )=-f (x )成立,则f (x )为奇函数(都有f (-x )=f (x )成立,则f (x )为偶函数). (2)周期性是函数在其定义域上的整体性质,一般地,对于函数f (x ),如果对于定义域内的任意一个x 的值:若f (x +T )=f (x )(T ≠0),则f (x )是周期函数,T 是它的一个周期. 3.关于函数周期性、对称性的结论 (1)函数的周期性 ①若函数f (x )满足f (x +a )=f (x -a ),则f (x )为周期函数,2a 是它的一个周期. ②设f (x )是R 上的偶函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,2a 是它的一个周期. ③设f (x )是R 上的奇函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,4a 是它的一个周期. (2)函数图象的对称性 ①若函数y =f (x )满足f (a +x )=f (a -x ), 即f (x )=f (2a -x ), 则f (x )的图象关于直线x =a 对称.

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

高中数学函数与导数常考题型归纳

高中数学函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质 利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1 x -a . 若a≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈? ???? 0,1a 时,f ′(x )>0; 当x ∈? ?? ?? 1a ,+∞时,f ′(x )<0, 所以f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 综上,知当a≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ?? ??1a =ln 1 a +a ? ?? ??1-1a =-ln a +a -1. 因此f ? ?? ?? 1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0. 于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1). 【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.

高考数学导数专题复习(基础精心整理)学生版

导数专题复习(基础精心整理)学生版 【基础知识】 1.导数定义:在点处的导数记作k = 相应的切线方程是))((000x x x f y y -'=- 2.常见函数的导数公式: ①;②;③;④; ⑤;⑥;⑦;⑧ 。 3.导数的四则运算法则: (1) (2) (3) 4.导数的应用: (1)利用导数判断函数单调性: ①是增函数;②为减函数;③为常数; (2)利用导数求极值:①求导数;②求方程的根;③列表得极值(判断零点两边的导函数的正负)。 (3)利用导数求最值:比较端点值和极值 【基本题型】 一、求()y f x =在0x 处的导数的步骤:(1)求函数的改变量()()00y f x x f x ?=+?-;(2)求平均变化率 ()()00f x x f x y x x +?-?=?V ;(3)取极限,得导数()00lim x y f x x →?'=?V 。 例1..已知x f x f x x f x ?-?+=→?) 2()2(lim ,1)(0则的值是( ) A. 41- B. 2 C. 4 1 D. -2 变式1:()()()为则设h f h f f h 233lim ,430 --='→( ) A .-1 B.-2 C .-3 D .1 二、导数的几何意义 ()f x 0x x x f x x f x f x x y x ?-?+='=='→?) ()(lim )(|000 00'0C ='1()n n x nx -='(sin )cos x x ='(cos )sin x x =-'()ln x x a a a =x x e e =')('1(log )ln a x x a =x x 1 )(ln '= )()()()(])()(['+'='x g x f x g x f x g x f 2)()()()()()()(x g x g x f x g x f x g x f ' -'=' ??? ? ??' ?'='x u u f x u f ))(()(0)(x f x f ?>')(0)(x f x f ?<')(0)(x f x f ?≡')(x f '0)(='x f

高中数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征)()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数321()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,22()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=23)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x =+()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 326()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+)(0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数 ()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为5102,函数33)()(22 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ)'2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时'()0f x <,(2,3)x ∈时'()0f x >, ∴()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2(2)3f a =+. 若当[1, 3]x ∈时,要使 22()3f x a ->恒成立,只需22(2)3f a >+, 即22233a a +>+,解得 01a <<. 2、解:(Ⅰ) a ax x x f ++='23)(2. 由题意知???=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵3>a ,∴01242>-=?a a .

函数与导数练习题(有答案)

函数与导数练习题(高二理科) 1.下列各组函数是同一函数的是 ( ) ①()f x = ()g x =()f x x = 与()g x =; ③0()f x x =与01 ()g x x = ;④2()21f x x x =--与2()21g t t t =--. A 、①② B 、①③ C 、③④ D 、①④ 2.函数2 4 ++= x x y 的定义域为 . 3.若)(x f 是一次函数,14)]([-=x x f f 且,则)(x f = . 4.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 5.下列函数中,在()0,2上为增函数的是( ) A .12 log (1)y x =+ B .2 log y =C .2 1log y x = D .2 log (45)y x x =-+ 6.)(x f y =的图象关于直线1-=x 对称,且当0>x 时,,1 )(x x f =则当2-

高考数学专题导数题的解题技巧

第十讲 导数题的解题技巧 【命题趋向】导数命题趋势: 综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值, 函数单调性,应用题,与三角函数或向量结合. 分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2 ()2,(1)12 3.f x x f ''=+∴-=-+=Q 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实 数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.

高中数学函数与导数常考题型整理归纳

高中数学函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质 利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a . 若a ≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈? ?? ??0,1a 时,f ′(x )>0; 当x ∈? ?? ??1a ,+∞时,f ′(x )<0, 所以f (x )在? ????0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 综上,知当a ≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在? ????0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ????1a =ln 1a +a ? ?? ??1-1a =-ln a +a -1. 因此f ? ?? ??1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0. 于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1). 【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性. (2)由函数的性质求参数的取值范围,通常根据函数的性质得到参数的不等式,再解出参数的范围.若不等式是初等的一次、二次、指数或对数不等式,则可以直接解不等式得参数的取值范围;若不等式是一个不能直接解出的超越型不等式时,如求解ln a +a -1<0,则需要构造函数来解.

函数与导数解答题答案文科

函数与导数解答题答案(文科) 1. (2017省一统21)解:(I)当 f‘(x)令f‘ (x)=0计算得出当时,f' (x)函数(II )对 令时f (x), 此时函数 ,此时函数单调递减.时, 单调递减区间为, 恒成立 ? 单调递增; 当, 时, 函数, 的单调递增区间为: , 恒成立?, 则g‘ (x),① 此时函数 时,g‘(x)在R上单调递增 ,,恒成立,满足条件.②时,令g‘ (x)=0计算得出,则时,g‘ (x),此时函数在R上单调递增;时,g‘ (x),此时函数在R上单调递减.当时,函数取得极小值即最小值,则, 计算得出③ 则 时,令

g‘(x)=0计算得出时,g‘ (x) 时,g‘(x),此时函数, 此时函数,在R上单调递增;在R上单调递减.当时,函数取得极小值即最小值, 则综上可得:a 的求值范围是, 计算得出 2.(2017 省二统21)解:(1)根据题意可以知道函数的定义域为 当时,, ①当②当综上 , 或时 5 的单调递增区间为时, 5 ,单调递减. ,单调递增. ,单调递减区间为 (2)由,得, 整理得, , 令,则 令,, 在上递增

得,, 存在唯一的零点 当 在 当时 ,上递减; 时 ,, 在上递增. , 要使对任意恒成立,只需 又 3.解 :(1),且时 ,,的最大值为3. 5 '(x),‘(1)=3,,数在点处的切线方程为,(2)函数在上是增函数,‘(x),在上恒成立, 即,在上恒成立, 令,当且仅当时,取等号, 5 (3) 的取值范围为 5 '(x),①当时,在上单调递减,, 计算得出(舍去); ②当且时,即,在上单调递减,在 上单调递增,,计算得出,满足条件;③当,且时,即,在上单调

高中数学函数与导数练习题

1、讨论函数在内的单调性 2、作出函数22||3y x x =--的图像,指出单调区间和单调性 3、求函数[]()251x f x x = -在区间,的最大值和最小值 4 、使函数y = 的最小值是 2的实数a 共有_______个。 5、已知函数()f x 的定义域为R ,且对m 、n R ∈,恒有()()()1f m n f m f n +=+-,且1()02f -=,当12 x >-时,()0f x > (1)求证:()f x 是单调递增函数;(2)试举出具有这种性质的一个函数,并加以验证. 6、已知()f x 是定义在[1,1]-上的增函数,且(1)(23)f x f x -<-,求x 的取值范围。 四、强化训练 1、已知()f x 是定义在R 上的增函数,对x R ∈有()0f x >,且(5)1f =,设1()()()F x f x f x =+,讨论()F x 的单调性,并证明你的结论。 2、设函数2 ()22f x x x =-+(其中[,1]x t t ∈+,t R ∈)的最小值为()g t ,求()g t 的表达式 3、定义域在(0,)+∞上的函数()f x 满足:(1)(2)1f =;(2)()()()f xy f x f y =+; (3)当x y >时,有()()f x f y >,若()(3)2f x f x +-≤,求x 的取值范围。 4、已知()f x 是定义在R 上的不恒为零的函数,且对于任意的,a b R ∈, 都满足()()()f ab af b bf a =+ (1)求(0)f ,(1)f 的值;(2)判断()f x 的奇偶性,并加以证明 223f(x)x ax =-+(2,2)-

(完整版)高三文科数学导数专题复习

高三文科数学导数专题复习 1.已知函数)(,3 ,sin )(x f x x b ax x f 时当π =+=取得极小值 33 -π . (Ⅰ)求a ,b 的值; (Ⅱ)设直线)(:),(:x F y S x g y l ==曲线. 若直线l 与曲线S 同时满足下列两个条件: (1)直线l 与曲线S 相切且至少有两个切点; (2)对任意x ∈R 都有)()(x F x g ≥. 则称直线l 为曲线S 的“上夹线”. 试证明:直线2:+=x y l 是曲线x b ax y S sin :+=的“上夹线”. 2. 设函数3 221()231,0 1.3 f x x ax a x a =- +-+<< (1)求函数)(x f 的极大值; (2)若[]1,1x a a ∈-+时,恒有()a f x a '-≤≤成立(其中()f x '是函数()f x 的导函数),试确定实数a 的取值范围. 3.如图所示,A 、B 为函数)11(32 ≤≤-=x x y 图象上两点,且AB//x 轴,点M (1,m )(m>3)是△ABC 边AC 的中点. (1)设点B 的横坐标为t ,△ABC 的面积为S ,求S 关于t 的函数关系式)(t f S =; (2)求函数)(t f S =的最大值,并求出相应的点C 的坐标.

4. 已知函数x a x x f ln )(2-=在]2,1(是增函数,x a x x g -=)(在(0,1)为减函数. (I )求)(x f 、)(x g 的表达式; (II )求证:当0>x 时,方程2)()(+=x g x f 有唯一解; (III )当1->b 时,若21 2)(x bx x f -≥在x ∈]1,0(内恒成立,求b 的取值范围 5. 已知函数3 2 ()f x x ax bx c =+++在2x =处有极值,曲线()y f x =在1x =处的切线平行于直线32y x =--,试求函数()f x 的极大值与极小值的差。 6.函数x a x x f - =2)(的定义域为]1,0((a 为实数). (1)当1-=a 时,求函数)(x f y =的值域; (2)若函数)(x f y =在定义域上是减函数,求a 的取值范围; (3)求函数)(x f y =在∈x ]1,0(上的最大值及最小值,并求出函数取最值时x 的值. 7.设x=0是函数2()()()x f x x ax b e x R =++∈的一个极值点. (Ⅰ)求a 与b 的关系式(用a 表示b ),并求)(x f 的单调区间; (Ⅱ)设]2,2[,,)1()(,0212 2-∈++-=>+ξξ问是否存在x e a a x g a ,使得|1|)()(21≤-ξξg f 成立?若存在,求a 的取值范围;若不存在,说明理由. 8. 设函数()2ln q f x px x x =- -,且()2p f e qe e =--,其中e 是自然对数的底数. (1)求p 与q 的关系;

相关文档
最新文档