2.multi-walled carbon nano tubes

2.multi-walled carbon nano tubes
2.multi-walled carbon nano tubes

Res Chem Intermed(2012)38:2205–2222

DOI10.1007/s11164-012-0537-6

Removal of divalent nickel cations from aqueous

solution by multi-walled carbon nano tubes:

equilibrium and kinetic processes

Iman Mobasherpour?Esmail Salahi?

Mohsen Ebrahimi

Received:28December2011/Accepted:16March2012/Published online:10April2012

óSpringer Science+Business Media B.V.2012

Abstract Release of heavy metals into water as a result of industrial activity may pose a serious threat to the environment.In this study,the potential of multi-walled carbon nano tubes(MWCNT)to remove Ni2?cations from aqueous solutions was investigated in a batch reactor under different experimental conditions.The effects on the removal process of conditions such as initial concentration of Ni2?ions, temperature,and adsorbent mass were investigated.Nickel uptake was quantitatively evaluated by use of the Langmuir,Freundlich,and Dubinin–Kaganer–Radushkevich isotherm models.For20mg/L initial Ni2?cation concentration,adsorption capacity increased from8.12to11.75mg/g when the temperature was increased from25to 65°C,an indication of the endothermic nature of adsorption process.In addition,the adsorption equilibrium was well described by the Langmuir isotherm model;max-imum adsorption capacity was17.86mg/g Ni2?cations on HNO3-treated MWCNT (t-MWCNT).The results obtained in this study show that adsorption of Ni2?on t-MWCNT is a spontaneous and endothermic process.By use of second-order kinetic constants and the Arrhenius equation,the activation energy of adsorption(E a)was determined as5.56kJ mol-1.

Keywords AdsorptionáMWCNTáNi2?áThermodynamicsáKinetics

Introduction

Removal of toxic metals from wastewater is of great interest in water pollution remediation.Numerous metals,for example chromium,mercury,lead,copper, cadmium,manganese,and nickel,are known to be highly toxic[1].A variety of I.Mobasherpour(&)áE.SalahiáM.Ebrahimi

Ceramics Department,Materials and Energy Research Center,P.O.Box31787-316,Karaj,Iran

e-mail:I.Mobasherpour@merc.ac.ir;Iman.Mobasherpour@https://www.360docs.net/doc/5b8053974.html,

2206I.Mobasherpour et al. methods have been used to remove heavy metals from wastewater,including: reduction and precipitation[2],coagulation and?otation[3],adsorption[4,5],ion exchange,membrane technology,and electrolysis[6].Generally,these methods are expensive or ineffective,especially when the metal concentration exceeds100ppm [7].

Nickel salts are commonly used in silver re?neries,in the storage battery industry,for electroplating,zinc base casting,and printing,and in the production of some alloys[8];all these activities discharge signi?cant amounts of nickel in various forms into the environment.At high concentrations,Ni2?causes lung,nose, and bone cancer,headache,dizziness,nausea and vomiting,chest pain,tightness of the chest,dry cough,and shortness of breath,rapid respiration,cyanosis,and extreme weakness[9].Hence,it is essential to remove Ni2?from industrial wastewaters before discharge into natural water systems used as sources of drinking water.

Among all the above methods,adsorption is effective and simple.Different kinds of adsorbent,including activated carbon[10],kaolinite[11],sugar beet pulp[12], activated carbon cloths[13],peanut hulls[14],modi?ed chitosan[15]granular biomass[16],and crab shell[17],have been used for removal of nickel ion. However,because these adsorbents have the disadvantages of low adsorption capacity or low removal ef?ciency,research is being conducted to investigate promising new adsorbents.

The discovery of carbon nano tubes(CNTs)by Iijima[18]has led to much interdisciplinary research.The advantages of CNTs are unique structural,electronic, optoelectronic,semiconductor,mechanical,chemical,and physical properties[19]. CNT have become available in macroscopic quantities and have the potential to substantially affect future nanoscience and nanotechnology[20–23].

CNTs have been proved to have great potential as superior adsorbents for removing many kinds of organic and inorganic pollutants,for example dioxins[24] and volatile organic compounds[25,26]from the atmosphere,and?uoride[27], 1,2-dichlorobenzene[28],trihalomethanes[29],soil organic matter[30],and a variety of divalent metal ions[31–33]from aqueous solutions.

The objective of this study was to investigate the possible use of multi-walled CNTs as an alternative adsorbent material for removal of Ni2?cations from aqueous solutions.The Langmuir,Freundlich,and Dubinin–Kaganer–Radushkevich(DKR) models were used to?t the equilibrium adsorption isotherms.The effects of initial metal ion concentration,adsorbent mass,contact time,and solution temperature on the dynamic behavior of adsorption were investigated.Thermodynamic data were also evaluated from the adsorption measurements.

Experimental

Preparation of the adsorbent

MWCNT prepared by a chemical vapor deposition(CVD)method in the Research Institute of the Iran Petroleum Industry were used as adsorbent without puri?cation.

Removal of divalent nickel cations2207 The purity of the MWCNT was[95%,the outer diameter was10–20nm,length was in the range5–15l m,and the amorphous carbon content was\5wt%.These data were provided by the https://www.360docs.net/doc/5b8053974.html,lipore deionized(DI)water was used for MWCNT sample washing and Ni2?solution preparation.Although the sorption capacity of metal ions by raw CNTs is very low,it increases substantially after oxidation with HNO3solution.This is possibly because the tips of the CNTs are opened and fractures occur at locations where defects such as pentagons and heptagons are present after oxidation.The oxidation process thus improves their dispersivity and results in a large increase in the amount of oxygen-containing functional groups,for example–COOH,–OH,and–C=O,on the surface of the CNTs.These functional groups lead to an increase in the amount of negative charge on the carbon surface and the cation-exchange capacity of the material is increased because the oxygen atoms in the functional groups donate single pairs of electrons to metal ions.

Four grams of raw MWCNT(r-MWCNT)was?rst treated with100mL HNO3(8 molar).This mixture was then sonicated for3h at40°C in an ultrasonic bath to introduce oxygen groups on to the MWCNT surface.After cooling to room temperature,the MWCNT were added dropwise to300mL cold DI water and?ltered through Whatman grade6?lter paper.The?ltered material was washed with DI water until the pH was neutral.The treated MWCNT(t-MWCNT)were dried in a vacuum oven at80°C for24h.

Transmission electron microscopy(TEM)was used to characterize the treated MWCNT.For this purpose,MWCNT were deposited on to Cu grids which support a carbon?lm containing pores.The particles were deposited on to the support grids from a dilute suspension in acetone or ethanol.The shapes and sizes were characterized by diffraction(amplitude)contrast and,by high-resolution(phase-contrast)imaging.The speci?c surface area was determined from the N2adsorption isotherm by the BET method,by use of a Micromeritics model ASAP2010surface area analyzer.The Fourier-transform infrared(FT-IR)spectra of the t-MWCNT were recorded by use of a Perkin–Elmer2000FT-IR spectrometer with a calibrated deuterated triglycine sulfate (DTGS)detector covering the frequency range500–4,000cm-1.The sample cell was purged with nitrogen gas throughout data collection to exclude carbon dioxide and water vapor.Ten milligrams of the dried samples were dispersed in200mg spectroscopic-grade KBr to record the spectra.

Sorption study

All sorption experiments were conducted without imposing any pre-equilibration processes during performance of any https://www.360docs.net/doc/5b8053974.html,ing a batch equilibration technique,the sorption capacity of MWCNT for Ni2?cations,and the effects of the initial concentration of Ni2?cations,adsorbent mass,contact time,and temperature, on sorption,were determined.

t-MWCNT(0.4g)was introduced to a stirred tank reactor containing500mL of the prepared solution.Aqueous solutions containing Ni2?cations of concentration 10,15,20,or30mg/L were prepared from hydrated nickel sulfate(NiSO4.7H2O; Merck no.6725).The temperature of the suspension was maintained constant at

25±1°C and the stirring speed was700rpm.Samples(5mL)were taken,for measurement of the residual metal ion concentration in the solution,after mixing of the adsorbent and the solution of Ni2?cations for0,5,10,20,30,60,or120min. After each speci?ed time,the sorbent was separated from the solution by centrifugation and?ltration through Whatman grade6?lter paper.The exact concentration of metal ions was determined by use of a GBC932Plus atomic absorption spectrophotometer.All experiments were performed in duplicate.

The mass balance of nickel is given by:

mq?V C0àC

eTe1Twhere m,q,V,C0,and C are,respectively,the mass of MWCNT(g),amount of nickel removed by unit of weight of MWCNT(uptake:mg Ni/g MWCNT),volume of nickel solution(L),initial concentration of nickel solution(mg Ni/L),and the concentration of nickel after adsorption for time t(mg Ni/L).After120min,C and q will reach equilibrium values C e and q e.

The percentage removal(%Ni removal)and distribution ratio(K d)were calculated by use of the equations:

%Ni removal?c0àc f

c0

?100e2T

where C0and C f are,respectively,the concentrations of the metal ion in the initial and?nal solutions(after120min),and

K d?amount of metal in adsorbent

?

V

e3T

where V is the volume of the solution(mL)and m is the mass of adsorbent(g).

Results and discussion

Characteristics of the adsorbent

The IR spectra of the r-MWCNT and t-MWCNT are presented in https://www.360docs.net/doc/5b8053974.html,pared with the r-MWCNT,the t-MWCNT had characteristic peaks at wavenumbers1580, 1700,and3425cm-1,which were assigned to hydroxyl groups or carbonyl groups, carboxyl groups,and hydroxyl groups[34],respectively.The increased amounts of these functional groups resulted in increased surface cation exchange and complexation capacity of the r-MWCNT[35].

The TEM micrograph of the MWCNT after modi?cation treatment is shown in Fig.2.The image revealed the t-MWCNT sheet is an entangled network.The MWCNT are highly?exible and not easily broken during oxidation,washing,and drying processes.The TEM image also shows the tube inner diameter is approximately5–10nm and the tube outer diameter is approximately10–20nm. BET analysis of the t-MWCNT sample con?rmed the product had a high surface area(speci?c surface area102m2/g).

2208I.Mobasherpour et al.

Fig.1Fourier-transform infrared spectra of the r-MWCNT (A )and t-MWCNT (B

)

Fig.2TEM micrograph of the t-MWCNT

Removal of divalent nickel cations 2209

Effects of initial Ni 2?concentration and amount of adsorbent

The effect of equilibration time on sorption of nickel by t-MWCNT in water was investigated for time periods from 5to 120min.As shown in Fig.3,removal of Ni 2?by t-MWCNT occurs in two distinct steps—a relatively fast phase (?rst 20min)followed by a slow increase until a state of equilibrium is reached (adsorption rate equal desorption rate and adsorbate concentration does not change with time).The time necessary to reach equilibrium is approximately 120min.Because increasing the time did not result in any noticeable effects,a contact time of 120min was chosen as the equilibration time.

Sorption of Ni 2?cations by t-MWCNT was studied for different initial concentrations of nickel from 10to 30mg/L,at pH 6.5,700rpm,and 120min contact time.The amount sorbed per gram increased as the initial concentration of Ni in solution increased.As shown in Fig.3,when the initial Ni 2?cation concentration was increased from 10to 30mg/L,the uptake capacity of t-MWCNT increased from 4.62to 10mg/g.A higher initial concentration provided an important driving force overcoming all mass-transfer resistance of the pollutant between the aqueous and solid phases,thus increased the uptake [36].

The effect of amount of t-MWCNT is depicted in Fig.4.Evidently,percentage removal increased with increasing mass of sorbent (Fig.4a)and uptake capacity for Ni 2?decreased from 13.75mg/g (27.5%removal)to 4.25mg/g (34%removal)with increasing t-MWCNT concentration from 0.2to 0.8g/L (Fig.4b).This

was Fig.3Effect of initial concentration on removal of Ni 2?by t-MWCNT sorbents (pH 6.5,amount of adsorbent 0.8g/L,stirring speed 700rpm)

2210I.Mobasherpour et al.

Fig.4Effect of amount of adsorbent on percentage removal (a )and uptake capacity (b )of Ni 2?by t-MWCNT (pH 6.5,initial metal concentration =20mg/L,stirring speed 700rpm)

Removal of divalent nickel cations 2211

attributed to the greater amount of sorbent,because the increased surface area provided more adsorption sites,resulting in greater removal of Ni 2?cations.Adsorption isotherms

Analysis of sorption equilibrium data is important for determining how the sorption process occurs;this helps in the design and development of technological devices for water treatment [37].Several isotherm equations,relying on different conceptual models (the Langmuir,Freundlich,and Dubinin–Kaganer–Radushkevich (DKR)models)have been used to describe adsorption equilibrium data.

Equilibrium data for metal ions over the concentration range 10to 30mg /L at 25°C were correlated with the linear version of the Langmuir adsorption isotherm [38]:

C e q e ?1Q 0K tC e Q 0e4T

where C e is the equilibrium concentration of metal in solution (mg/L),q e is the amount absorbed at equilibrium by t-MWCNT (mg/g),Q 0(mg/g),and K (L/mg)are Langmuir constants related to sorption capacity and sorption energy,respectively.Maximum sorption capacity (Q 0)represents monolayer coverage of the sorbent with sorbate and K represents the Gibbs free energy of sorption and should vary with temperature.A linear plot was obtained when C e /q e was plotted against C e over the entire concentration range of metal ions investigated.

The linear Langmuir adsorption isotherms for Ni 2?cations are given in Fig.5a.The Freundlich sorption isotherm,one of the most widely used models for mathematical description,usually ?ts experimental data over a wide range of concentrations.This isotherm gives an expression encompassing the surface hetero-geneity and exponential distribution of active sites and their energies.This adsorption isotherm was also applied to removal of Ni 2?cations from solution by t-MWCNT (Fig.5b).

ln q e ?ln k f t1n ln c e e5T

where q e is the amount of metal ion adsorbed at equilibrium per gram of adsorbent (mg/g),C e is the equilibrium concentration of metal ion in the solution (mg/L),and k f and n are the Freundlich model constants [39,40].k f and n ,were determined by plotting ln q e against ln C e .The numerical value of 1/n \1indicates that adsorption capacity is only slightly suppressed at lower equilibrium concentrations.This iso-therm does not predict any saturation of the sorbent by the sorbate;thus in?nite surface coverage is predicted mathematically,indicating multilayer adsorption on the surface [41].

The DKR has been used to describe the sorption of metal ions on clays.The DKR equation has the form:

Fig.5Linear ?ts of experimental data obtained by using the Langmuir (a ),Freundlich (b ),and DKR (c )sorption isotherms to model adsorption of Ni 2?by t-MWCNT c 2212I.Mobasherpour et al.

Removal of divalent nickel cations2213

ln C ads ?ln X m àbe 2e6T

where C ads is the number of metal ions adsorbed per unit weight of adsorbent (mol/g),X m (mol/g)is the maximum sorption capacity,b (mol 2/J 2)is the activity coef-?cient related to mean sorption energy,and e is the Polanyi potential,which is equal to:

e ?RT ln 1t1=C e eTe7T

where R is the gas constant (8.314kJ/mol.K)and T is the temperature (K).The saturation limit X m may represent the total speci?c micro pore volume of the sor-bent.The sorption potential is independent of the temperature but varies according to the nature of sorbent and sorbate [42].The slope of the plot of ln C ads against e 2gives b (mol 2/J 2)and the intercept yields the sorption capacity,X m (mol/g).The sorption space in the vicinity of a solid surface is characterized by a series of equipotential surfaces having the same sorption potential.The sorption energy can also be determined by use of the relationship:

E ?1=?????????à2b p :e8T

It is known that magnitude of apparent adsorption energy,E ,is useful for estimating the type of adsorption.If this value is below 8kJ/mol the adsorption type can be explained by physical adsorption,between 8and 16kJ/mol the adsorption type can be explained by ion exchange,and over 16kJ/mol the adsorption type can be explained by stronger chemical adsorption than ion exchange [43–45].The plot of ln C ads against e 2for metal ion sorption on t-MWCNT is shown in Fig.5c.The Langmuir,Freundlich,and DKR adsorption constants from the isotherms and their correlation coef?cients are presented in Table 1.

Adsorption isotherms for Ni(II)on t-MWCNT are shown in Fig.5.The experimental data are well ?tted by the three adsorption models.The values calculated from the three models are listed in Table 1.Previous studies have also shown that the Langmuir,Freundlich,and DKR isotherms simulate adsorption of some heavy metal ions well [46].The linear plot of C e /q e against C e with regression coef?cient R 2=0.967is shown in Fig.5a.From the slope of Fig.5a,the maximum Table 1Langmuir,Freundlich,

and DKR constants for

adsorption of Ni 2?by

t-MWCNT Q 0(mg/g)K (L/mg)R 2Langmuir adsorption isotherm constants

17.86

0.060.967k f (mg 1-n L n /g)n R 2

Freundlich adsorption isotherm constants

1.64

1.670.953X m (mg/g)b (mol 2/J 2)R 2

DKR adsorption isotherm constants

95.12-6910-90.961

2214

I.Mobasherpour et al.

adsorption capacity of t-MWCNT for Ni 2?was calculated to be 17.86mg/g under these experimental conditions.The linear plot of ln q e against ln C e with regression coef?cient R 2=0.953is shown in Fig.5b.The magnitude of the constant k f provides quantitative information on the adsorption af?nity for the adsorbed cations,and the magnitude of the constant n is an indicator of linearity of adsorption.Deviation of n from unity indicates that nonlinear adsorption occurring on heterogeneous surfaces.This behavior implies that the adsorption energy barrier increases exponentially as the fraction of ?lled sites on t-MWCNT increases.A linear plot of ln C ads against e 2with regression coef?cient R 2=0.961is shown in Fig.5c.The values of b and X m are evaluated from the slope and intercept,and are found to be -6910-9(mol 2/kJ 2)and 95.12(mg/g).The value of E (9.13kJ/mol)is within the range for ion exchange,therefore it is possible to say that the mechanism of adsorption of Ni(II)on t-MWCNT is ion-exchange.

It is interesting to note that the difference between q max (X m )derived from the Langmuir and DKR models is quite large.This difference may be attributed to the different de?nition of q max in the two models.In the Langmuir model,q max represents the maximum adsorption of metal ions at monolayer coverage whereas in the DKR model it represents the maximum adsorption of metal ions at the total speci?c micropore volume of the sorbent.Thus the value of q max derived from Langmuir model is lower than that derived from DKR model.Such differences have also been reported elsewhere [45,47].

Maximum adsorption capacities reported in the literature for adsorption of Ni 2?cations on different adsorbents are compared in Table 2with the value for the adsorbent in this study.Although direct comparison of t-MWCNT with other adsorbent materials is dif?cult,owing to the different experimental conditions,the maximum adsorption capacity of t-MWCNT was higher than for most the other adsorbents listed in Table 2.

Table 2Adsorption capacities

for sorption of Ni 2?by different

adsorbents Adsorbent Adsorption capacity (mg/g)

Ref.Chabazite 4.5

[48]Clinoptilolite 0.9

[48]Alternanthera philoxeroides biomass 9.73

[49]Waste of tea factory 18.42

[50]PAC 31.08

[51]Fly ash 0.03

[51]Bagasse 0.001

[51]Baker’s yeast 11.40

[52]Sheep manure waste 7.20

[53]Sphagnum moss peat 9.18

[54]Succinated alfalfa biomass 8.5

[55]Calcium-alginate 10.5

[56]Cone biomass of Thuja orientalis 12.42

[57]MWCNT 17.86This work

Removal of divalent nickel cations

2215

It is commonly believed that the chemical interaction between the metal ions and the surface functional groups of CNT is the major sorption mechanism [33].Protons in the carboxylic and phenolic groups of CNT exchange with the metal ions in the aqueous phase.The solution pH dropped after sorption of metal ions on to CNT reached equilibrium,which could be explained by release of H ?from the CNT surface where metal ions are sorbed,consequently reducing solution pH.The drop in pH increased with increasing initial metal ion concentration,which clearly indicates that sorption of more metal ion on to CNT causes release of more H ?ions from the surface sites of the CNTs into the solution.As shown in Fig.6.When the initial Ni 2?cations concentration was increased from 10to 30mg/L,the ?nal pH after 120min decreased from 6.2to 5.5.

Effect of temperature and determination of thermodynamic data

To study the effect of temperature on uptake of Ni 2?cations by t-MWCNT,temperatures of 25,45,and 65°C were selected.Figure 7a illustrates the relationship between amount of Ni 2?cations adsorbed by t-MWCNT after different contact times at different temperatures.For an initial concentration of 20mg/L,adsorption of Ni 2?cations on t-MWCNT increased from 8.12mg/g (32.5%removal)to 10.60mg/g (47%removal)at equilibrium time when the temperature was increased from 25to 65°C.This increase in the amount of metal sorbed with solution temperature indicates that removal of Ni 2?by t-MWCNT is enhanced

at Fig.6Effect of initial concentration on ?nal pH after removal Ni 2?by t-MWCNT sorbent (initial pH 6.5,amount of adsorbent =0.8gr/L,stirring speed 700rpm)

2216I.Mobasherpour et al.

Fig.7Uptake capacity of Ni 2?ions at different temperatures (a )and plot of ln K d against 1/T (b )(pH 6.5,initial metal concentration =20mg/L,amount of adsorbent =0.8gr/L,stirring speed 700rpm)

Removal of divalent nickel cations 2217

higher temperatures.This could be the result of an increase in the mobility of the Ni 2?cations with temperature.An increasing number of molecules could also acquire suf?cient energy to interact with active sites on the surface.Furthermore,increasing the temperature may cause a swelling effect within the internal structure of the t-MWCNT,enabling the large metal ions to penetrate further [58].

The thermodynamic data free energy change (D G °),enthalpy change (D H °),and entropy change (D S °)can be estimated from changes of equilibrium constants as a function of temperature.The free energy change for the sorption reaction is given by the equation:

D G ?àRT ln K d e10T

where D G °is the standard free energy change (J);R is the universal gas constant,

8.314J/mol K,and T is the absolute temperature (K).

D G ?D H àT D S e11T

The distribution ratio (K d )values increased with increasing temperature (Fig.7b),indicating the endothermic nature of adsorption.A plot of Gibbs free energy changes,D G °,against temperature,T (K);was found to be linear.Values of D H °and D S °were determined from the slope and intercept of the plot.Values of the Gibbs free energy change,D G °,are listed in Table 3.The enthalpy,D H °,and entropy,D S °,changes for the sorption process were calculated to be 12,822J/mol and 96.11J/mol K,respectively.The negative values of D G °at different temperatures indicated the spontaneous nature of the adsorption process.The positive value of D S °indicated there is an increase in the randomness of the system solid/solution interface during the adsorption process.In addition,the positive value of D H °indicated that adsorption was endothermic.The positive value of D S °re?ected the af?nity of the t-MWCNT for Ni 2?cations and suggested some structural changes in t-MWCNT

[59].

Sorption kinetics

Sorption kinetic studies were conducted to understand the kinetic behavior of t-MWCNT adsorbent toward Ni 2?.The sorption kinetics include two phases:a rapid metal sorption stage followed by a much slower stage before equilibrium is established.It was found that mass transfer is the key factor in metal sorption [60].The sorption kinetics describes the rate of metal sorption,which in turn de?nes the residence time of Ni in the solution of the batch reactor and,thus,the ef?ciency of sorption process.Of the several kinetic models available for examination of the mechanism controlling the sorption kinetic process and for testing the experimental Table 3Thermodynamic data

for the adsorption of Ni 2?by

t-MWCNT T (K)K d D G °(J/mol)D H °(J/mol)D S °(J/mol K)298

601.85-15856.51282296.11

318

799.18-17670.43381108.49-19701.12218

I.Mobasherpour et al.

data,the Lagrangian equation,or pseudo-?rst-order equation,and the pseudo-second-order equation were used to study the metal sorption kinetics of t-MWCNT.

The linear form of the pseudo-?rst-order equation is:

Log q eàq

eT?Log q e calà

k1

2:303

te12T

where q e is the metal sorbed at equilibrium(mg g-1),q is the amount of the metal adsorbed(mg g-1)at any time t,and k1is the?rst-order rate constant.The?rst-order rate constants k1and q were determined from the slopes and intercepts of plots of log(q e-q)against t for different concentrations of metal.

The linear form of the pseudo-second-order equation for the kinetics of absorption,described by Ho and Chiang[61],is:

t

?

1

k2q2

e cal

t

1

e cal

e13T

The second-order rate constant(k2)and q e cal were determined from the slope and intercept of the line obtained by plotting t/q t against t.

Linear plots of log(q e-q t)against t and t/q t against t for25,45,and65°C are depicted in Fig.8a,b,https://www.360docs.net/doc/5b8053974.html,parison of the results,with the correlation coef?cients,is shown in Table4.The pseudo-second-order kinetic model obtained for Ni2?sorption at different temperatures resulted in better correlation of the results than the pseudo-?rst-order equation model.The correlation coef?cients were high for the second-order kinetic model obtained for a concentration of20ppm at different temperatures.The values of k2at25,45,and65°C varied from0.0175to 0.0135min-1.The higher rate of metal sorption at the beginning(Fig.7a)could be because of the presence of active sites on the t-MWCNT,available for sorption of the metal.when the sorptive sites are exhausted,the rate of uptake may be controlled by rate of intra particle diffusion.The activation energy,E a,was determined by use of the Arrhenius equation[37]:

ln k ad?ln AàE a

RT

e14T

where k ad(k2)is the rate constant for metal adsorption,E a the activation energy in kJ mol-1,T the temperature in Kelvin,and R is the gas constant(8.314kJ mol-1K-1).When ln k ad is plotted against1/T,a straight line of slope-E a/R is obtained.The activation energy for adsorption of Ni2?by t-MWCNT was found as 5.56kJ mol-1from the slope of this plot.As is known when the rate is controlled by an intra-particle diffusion mechanism,the activation energy is low and,hence,it can be concluded that the process is controlled by intra-particle diffusion,which is a physical step in the adsorption process[58].

Conclusions

This investigation showed that t-MWCNT was an effective adsorbent for the removal of Ni2?cations from aqueous solutions.The adsorption process was a Removal of divalent nickel cations2219

Fig.8Linear ?t of the experimental data obtained by use of a pseudo-?rst-order kinetic model (a )and a pseudo-second-order kinetic model (b )(pH 6.5,initial metal concentration =20mg/L,amount of adsorbent =0.8gr/L,stirring speed 700rpm)

2220I.Mobasherpour et al.

function of the amount of adsorbent,initial concentration of Ni 2?cations,and temperature.The ef?ciency of adsorption of Ni 2?cations increased with increasing amount of adsorbent.The adsorption equilibrium was described well by the Langmuir isotherm model with maximum adsorption capacity of 17.86mg/g Ni 2?on t-MWCNT.Thermodynamic calculations showed that the process of nickel sorption on t-MWCNT was endothermic and spontaneous in nature.The kinetics of adsorption of the metal on the t-MWCNT were pseudo-second-order rather than pseudo-?rst-order.The second-order kinetic model was successfully applied to the experimental data,con?rming that adsorption was controlled by intra-particle diffusion.

Acknowledgments This research was completely supported by the Materials and Energy Research Center (MERC),Karaj,Iran,for which we are grateful.

References

1.

I.Mobasherpour,E.Salahi,M.Pazouki,Desalination 266,142(2011)2.

O.J.Esalah,M.E.Weber,J.H.Vera,Can.J.Chem.Eng.78,948(2000)3.

A.I.Zouboulis,K.A.Matis,

https://www.360docs.net/doc/5b8053974.html,nara,

C.Loos-Neskovic,Sep.Sci.Technol.32,1755(1997)4.

C.A.Toles,W.E.Marshall,Sep.Sci.Technol.37,2369(2002)5.

V.Ravindran,M.R.Stevens,B.N.Badriyha,M.Pirbazari,AIChE J.45,1135(1999)6.

L.Canet,M.Ilpide,P.Seta,Sep.Sci.Technol.37,1851(2002)7.

P.Miretzky,A.Saralegui,A.F.Cirelli,Chemosphere 62,247(2006)8.

J.W.W.Eckenfelder,Industrial Water Pollution Control ,2nd edn.(McGraw-Hill International Editions,Singapore,1989)9.

P.Parker,Encyclopedia of Environmental Sciences ,2nd edn.(McGraw Hill,New York,1980)10.

H.Hasar,J.Hazard.Mater.97,49(2003)11.

O.Yavuz,Y.Altunkaynak,F.Gu ¨zel,Water Res.37,948(2003)12.

Z.Reddad,C.Gerente,Y.Andresp,P.L.Ecloirec,Environ.Sci.Technol.36,2067(2002)13.

K.Kadirvelu,C.F.Brasquet,P.L.Cloirec,Langmuir 16,8404(2000)14.

P.Brown,I.A.Jefcoat,D.Parrish,S.Gill,S.Graham,Adv.Environ.Res.4,9(2000)15.

K.C.Justi,V.T.Fa ′vere,https://www.360docs.net/doc/5b8053974.html,ranjeira,A.Neves,R.A.Peralta,J.Colloid Interface Sci.291,369(2005)16.

A.H.Hawari,C.N.Mulligan,Bioresour.Technol.97,692(2006)17.H.K.An,

B.Y.Park,D.S.Kim,Water Res.35,3356(2001)

Table 4Comparison of the

?rst and second-order kinetic

rate constants and calculated

q e cal values obtained at different

temperatures (pH 6.5,initial

metal concentration =20mg/L,

amount of adsorbent =

0.8gr/L,stirring speed

700rpm)Pseudo-?rst-order kinetic model T (K)k 1(min -1)q e cal (mg/g)R 22980.069 6.8390.9213180.0698.3750.9413380.09411.0150.949Pseudo-second-order kinetic model

T (K)

k 2(min -1)q e cal (mg/g)R 2298

0.0178.6950.998318

0.01510.3090.9993380.01312.5000.997Removal of divalent nickel cations

2221

2222I.Mobasherpour et al.

18.S.Iijima,Nature354,56(1991)

19.R.C.Haddon,Acc.Chem.Res.35,977(2002)

20.C.Journet,W.K.Maser,P.Bernier,A.Loiseau,M.L.de la Chapelle,A.Lefrant,Nature388,756

(1997)

21.A.G.Rinzler,J.Liu,H.Dai,P.Nikolaev,C.B.Huffman,F.J.R.Macias,Appl.Phys.67,29(1998)

22.P.Nikolaev,M.Bronikowski,R.Bradley,F.Rohmund,D.T.Colbert,K.Smith,Chem.Phys.Lett.

313,913(1999)

23.C.N.R.Rao,B.C.Satishkumar,https://www.360docs.net/doc/5b8053974.html,indaraj,M.Nath,Chem.Phys.Chem.2,78(2001)

24.R.Q.Long,R.T.Yang,J.Am.Chem.Soc.123,2058(2001)

25.S.Agnihotri,M.J.Rood,M.Rostam-Abadi,Carbon43,2379(2005)

26.P.A.Gauden, A.P.Terzyk,G.Rychlicki,P.Kowalczyk,K.Lota, E.Raymundo-Pinero,

E.Frackowiak,

F.Beguin,Chem.Phys.Lett.421,409(2006)

27.Y.H.Li,S.Wang,X.Zhang,J.Wei,C.Xu,Z.Luan,D.Wu,Mater.Res.Bull.38,469(2003)

28.X.Peng,Y.Li,Z.Luan,Z.Di,H.Wang,B.Tian,Z.Jia,Chem.Phys.Lett.376,154(2003)

29.C.Lu,Y.L.Chung,K.F.Chang,Water Res.39,1183(2005)

30.K.Yang,L.Zhu,B.Xing,Environ.Sci.Technol.40,1861(2006)

31.Y.H.Li,S.Wang,J.Wei,X.Zhang,C.Xu,Z.Luan,D.Wu,B.Wei,Chem.Phys.Lett.357,263

(2002)

32.Z.C.Di,J.Ding,X.J.Peng,Y.H.Li,Z.K.Luan,J.Liang,Chemosphere62,861(2006)

33.C.Lu,H.Chiu,C.Liu,Ind.Eng.Chem.Res.45,2850(2006)

34.A.Sta?ej,K.Pyrzynska,Sep.Purif.Technol.58,49(2007)

35.Y.H.Li,J.Ding,Z.K.Luan,Z.C.Di,Y.F.Zhu,C.L.Xu,D.H.Wu,B.Q.Wei,Carbon41,2787

(2003)

36.Z.Aksu,S.Tezer,Process Biochem.40,1347(2005)

37.Z.Aksu,Process Biochem.38,89(2002)

https://www.360docs.net/doc/5b8053974.html,ngmuir,J.Am.Chem.Soc.40,1361(1918)

39.E.Malkoc,Y.Nuho?glu,Fres.Environ.Bull.12,376(2003)

40.K.Kadirvelu,K.Thamaraiselvi,C.Namasivayam,Sep.Purif.Technol.24,497(2001)

41.S.M.Hasany,M.M.Saeed,M.Ahmed,J.Radioanal,Nucl.Chem.252,477(2002)

42.S.A.Khan,U.R.Rehman,M.A.Khan,Waste Manag.15,271(1995)

43.S.H.Lin,R.S.Juang,J.Hazard.Mater.B92,315(2002)

44.C.C.Wang,L.C.Juang,C.K.Lee,T.C.Hsua,J.F.Leeb,H.P.Chaob,J.Colloid Interface Sci.280,27

(2004)

45.B.S.Krishna,D.S.R.Murty,B.S.J.Prakash,J.Colloid Interface Sci.229,230(2000)

46.P.N.Pathak,G.R.Choppin,J.Radioanal.Nucl.Chem.270,299(2006)

47.X.L.Tan,X.K.Wang,M.Fang,C.L.Chen,Colloids Surf.A296,109(2007)

48.S.K.Ouki,M.Kavannagh,Water Sci.Technol.39,115(1999)

49.X.S.Wang,Y.Qin,J.Hazard.Mater.B138,582(2006)

50.F.P.Padilha,F.Pess?oa de Franc,A.C.Augusto da Costa,Bioresour.Technol.96,1511(2005)

51.M.Rao,A.V.Parwate,A.G.Bhole,Waste Manag.22,821(2002)

52.V.Patmavathy,P.Vasudevan,S.C.Dhingra,Process Biochem.38,1389(2003)

53.F.Abu Al-Rub,M.Kandah,N.Aldabaibeh,Eng.Life Sci.2,111(2002)

54.Y.S.Ho,D.A.JohnWase,C.F.Forster,Water Res.29,1327(1995)

55.J.L.Gardea-Torresdey,K.J.Tiemann,K.I.Dokken,G.Gamez,in Proceedings of the1998

Conference on Hazardous Waste Research,pp.111(1998)

56.C.Huang,C.Ying-Chien,L.Ming-Ren,J.Hazard.Mater.45,265(1996)

57.E.Malkoc,J.Hazard.Mater.B137,899(2006)

58.M.Do?gan,M.Alkan,Chemosphere50,517(2003)

59.Y.S.Ho,Water Res.37,2323(2003)

60.J.P.Chen,L.Wang,Chemosphere54,397(2004)

61.Y.Ho,C.Chiang,Adsorption7,139(2001)

芯片封装全套整合(图文精选对照)

芯片封装方式大全 各种IC封装形式图片 BGA Ball Grid Array EBGA 680L LBGA 160L PBGA 217L Plastic Ball Grid Array SBGA 192L QFP Quad Flat Package TQFP 100L SBGA SC-70 5L SDIP SIP Single Inline Package

TSBGA 680L CLCC CNR Communicatio n and Networking Riser Specification Revision 1.2 CPGA Ceramic Pin Grid Array DIP Dual Inline Package SO Small Outline Package SOJ 32L SOJ SOP EIAJ TYPE II 14L SOT220 SSOP 16L

DIP-tab Dual Inline Package with Metal Heatsink FBGA FDIP FTO220 Flat Pack HSOP28SSOP TO18 TO220 TO247 TO264 TO3

ITO220 ITO3p JLCC LCC LDCC LGA LQFP PCDIP TO5 TO52 TO71 TO72 TO78 TO8 TO92

PGA Plastic Pin Grid Array PLCC 详细规格PQFP PSDIP LQFP 100L 详细规格METAL QUAD 100L 详细规格PQFP 100L 详细规格TO93 TO99 TSOP Thin Small Outline Package TSSOP or TSOP II Thin Shrink Outline Package uBGA Micro Ball Grid Array uBGA Micro Ball Grid

主板上各种芯片、元件的识别及作用

主板芯片组: 芯片组(Chipset)是主板的核心组成部分,联系CPU和其他周边设备的运作。主板上最重要的芯组就是南桥和北桥。 1、北桥芯片:(North Bridge)是主板芯片组中起主导作用的最重要的组成部分,也称为主桥(Host Bridge)。一般来说,芯片组的名称就是以北桥芯片的名称来命名的,例如英特尔875P芯片组的北桥芯片是82875P、最新的则是支持双核心处理器的945/955/975系列的82945P、82945G、82945GZ、82945GT、82945PL、82955X、82975X等七款北桥芯片等等。 北桥作用:北桥芯片负责与CPU的联系并控制内存(仅限于Intel的cpu,AMD系列cpu在K8系列以后就在cpu中集成了内存控制器,因此AMD平台的北桥芯片不控制内存)、AGP 数据在北桥内部传输,提供对CPU的类型和主频、系统的前端总线频率、内存的类型(SDRAM,DDR SDRAM以及RDRAM等等)和最大容量、AGP插槽、ECC纠错等支持,整合型芯片组的北桥芯片还集成了显示核心。 北桥识别及特点:北桥芯片就是主板上离CPU最近的芯片,这主要是考虑到北桥芯片与处理器之间的通信最密切,为了提高通信性能而缩短传输距离。因为北桥芯片的数据处理量非常大,发热量也越来越大,所以现在的北桥芯片都覆盖着散热片用来加强北桥芯片的散热,有些主板的北桥芯片还会配合风扇进行散热。因为北桥芯片的主要功能是控制内存,而内存标准与处理器一样变化比较频繁,所以不同芯片组中北桥芯片是肯定不同的,当然这并不是说所采用的内存技术就完全不一样,而是不同的芯片组北桥芯片间肯定在一些地方有差别。 2、南桥芯片:南桥芯片(South Bridge)是主板芯片组的重要组成部分,一般位于主板上离CPU插槽较远的下方,PCI插槽的附近,这种布局是考虑到它所连接的I/O总线较多,离处理器远一点有利于布线。相对于北桥芯片来说,其数据处理量并不算大,所以南桥芯片一般都没有覆盖散热片。南桥芯片不与处理器直接相连,而是通过一定的方式(不同厂商各种芯片组有所不同,例如英特尔的英特尔Hub Architecture以及SIS的Multi-Threaded“妙渠”)与北桥芯片相连。 南桥作用:南桥芯片负责I/O总线之间的通信,如PCI总线、USB、LAN、ATA、SATA、音频控制器、键盘控制器、实时时钟控制器、高级电源管理等,这些技术一般相对来说比较稳定,所以不同芯片组中可能南桥芯片是一样的,不同的只是北桥芯片。所以现在主板芯片组中北桥芯片的数量要远远多于南桥芯片。例如早期英特尔不同架构的芯片组Socket 7的430TX和Slot 1

扩展通信板(109A)硬件说明

LKJ2000型监控装置扩展通信插件 硬件说明 1 简述 为适应我国铁路信息化的跨越式发展,机车双向标签、机车运行状态监控系统、机车综合无线通信等设备已开始投入使用。LKJ2000型监控装置为了与上述设备进行信息交换,需增加两块扩展通信插件(下文简称插件)来实现与这些设备的通信。 插件装在LKJ2000型监控装置主机箱(下文简称主机箱)的备用插槽里,两块插件硬件、软件一样,满足双机冗余的要求。 本文件所叙述的内容只针对于扩展通信A插件,该插件的图号为ZS387-109A-000。 2 功能说明 2.1 2路内部CAN总线 该2路CAN总线分别直接挂在主机箱里的CANa、CANb总线上,作为CAN 总线上的一个节点。按照“LKJ2000型CAN总线通信协议”可实现与主机、显示器的通信。 2.2 2路外部CAN总线 该2路CAN总线没有挂在主机箱里的CANa、CANb总线上,与CANa、CANb完全独立。其主要目的是实现监控装置与其它带有CAN总线的电子装置之间的通信。该两路CAN总线可独立使用,或以双总线冗余形式使用。 2.3 1路RS485总线 按照“监控-机车双向标签通信协议”实现监控装置与其它带有RS485总线的电子装置之间的通信。目前这些外围电子设备中,机车双向标签设备已经投入使用。 2.4 1路RS422总线 实现监控装置与其它带有RS422总线的电子装置之间的通信。该接口已经预留给机车综合无线通信设备,并按照机车综合无线通信设备技术条件里的“主机与MMI、通用数据应用接口的通信协议”进行信息的相互交换。 3 主要技术参数 3.1 RAM不小于32kByte 3.2 ROM不小于32kByte 3.3 插件功耗约为3W 3.4 RS485、RS422通信速率最高为19.2kbps 3.5 所有通信通道均有光电隔离、电压瞬变抑制等保护功能 4 接口定义 该插件的尺寸为160.0mm×233.5mm的6U插件,其上有两个插头,一个为96芯,一个为48芯。插件的各通信通道均通过48芯插头连接到主机箱的母板上,再引到主机箱后盖板的X36航空插座上。无任何信号与96芯插头连接。 插件48芯插头与监控装置的X36(12芯)插座信号定义如下表。

芯片封装大全(图文对照)

封装有两大类;一类是通孔插入式封装(through-hole package);另—类为表面安装式封装(surface moun te d Package)。每一类中又有多种形式。表l和表2是它们的图例,英文缩写、英文全称和中文译名。图6示出了封装技术在小尺寸和多引脚数这两个方向发展的情况。 DIP是20世纪70年代出现的封装形式。它能适应当时多数集成电路工作频率的要求,制造成本较低,较易实现封装自动化印测试自动化,因而在相当一段时间内在集成电路封装中占有主导地位。 但DIP的引脚节距较大(为2.54mm),并占用PCB板较多的空间,为此出现了SHDIP和SKDIP等改进形式,它们在减小引脚节距和缩小体积方面作了不少改进,但DIP最大引脚数难以提高(最大引脚数为64条)且采用通孔插入方式,因而使它的应用受到很大限制。 为突破引脚数的限制,20世纪80年代开发了PGA封装,虽然它的引脚节距仍维持在2.54mm或1.77mm,但由于采用底面引出方式,因而引脚数可高达500条~600条。 随着表面安装技术(surface mounted technology, SMT)的出现,DIP封装的数量逐渐下降,表面安装技术可节省空间,提高性能,且可放置在印刷电路板的上下两面上。SOP应运而生,它的引脚从两边引出,且为扁平封装,引脚可直接焊接在PCB板上,也不再需要插座。它的引脚节距也从DIP的2.54 mm减小到1.77mm。后来有SSOP和TSOP改进型的出现,但引脚数仍受到限制。 QFP也是扁平封装,但它们的引脚是从四边引出,且为水平直线,其电感较小,可工作在较高频率。引脚节距进一步降低到1.00mm,以至0.65 mm和0.5 mm,引脚数可达500条,因而这种封装形式受到广泛欢迎。但在管脚数要求不高的情况下,SOP以及它的变形SOJ(J型引脚)仍是优先选用的封装形式,也是目前生产最多的一种封装形式。 方形扁平封装-QFP (Quad Flat Package) [特点] 引脚间距较小及细,常用于大规模或超大规模集成电路封装。必须采用SMT(表面安装技术)进行焊接。操作方便,可靠性高。芯片面积与封装面积的比值较大。 小型外框封装-SOP (Small Outline Package) [特点] 适用于SMT安装布线,寄生参数减小,高频应用,可靠性较高。引脚离芯片较远,成品率增加且成本较低。芯片面积与封装面积比值约为1:8 小尺寸J型引脚封装-SOJ (Smal Outline J-lead) 有引线芯片载体-LCC (Leaded Chip Carrier) 据1998年统计,DIP在封装总量中所占份额为15%,SOP在封装总量中所占57%,QFP则占12%。预计今后DIP的份额会进一步下降,SOP也会有所下降,而QFP会维持原有份额,三者的总和仍占总封装量的80%。 以上三种封装形式又有塑料包封和陶瓷包封之分。塑料包封是在引线键合后用环氧树脂铸塑而成,环氧树脂的耐湿性好,成本也低,所以在上述封装中占有主导地位。陶瓷封装具有气密性高的特点,但成本较高,在对散热性能、电特性有较高要求时,或者用于国防军事需求时,常采用陶瓷包封。 PLCC是一种塑料有引脚(实际为J形引脚)的片式载体封装(也称四边扁平J形引脚封装QFJ (quad flat J-lead package)),所以采用片式载体是因为有时在系统中需要更换集成电路,因而先将芯片封装在一种载体(carrier)内,然后将载体插入插座内,载体和插座通过硬接触而导通的。这样在需要时,只要在插座上取下载体就可方便地更换另一载体。 LCC称陶瓷无引脚式载体封装(实际有引脚但不伸出。它是镶嵌在陶瓷管壳的四侧通过接触而导通)。有时也称为CLCC,但通常不加C。在陶瓷封装的情况下。如对载体结构和引脚形状稍加改变,载体的引脚就可直接与PCB板进行焊接而不再需要插座。这种封装称为LDCC即陶瓷有引脚片式载体封装。 TAB封装技术是先在铜箔上涂覆一层聚酰亚胺层。然后用刻蚀方法将铜箔腐蚀出所需的引脚框架;再在聚酰亚胺层和铜层上制作出小孔,将金属填入铜图形的小孔内,制作出凸点(采用铜、金或镍等材料)。由这些凸点与芯片上的压焊块连接起来,再由

电脑主板各个部位介绍

全程详细图解电脑主板各个部位 大家知道,主板是所有电脑配件的总平台,其重要性不言而喻。而下面我们就以图解的形式带你来全面了解主板。 一、主板图解一块主板主要由线路板和它上面的各种元器件组成 1.线路板 PCB印制电路板是所有电脑板卡所不可或缺的东东。它实际是由几层树脂材料粘合在一起的,内部采用铜箔走线。一般的PCB线路板分有四层,最上和最下的两层是信号层,中间两层是接地层和电源层,将接地和电源层放在中间,这样便可容易地对信号线作出修正。而一些要求较高的主板的线路板可达到6-8层或更多。 主板(线路板)是如何制造出来的呢?PCB的制造过程由玻璃环氧树脂(Glass Epoxy)或类似材质制成的PCB“基板”开始。制作的第一步是光绘出零件间联机的布线,其方法是采用负片转

印(Subtractive transfer)的方式将设计好的PCB线路板的线路底片“印刷”在金属导体上。 这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。而如果制作的是双面板,那么PCB的基板两面都会铺上铜箔。而要做多层板可将做好的两块双面板用特制的粘合剂“压合”起来就行了。 接下来,便可在PCB板上进行接插元器件所需的钻孔与电镀了。在根据钻孔需求由机器设备钻孔之后,孔璧里头必须经过电镀(镀通孔技术,Plated-Through-Hole technology,PT H)。在孔璧内部作金属处理后,可以让内部的各层线路能够彼此连接。 在开始电镀之前,必须先清掉孔内的杂物。这是因为树脂环氧物在加热后会产生一些化学变化,而它会覆盖住内部PCB层,所以要先清掉。清除与电镀动作都会在化学过程中完成。接下来,需要将阻焊漆(阻焊油墨)覆盖在最外层的布线上,这样一来布线就不会接触到电镀部份了。 然后是将各种元器件标示网印在线路板上,以标示各零件的位置,它不能够覆盖在任何布线或是金手指上,不然可能会减低可焊性或是电流连接的稳定性。此外,如果有金属连接部位,这时“金手指”部份通常会镀上金,这样在插入扩充槽时,才能确保高品质的电流连接。 最后,就是测试了。测试PCB是否有短路或是断路的状况,可以使用光学或电子方式测试。光学方式采用扫描以找出各层的缺陷,电子测试则通常用飞针探测仪(Flying-Probe) 来检查所有连接。电子测试在寻找短路或断路比较准确,不过光学测试可以更容易侦测到导体间不正确空隙的问题。 线路板基板做好后,一块成品的主板就是在PCB基板上根据需要装备上大大小小的各种元器件—先用SMT自动贴片机将IC芯片和贴片元件“焊接上去,再手工接插一些机器干不了的活,通过波峰/回流焊接工艺将这些插接元器件牢牢固定在PCB上,于是一块主板就生产出来了。

主板各芯片图解

(图)全程图解主板(下) 初学菜鸟们必看 硬盘维修交流QQ:0 9(精英维修) 电源插座主要有AT电源插座和ATX电源插座两种,有的主板上同时具备这两种插座。AT插座应用已久现已淘汰。而采用20口的ATX电源插座,采用了防插反设计,不会像AT电源一样因为插反而烧坏主板。除此而外,在电源插座附近一般还有主板的供电及稳压电路。 此主题相关图片如下: 主板的供电及稳压电路也是主板的重要组成部分,它一般由电容,稳压块或三极管场效应管,滤波线圈,稳压控制集成电路块等元器件组成。此外,P4主板上一般还有一个4口专用12V电源插座。 11.BIOS及电池 BIOS(BASIC INPUT/OUTPUT SYSTEM)基本输入输出系统是一块装入了启动和自检程序的EPROM或EEPROM集成块。实际上它是被固化在计算机

ROM(只读存储器)芯片上的一组程序,为计算机提供最低级的、最直接的硬件控制与支持。除此而外,在BIOS芯片附近一般还有一块电池组件,它为BIOS提供了启动时需要的电流。 此主题相关图片如下: 常见BIOS芯片的识别主板上的ROM BIOS芯片是主板上唯一贴有标签的芯片,一般为双排直插式封装(DIP),上面一般印有“BIOS”字样,另外还有许多PLCC32封装的BIOS。 此主题相关图片如下: 早期的BIOS多为可重写EPROM芯片,上面的标签起着保护BIOS内容的作用,因为紫外线照射会使EPROM内容丢失,所以不能随便撕下。现在的ROM BIOS多采用Flash ROM(快闪可擦可编程只读存储器),通过刷新程序,可以对Flash ROM进行重写,方便地实现BIOS升级。 目前市面上较流行的主板BIOS主要有Award BIO S、AMI BIOS、Phoenix BIOS三种类型。Award BIOS是由Award Software公司开发的BIOS产品,在目前的主板中使用最为广泛。Award BIOS功能较为齐全,支持许多新硬

电脑主板各类型芯片破解大全

电脑主板各类型芯片破解大全: 电脑主板上的芯片包括多种类型,每种芯片都具有各自的特征与功能,正确了解主板上各种芯片,对于电子工程师的产品研究开发与维修应用显得相当重要。本文是创芯思成工程师在对主板进行全面反向解析的基础上总结的主板芯片全破解。 主板芯片组(chipset)(pciset) :分为南桥和北桥 南桥(主外):即系统I/O芯片(SI/O):主要管理中低速外部设备;集成了中断控制器、DMA控制器。功能如下: 1) PCI、ISA与IDE之间的通道。 2) PS/2鼠标控制。(间接属南桥管理,直接属I/O管理) 3) KB控制(keyboard)。(键盘) 4) USB控制。(通用串行总线) 5) SYSTEM CLOCK系统时钟控制。 6) I/O芯片控制。 7) ISA总线。 8) IRQ控制。(中断请求) 9) DMA控制。(直接存取) 10) RTC控制。 11) IDE的控制。 南桥的连接: ISA—PCI CPU—外设之间的桥梁 内存—外存 北桥(主内):系统控制芯片,主要负责CPU与内存、CPU与AGP之间的通信。掌控项目多为高速设备,如:CPU、Host Bus。后期北桥集成了内存控制器、Cache高速控制器;功能如下: ① CPU与内存之间的交流。

② Cache控制。 ③ AGP控制(图形加速端口) ④ PCI总线的控制。 ⑤ CPU与外设之间的交流。 ⑥支持内存的种类及最大容量的控制。(标示出主板的档次) 内存控制器:决定是否读内存(高档板集成于北桥)。 586FX 82438FX VX 82438VX Cache:高速缓冲存储器。 (1)、high—speed高速 (2)、容量小 主要用于CPU与内存北桥之间加速(坏时死机,把高速缓冲关掉) USB总线: 为通用串行总线,USB接口位于PS/2接口和串并口之间,允许外设在开机状态下热插拔,最多可串接下来127个外设,传输速率可达480MB/S,P它可以向低压设备提供5伏电源,同时可以减少PC机I/O接口数量。 IEEE 1394总线: 是一种串行接口标准,又名火线,主要用于笔记本电脑,它采用“级联”方式连接各个外部设备,最多可以连接63个设备,它能够向被连接的设备提供电源。 AMR总线: AMR总线插槽其全称为AUDIO/MODEM RISER音效/调制解调器插槽,用来插入AMR规范的声卡和MODEM卡等,这种标准可通过其附加的解码器可以实现软件音频和调制解调器功能,AMR插卡用AC-LINK通道与AC’97(AUDIO CODEC’97,音频多频多媒体数字信号编解码器具1997年标准)主控制器或主板相连。 除AMR之外,一些新主板上出现了CNR和NCR插槽,CNRJ是用来替代AMR的技术标准,它将AMR上支持的AC97/MODEM扩充到支持1MB/S的HOMEPNA或10/100M 的以太网,提供两个USB接口;CNR的推出,扩展了网络应用功能,但它最大的踞在

图解电脑主板各个部位及安装

图解电脑主板各个部位及安装 一、主板图解一块主板主要由线路板和它上面的各种元器件组成 --------------------------------------------------------------- 1.线路板 PCB印制电路板是所有电脑板卡所不可或缺的东东。它实际是由几层树脂材料粘合在一起的,内部采用铜箔走线。一般的PCB线路板分有四层,最上和最下的两层是信号层,中间两层是接地层和电源层,将接地和电源层放在中间,这样便可容易地对信号线作出修正。而一些要求较高的主板的线路板可达到6-8层或更多。 主板(线路板)是如何制造出来的呢?PCB的制造过程由玻璃环氧树脂(Glass Epoxy)或类似材质制成的PCB“基板”开始。制作的第一步是光绘出零件间联机的布线,其方法是采用负片转印(Subtractive transfer)的方式将设计好的PCB线路板的线路底片“印刷”在金属导体上。这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。而如果制作的是双面板,那么PCB的基板两面都会铺上铜箔。而要做多层板可将做好的两块双面板用特制的粘合剂“压合”起来就行了。 接下来,便可在PCB板上进行接插元器件所需的钻孔与电镀了。在根据钻孔需求由机器设备钻孔之后,孔璧里头必须经过电镀(镀通孔技术,Plated-Through-Hole technology,PTH)。在孔璧内部作金属处理后,可以让内部的各层线路能够彼此连接。在开始电镀之前,必须先清掉孔内的杂物。这是因为树脂环氧物在加热后会产生一些化学变化,而它会覆盖住内部PCB层,所以要先清掉。清除与电镀动作都会在化学过程中完成。接下来,需要将阻焊漆(阻焊油墨)覆盖在最外层的布线上,这样一来布线就不会接触到电镀部份了。然后是将各种元器件标示网印在线路板上,以标示各零件的位置,它不能够覆盖在任何布线或是金手指上,不然可能会减低可焊性或是电流连接的稳定性。此外,如果有金属连接部位,这时“金

原理图、印板图设计方法

原理图、印板图设计方法 每次设计一块pcb时都应该按如下的顺序进行,这样可以节省时间,获得最好效果。 1.选择好SCH,PCB等文件的名字(用英文,数字),加上扩展名。 2.原理图 先设计好删格大小,图纸大小,选择公制,加好库元件。按电路功能模块画好图,元件,和线的画法应让人很容易看清楚原理。尽量均匀,美观,元件里面不要走线,注意不要在管脚中间走线,因为这样是没电器连接关系的。最好不要让两个元件管脚直接相连,画完后可以自动编号(特殊要求例外),然后加上对应标称值,最好把标称值改为红色,粗体,这样可以和标号区分开。最好把标号和标称值放在合适位置,一般左边为标号,右边为标称值,或上面为标号,下面没标称值。过程中习惯性保存! 首先保证原理图是完全正确的,进行ERC检查无错,然后打印核对。其次最好能搞清楚电路原理,对高低压;大小电流;模拟,数字;大小信号;大小功率分块,以便在后面布局时方便。 3.制作PCB元件库 对于标准库和自己的常用库里面没有的元件封装进行制作,要注意画俯视图,注意尺寸,焊盘大小,位置,号,内孔大小,方向,(印法好量尺寸)。名字用英文,容易看为好,最好有标明对应的尺寸,以便下次用时查找(可以使用名字和对应尺寸对应的表格形式保存)。 对于常用的二极管,三极管应该注意标号的表示方法,最好在自己库里面有常用系列的二极管,三极管封装,如9011-9018,1815,D880等。对发光二极管LED,RAD0.1,RB.1/.2,等常用而标准库没有的元件封装应该都在自己库里面有。应该很熟悉常用元件(电阻,电容,二极管,三极管)的封状形式。 4.生成网络表 在原理图里面加好封装,保存,ERC检查,生成元件清单检查。生成网络表。 5.建立PCB 选择好公制,捕获和可见删格大小,按要求设计好外框(向导或自己画),然后放好固定孔的位置,大小(3.0mm的螺丝可以用3.5mm的内孔焊盘,2.5的可以用3的内孔),边缘的先改好焊盘,孔大小,位置固定。 添加好需要用到的库。 6.布局 调用网络表,调入元件,修改部分焊盘大小,设置好布线规则,可以改变标号的大小,粗细,隐藏标称值。然后先把需要特殊位置的元件放好并琐定。然后

芯片封装类型图解

集成电路封装形式介绍(图解) BGA BGFP132 CLCC CPGA DIP EBGA 680L FBGA FDIP FQFP 100L JLCC BGA160L LCC

LDCC LGA LQFP LQFP100L Metal Qual100L PBGA217L PCDIP PLCC PPGA PQFP QFP SBA 192L TQFP100L TSBGA217L TSOP

CSP SIP:单列直插式封装.该类型的引脚在芯片单侧排列,引脚节距等特征和DIP基本相同.ZIP:Z型引脚直插式封装.该类型的引脚也在芯片单侧排列,只是引脚比SIP粗短些,节距等特征也和DIP基本相同. S-DIP:收缩双列直插式封装.该类型的引脚在芯片两侧排列,引脚节距为1.778mm,芯片集成度高于DIP. SK-DIP:窄型双列直插式封装.除了芯片的宽度是DIP的1/2以外,其它特征和DIP相同.PGA:针栅阵列插入式封装.封装底面垂直阵列布置引脚插脚,如同针栅.插脚节距为2.54mm或1.27mm,插脚数可多达数百脚. 用于高速的且大规模和超大规模集成电路. SOP:小外型封装.表面贴装型封装的一种,引脚端子从封装的两个侧面引出,字母L状.引脚节距为 1.27mm. MSP:微方型封装.表面贴装型封装的一种,又叫QFI等,引脚端子从封装的四个侧面引出,呈I字形向下方延伸,没有向外突出的部分,实装占用面积小,引脚节距为1.27mm. QFP:四方扁平封装.表面贴装型封装的一种,引脚端子从封装的两个侧面引出,呈L字形,引脚节距为 1.0mm,0.8mm,0.65mm,0.5mm,0.4mm,0.3mm,引脚可达300脚以上. SVP:表面安装型垂直封装.表面贴装型封装的一种,引脚端子从封装的一个侧面引出,引脚在中间部位弯成直角,弯曲引脚的端部和PCB键合,为垂直安装的封装.实装占有面积很小.引脚节距为0.65mm,0.5mm. LCCC:无引线陶瓷封装载体.在陶瓷基板的四个侧面都设有电极焊盘而无引脚的表面贴装型封装.用于高 速,高频集成电路封装. PLCC:无引线塑料封装载体.一种塑料封装的LCC.也用于高速,高频集成电路封装. SOJ:小外形J引脚封装.表面贴装型封装的一种,引脚端子从封装的两个侧面引出,呈J字形,引脚节距为 1.27mm. BGA:球栅阵列封装.表面贴装型封装的一种,在PCB的背面布置二维阵列的球形端子,而不采用针脚引脚. 焊球的节距通常为1.5mm,1.0mm,0.8mm,和PGA相比,不会出现针脚变形问题. CSP:芯片级封装.一种超小型表面贴装型封装,其引脚也是球形端子,节距为0.8mm,0.65mm,0.5mm等. TCP:带载封装.在形成布线的绝缘带上搭载裸芯片,并和布线相连接的封装.和其他表面贴装型封装相比,芯片更薄,引脚节距更小,达0.25mm,而引脚数可达500针以上. 介绍:

主板上各种芯片

主板上各种芯片、元件的识别及作用 管理提醒:本帖被火凤凰执行置顶操作(2009-03-04) 本部分设定了隐藏,您已回复过了,以下是隐藏的内容

一、主板芯片组: 芯片组(Chipset)是主板的核心组成部分,联系CPU和其他周边设备的运作。主板上最重要的芯组就是南桥和北桥。

1、北桥芯片:(North Bridge)是主板芯片组中起主导作用的最重要的组成部分,也称为主桥(Ho st Bridge)。一般来说,芯片组的名称就是以北桥芯片的名称来命名的,例如英特尔875P芯片组的北桥芯片是82875P、最新的则是支持双核心处理器的945/955/975系列的82945P、82945G、82945GZ、82 945GT、82945PL、82955X、82975X等七款北桥芯片等等。 北桥作用:北桥芯片负责与CPU的联系并控制内存(仅限于Intel的cpu,AMD系列cpu在K8系列以后就在cpu中集成了内存控制器,因此AMD平台的北桥芯片不控制内存)、AGP数据在北桥内部传输,提供对CPU的类型和主频、系统的前端总线频率、内存的类型(SDRAM,DDR SDRAM以及RDRAM 等等)和最大容量、AGP插槽、ECC纠错等支持,整合型芯片组的北桥芯片还集成了显示核心。 北桥识别及特点:北桥芯片就是主板上离CPU最近的芯片,这主要是考虑到北桥芯片与处理器之间的通信最密切,为了提高通信性能而缩短传输距离。因为北桥芯片的数据处理量非常大,发热量也越来越大,所以现在的北桥芯片都覆盖着散热片用来加强北桥芯片的散热,有些主板的北桥芯片还会配合风扇进行散热。因为北桥芯片的主要功能是控制内存,而内存标准与处理器一样变化比较频繁,所以不同芯片组中北桥芯片是肯定不同的,当然这并不是说所采用的内存技术就完全不一样,而是不同的芯片组北桥芯片间肯定在一些地方有差别。 2、南桥芯片:南桥芯片(South Bridge)是主板芯片组的重要组成部分,一般位于主板上离CPU 插槽较远的下方,PCI插槽的附近,这种布局是考虑到它所连接的I/O总线较多,离处理器远一点有利于布线。相对于北桥芯片来说,其数据处理量并不算大,所以南桥芯片一般都没有覆盖散热片。南桥芯片不与处理器直接相连,而是通过一定的方式(不同厂商各种芯片组有所不同,例如英特尔的英特尔Hub Arc hitecture以及SIS的Multi-Threaded“妙渠”)与北桥芯片相连。 南桥作用:南桥芯片负责I/O总线之间的通信,如PCI总线、USB、LAN、ATA、SATA、音频控制器、键盘控制器、实时时钟控制器、高级电源管理等,这些技术一般相对来说比较稳定,所以不同芯片组中可能南桥芯片是一样的,不同的只是北桥芯片。所以现在主板芯片组中北桥芯片的数量要远远多于南桥芯片。例如早期英特尔不同架构的芯片组Socket 7的430TX和Slot 1的440LX其南桥芯片都采用8231 7AB,而近两年的芯片组845E/845G/845GE/845PE等配置都采用ICH4南桥芯片,但也能搭配ICH2南

全程详细图解电脑主板各个部位及安装

全程详细图解电脑主板各个部位及安装 ================================================================ 全面讲解电脑主板(图解) --------------------------------------------------------------- 一、主板图解一块主板主要由线路板和它上面的各种元器件组成 --------------------------------------------------------------- 1.线路板 PCB印制电路板是所有电脑板卡所不可或缺的东东。它实际是由几层树脂材料粘合在一起的,内部采用铜箔走线。一般的PCB线路板分有四层,最上和最下的两层是信号层,中间两层是接地层和电源层,将接地和电源层放在中间,这样便可容易地对信号线作出修正。而一些要求较高的主板的线路板可达到6-8层或更多。 主板(线路板)是如何制造出来的呢?PCB的制造过程由玻璃环氧树脂(Glass Epoxy)或类似材质制成的PCB“基板”开始。制作的第一步是光绘出零件间联机的布线,其方法是采用负片转印(Subtractive transfer)的方式将设计好的PCB线路板的线路底片“印刷”在金属导体上。这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。而如果制作的是双面板,那么PCB的基板两面都会铺上铜箔。而要做多层板可将做好的两块双面板用特制的粘合剂“压合”起来就行了。 接下来,便可在PCB板上进行接插元器件所需的钻孔与电镀了。在根据钻孔需求由机

器设备钻孔之后,孔璧里头必须经过电镀(镀通孔技术,Plated-Through-Hole technology,PTH)。在孔璧内部作金属处理后,可以让内部的各层线路能够彼此连接。在开始电镀之前,必须先清掉孔内的杂物。这是因为树脂环氧物在加热后会产生一些化学变化,而它会覆盖住内部PCB层,所以要先清掉。清除与电镀动作都会在化学过程中完成。接下来,需要将阻焊漆(阻焊油墨)覆盖在最外层的布线上,这样一来布线就不会接触到电镀部份了。然后是将各种元器件标示网印在线路板上,以标示各零件的位置,它不能够覆盖在任何布线或是金手指上,不然可能会减低可焊性或是电流连接的稳定性。此外,如果有金属连接部位,这时“金手指”部份通常会镀上金,这样在插入扩充槽时,才能确保高品质的电流连接。 最后,就是测试了。测试PCB是否有短路或是断路的状况,可以使用光学或电子方式测试。光学方式采用扫描以找出各层的缺陷,电子测试则通常用飞针探测仪(Flying-Probe)来检查所有连接。电子测试在寻找短路或断路比较准确,不过光学测试可以更容易侦测到导体间不正确空隙的问题。 线路板基板做好后,一块成品的主板就是在PCB基板上根据需要装备上大大小小的各种元器件—先用SMT自动贴片机将IC芯片和贴片元件“焊接上去,再手工接插一些机器干不了的活,通过波峰/回流焊接工艺将这些插接元器件牢牢固定在PCB上,于是一块主板就生产出来了。 另外,线路板要想在电脑上做主板使用,还需制成不同的板型。其中AT板型是一种最基本板型,其特点是结构简单、价格低廉,其标准尺寸为

最全的芯片封装方式(图文并茂)

芯片封装方式大全 各种IC 封装形式图片 BGA Ball Grid Array EBGA680L LBGA160L PBGA217L Plastic Ball Grid Array SBGA192L QFP Quad Flat Package TQFP100L SBGA SC-705L SDIP SIP Single Inline Package SO Small Outline Package

TSBGA680L CLCC CNR Communication and Networking Riser Specification Revision1.2 CPGA Ceramic Pin Grid Array DIP Dual Inline Package SOJ32L SOJ SOP EIAJ TYPE II14L SOT220 SSOP16L SSOP TO18

DIP-tab Dual Inline Package with Metal Heatsink FBGA FDIP FTO220 Flat Pack HSOP28 ITO220 TO220 TO247 TO264 TO3 TO5 TO52 TO71

ITO3p JLCC LCC LDCC LGA LQFP PCDIP PGA Plastic Pin Grid Array TO72 TO78 TO8 TO92 TO93 TO99 TSOP Thin Small Outline Package

PLCC 详细规格 PQFP PSDIP LQFP100L 详细规格 METAL QUAD 100L 详细规格 PQFP100L 详细规格 QFP Quad Flat Package TSSOP or TSOP II Thin Shrink Outline Package uBGA Micro Ball Grid Array uBGA Micro Ball Grid Array ZIP Zig-Zag Inline Package TEPBGA288L TEPBGA C-Bend Lead

外设扩展板电路图

1 12 23 34 45 56 67 78 8 D D C C B B A A Title Number Revision Size A2Date: 2012/3/10 Sheet of File: E:\yuki\..\ExtraDevices.SchDoc Drawn By: S2 SW-PB S3 SW-PB S4 SW-PB S5 SW-PB S6 SW-PB S7 SW-PB S8 SW-PB S9 SW-PB S10 SW-PB S11 SW-PB S12 SW-PB S13 SW-PB S14 SW-PB S15 SW-PB S16 SW-PB S17 SW-PB 1234567891110 J3* GND GND RS232TX RS232RX GND 1310118 129 14 7C1+1 C2+4 GND 15 C1-3VCC 16 C2-5V-6V+2U5 MAX3232CSE GND 104C11104 C14104 C13104 C12GND 104C15GND GND OE 1D1 2 D23D34D45D56D67D78D89 GND 10LE 11Q8 12Q713Q614Q515Q416Q317Q218Q119VCC 20U3 74AC573M GND GND +5V OE 1 D12 D23D34D45D56D67D78D89 GND 10LE 11 Q812Q713Q6 14Q515Q416Q317Q218Q119VCC 20U4 74AC573M +5V GND +5V 1 2P1 Jumper D4 LED3D5LED3D6LED3D8LED3D10 LED3D12LED3D13LED3D14LED3 R5 1K R91K R111K R131K R151K R161K R171K R191K +3V31 2 P6Jumper Qa0 Qa1Qa2Qa3Qa4Qa5Qa6Qa7Qa8 Qa9 Qa10 Qa11 Qa12Qa13Qa14Qa15Qa0Qa1Qa2Qa3Qa4Qa5Qa6Qa7Qa8Qa9 Qa10Qa11 Qa0Qa1Qa2Qa3Qa4Qa5Qa6Qa7Qa12Qa13 Qa14Qa15 1 234567891011121314151617181920 P2 12864 +5V GND GND GND +5V 1234567891011121314 1516 P3 1602 +5V +5V GND GND GND +5V 1 23P5Jumper GND +5V 1 VR132961 VR23296Lin0Lin1Lin2Lin3Lin4Lin5Lin6Lin7A01 A12 A23 GND 4 SDA 5SCL 6WP 7 VCC 8 U8 AT24C02 f f g g e e d d c c h h b b a a H1H1H2H2H3H3H4 H4*4 D3 *f f g g e e d d c c h h b b a a H1H1H2H2H3H3H4 H4*4D2 *GND +3V3 GND 24C02_SCK 24C02_SDA VCC21 X12 X23GND 4 RST 5I/O 6SCLK 7VCC18 U12 DS1302 DS1302_CLK DS1302_IO DS1302_RST GND +3V3GND 12 P1132K 768 GND 1 DQ 2VDD 3 U15DS18B20 +3V3GND DS18B201 23456P4 Header 3X2 1 VR33296 t ? RT1 D7 Light R6 10K R7 10K +5V +5V +5V GND GND GND R10200R DIN 1SCLK 2CS 3DOUT 4AGND 5REFIN 6OUT 7 VDD 8 U11TLC5615 REF+1IN 2REF-3GND 4CS 5D OUT 6I/O CLK 7VCC 8U6 TLC549 R8200R GND +5V +5V GND +5V GND 1 2 P10 Jumper GND 1 2 3 D15TL431 GND +5V R231K VREF VREF 2.5V DC R110K R210K R310K R410K +3V3+3V3+3V3+3V3+3V3GND GND D9LED3R12200R +3V3 D11LED3R14 200R +3V3 BEEP GND +5V R24 200R R25200R PS2_DATA PS2_CLK DATA 1 RES 2GND 3VCC 4CLK 5RES 6 J4PS2 R3110K +3V3 1 23 45 U7* GND R2010K R2110K +3V3 +3V3 IN1 1 IN22 IN3 3IN4 4 IN55 IN6 6 IN77 GND 8 COM 9 OUT710 OUT611 OUT512 OUT413 OUT314 OUT215 OUT116 U10ULN2003 12 3456 P8Header 6 +5V +5V GND 2 3 4VCC 816 7GND 5 D R A B U9MAX485CSA 104C16+5V R22120R 123 P7Header 3 GND GND 3 21 Q18050 GND R341K +5V 123P12Header 3 GND D16LED3R29200R +5V 1 23 P13* GND +5V R321K R33200R GND 1VCC 2CE 3 CSN 4 SCK 5 MOSI 6 MISO 7 IRQ 8 24L01 U1424L01 GND +3V3 RF_CE RF_CSN RF_SCK RF_MOSI RF_MISO RF_IRQ 9 101112 DAT2 1DAT3 /CS(SPI)2CMD /DI(SPI)3VDD 4CLK /SCLK(SPI)5GND 6DAT0 /DO(SPI)7DAT1 8U13microSD GND +3V3 R2810K R2710K R2610K +3V3 +3V3+3V3SD_CS SD_DI SD_CLK SD_DO 12345 678 P95110 5110SCK 5110DIN 5110DC 5110RST 5110SCE GND +3V3+3V3 41 6 2 5 3 K1* + 1 2 B1BELL 1 2 BT1Battery1 R18 10K +3V3 GND 12 3J2 * GND +5V D1 D Tunnel1 GND GND GND GND GND +3V3 GND 104 C5GND VBUS 1D-2D+3GND 4 J1 440068-1 GND GND GND GND 104 C910uF C8GND 23 1S1SW-SPDT IN 1 4 OUT 3 GND U1 MC78M05CDT 12345678910111213 141516171819202122232425 2627 282930313233343536373839 40 P14 123 4567891011121314151617 181920212223 2425 26272829 30313233 3435 36373839 40P15 10uF C6104 C710uF C4104 C101234 P16 Header 4 1 234 P18 Header 4 1 234 P17 Header 4 GND 1IN 3 OUT 2 OUT 4U2 REG1117-3.3 R37200R*8LCMD0LCMD1LCMD2LCMD3LCMD4LCMD5 LCMD6LCMD7LCMRS LCMRW LCMEN 5110SCK 5110DIN 5110DC 5110RST 5110SCE RS232TX RS232RX DS18B20 24C02_SCK 24C02_SDA DS1302_CLK DS1302_IO DS1302_RST RF_CE RF_CSN RF_SCK RF_MOSI RF_MISO RF_IRQ SD_CS SD_DI SD_CLK SD_DO Encoder_A Encoder_B Encoder_K PS2_DATA PS2_CLK AD_Dout AD_CLK RELAY_Ctrl RS485_RW RS485_RX RS485_TX DA_CLK DA_Din IrDA_TX IrDA_RX BEEP GND +5V +3V3 R30 10K D511N4148+5V +5V 10uF C19 +3V3 LCMD0LCMD1LCMD2LCMD3LCMD4LCMD5LCMD6LCMD7LCMRS LCMRW LCMEN LCMD0LCMD1LCMD2LCMD3LCMD4LCMD5LCMD6LCMD7LCMRS LCMRW LCMEN IrDA_TX IrDA_RX STEP1 STEP2STEP3STEP4STEP1STEP2STEP3STEP4KEY_L1 KEY_L2 KEY_L3KEY_L4KEY_R1KEY_R2KEY_R3KEY_R4KEY_L1 KEY_L2 KEY_L3 KEY_L4 KEY_R1 KEY_R2 KEY_R3 KEY_R4SEG_N0SEG_N1SEG_N2SEG_N3 SEG_N4SEG_N5SEG_N6SEG_N7 SEG_D0SEG_D1SEG_D2 SEG_D3SEG_D4SEG_D5SEG_D6 SEG_D7 SEG_N0SEG_N1SEG_N2SEG_N3SEG_N4SEG_N5SEG_N6SEG_N7SEG_D0SEG_D1SEG_D2SEG_D3SEG_D4SEG_D5SEG_D6SEG_D7DA_CS DA_CLK DA_Din DA_CS AD_CS AD_Dout AD_CLK AD_CS Encoder_A Encoder_B Encoder_K RELAY_Ctrl RS485_RW RS485_RX RS485_TX

相关文档
最新文档