如何培养初中生数学几何题的解题能力

如何培养初中生数学几何题的解题能力
如何培养初中生数学几何题的解题能力

如何培养初中生数学几何题的解题能力

北海市铁山港区南康镇初级中学王春艳

摘要:中学数学的教学目的,归根结底在于培养学生的解题能力,提高数学解题能力是数学教学中一项十分重要的任务。很多学生到了初中对几何证明题感到困难,甚至无从入手。本文针对这些情况,列举了一些方法,帮助学生提高对几何题的证明,使学生走出“证明题难”的困境。

关键词:几何解题能力思维证明

中学数学的教学目的,归根结底在于培养学生的解题能力,提高数学解题能力是数学教学中一项十分重要的任务。在这项任务中,教会学生掌握几何题的解题能力是最困难的。俗话说:“几何,几何,想破脑壳。”这是学生害怕几何的真实写照。学生看到几何题就会害怕,要完成更是困难。原因在于学生对证明的过程不会书写或书写不完整;有时知道步骤的原因和结论,但讲不出定理的内容;有的在证明时凭感觉,或者是无从入手。如何帮助他们走出困境?经过一番苦思冥想和长期实践,我小结了一些的经验,现在就如何才能提高学生几何题的解题能力在具体方法上谈谈我的见解。

一、理解、画图、翻译、书写

几何知识内容主要为图形的定义、图形的性质、图形的判定、图形的画法、图形性质判定在实际生活中的运用等,几何知识外在形式表现为:图形、文字与符号,而其实质是图形语言、文字语言和符号语言的对应与统一。因此,学习几何首先必须掌握这些语言,离开这些语言知识,你无法进行表述,无法逻辑地思考。归根结底为:理解、画图、翻译、书写。大家知道在中学阶段学生最早接触的几何题为文字题,而对几何题的证明也是从先证明文字题开始的。先是认知公理,再在公理的基础上,证明有关的定理。在教学中引导好学生证明几何文字题,是学好几何的关键。在教学中,本人习惯先讲清几何文字题在几何学中的位置与作用,几何与我们实际生活的密切关系,突出它的重要性。其次让学生掌握几何文字题的证明步骤:理解、画图、翻译、书写。理解是对几何文字题认真阅读题目,抓题目的每一个条件,它的出现有什么作用,对所要求结论有什么关系等等。也就是要读懂题目,理顺题目中的题设与结论;画图是在理解题目的基础上画出正确的图形;翻译是在理解题目的基础上对题目的题设与结论翻译成几何符号,通常题设用“已知”、结论用“求证”来表示;书写就是用几何符号书写出证明过程。如:证明角平分线性质定理“在角平分线上的点到这个角两边的距离相等”时,首先读懂题目,找出题目中的题设与结论。题设:一个点在一个角的平分线上,结论:它到角两边的距离相等。根据题意,画出图形(略),写出已知和求证。已知,如图OC是∠AOB的角平分线,点P在OC上,并且PD⊥OA,PE⊥OB,垂足分别是点D、E。求证:PD=PE。

证明:∵PD⊥OA,PE⊥OB(已知)

∴∠PDO=∠PEO(垂直定义)

在△PDO和△PEO中

∠PDO=∠PEO

∠AOC=∠BOC(角平分线定义)

OP=OP(公共边)

∴△PDO≌△PEO(AAS)

∴PD=PE(全等三角形的对应边相等)

当然在解题的过程中,教师对学生的肯定和鼓励也十分重要,这能使学生学习兴趣变浓,积极性也就会高涨。解几何文字题不但可以培养学生的思维能力,而且还能够锻炼学生分析问题的能力和创新能力。学好了几何文字题的证明,并持之以恒,循序渐进,时刻都要养成一种习惯,就形成好的思维,对后阶段的复杂的几何题的证明奠定了基础。会获得成功。

二、强化几何公理、定理的记忆

很多学生认为英语需要记忆的东西多,数学只要理解就行。但是时间长了,即使是理解了的东西也会忘记。心理学告诉我们,遗忘与学习是相伴而行的。学习必须战胜遗忘,就离不开良好的记忆方法。著名心理学家艾

宾浩斯首先对遗忘进行了研究,实验表明:遗忘的进程不仅受时间的制约,也受其它因素的制约:材料的意义

和作用、材料性质、材料的数量、材料的系列位置学习程度对遗忘进程的都有影响。心理学家指出:遗忘的重

要原因在于记忆后缺乏巩固复习。因此,教师要根据遗忘发展的规律,正确地安排学生复习,强化几何公理、

定理的记忆。就初中数学而言,学生在学习的过程中有许多要记忆的内容,如概念的定义、性质、定理、公理、

一些重要的公式、数学中常用的主要方法、一些专用的数学符号等等。对于这些内容,必须要有正确的方法才

能记忆深刻,也只有记忆深刻了才能够运用自如。一般来讲,初中数学中常用的记忆方法有:1.理解记忆,2.

对比记忆,3.过程记忆,4.歌谣记忆,5.图表记忆,6.分类记忆等。例如在特殊的四边形中,平行四边形、特殊

的平行四边形的定义、性质和判定非常多,学生非常容易混淆,如果我们从四边形的边(又分对边与邻边)、

角(又分对角与邻角)、对角线、对称性等四方面来记忆,那么学生就容易记忆完整。

如果说几何题是把锁,那么几何公理、定理就是开启这把锁的锁匙。所以强化几何公理、定理的记忆是证

明几何题的必要提前,没有这些理论,几何题的证明就不是证明,而是在瞎扯。当然记下了公式、定理还不行,

还要清楚其背景和来源。才能真正理解这些公理、定理,才能运用它们解决问题。

三、在教学环节上,重视“数形结合”法

著名数学家华罗庚指出:“数缺少形时少直观,形少数时难入微。”这句话说明了“数”和“形”是紧密联系的。

我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。几何是研究“形”的,

所以对几何题的解题教学,“数形”结合法最为重要。这样也能把学生害怕的几何题运用数形结合的方法,帮

助学生类比、发掘,剖析其所具有的几何模型,这对于帮助学生深化思维,扩展知识,提高能力都有很大的帮

助。

对于每一道几何题我习惯上都让学生反复读几次题目,在确认理解题目的基础上借助图像把题目的已知条

件在图形上用符号表示出来,能使题目的问题明朗化,比较容易找到问题的关键所在,从而解决问题。在讲解

的过程中,我比较重视“数形结合”的思维训练,任何一道题,只要与“形”沾上了一点边,就应该根据题意画出

草图来分析一番。让学生借助几何图形的性质解决代数问题,或运用代数方法解决几何问题,或将几何、代数

的方法并用,让学生在训练中逐渐领悟数形结合思想的实质。这样做,不但直观,而且全面,整体性强,容易

找出切入点,对解题大有益处。尝到甜头的人就会慢慢养成一种“数形结合”的好习惯。如:在Rt△ABC中,

∠ACB=900 ,D是AB边上的一点,以BD为直径的⊙O与AC相切于E点,连接DE并延长,与BC的延长

线交于点F。(1)求证:BD=BF;(2)若BC=6,AD=4,求⊙O的面积。(见北海市铁山港区2010年初中毕业

班第三次质量检测数学试题)解这道题先把直角∠ACB=900在图形上作出垂直标记,再从“以BD为直径的

⊙O与AC相切于E”知道连接OE,也得出OE⊥AC,这样易知,OE∥BC,找出了这个平行,解决问题(1)

(2)就容易得多了。

四、开阔学生视野、扩散学生思维

几何证明题都具备几种不同的求解证明方法教师在教学时,要充分发挥学生的潜能,发散他们的思维,让

他们大胆创新,寻找不同的路径进行求解证明,掌握一题多解的方法,让学生把几何学活、用活。

例如:人教版八年级第一学期书上的例11:已知:如图(6),D是BC上的一点,BD=BC,∠1=∠2,求

证:AB=AC Array证法一:课本上的证明方法是:“中线加倍”。

证明略。(教师指导给出)

另外学生还想出如下的证法:

证法二:作CE∥AB交AD的延长线于E如图(7),

∴∠1=∠E

∵∠1=∠2

∴∠2=∠E

∴AC=EC

在△ABD和△ECD中

(7)

∠1=∠E

∠BDA=∠CDE

BD=CD

∴△ABD ≌△ECD (AAS )

∴AB=CD

∴AB=AC

证法三:作DE ⊥AB ,DF ⊥AC ,垂足E 、F 如图(8),

∴∠AED=∠AFD=∠BED=∠CFD=90°

在△AED 和△AFD 中

∠1=∠2

∠AED=∠AFD

AD=AD

∴△AED ≌△AFD (AAS )

∴DE=DF

在Rt △BED 和Rt △CFD 中

DE=DF

DB=DC

∴ Rt △BED ≌Rt △CFD(HL)

∴∠B=∠C

∴AB=AC

注意:这三种的证明方法都因有其适当的切入点的明示暗喻才能顺利解题的,一般的几何证明都会有,就看你找得到还是找不到!

再如:四边形ABCD 和EFGC 是两个边长分别为a 和b 的正方形,用含a ,b 表示△AGE 的面积。在学生思考,教师提问了一个学生,得出了答案,还来不及肯定,马上又有学生说他也有不同的解法,他也发表了自己的见解;而其他同学也陆续说出了不同的解法,细数了下,这一道学生给出了六种不同的解法!由此可见,发挥学生的潜能,发散他们的思维对学习几何有多大的帮助。

总之,几何题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键在于你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。当然,题目做得多也有若干好处:一是熟能生巧,加快速度,节省时间,这一点在考试中时间有限制时显得尤为重要;二是利用做题来巩固、记忆所学的定义、定理、法则、公式,形成良性循环。解题需要丰富的知识,更需要自信心。没有自信心就会畏难,就会放弃。只有自信才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。

参考资料:①光明出版社 主编 王德军《有效教学 和谐课堂》

② 《人教版的八年级数学(上)》

③邵瑞珍等,《教育心理学》,上海教育出版社,〔M 〕1997年第1版

④祝蓓里等,《心理学》,华东师范大学出版社,〔M 〕1984年6月第1版

⑤童世骏等译,《当代思维方法》,上海人民出版社,〔M 〕1987年7月第1版

⑥北海市铁山港区2010年初中毕业班第三次质量检测题

D C B (8)

如何培养学生的解题能力

如何培养学生的解题能力 中学数学教学的目的,归根结底在于培养学生的解题能力,提高数学解题能力是数学教学中一项十分重要的任务。提高学生解题能力始终贯穿于教学始终,我们必须把它放在十分重要的位置。那么,如何才能提高学生的解题能力,具体方法上讲主要可以从以下几方面入手: 一、培养“数形”结合的能力“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小两个属性,就交给了教学去研究了。初中数学两个分支——代数和几何,代数是研究“数”的,几何是研究“形”的。但是研究代数要借助“形”,研究几何要借助“数”,“数形整合”是一种趋势,越学下去,“数”与“形”越密不可分。到了高中就出现了专门用代数方法研究几何问题的一门课,叫做“解析几何”。在七年级建立平面直角坐标系后,研究函数的问题就离不开图象了。往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾上了一点边,就应该根据题意画出草图来分析一番。这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人就会慢慢养成一种“数形结合”的好习惯。 二、培养“方程”的思维能力数学是研究事物的空间形式和数量关系的,最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如匀速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关的等式:速度ⅹ时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而七年级则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一元一次方程都能顺利地解出来。八年级、九年级我们还将学习解二元一次方程组、分式方程、一元二次方程,到了高中我们还将学习指数方程、对数方程、线性方程、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化一元一次方程或是一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大

小学数学常用解题技巧(解几何题技巧)

小学数学常用解题技巧:解几何题技巧 解几何题技巧 1.等分图形 【均分整体】有些几何问题,只要把大图形均分为若干个小图形,就能找到问题的答案。 例如,下面两图中的正方形分别内接于同一个等腰直角三角形(内接指四个顶点全在三角形的边上)。已知左图(图4.11)中正方形面积为72平方厘米,求右图( 4.12)中正方形的面积。 由于左右两个三角形完全相同,我们不妨把这两个图形进行等分,看看这两个正方形分别与同一个等腰直角三角 形有什么样的关系。等分后的情况见图 4.13和图 4.14。 积是 图4.12的正方形面积是 【均分局部】有些几何问题,整体的均分不太方便,或不能够办到,这时可以考虑把它的局部去均分,然后从整 体上去观察,往往也能使问题获得解决。 例如图 4.15,在正方形ABCD中,画有甲、乙、丙三个小正方形。问:乙、丙面积之和与甲相比,哪一个大些? 大家由前面的“均分整体”已经知道,像甲、乙这样的两个正方形,面积不是相等的。如图 4.16,经过等分,正方形甲的面积等于△ABC面积的一半;正方形丙的面积等于△EDF的一半,正方形乙的面积等于梯形ACFE面积的一半。这样,一个大正方形ABCD,就划分成了三个局部:等腰直角△ABC;等腰梯形ACFE;等腰直角△EDF。其中甲、乙、丙的面积分别为各自所在图形的一半,而△EDF的面积加梯形ACFE的面积等于△ADC的面积,即等于△ABC的面积。所以,乙、丙面积之和等于甲的面积。

2.平移变换 【平移线段】有些几何问题,通过线段的上、下、左、右平移以后,能使问题很快地得到正确的解答。 例如,下面的两个图形(图 4.17和图4.18)的周长是否相等? 单凭眼睛观察,似乎图 4.18的周长比图 4.17的要长一些。但把有关线段平移以后,图 4.18就变成了图 4.19,其中的线段,有的上移,有的左移,有的右移,它可移成一个正方形。于是,不难发现两图周长是相等的。 【平移空白或阴影部分】有些求阴影部分或空白部分面积的几何题,采用平移空白部分或平移阴影部分的办法, 往往能化难为易,很快使问题求得解答。例如,计算图 4.20中阴影部分的面积。 圆面积”,然后相加,得整个阴影部分的面积。这显然是很费时费力的。但认真观察一下就会发现,图 4.20左半左上部的空白部分,与右半左上部的阴影部分大小一样,只需将右半左上部的阴影部分,平移到左半左上部的空白部分,所 有的阴影部分便构成一个正方形了(如图 4.21)。所以,阴影部分的面积很快就可求得为5×5=25。 又如,一块长30米,宽24米的草地,中间有两条宽2米的走道,把草地分为四块,求草地的面积(如图 4.22)。 这只要把丙向甲平移靠拢,把丁向乙平移靠拢,题目也就很快能解答出来了。(具体解法略) 3.旋转变换 【旋转成定角】例如下面的题目: “在图 4.23中,半径为8厘米的圆的内外各有一个正方形,圆内正方形顶点都在圆周上,圆外正方形四条边与圆 都只有一个接触点。问:“大正方形的面积比小正方形的面积大多少?”

初中数学经典几何难题及答案39256

1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 第1题图 第2题图 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150 . 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二) 第3题图 第4 题图 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F . B D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A P C D B A F G C E B O D

1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600 ,求证:AH =AO .(初二) 第1题图 第2题图 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 第3题图 第4题图 F

初中数学几何辅助线技巧

几何常见辅助线口诀三角形 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。 三角形中两中点,连接则成中位线。 三角形中有中线,倍长中线得全等。 四边形 平行四边形出现,对称中心等分点。 梯形问题巧转换,变为三角或平四。 平移腰,移对角,两腰延长作出高。 如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆形

半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径联。 切线长度的计算,勾股定理最方便。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。 还要作个内接圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。 内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。 要作等角添个圆,证明题目少困难。 由角平分线想到的辅助线 一、截取构全等: 如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE与CD的延长线交于一点来证明。自己试一试。 二、角分线上点向两边作垂线构全等: 如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。求证:∠ADC+∠B=180 分析:可由C向∠BAD的两边作垂线。近而证∠ADC与∠B之和为平角。 三、三线合一构造等腰三角形: 如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。 分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。四、角平分线+平行线: 如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。

初中数学教学中解题能力的培养的实践研究-开题报告

《初中数学教学中解题能力的培养的实践研究》开题报告 靖边县第六中学艳郭怀成 一、对课题理论价值和实践价值的论证 1.自主解题能力的定义 自主解题能力是指学生个体在学习过程中一种积极自觉的学习行为,是学生在教师有目的、有计划、有组织的引导下,发现问题,调查研究,动手操作并进行自我支配、自我调节和控制,从而获取知识、技能和态度的学习方式和学习过程。 2.课题提出的社会背景 人类社会进入新的世纪,知识、信息正以前所未有的速度增长,社会对教育、对教师、对人才培养提出了更高的要求。在新一轮课程改革的浪潮中,自主学习解题能力已经成为现代教学方法中的一个最基本的原则。如何建立与新课程教学理念相适应的教学方式,是当前中学地理新课程改革急需解决的一个现实问题。本课题研究的主要目的就是为了使数学新课程教学理念能够真正贯彻到初中数学课堂教学之中,为我国初中数学课堂教学模式的研究提供一定的理论依据和建议。 3.选题的意义和研究的价值 早在上世纪,联合国教科文组织就提出了二十一世纪人们生存需要的四个学会,即学会求知,学会做事,学会共处,学会做人。其中把学会求知放在首要位置,而学会求知的核心就是自主学习。许许多多我们熟知的伟人、名人、成功人士,无一不是终生学习者,自主学

习是他们的自觉行为,是他们日常生活的重要组成部分,而这些都得益于他们从学生时代就养成的自主学习的意识和能力。那种不讲究教学方法和手段,靠教师和学生加班加点提高质量的做法已不能适应新形势的要求,提高教学效率已成为教学质量不滑坡的重要保证。而不论课外学习效率的提高还是课教学效率的提高,都离不开学生主体性的充分发挥。也就是说,学生自主学习解题能力的培养已成为新形势下决定教学质量提高的重要因素。 自主解题能力的培养是当前学校教育中急需解决的突出问题,在课程改革的浪潮推动下,一些课堂教学已经向有利于自主性学习的方向改变。但是,传统的讲授式教学依然十分流行,以教师为中心的讲授式教学带来的实际后果是令人担忧的。研究表明,直到高中阶段,我国的自主性学习能力的发展总体水平还不高,各种自主学习能力的发展还很不平衡,亟待通过有效的教育手段来提高学生的自主学习能力迫在眉睫!我们小组选择了对初中生自主学习解题能力培养的研究。 二.对课题所达目标和主要意义的论证 1.课题研究的目标 通过研究、调查、分析,探索如何有效的培养学生的自主学习能力,切实有效的为社会的建设和发展输送研究型、创新型人才 (1)掌握学生解题能力的状况 (2)探讨学生解题能力的培养途径与方法 (3)创建培养学生解题能力的教学模式

数学几何解题技巧

初中数学教学中几何解题思路分析 【摘要】平面几何在初中数学中一直占据着很重要的位置。而学生在对几何知识进行学习和掌握的过程中,最重要的一个部分就是能够应用到实践中进行解题。正像美国一位著名的数学家曾经所说过的那样:“数学这门学科,真正的组成部分就是问题和解题,在问题与解题中,解题就是数学的心脏所在。”学生在学习的过程中是否会解题,能否对一定的解题技巧与方法进行掌握对学生学习效果有直接的影响。对教师来说,学生对基本的解题能力进行掌握,也是“双基”教学的一个方面。在数学中对基本的解题方法和技巧进行注意,对学生的学习能力的提高无疑有着重要的促进作用,与此同时还能够对学生良好学习习惯的形成有推动作用。 【关键词】初中数学;教学;几何;解题思路; 对初中的几何教学来说,初中几何中的重要部分是解题技巧与规律教学。尤其是在初中几何的后期与复习阶段,通过对学生的几何解题技巧的培养,能够使学生对知识有系统性的掌握,同时能够培养其对知识进行灵活应用的能力。当然,处了解题技巧与规律的培养,还应该注意对学生思维能力的培养。只有思维能力得到提高,才能更好地掌握解题技巧与规律。下面我们通过具体的实例进行详细分析初中数学几何题的解题思路, 一、初中数学几何的解题技巧 1、对常见的题型与解题方法进行归纳总结 初中的几何题中,其实常见的题型并不多,所以这对经常见的几何题型与解题方法进行归纳与总结,是初中几何解题一个和实用的解题技巧。初中几何,证明题是最常见的,而证明题中,又以线段或角的一些关系的证明最为常见。对线段的关系的证明通常包括相等及其和差关系等的证明。在这些中,相等关系的证明是学生应该进行的基本掌握,对线段相等关系的证明,在思路与方法上常用的包括“三角形全等”、“比例线段”以及“等角对等边”和对中间量的过渡进行选取等思路。在这些方法中,“三角形全等”是最常用的,也是应该掌握的基本解题方法。对线段不等关系则一般常用“线段公理”,而对线段的和差及其它(如倍、分)关系,在解题过程中要注意使用截长、补短等技巧。对常见技巧进行掌握,能有效提高学生的解题效率。 2、注意对辅助线进行添加和使用 在对初中几何进行解题的过程中,除了要对常用的解题方法与规律进行掌握外,还要对辅助线的添加与使用加以关注。在初中几何题中,当直接解题出现障碍使,添加辅助线是常见的解题技巧,往往会让人产生一种“柳暗花明又一村”的感觉。对常见技巧进行掌握,能有效提高学生的解题效率。下面我们通过一道例题详细进行分析几何证明题的解题方法及技巧: 如下图所示,已知:在ABC ?中,?=∠90C ,BC AC =,DB AD =,BF AE =,求证:DF DE =,

初中数学经典几何难题及答案

经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 第1题图 第2题图 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二) 第3题图 第 4题图 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延 B D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A P C D B A F G C E B O D

长线交MN于E、F.求证:∠DEN=∠F. 经典难题(二) 1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M. (1)求证:AH=2OM; (2)若∠BAC=600,求证:AH=AO.(初二) 第1题图第2题图 2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及 D、E,直线EB及CD分别交MN于P、Q.求证:AP=AQ.(初二) 3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题: 设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.求证:AP=AQ.(初二)

第3题图 第4题图 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二) 经典难题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) 第1题图 第2题图 2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .(初二)

初二数学几何解题技巧

初二数学几何解题技巧 【知识梳理】 1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2、掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

【专题一】证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 【专题二】证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 【专题三】证明线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) (二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。(补短法)

初中学生物理计算题解题能力的培养和提高

初中学生物理计算题解题能力的培养和提高 天祝县松山初中安永华 计算题是每年中考必考的题型,它具有较强的综合性,能将所学的诸多概念、规律融合在一起加以综合运用,是考察学生综合能力的一种较好的手段,也是学生比较畏惧的题型。每年中考,计算题的得分率都很低,甚至部分学生根本动不了笔。造成这种现象的原因是由于学生思维活动的不健全,对物理知识的理解不到位,缺乏综合运用物理知识和灵活运用物理思维方法的能力。因此,提高学生计算题的解答能力,对于培养学生的物理思维方法,提高物理学习的综合能力,将会起到很大的作用。本文谈谈我在提高学生计算题解题能力的过程中采用的教学方法及体会。 一、从物理基础知识入手,全面透彻地理解物理公式 物理概念和规律是物理学的根本。只有透彻地理解了物理概念和物理规律,才能灵活地运用物理公式,才能在答题时找到解决问题的依据,做到举一反三,触类旁通。 理解物理公式,主要从以下四个方面进行: (1)理解公式中每个字母所代表的物理量及其物理意义; (2)理解公式的适用范围; (3)同一性:理解公式中的每一个物理量都是针对同一个研究对象或同一工作状态而言的; (4)统一性:运用公式进行计算的时候,各物理量的单位要对应统一。 因此,对于教材中所涉及到的每一个公式,老师都要有意识地引导学生从以上四个方面来理解,久而久之,这种引导会对学生产生潜移默化的作用,使学生在运用一个物理公式进行计算的时候,形成一种条件反射,自然而然地从上述四个方面对题目的信息进行正确判断,对公式进行正确的选择,避免在使用公式的过程中,张冠李戴,生搬硬套。 二、掌握有效的解题方法,培养学生的思维 1、一题多解,培养学生思维的广泛性“一题多解”是指通过不同的思维途径,采用多种解题方法解决同一个实际问题的教学方法。它有利于引导学生从多角度、多方位观察和思考问题,扩大视角,开阔思路,避免思维的局限性,提高学生的应变能力。 例如:在一次爆破中,使用长96cm燃烧速度是s的导火线引爆炸药,如果点火工人点火后以5m/s的速度跑开,他能否在爆炸前跑到离爆炸点500m的安全区域?这是一道多条件、答案确定而解题途径和策略不唯一的开放性试题,可以通过比时间、比路程、比速度等方法来判断点火工人能否到达安全区域,而在比路程和比速度的过程中,从不同的角度思考,又可以各得出两种不同的解法。老师在讲解过程中,应该让学生充分发言,鼓励他们说出自己的想法,同时引导他们思考有没有其他解法,能不能再换一个角度来思考问题?例如:在比路程时,我们可以以导火线的长度为标准进行比较,能不能换一个角度,以爆破点到安全区域的距离为标准来进行比较呢?这样使学生改变思维方法和角度,不断发现新的解题路径,解题思路越来越广阔,越来越灵活。而且每发现一种新的解法,都会让学生产生惊喜,从中体验解题的乐趣,享受成功的感觉。 2、一题多变,培养学生思维的灵活性“一题多变”是指从多角度、多方位对例题进行变化,引出一系列与本例题相关的题目,形成多变导向,达到熟悉并灵活应用与题目相关知识的目的。“一题多变”可以是老师“变”,即老师根据教学大纲的要求,恰当地对题目进行延伸、演变、拓展,呈现出一系列的变式题;也可以把“变”的权力教给学生,即引导学生在原题的基础上,改变条件或相关的物理场景,提出一些与教学内容相关联的、有价值的问题,并自己解决。 例如:一个“220V,100W”的灯泡,根据灯泡的铭牌,你可以计算出哪些物理量?

初中数学代数几何解题技巧

如何用好题目中的条件暗示 有一类题目,我们在解前面几小题时,其解题思路和方法往往对解后面问题起着很好的暗示作用,现以一次函数中出现的两道题目为例予以说明,供同学们在学习过程中参考。 【例1】直线与x轴、y轴分别交于B、A两点,如图1。 图1 (1)求B、A两点的坐标; (2)把△AOB以直线AB为轴翻折,点O落在平面上的点C处,以BC为一边作等边△BCD。求D点的坐标。 解析:(1)容易求得,A(0,1)。 (2)如图2, 图2 ∵,A(0,1), ∴OB=,OA=1。 ∴在Rt△AOB中,容易求得∠OBA=30° ∵把△AOB以直线AB为轴翻折, ∴∠OBC=2∠OBA=60°,BO=BC。 ∴△OBC是等边三角形 以BC为一边作等边△BCD,则D的落点有两种情形,可分别求得D的坐标为(0,0),。 反思:在求得第(1)小题中B、A两点的坐标分别为B(,0),A(0,1),实质上暗示着Rt△AOB中,OA=1,OB=,即暗示着∠OBA=30°,为解第(2)小题做了很好的铺垫。

【例2】直线与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,且点P(1,a)为坐标系中的一个动点,如图3。 图3 (1)求三解形ABC的面积。 (2)证明不论a取任何实数,三角形BOP的面积是一个常数; (3)要使得△ABC和△ABP的面积相等,求实数a的值。 解析:(1)容易求得:A(,0),B(0,1), ∴。 (2)如图4,连接OP、BP,过点P作PD垂直于y轴,垂足为D,则三角形BOP的面积为,故不论a取任何实数,三角形BOP的面积是一个常数。 图4 (3)如图4,①当点P在第四象限时由第(2)小题中的结果:,和第(3)小题的条件可得: ∴, ∵,

初中数学几何证明题解题方法--

初中数学几何证明题解题方法--

————————————————————————————————作者:————————————————————————————————日期:

浅谈初中数学几何证明题解题方法 内容摘要:几何证明题的一般结构由已知条件和求证目标组成。做几何证明题的一般步骤:审题,寻找证明的思路,书写证明过程 关键词:几何证明 条件 结论 .执因索果 执果索因 辅助线 初中学生正处于自觉形象思维向逻辑思维的过度阶段,几何证明,是学生逻辑思维的起步。这种思维方式学生刚接触,会遇到一些困难。许多学生在几何证明这里“跌倒了”,丧失了信心,以至于几何越学越糟。为此,我根据自己几年的数学教学实践,就初中数学中几何证明题的一般结构,解题思路进行初步探讨。 学好几何证明,起步要稳,要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。 一、几何证明题的一般结构 初中几何证明题的一般结构由已知条件和求证目标两部分(即前提和结论)组成。已知条件是几何证明的前提,指题目中用文字和符号直接给出的明确条件,也包括所给图形中暗含的条件。求证指题目要求的经过推理最终得出的结论。已知条件是题目既定成立的、毋庸置疑而且必然正确的。求证是几何证明题的最终目标,就是根据题目给出的已知条件,利用数学中的公理、定理、性质,用合理的推理形式推导出的最后结果,而且只能出现在证明过程的最后。 例如:如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . 求证:△ABC ≌△DCB ; 已知条件:文字给出的有:△ABC 和△DCB ,AB = DC ,AC = DB ,AC 与DB 交于点M 图形给出的有:BC=CB,∠BMA 与∠CMD 是对顶角等等 求证目标是:△ABC ≌△DCB 注意,已知条件除了上面列出的,就没有其它的了,不可随意出现AM=DM ,BN=CN 等等 二、做几何证明题的一般步骤 (一)、审题 审题就是读题,这一步是解决几何证明题的关键,非常重要。许多学生读几何证明题时讲快,常常忽略了题目中蕴含的重要信息。和读其它类型的题有所不同,读几何证明题要求 B A M N

高考中常见的立体几何题型和解题方法

高考中常见的立体几何题型和解题方法 黔江中学高三数学教师:付 超 高考立体几何试题一般共有2——3道(选择、填空题1——2道, 解答题1道), 共计总分18——23分左右,考查的知识点在20个以内. 选择填空题考核立几中的 逻辑推理型问题, 而解答题着重考查立几中的计算型问题, 当然, 二者均应以正 确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多 一点思考,少一点计算”的方向发展.从历年的考题变化看, 以简单几何体为载体 的线面位置关系的论证,角与距离的探求是常考常新的热门话题. 一、知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过 程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与 距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行 与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能, 通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平 行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能 力和空间想象能力. 2. 判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平 面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交, 那 么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过 程中均可直接作为性质定理引用。 4.空间角和距离是空间图形中最基本的数量关系,空间角主要研究射影以 及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角 和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解 决. 空间角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系 进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线 所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π?????? ,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0,π].对于空间角的计算,总是通过一定 的手段将其转化为一个平面内的角,并把 它置于一个平面图形,而且是一个三

初中数学几何经典难题精选

初三数学总复习辅导学习资料(6)——几何经典难题 1.已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF . 2.已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150 .求证:△PBC 是正三角形. 3.如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、 C 2、 D 2分别是AA 1、BB 1、CC 1、DD 1的中点. 求证:四边形A 2B 2 C 2 D 2是正方形. 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 5.已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M .(1)求证:AH =2OM ;(2)若∠BAC =600 ,求证:AH =AO . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1

F 6.设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及 CD 分别交MN 于P 、Q .求证:AP =AQ . 7.如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作 两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .求证:AP =AQ . 8.如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半. 9.如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于 10.如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF . E

几何问题解题思路

几何问题解题思路 数量关系技巧包含了数学运算技巧和数字推理技巧两大部分,公务员考试数学运算是最为考生所头疼,其所占分值高并且难度也高。今天中公教育为考生整理了数量关系答题技巧中的几何问题解题思路,希望对考生有所帮助! 中公教育为考生整理了几何问题考点的解题思路和技巧,望考生注意以下几个方面。 第一个方面,几何基本公式: 三角形的面积=底×高÷2,长方形(正方形)的面积=长×宽,梯形的面积=(上底+下底)×高÷2,圆形的面积=π×半径的平方,长方体(正方体)的面积=长×宽×高,圆柱体的体积=底面积×高,圆锥体的面积=底面积×高÷3。 第二个方面,几何问题的“割补平移”思想。 中公教育提醒考生,当看到一个关于求解面积的问题,不要立刻套用公式去求解,这样做很可能走入误区,最后无法求解或不能快速求解。对于此类问题通常的使用的方法就是“辅助线法”即通过引入新的辅助线将图形分割或者补全为很容易得到的规则图形,从而快速求得面积。 第三个方面,几何极限理论。 平面图形:①周长一定,越趋近于圆,面积越大,②面积一定,越趋近于圆,周长越小; 立体图形:①表面积一定,越趋近于球,体积越大,②体积一定,越趋近于球,表面积越小。 实战例题: 【例题】半径为5厘米的三个圆弧围成如右图所示的区域,其中AB弧与AD弧为四分之一圆弧,而BCD弧是一个半圆弧,则此区域的面积是多少平方米? A.25

B.10+5л C.50 D.55 【中公教育解析】如下图:连接BD,作矩形BDMN,将下面的四分之一圆弧的半径画出来,可见该部分面积分为彩色的两部分。上面部分是半圆,下半部分是矩形面积减去2个四分之一圆,即矩形面积减半个圆形面积二部分之和,正好是矩形面积,即10×5=50平方厘米。故答案为C。 最新招考公告、备考资料就在辽宁事业单位考试网 https://www.360docs.net/doc/5f8135272.html,/liaoning/

浅谈数学解题能力的培养

浅谈数学解题能力的培养 摘要:学生数学解题能力并非通过传授获得的,而是通过培养而逐步发展的。它是一项复杂的系统工程。本文从“教”、“学”、“思”三方面阐述了数学教学中如何有效地培养学生解题能力的问题。 关键词:数学解题能力培养 “问题”是数学的心脏,数学学习的优劣,集中表现在解题能力上。我国中学数学教学素有重视“双基”的优良传统,许多教师都在解题教学方面积累了丰富的经验。但在传统的教学模式下,师生大多难以摆脱“题海战术”的巢臼,学生以数学为首当其冲的过重课业负担已成为社会关注的焦点。对于这种大量解题训练的效果到底如何?学生在解题时的思维状况又是怎样?怎样才能提高数学解题能力?怎样实现数学作业的“减负”与“增效”?这一系列问题虽然早就引起许多教师的注意,也取得一些零散经验,但却远远没有得到系统的解决。而今,我国中学数学教育正面临一场深刻的变革,其核心思想是从“以传授知识为本”转变为“以人的发展为本”。所以,如何培养提高中学生数学解题能力,并进而使之演化为人的持续发展能力,就变得比任何时候都意义深远。 任教以来,在培养和提高学生解题能力方面,我进行了一些初步的探索。 九年制义务教育中,由于受应试教育的影响和一些传统观念的束缚,解题教学,往往仅侧重于学习现成的知识、结论、技巧、方法,忽视了数学学科的基本精神、基本特征。因而在数学学习方面所表现出来的思维缺陷具有一定的代表性。就每一次的数学测试而言,学生对于一些按部就班、有固定解题模式和记忆性操作程序的算法型试题就会考得普遍不错。而对于没有固定模式,无须死记硬背,也无法在短时间内准备好所有的解答方法,运算量一般较小,思维容量却大的思辨型试题却败下阵来。 是什么原因造成了学生“解题技能”和“解题智能”发展不均衡?这恐怕要涉及“教”、“学”、“思”三方面的原因。 一、就“教”而言 解题教学的本质是“思维过程”,受年龄等因素的限制,学生思维发展有其特定的规律,这需要解题教学遵循学生认知特点,设置最近发展区,进行有针对性的训练。 在平时的课堂教学中,我非常重视例题的典范作用。因为现在学生的解题仍较依赖例题的解题模式、思路和步骤,从而实现解题的类化。记得在教第四册的《梯形》这部分内容的一节复习课中,我只讲了一道例题: E 如图,梯形ABCD中,AB∥C D, 以AD、AC为边作平行四边形ACED, D C F 延长DC交EB于F,求证:EF=FB。 A B 通过分析、讨论,进行一题多解,总共概括了8种解法,这8种证明方法将梯形问题中重要辅助线添法、中位线的知识等都囊括其中。 可见,一道好例题的教学,对学生思维品质和解题能力的提高有着积极的促进作用。 而且在讲解例题的过程中,我也坚持不懈地对学生进行数学思想的培养,并注意与实际联系,收到了较好的效果。 比如像函数部分有这么一道题: 已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(3,0),则a+b+c的值() A、等于0 B、等于1 C、等于-1 D、不能确定 此题若从数上考虑,可得 =2,9a+3b+c=0, 用含a的代数式表示b、c后,代入求解。但若 y

最新初中数学几何题解题技巧

最新初中数学几何题解题技巧 初中数学几何题解题技巧一.添辅助线有二种情况 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此"添线"应该叫做"补图"!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线

(2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整

时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 (7)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特殊角直角三角形

如何培养孩子的解题能力

如何培养孩子的解题能力 培养学生的解题能力,是一个较复杂的问题。从理论上看,解题能力涉及到逻辑学、心理学、教育学等学科的问题。从内容上看,解题能力包括对应用题、文字题、计算题等各类问题处理的能力。从小学生解题的行为实际看,小学生解题主要存在的问题有:一是难以养成思维习惯,常常盲目解题;二是任务观点严重,解题不求灵活简洁;三是马虎草率,错误百出。心理学认为:智力的核心是思维能力。从素质教育的观点来看,发展思维、提高智力,是提高素质的重要内容。要提高学生的解题能力,首先要提高学生的智力,发展他们的思维。 很多家长都反映自己孩子在解决数学问题时,尤其是在解决综合能力相对比较强的问题时有困难,这是解题能力的问题。如何培养孩子的解题能力呢?我认为可以从以下三方面加以培养: 1、养成一题多说的习惯。 可以每天在家训练一道应用问题。在解题时,先不必急于去求答案,而是让孩子分别进行顺向思考和逆向思考,把解题思路及解题方法表达出来。如“笑笑、闹闹、皮皮、丫丫四个人按顺序发牌,当皮皮拿到第8张牌时,已经发出了多少张牌?” 先让孩子用综合法从条件到问题依次说出思路,再让孩子用分析法从问题到条件说出思路。孩子顺逆分别说清思路后,再列式解答。还可以让孩子对题中某一个条件或问题转换思路说,说成与其内容等价的另一种表达形式,增强解题过程的思考性,从而丰富解题方法,提高解题能力,如“甲比乙多25%”,也可以说成“乙比甲少20%”或“甲:乙=5:4”或“乙:甲=4:5”或“甲是乙的1又4分之1”或“乙是甲的5分之4”等。 2、养成一题多练的习惯。 求异思维是一种创造性思维,它要求孩子凭借自己的知识、能力,对某一问题从不同的角度,不同的方向去思考,从而解决问题。小学孩子的思维是以具体形象思维为主,容易产生思维定势,造成一些机械思维模式,干扰解题的准确性、灵活性和创造性。要避免这种现象,可以采用一题多问、一题多解、一题多变。 (1)一题多问: 同一道题,同样的条件,从不同的角度出发,可以提出不同的问题。这就是根据条件补问题。如“一条东西向的公路上,甲、乙两地相距150千米,并且乙地在甲地的东面。A、B 两车分别从甲、乙两地同时出发,A车的速度是每小时80千米,B车的速度是每小时70千米,行使了0.6小时。”补充的问题可以是:当两车相向而行时,经过0.6小时两车相距多少千米?当两车反向而行时,经过0.6小时两车相距多少千米?当两车同向并向东而行时,经过

数学立体几何解题技巧

数学立体几何解题技巧 数学立体几何解题技巧 1平行、垂直位置关系的论证的策略: (2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。 (3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。 2空间角的计算方法与技巧: 主要步骤:一作、二证、三算;若用向量,那就是一证、二算。 (1)两条异面直线所成的角: ①平移法:②补形法:③向量法: (2)直线和平面所成的角 ①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。 ②用公式计算. (3)二面角: ①平面角的作法: (i)定义法; (ii)三垂线定理及其逆定理法;(iii)垂面法。 ②平面角的计算法: (i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;

(ii)射影面积法; (iii)向量夹角公式. 3空间距离的计算方法与技巧: (1)求点到直线的距离: 经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。 (2)求两条异面直线间距离: 一般先找出其公垂线,然后求其公垂线段的长。在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。 (3)求点到平面的距离: 一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以 把点到平面的距离转化为直线到平面的距离,从而“转移”到另一 点上去求“点到平面的距离”。求直线与平面的距离及平面与平面 的距离一般均转化为点到平面的距离来求解。 4熟记一些常用的小结论 诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。 5平面图形的翻折、立体图形的展开等一类问题 要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。 6与球有关的题型 只能应用“老方法”,求出球的半径即可。 7立体几何读题:

相关文档
最新文档