ZEQ25GT全平衡中国式赤道仪(CEM) 使用说明书

ZEQ25GT全平衡中国式赤道仪(CEM) 使用说明书
ZEQ25GT全平衡中国式赤道仪(CEM) 使用说明书

ZEQ25GT全平衡中国式赤道仪(CEM)

使用说明书

一.概述

赤道仪已有几百年的历史,在中小型赤道仪领域用的最多的就是德国式赤道仪(GEM)。然而就系统而言,德国式赤道仪(GEM)大部分情况下都不处于平衡状态(纬度越低,不平衡越严重),针对此缺陷iOptron公司在全球独一无二的推出世界首创的全平衡中国式赤道仪(CEM)。相对于德国式赤道仪(GEM)系统的重心在赤经轴的前端,全平衡中国式赤道仪(CEM)将系统的重心处于赤经轴的中部底座的支撑点上(图1)。这样的设计使得赤道仪在任意纬度位置都接近全平衡状态,即使在装有望远镜和平衡锤满载的情况下高度方位调节也非常轻松,同时由于重心下移,赤道仪体积减小,钢性增加,本体重量下降,便携性更好。由于全平衡中国式赤道仪(CEM)的特殊结构即使在低纬度甚至赤道区域不需要任何附件原配三脚架也能正常使用。

图1

ZEQ25GT赤道仪(CEM)带自动寻星(GOTO)和跟踪功能,特别适用于天文观测与摄影。它采用大口径整体钢主轴配合大模数大直径蜗轮和大孔径球轴承,底部为双臂支撑结构和大直径底座,纬度调节采用双螺纹千斤顶结构,因此具有非常优异的刚性和稳定性。经过优化设计该赤道仪体积小巧,自重轻,承重大(12.3kg)。蜗轮蜗杆弹性消间隙机构,蜗杆与电机的传动为同步皮带,驱动为

工作时功耗极低。跟踪速度有自动Solar,Lunar,Sidereal。ZEQ25GT赤道仪(CEM)都标配经过精密调校的高精度极轴望远镜(#7100), 与一般德国式赤道仪不同的是ZEQ25GT赤道仪(CEM)赤纬轴在任何位置都不会遮挡极轴镜。赤纬电机电缆在任意位置都不会缠绕。ZEQ25GT赤道仪(CEM)燕尾座采用滑块夹紧方式,避免损伤望远镜燕尾。

ZEQ25GT赤道仪带自动导星接口(ST - 4),暗视野照明接口Reticle,ioptron 标准接口iOptron Port(电动调焦,指星笔,园顶随动控制等).

#8408控制手柄也采用32位ARM高性能控制器,大屏幕4行LCD,实时显示赤道仪各种状态数据。控制手柄装有大容量星表数据库(59,000+),具有极轴校准程序(在没有极轴镜或有遮挡的情况下可校准极轴),具有星体识别功能,带串行RS232接口可通过计算机对控制手柄和电机控制板在线升级,兼容ASCOM协议,并通过ASCOM控制赤道仪。

二.性能参数

1. 赤道仪类型:全平衡中国式赤道仪(CEM)

2. 最大载重:12.3 kg (不包括重锤)

3. 赤道仪本体重:

4.7 kg (不含平衡杆和平衡锤)

4. 纬度调节范围:0~60°(0~38°,33~60°)

5. 方位调节范围:±10°

6. 赤经蜗轮:144齿Φ88 mm (蜗轮蜗杆消间隙)

7. 赤纬蜗轮:144齿Φ88 mm (蜗轮蜗杆消间隙)

8. 赤经轴:Φ35 mm 钢

9. 赤纬轴:Φ35 mm 钢

10. 赤经轴承:Φ55 mm 球轴承

11. 赤纬轴承:Φ55 mm 球轴承

12. 平衡杆:Φ20 x 300 mm(0.7kg)

13. 平衡锤: 4.7 kg

14. 底座直经:Φ98 mm

15. 驱动电机:行星减速直流伺服电机(带光电编码器)

16. 分辨率:0.14角秒

17. 回转速度: 4.5°/秒(MAX)

18. 电源:直流12V 1.5A

19. 功耗:约0.25A (跟踪) 0.75A (GOTO)

20. 极轴镜:约2角分,带调光暗视野照明(#7100)

21. 水平指示:水平泡

22. 燕尾座: 3.4寸(86mm) 滑块式Vixen

23. 三脚架: 1.5寸不锈钢5 kg (可选配2寸不锈钢8 kg)

24. 星表数据库:59,000+ 星体,具有星体识别功能

25. 极轴对准:极轴镜或极轴校准程序

26. 过中天处理:停止,自动翻转或继续跟踪

27. 导星接口:ST - 4

28. 通讯接口:RS-232

29. 间隙补偿:RA 和DEC 分别设置

30. PEC :PEC

32. 工作温度范围:-10°C 到 + 40°C

三. 使用方法

A. 赤道仪的安装

1.根据使用者所处地理纬度选择合适的纬度调节旋钮和固定螺孔。出厂时

装配在赤道仪上是长纬度调节旋钮,纬度固定螺杆在下固定螺孔位置(见

图2),适合35~60度纬度范围。若使用者所处地理纬度在0~35度需

更换短纬度调节旋钮(附件)并将纬度固定螺杆处于上固定螺孔位置。

更换步骤如下(见图3):

a. 旋下赤道仪两侧的纬度固定螺杆;

b. 用一字起旋出下纬度支撑固定螺杆;

图 2

c. 更换短纬度调节旋钮(注意同时将上下纬度支撑螺杆旋到底);

d. 用一字起重新固定纬度支撑固定螺杆;

e. 将赤道仪两侧的纬度固定螺杆固定在上螺孔位置(注意在底座与赤经座之间各有一平垫片不要遗失应同时移动)。

2.打开三脚架,根据需要将三脚架调到适当的高度,并将三脚架底座的凸

台处朝向正北方向(见图4)。将赤道仪底部对准三脚架顶部(注意调节方位的两个旋钮要松开),扶持好赤道仪的同时向上旋紧三脚架中心上旋钮;再将附件盘装上,最后旋紧三脚架中心下旋钮。微调三脚架三条腿的高度使赤道仪底座上的水平泡在中心。根据使用者所处地理位置调节纬度调节旋钮,使底座上的指示箭头对准纬度指示牌相应的刻度。

图4

3. 将平衡杆座侧面旋钮旋下,按(图5)所示方向将平衡杆插入平衡杆座,同时从平衡杆座另一侧面旋紧旋钮,再旋紧平衡杆座前方旋钮.

图5

图 6

在10度以下低纬度地区,为避免平衡锤与三脚架腿干涉,可先调节平衡杆座后下方内六角调节螺丝使平衡杆稍微前移(图6),再从平衡杆座另一侧面旋紧旋钮并旋紧平衡杆座前方旋钮。

4. 旋下平衡杆尾部保护螺钉,将平衡锤装于平衡杆上并旋紧平衡锤旋钮,

再旋上保护螺钉。标配的4.7kg平衡锤能平衡的最大负载约6kg , 若配更大的负载需另加平衡锤或延长杆(选配)。

5. 旋松燕尾座上两个锁紧旋钮,将带有Vixen燕尾板的望远镜置于燕尾座

中并旋紧两个旋钮。

B. 赤道仪平衡的调整

赤道仪的赤经轴和赤纬轴都应工作在平衡状态,因此要对赤道仪的平衡做调整,调整步骤如下:

1.松开离合锁定螺丝(约两圈),旋转赤经轴和赤纬轴离合旋钮(90度)

至离状态(见图7);

2.将赤纬轴转到水平位置(图8),调整平衡锤在平衡杆上的位置可使赤经

轴达到平衡,调整望远镜在燕尾座前后位置可使赤纬轴达到平衡。

3.调整完成后将赤经轴和赤纬轴转回零位(平衡锤在最低位,望远镜指向

天极),旋转赤经轴和赤纬轴离合旋钮(90度)至合状态(见图7),再

将离合锁定螺丝旋到底即可。

注意:赤道仪平衡的调整一定要在赤经轴和赤纬轴离合器处在离的状态下进行!!

图8

C. 赤道仪电缆的连接

1. 将一根两端带有六芯水晶头的直短电缆一端插入赤纬电机座侧面

的RJ-11插座中,另一端插入赤经座上方的Dec端RJ-11插座中;

2. 将另一根两端带有六芯水晶头的螺旋电缆一端插入控制手柄的六芯

RJ-11插座,另一端插入赤经座上方的HBX端六芯RJ-11插座;

3. 将12v DC电源(中心正端)插入赤经座上方的Power端,打开电源开关

红色指示灯亮。

4. 将另一根两端带有六芯水晶头的螺旋电缆一端插入控制手柄的六芯

RJ-11插座,另一端插入赤经座上方的HBX端六芯RJ-11插座;

5. 将12v DC电源(中心正端)插入赤经座上方的Power端,打开电源开关

红色指示灯亮。

6. 若需要极轴照明,将极轴照明电缆一端插入赤经座上方的Reticle端,将

另一端插入赤纬座底端的插座内(见图9)。

图9

7. 若需要使用ST-4口导星,将6P6C六芯导星电缆水晶头插入赤经座侧面

Guide Port 端六芯RJ-11插座,六芯RJ-11插座导星口定义见(图10)。

8. 若需要用计算机控制赤道仪或对赤道仪Firmware升级,需将RS232串行

电缆4P4C四芯水晶头插入8408控制手柄底部四芯RJ-11插座内。

图10

D. 极轴的调整

稍微松开三脚架底座下中心的上旋钮,调节赤道仪底座两侧的方位调节旋钮(图4)可以微调赤道仪(极轴)的方位。稍微松开赤道仪底座两侧的纬度固定螺杆,调节纬度调节旋钮可调节赤道仪(极轴)的高度(俯仰),调节完毕后将三脚架底座下中心的上旋钮和赤道仪底座两侧的纬度固定旋钮旋紧。

E. 快速极轴校准(带极轴镜)

ZEQ25GT提供快速校准极轴的方法,其步骤如下:

1.打开极轴镜前盖和极轴镜帽并开启电源,如需要照明将极轴照明电缆接

好,极轴镜内如图11所示.

图11

2.按控制手柄“MENU”键,选择“Set Up Controller”并确认,再选择“Set

Up Time & Site”并确认,设置日期,时间,是/否夏时制,时区(中国

是东8区,设480Min. ahead of UT),纬度,经度,南/北半球。若有GPS

收到信号后只需设置是/否夏时制,时区,南/北半球,确认后数据将保持

以后不需要再设置。

3.按控制手柄“MENU”键,选择“Align”并确认,再选择“Pole Star Position”

并确认可见北极星位置示意图和位置参数,见(图12);

4.根据示意图和位置参数按方法D调整极轴使北极星在指定位置。

例如:时间2013年2月15日20:00:00 地点(南京)东经118°25' 30" 北纬32°05' 30" 480min ahead of UT,北极星的位置参数是4h 33.7m和40.7m(在南半球屏幕显示sigma南极星)。按方法D.极轴的调整所述通过调整赤道仪的方位和高度(俯仰)将北极星放在控制器屏幕中显示的相同位置即可。

注意:在盖上极轴镜帽前将极轴镜目镜旋到最里位置!

图12

F. 极轴校准程序方法(无极轴镜或无法看到北极星)

ZEQ25GT赤道仪对无极轴镜或无法看到北极星的情况下,可通过极轴校准程序校准极轴。具体步骤如下:

1. 将赤道仪平衡调好,望远镜光轴要校准与极轴平行,目镜最好带十字

叉丝,寻星镜光轴调整与望远镜光轴平行,赤经轴与赤纬轴回差(backlash)设置正确。赤道仪处于零位。

2. 开启电源,按控制手柄“MENU”键,选择“Align”并确认,再选择“Polar

Align”并确认,屏幕显示出几个靠近子午线的亮星以及方位和高度(俯

仰)坐标,选择一合适目标星A(可观测到无遮挡)并确认,望远镜将

GOTO到目标星A,按屏幕上提示手动调节纬度调节旋钮(俯仰)和按“”,“”键(按“▲”,“▼”键不起作用),将目标星A移动到寻星镜视场

中央,再细调到望远镜视场中央并确认,屏幕显示出几个靠近地平线的亮

星以及方位和高度(俯仰)坐标,选择一合适目标星(可观测到无遮挡)B并确认,望远镜将GOTO到目标星B,按屏幕上提示手动调节方位调节

旋钮和按“”,“”键(按“▲”,“▼”键不起作用),将目标星B移

动到寻星镜视场中央,再细调到望远镜视场中央并确认。

3. 望远镜将再次GOTO到目标星A,重复步骤2直到误差不再减小为止。

在校准过程中可按“BACK”键退出校准程序。

G. 控制手柄的使用

ZEQ25GT的控制手柄(#8408)正面是LCD显示屏和控制按键(图13),底部有连接插座。

LCD显示屏能显示4行每行21个英文字符。

按键有功能键,方向键,数字键。

功能键有MENU 键,BACK 键,ENTER键,? 键。

MENU 键:进入菜单选择需要的操作;

BACK 键:退出或返回上一级菜单;

ENTER键:选定或进入下一级菜单;

?键:星体搜索确认。

方向键有“▲”键(赤纬+),“▼”键(赤纬—),“”键(赤经+),“”

键(赤经—)。

方向键可控制赤经赤纬轴的运动,运动的速度可直接按数字键选择。进入菜单后方向键起换行和移位的功能,长按有滚动功能。

数字键1-9除了起输入数字的作用外,还可直接选择手动回转的速度,1-9分别代表1x,2x,8x,16x,64x,128x,256x,512x,MAX, 数字键0还具有“跟踪/停止”功能键作用。

具体步骤如下:

1. 开机打开电源开关屏幕显示logo,然后进入主显示页面,在无遮挡的

情况下约一分多钟GPS完成定位屏幕显示GPS OK。开机后控制手柄默认望远镜在零位。

图13

2. 设置按“MENU”键进入菜单,选择“设置控制器”并确认。

选择“Set Up Time & Site”并确认,设定当地日期和时间(也可等待GPS

工设定值,夏时制或时区设置错误只影响主显示页面显示错误而赤道仪仍正常工作),设置观测地的经纬度,并选择北/南半球(根据赤道仪极轴的方向设置北/南半球,极轴指向北设置北半球,极轴指向南设置南半球),断电记忆保持设置;

选择“Set Display & Beep”并确认,可设置LCD屏的显示对比度和背光亮度,也可设置键盘的背光亮度和蜂鸣器开与关,断电记忆保持设置;选择“Set Anti-backlash”并确认, 可设置赤经轴和赤纬轴的回差(一个单位约等于0.14角秒),断电记忆保持设置;

选择“Meridian Treatment”并确认,可设置过子午线自动停止或自动翻转或继续跟踪,断电记忆保持设置;

选择“Set Polar Light”并确认,可设置极轴镜或导星目镜的照明亮度,断电记忆保持设置;

选择“Firmware Information”并确认,可查看手柄,赤经和赤纬板版本号;选择“GPS Status”并确认,可查看GPS状态;

选择“Upgrade RA & DEC”并确认,可升级赤经和赤纬驱动板,Password 是9999;

3. 校准按“MENU”键进入菜单,选择“Align”并确认。可以根据需要选择“Polar Align”,“Solarsys Align”,“One Star Align”,“Multi-Star Align”等,对准时根据屏幕提示完成相应的操作。在“对准Align”菜单内可随时显示极星在极轴镜中的位置。

4. 自动寻星按“MENU”键进入菜单,选择“Select and Slew”并确认,

可选择太阳系,深空星体,恒星(Stars),星座(Constellations),慧星(Comets),小行星(Asteroids),自定义星表,也可以直接输入R.A.和DEC坐标值。选定目标后并确认望远镜自动转向目标并跟踪。

5. 同步到目标星该操作适用于寻找较暗的星体和星云。先GOTO到较暗星体附近的一亮星体,若该亮星体不在视场中央就按“MENU”键进入菜单,选择“Sync. to Target”并确认,根据屏幕提示将该亮星移至视场中央并确认,再GOTO到较暗星体就可以很准确。

6. 自动导星在自动导星前要尽量校准极轴,按“MENU”键进入菜单,

选择“Set Guide Rate”并确认。根据需要选择适当的叠加导星速度,叠加导星速度可在0.20x-1.00x范围之间任意设定(默认值是0.50x)。

7. 周期误差校正(PEC ) 所有采用蜗轮蜗杆传动并在主轴上未装有高精

密编码器的赤道仪都存在周期误差(这里的周期误差是指赤经蜗杆转动一圈,赤经蜗轮转动一个齿的周期内赤经轴转动速度的不均匀性)。对于需要长时间曝光,且是极轴对的非常准并盲跟的状态才需要PEC。在启用PEC之前需要记录PEC。使赤道仪处于自动导星状态,然后按“MENU”

键进入菜单,选择“PEC Option”并确认,再选择“Record PEC”并确认,记录开始并计时约600秒(一个周期)后完成记录。如需启用PEC,选择“PEC Playback On”并确认即可。掉电后若需要PEC 要重新做“Record PEC”。

8. 自定义星表按“MENU”键进入菜单,选择“Set User Objects”并确认可添加,浏览,删除自定义星数据。

9. 望远镜归零按“MENU”键进入菜单,选择“To Zero Position”并确认,望远镜自动回转到零位。

图14

零位:零位是指平衡锤在最低位置,望远镜在最高位置并平行于极轴。

方位零度(起始点)定义:正北方向是方位零度。

星表数据库:

1. 太阳系9

2. 深空星体命名星体60

梅氏星体110

NGC+IC 7840+5386

UGC 12921

Caldwell 109

Herschel 400

3. 恒星中文名星体224

命名星体195

双星210

GCVS 5553

SAO 26584

4. 星座88

5. 慧星15

6. 小行星116

7. 自定义60

本公司保留在不通知客户的情况下更改此说明书的权利。

动平衡机操作规程汇总

动平衡机操作规程 水泵的转子部件的动不平衡量对整台泵稳定运行有很大的影响。水泵叶轮由于材料组织不均匀及零件加工后产生的形状、尺寸等误差,致使恒态<刚性>转子在对应的工作转速频率下旋转时产生离心力,所引起的振动或运动作用于轴承时该转子所处状态称为该转子的动不平衡。根据GB/T9239.1-2006/ISO 国标。对恒态(刚性)转子平衡品质分级指南,具体到泵类叶轮为G6.3级。为在动平衡机上求得小于转子允许的剩余不平衡量,特制定叶轮动平衡作业指导规程: 一、使用前的准备工作: 1、根据叶轮实际重量选择适合该机允许试验范围的动平衡机。 2、使用前一定要做好清洁工作,特别是轴颈,滚轮摆架底部与轨道之间,都要进行擦试清洁,并在滚轮上加少许清洁的机油,严禁转子与联轴节未接好就开车。 3、根据转子和联轴节尺寸配好接头,其要求是形状对称,在强度允许的情况下,重量要轻;各挡内外园同心,工件和联轴节凹孔配合精度为D1/d要保证同心和端面垂直。 4、为减少示值晃动,工件轴颈和滚轮外R应避开相同或接近以免干扰,其比例最好在0.8以下或1.2以上。 二、电气控制部分:(控制原理见说明书附图) 1.本机电动机电源采用380V/50HZ。 2.电机通电后“停止”按钮红灯亮,如联轴节与转子联接好,则行程开关2XK闭合,将转速转换开关拨到高速或低速档(中间为停车档),即可启动。停车时可按停止按钮或车头箱右侧的制动手柄,制动后应将制动手柄抬起,为下次开车接通电路。 3.本机规定转子转动方向为:由车尾向车头看,转子应顺时针方向旋转。 三、操作程序: 1.将叶轮过动平衡心轴(或转子轴)上定位装夹。 2.调整好两摆架间距离。 3.放置转子部件. 4.连接好适合的联轴节接头。 5.放下安全架压紧转子(或心轴)。 6.从低速位启动,由低速至中速和高速逐渐调整提速,最后达到该叶轮在工况时最大转速。7.观察显示屏上显示的左右两处不平衡量G左、G右及测量点半径值R左、R右,G左、G右不计相位角只计量值。 8.按(G左×R左)+(G右×R右)≤U许用g.mm 根据U左= G左×R左U右= G右×R右 U许用值为设计允许不平衡值为:U许用=D2/2?G(g.mm) 其中:D2——叶轮最大外径(mm) G——设计允许不平衡重量(g) 注意:U左和U右比值应尽可能接近分别为:0.3U许用<U左<0.7U许用 0.3U许用<U右<0.7U许用 9、对显示的不平衡量作在相应位去除金属层处理。 10、反复进行上述工步试验和处理,直至合格。 四、维护与保养注意事项: 1.经常保持机器清洁,导轨面上应经常涂油防锈,非常用导规面上涂油后应加贴油纸保护。2.滚轮表面更不准粘有任何灰尘杂物,每次使用前应仔细清洁滚轮表面,移动摆架时应同

动平衡机说明书

动平衡机使用说明 图8 说明 1.START 键--开始测量如果代码C13设置1, 合上轮罩测量开始, 〈看10 章改变操作模式〉如果在测量完毕轮罩打开的情况下按动START 键, 而定位制动处于工作状态时,这时车轮罩打开的情况下车轮也可转动, 要确保车轮转动不会被工具或其他类似的物件所妨碍。--车轮最多转动半圈就被制动, 从而左侧校正面的平衡块能够安放在主轴的正上方。 2.STOP- 键 (1)中断测量 (2)清除错误代码 (3)如果输入完操作模式后,用STOP键 , 新的状态被自动地删除 ,以前的状态被重新建立

图 9 键盘详细使用说明 1.OP 键开始说明初步化运行 2.精确键,--高分辩度显示总读数1克代替5克或OZ替代(需把精确键按下) (1)显示最小不平衡极限值以下的残余不平衡量 : 只要按下此键 .实际不平衡 值即可显示 (2)标准平衡模式下显示不平衡值如果平衡模式Alu1到ALU5 被选择,按下精确 键 , 然后按下功能键设定平衡模式。 (3)OP 和 UN 程序中精确键作为转换键使用 3.C健 (1)轻轻地按下此键 , 转换不平衡读数的主量单位〈克或盎司〉,用 C3 活动代号设置开机时单位。 (2)长时间按下此键 , 转换操作模式 4. 轮胎类型功能键持续按下这个键旋转车轮 , 即可选择所需轮胎类型 ,松下 此键输入值即被存储。 5. 平衡模式功能键持续按下这个键 ,旋转车轮 ,即可选择所需平衡模式,松开 此键,存储输入值。 6. 动静态不平衡显示功能键 7. 轮圈宽度 , 直径等功能键

图 10 显示板,方向显示,提示操作者 1). 左侧较正面的指示器 2). 左、右校正面的 OK 指示器 3). OP 记号--需要执行最优化运行 4). 轮圈符号和上装平衡块的位置 5). 右侧较正面的方向指示器 6). 轮圈直径符号 7). 距离机器的附号(左侧校正面) 8). 右侧校正面的数字显示 ( 二位数) --轮圈直径 --轮圈 / 机器距离 ( 常用mm) --右侧校正而不平衡值 --调整和操作极限值模式的状态 9).START 键符号当运行使用START时 START 会显示 10). 补偿运行完之后符号 11). 轮圈宽度符号 l2). 左侧校正面的数字显示屏显示; 轮圈宽度 右侧校正面不平衡值 静态不平衡值 错误代码 C 代码 简单语言的平衡模式

赤道仪入门手册

赤道仪使用入门手册 一、操作赤道仪 赤道仪的操纵主要是高度和方位角调节,这两处调节用于观测较大方向改变,在仪器下面有一个大滚花旋钮用于方位角调节,松开旋钮可旋转赤道仪上部方向轴,用T字旋钮调节高度,这些用于校准极轴。 高度调节 方位调节 另外,赤道仪还有赤经RA(HA时角)和赤纬DEC方向控制,用于观测,松开锁钮可形成大的方向转变,在锁钮锁住后可用控制杆进行微调。在高度调节轴上附加刻度盘,用于根据当地纬度校准极轴。 赤纬刻度赤纬锁钮 赤经刻度 赤经微调赤纬微调

二、极轴校准 为了望远镜在天空中准确跟踪目标,首先需要校准赤道仪。方法是移动赤道仪指向北(南)天极,北半球的人们很容易在北天极附近找到很亮的北极星,如果目视,粗调极轴就足够了。在开始观测之前,首先确保你的赤道仪水平,寻星镜与望远镜对齐。 1. 设置纬度 转动望远镜桶并保持平衡,查询本地纬度和时区,用地图或GPS 查询本地地理位置,在赤道仪底座旁边,能发现一个0-90高度刻度盘。 EQ1 EQ3/EQ4 轻轻逆时针转动锁杆,来松开转轴。底部有一个螺丝推动转轴下面一个“舌头”,改变角度,旋转直到指针对准当地纬度,然后锁住转轴。 2. 寻找北极星

北极星,从北天极(NCP)观测小于一等星,由于北极星并不是正好位于北天极,因此当地球自转,北极星轨迹是一个很小的圆。北极星偏移北天极,靠近仙后座,与北斗星柄根部连线上。 3. 定位望远镜对准北极星 打开赤纬(DEC)锁钮,旋转望远镜桶直到指针对准刻度盘90读数,拧紧赤纬锁钮。移动三脚架以便望远镜向北(EQ3/EQ4赤道仪有“N”标识对准北面),赤经(RA)轴粗对北极星,这步可使用指南针。打开底座下面方位调节钮,通过寻星镜使北极星位于十字中心,虽然真正北天极距离北极星可能有二倍月亮视直径(北极星每天环绕北极一圈),除非你长期摄影曝光,否则不会发现这个问题。

赤道仪详细使用方法

赤道仪的使用方法 追踪因日周运动而移动的天体,最简单的方法是使用赤道仪式台架,确实比经纬仪方便得多。只要明白了使用的要领,作目视观则或照相均会产生很好的效果。晚间的星空,以北天极和南天极联机的自转轴为中心,每日旋转一次,称为日周运动。在赤道仪的台架上,把极轴(或称赤经轴)向北天极延长(在南半球时向南天极),就能简单地追踪星星的移动。换句话说,让赤道仪的极轴和地球的地轴平行,这个作业称为极轴调整,使用赤道仪时绝不能忘记,事先要与极轴对准平。 赤道仪的台架分为附有赤经、赤纬微动杆的, 以及附装极轴马达追踪式两种。附有微动杆的比经纬台的星星追踪方便,但须连续手动以便继续追踪,如果预算许可,最好是采用马达追踪式,会方便得多。必须调整赤道仪赤纬轴和极轴全体的平衡。如果平衡状态调节良好,固定螺丝放松时镜筒会静止,赤道仪的运转就会很圆滑,使用起来很平稳。 近年生产商在高级的赤道仪加进了GOTO功能,使用者可以指令望远镜自动指向观察目标。但耗电量大,野外观星时要携带大型蓄电池。 赤道仪的种类有很多。业余天文爱好者最常用的赤道仪有两种:分别是德国式及叉式赤道仪。德国式赤道仪适合折射、反射及折反射望远镜。而叉式赤道仪一般配合折反射望远镜使用。叉式赤道仪比德国式优胜的是不须要平衡锤,减轻仪器重量,方便野外观星。但是业余级数的叉式赤道仪稳定性不及德国式赤道仪。博冠系列望远镜用的赤道仪是德国式的赤道仪(如图)。 那我们就主要讲讲德国式赤道仪的使用方法吧! (一)赤道仪简介 肉眼可见的天体,用寻星镜就可对准,赤道仪之作微调跟踪之用。而深空天体就必须利用赤道仪的时角、赤纬度盘才能找到。 赤道仪有三个轴: 1.地平轴。垂直于地平面,下端与三脚架台连接,上端与极轴连接,有地平高度刻度盘。绕地平轴旋转可调整望远镜的地平方位角。 2.极轴。一端与地平轴相连,上下扳动极轴可调整地平高度角。另一端与赤纬轴成90o角连接,装有时角度盘,用于望远镜指向的时角(赤经)调整。 3.赤纬轴。与极轴成90o相连,上端与主镜筒成90o相连,以保证镜筒与极轴平行。下端连接平衡锤,装有赤纬度盘,用于望远镜指向的赤纬度调整。 (二)对准、观测深空暗天体 第一步:极轴调整。使望远镜极轴和地球自转轴平行,指向北天极。 1.主镜与赤道仪、三角架连接好,把有“N”标志的一条腿摆在正北方。调整三角架高度,使三角架台水平。 2.松开极轴(赤经轴)制紧螺钉,把主镜旋转到左边或右边。松开平衡锤制紧螺钉,移动平衡锤,使望远镜与锤平衡。把望远镜旋回上方,制紧螺钉。 3.松开地平制紧螺钉,转动赤道仪,使极轴(望远镜)指向北方(指南针定向),制紧螺钉。

动平衡机操作规程

动平衡机操作规程

————————————————————————————————作者: ————————————————————————————————日期:

动平衡机操作规程 水泵的转子部件的动不平衡量对整台泵稳定运行有很大的影响。水泵叶轮由于材料组织不均匀及零件加工后产生的形状、尺寸等误差,致使恒态<刚性>转子在对应的工作转速频率下旋转时产生离心力,所引起的振动或运动作用于轴承时该转子所处状态称为该转子的动不平衡。根据GB/T9239.1-2006/ISO国标。对恒态(刚性)转子平衡品质分级指南,具体到泵类叶轮为G6.3级。为在动平衡机上求得小于转子允许的剩余不平衡量,特制定叶轮动平衡作业指导规程: 一、使用前的准备工作: 1、根据叶轮实际重量选择适合该机允许试验范围的动平衡机。 2、使用前一定要做好清洁工作,特别是轴颈,滚轮摆架底部与轨道之间,都要进行擦试清洁,并在滚轮上加少许清洁的机油,严禁转子与联轴节未接好就开车。 3、根据转子和联轴节尺寸配好接头,其要求是形状对称,在强度允许的情况下,重量要轻;各挡内外园同心,工件和联轴节凹孔配合精度为D1/d要保证同心和端面垂直。 4、为减少示值晃动,工件轴颈和滚轮外R应避开相同或接近以免干扰,其比例最好在0.8以下或1.2以上。 二、电气控制部分:(控制原理见说明书附图) 1. 本机电动机电源采用380V/50HZ。 2. 电机通电后“停止”按钮红灯亮,如联轴节与转子联接好,则行程开关2XK闭合,将转速转换开关拨到高速或低速档(中间为停车档),即可启动。停车时可按停止按钮或车头箱右侧的制动手柄,制动后应将制动手柄抬起,为下次开车接通电路。 3.本机规定转子转动方向为:由车尾向车头看,转子应顺时针方向旋转。 三、操作程序: 1.将叶轮过动平衡心轴(或转子轴)上定位装夹。 2.调整好两摆架间距离。 3. 放置转子部件. 4. 连接好适合的联轴节接头。 5. 放下安全架压紧转子(或心轴)。 6. 从低速位启动,由低速至中速和高速逐渐调整提速,最后达到该叶轮在工况时最大转速。7.观察显示屏上显示的左右两处不平衡量G左、G右及测量点半径值R左、R右,G左、G右不计相位角只计量值。 8.按(G左×R左)+(G右×R右)≤U许用g.mm 根据U左=G左×R左U右= G右×R右 U许用值为设计允许不平衡值为:U许用=D2/2?G(g.mm) 其中:D2——叶轮最大外径(mm) G——设计允许不平衡重量(g) 注意:U左和U右比值应尽可能接近分别为:0.3U许用

ZEQ25GT全平衡中国式赤道仪(CEM) 使用说明书剖析

ZEQ25GT全平衡中国式赤道仪(CEM) 使用说明书 一.概述 赤道仪已有几百年的历史,在中小型赤道仪领域用的最多的就是德国式赤道仪(GEM)。然而就系统而言,德国式赤道仪(GEM)大部分情况下都不处于平衡状态(纬度越低,不平衡越严重),针对此缺陷iOptron公司在全球独一无二的推出世界首创的全平衡中国式赤道仪(CEM)。相对于德国式赤道仪(GEM)系统的重心在赤经轴的前端,全平衡中国式赤道仪(CEM)将系统的重心处于赤经轴的中部底座的支撑点上(图1)。这样的设计使得赤道仪在任意纬度位置都接近全平衡状态,即使在装有望远镜和平衡锤满载的情况下高度方位调节也非常轻松,同时由于重心下移,赤道仪体积减小,钢性增加,本体重量下降,便携性更好。由于全平衡中国式赤道仪(CEM)的特殊结构即使在低纬度甚至赤道区域不需要任何附件原配三脚架也能正常使用。 图1 ZEQ25GT赤道仪(CEM)带自动寻星(GOTO)和跟踪功能,特别适用于天文观测与摄影。它采用大口径整体钢主轴配合大模数大直径蜗轮和大孔径球轴承,底部为双臂支撑结构和大直径底座,纬度调节采用双螺纹千斤顶结构,因此具有非常优异的刚性和稳定性。经过优化设计该赤道仪体积小巧,自重轻,承重大(12.3kg)。蜗轮蜗杆弹性消间隙机构,蜗杆与电机的传动为同步皮带,驱动为

工作时功耗极低。跟踪速度有自动Solar,Lunar,Sidereal。ZEQ25GT赤道仪(CEM)都标配经过精密调校的高精度极轴望远镜(#7100), 与一般德国式赤道仪不同的是ZEQ25GT赤道仪(CEM)赤纬轴在任何位置都不会遮挡极轴镜。赤纬电机电缆在任意位置都不会缠绕。ZEQ25GT赤道仪(CEM)燕尾座采用滑块夹紧方式,避免损伤望远镜燕尾。 ZEQ25GT赤道仪带自动导星接口(ST - 4),暗视野照明接口Reticle,ioptron 标准接口iOptron Port(电动调焦,指星笔,园顶随动控制等). #8408控制手柄也采用32位ARM高性能控制器,大屏幕4行LCD,实时显示赤道仪各种状态数据。控制手柄装有大容量星表数据库(59,000+),具有极轴校准程序(在没有极轴镜或有遮挡的情况下可校准极轴),具有星体识别功能,带串行RS232接口可通过计算机对控制手柄和电机控制板在线升级,兼容ASCOM协议,并通过ASCOM控制赤道仪。 二.性能参数 1. 赤道仪类型:全平衡中国式赤道仪(CEM) 2. 最大载重:12.3 kg (不包括重锤) 3. 赤道仪本体重: 4.7 kg (不含平衡杆和平衡锤) 4. 纬度调节范围:0~60°(0~38°,33~60°) 5. 方位调节范围:±10° 6. 赤经蜗轮:144齿Φ88 mm (蜗轮蜗杆消间隙) 7. 赤纬蜗轮:144齿Φ88 mm (蜗轮蜗杆消间隙) 8. 赤经轴:Φ35 mm 钢 9. 赤纬轴:Φ35 mm 钢 10. 赤经轴承:Φ55 mm 球轴承 11. 赤纬轴承:Φ55 mm 球轴承 12. 平衡杆:Φ20 x 300 mm(0.7kg) 13. 平衡锤: 4.7 kg 14. 底座直经:Φ98 mm 15. 驱动电机:行星减速直流伺服电机(带光电编码器) 16. 分辨率:0.14角秒 17. 回转速度: 4.5°/秒(MAX) 18. 电源:直流12V 1.5A 19. 功耗:约0.25A (跟踪) 0.75A (GOTO) 20. 极轴镜:约2角分,带调光暗视野照明(#7100) 21. 水平指示:水平泡 22. 燕尾座: 3.4寸(86mm) 滑块式Vixen 23. 三脚架: 1.5寸不锈钢5 kg (可选配2寸不锈钢8 kg) 24. 星表数据库:59,000+ 星体,具有星体识别功能 25. 极轴对准:极轴镜或极轴校准程序 26. 过中天处理:停止,自动翻转或继续跟踪 27. 导星接口:ST - 4 28. 通讯接口:RS-232 29. 间隙补偿:RA 和DEC 分别设置 30. PEC :PEC

现场动平衡操作步骤201113

现场动平衡操作步骤 ?单面动平衡三步 ?传感器安装—准备工作 ?第一步:测量初始振动 ?第二步:加试重,测量试重振动,自动解算配重 ?第三步:加配重,去掉试重,测量残余振动,验证是否达到合格范围。 ?合格,出报表,不合格,二次配重! ?动平衡操作过程 首先在做动平衡之前先要了解机械设备的构造与构成以及测点的选择: ?测点选择 测点就是机器上被测量的部位,它是获取振动信息的窗口。 所选测点在可能时要尽量靠近振源,避开或减少信号在传播通道上的界面、空腔或隔离物(如密封填料等)最好让信号成直线传播。这样可以减少信号在传播途的能量损失。

因为测量时,设备在运行,因此需要注意安全问题。 有足够的空间,有良好的接触,测点部位有足够的刚度等。 通常,轴承是监测振动最理想的部位,因为转子上的振动载荷直接作用在轴承上,并通过轴承把机器和基础联接成一个整体,因此轴承部位的振动信号还反映了基础的状况。所以,在无特殊要求的情况下,轴承是首选测点。如果条件不允许,也应使测点尽量靠近轴承,以减小测点和轴承之间的机械阻抗。此外,设备的地脚、机壳、缸体、进出口管道、阀门、基础等,也是测振的常设测点。 ?轴承位图示

3.振动分析过程 振动分析过程是一个简单的故障诊断过程,根据以往的历史经验以及仪器仪表的显示综合进行的一个分析,简单的判断出故障的所在,从而为进一步解决问题提供辅助判断。 打开软件主界面点击振动分析功能

点击振动分析功能进入振动分析界面: 在振动分析界面中有两个分项目:时域分析、频域分析

对设备进行故障诊断的时候需要提前设定参数,如图所示 在时域分析中有一个重要的技术参数:速度量 所有的机械设备都有振动标准,速度量是衡量振动大小的国际标 准,对于一些特殊的行业(比如电厂,科研单位等)也使用位移量为

新手入门天文望远镜使用小常识

新手入门——天文望远镜使用小常识 一、如何调试寻星镜 1、白天,先将主镜筒对准远处的一个目标(约500米远),如烟囱、空调室外机等。装上低倍率目镜(如20MM目镜)寻找目标。将镜筒大致对准目标后,调节焦距系统直到目标清晰,并使之处于主镜中心点,然后将脚架全部锁紧。 2、小心调整寻星镜上的三个螺丝,将主镜看到的目标调到寻星镜的十字架中心。 3、更换高倍率目镜(如10MM目镜),重复上述的步骤。调试时,主镜里的目标始终控制在寻星镜的十字架中心。 *寻星镜调准后,千万不要动它。观测月亮,尽量选择在“弯月”,这时能更清晰的看到环形山、月海等。 二、赤道仪的简介和调整 (一)赤道仪简介 赤道仪有三个轴: 1、地平轴。垂直于地平面,下端与三脚架台连接,上端与极轴连接,有地平高度刻度盘。绕地平轴旋转可调整望远镜的地平方位角。 2、极轴(赤经轴)。一端与地平轴相连,上下扳动极轴可调整地平高度角。另一端与赤纬轴成90o角连接,装有时角度盘,用于望远镜指向的时角(赤经)调整。

3、赤纬轴。与极轴成90o相连,上端与主镜筒成90o相连,以保证镜筒与极轴平行。下端连接平衡锤,装有赤纬度盘,用于望远镜指向的赤纬度调整。 (二)赤道仪的调整 极轴调整。使望远镜极轴和地球自转轴平行,指向北天极。 1、主镜与赤道仪、三角架连接好,把将有“N”标志的一条腿摆在正北方。调整三角架高度,使三角架台水平。 2、松开极轴(赤经轴)螺钉,把主镜旋转到左边或右边。松开平衡锤螺钉,移动平衡锤,使望远镜与锤平衡。把望远镜旋回上方,制紧螺钉。 3、松开地平螺钉,转动赤道仪,使极轴(望远镜)指向北方(指南针定向),制紧螺钉。 4、松开极轴与地平轴连接螺钉,上下扳动极轴,使指针对准观测地点的地理纬度,制紧螺钉。 5、松开赤纬轴螺钉,转动望远镜使其与极轴平行(亦即与当地经线圈平行),制紧螺钉。 6、从望远镜(或调好光轴的寻星镜)中观看北极星是否在视场中央,如有偏差,则需对极轴的地平方位角,地平高度角作精细调整,直至北极星在视场中央不再移动。 7、拧动时角刻度盘,零时(0h)对准指针;拧动赤纬刻度盘,90o对准指针。 至此,望远镜就与地球自转轴、观测点子午面完全平行。

动平衡机校验操作指导书

动平衡机校验操作指导书 (IATF16949-2016/ISO9001-2015) 一、目的与范围 动平衡机是用来对机械旋转部件进行动平衡测试,以求得动平衡量产生的位置和大小,通过增加和去重量的方法,使机械的旋转部件的动不平衡量减少到最小,不至于引起机械设备的振动。因此,应对动平衡机进行定期校验,以保证动平衡机的精度要求。 本规程适用于硬支撑动平衡机的校验。 二、校验项目和环境条件 1.校验项目:动平衡机的测试正确性和测试准确度。 2.环境条件:校验时环境要求为25±15℃。 三、校验要求和校验方法 1.校验要求 1.1在动平衡机左右校正面上施加的不平衡质量的位置应和电测箱显示器显示的相位值对应,位置应不超过±3°。 1.2在动平衡机左右校正面上施加的不平衡质量应和电测箱显示器显示的质量值相对应,误差应不超过2%。 2.校验方法 2.1操作前做好清洁工作,特别是转子轴径、滚轮、万向联轴节和连接处的清洁工作。 2.2调整两支持架距离使其适应标准转子两端轴承间的距离。把万向节的行程

调节的紧固螺钉固紧后,将标准转子放置在动平衡机的两支撑架上,与万向联轴节联接并紧固,以避免标准转子轴向窜动。 2.3接通动平衡机总电源后,再接通电测箱电源,电测箱接通后将显示其本身的型号和版本号,接着电测箱自动依照程序进入自检过程,自检结束后将显示“TESTE”字符。若电测箱内部功能正常以及部件间连接完好,则电测箱进入测量过程,否则显示停留在“TEsTE”。 2.4初始状态,显示器将显示存贮单元的内容:A:B:c的数值,R1、R2的数值,校正方法,加重、去重,文件号。若标准转子的数据已存入内存文件,则调出文件并按测量键进入测量过程,若标准转子的数据未存入内存文件,则需输入标准转子数据,再进入测量过程,并选择“加重”测量方式。 2.5以上各项调整完毕,按下“启动”按钮,转子旋转,电测箱将显示转子的时机转速,执行存贮器内连续测量数次后,自动保存测量结果,且可重复测量、记录测量结果。其显示的不平衡量和相位应符合1.1及1.2所要求。 2.6在左校正面上分别施加一个2.5g、5g、10g的不平衡质量,测量并观察 电测箱显示器的显示值与实际加重质量的相位和质量是否相对应,并作相应的记录。 2.7在右校正面上分别施加一个2.5g、5g、10g的不平衡质量,测量并观察电测箱显示器的显示值与实际加重质量的相位和质量是否相对应,并作相应的记录。 四、校验结果的处理和校验周期 1.经校验符合本规范要求的动平衡机应填发“合格”标识,不符合本规范 要求的动平衡机应填发“禁用”标识。

天文摄影之自动导星超级入门

天文摄影之自动导星超级入门(日文原创翻译) 天文摄影, 入门, 导星, 超级, 自动 星云星团摄影之自动导星“超级”入门 1 在长时间曝光的天文摄影中,代替人们完成对天体转动来精密追踪的就是自动导星。在这个自动导星的世界里,有使用摄像头的,有通过电脑软件来控制赤道仪的电机转动等等,在新的时代里价格便宜的产品陆续登场,都成为了流行的话题。在这里,太高了、太难了、完全不懂……等这样想象而放弃了自动导星的你,不想来挑战下吗? 用天文望远镜对星云星团的拍摄是天文摄影中的热门之一。读者的天文摄影角也好,每个月都有很多星云星团的照片入选。投稿的比例中,压倒性地超过了其他体裁的天文摄影。绚丽多彩的犹如蒙上层面纱的星云,能让你感受到宇宙的宏伟的旋涡星系等等之类的照片,我想有很多人都因为憧憬着这等美图而开始进行天文摄影的吧。但是这里要面临两个困难,就是【合焦】和【导星】。 合焦方面的话,例如大家很多在使用的单反相机,最近的新出的机器都有“Live View”模式,就当作差不多都能解决这个问题了。假如你现在揣着钱准备入手单反的话,强烈推荐带有Live View模式的相机。(图1) 剩下的就是导星了。以SBIG公司的ST-4和TSV为开端,使用了冷却CCD的独立型自动导星(图2),和需用电脑的ST-5C和ST-402类似的冷却CCD自动导星,都是获得好评且人气很高的产品。但是,不管多少高价位的装置,对各种功能都能熟练操作都是需要相当的经验和处理能力的,所以对新手来说是很难推荐的。 话又说回来,这1、2年里,有使用USB摄像头,网络摄像头、PC摄像头等便宜的小型摄像头,然后用自动导星软件(免费软件也有很多)通过电脑来控制赤道仪,另外一个自动导星装置迅速调整(正确的来说应该是同时进行调整…这个可是内外厂家和业余爱好者通过努力而得到的东西)。读者的天文摄影角的资料栏中有【用PHD导星】等等【摄星套件】之类进行表示的,就是在实际拍摄中有用电动导星的作品,这些软件新手也能使用,而且令人高兴的是,不算电脑的话,用相当少的开销就可以了。 和去年本杂志评测用的赤道仪E-ZEUS化(天文导读2007年6月号、9月号)一样,准备了各种各样这种自动导星装置以及相关联的零件,加上笔记本电脑(Windows XP Windows Vista),反复测试。结果,虽然和带冷却CCD摄像头的自动导星相比较在星星的亮度方面有点劣势,但可以知道,在导星的精度和软件的易用性方面已经具备了充分的实力。不管你对自动导星方面有多少的知识和经验,不看下此类文章的话,会多多少少将有些错误的手法带入到新的导星系统中去。因此,和编辑部商量了下,好不容易引进了廉价的导星装置,对于以前从未使用过导星装置的,面向“超级”新手的自动导星设置相关的文章将在本栏目中连载,为了不再让你迷茫,本文将尽量采用简明易懂的文字来阐述。 究竟为什么非得用【导星】呢? 话题就此展开(文章好像也太菜鸟了,算了算了,请往下看吧) 地球以每86164.09秒自转一周。与自转轴可以平行调整的【极轴】装置的赤道仪,极轴以每86164.09秒/周自转和反向旋转的话,望远镜的准直视界(向着望远镜的中心视界)应该可以一直朝着同个天体,这个就是赤道仪最大的特长。你有连带极轴驱动马达的赤道仪的话,就是真正的天体追踪装置了。所以如图4,在装载于有极轴驱动马达的赤道仪上的天文望远镜的直焦上拍摄的话,就可以简单地进行长时间曝光的星云星团拍摄了。 但是!实际该怎么说呢,只要不是短时间的曝光,那单单这样拍摄的话也是拍不好的。如图5,图像都有拖线了,到底是什么地方不对呢? 你的问题? 在新手中常有的就是由于赤道仪的调整误差引起的。很多赤道仪极轴里都内藏了极轴镜,用极轴镜看到北极星,把赤道仪正确地调整到让极轴指向北天极(图6)。这时,调整的误差大的话,时间一长望远镜就不准直了。拍摄的时候就会发现有拖线的现象了。 调整误差的影响,在望远镜的焦距越是长的类型上越是能看得清楚,因曝光时间,调整的误差的方向和多少,天球上的天体的位置等等因素的影响而改变(单单看数字上稍微有点难,有兴趣的人请参考【2008年版天文年鉴】P.328页) 但是,也可以断言因为你自己而引起赤道仪的调整误差的事也是有的。因为极轴镜的调整偏差这种事很少见。 说起【你的问题】这种场合,也有因为望远镜的摆放场所不对等原因,如地面比较软,脚下顶着霜柱等地面,还有调整望远镜而影响准直偏离。

轮胎动平衡检测操作标准

轮胎动平衡检测操作标准 一、受检轮胎准备 1、准备14”轮胎受检一个。 2、受检轮胎检查:①检查轮胎花纹是否严重磨损,轮辋是否损坏。②去除旧平衡块,去除轮胎花纹中的夹杂物。 二、仪器准备 1、安装轮胎:①选择与轮辋孔径匹配的锥度盘,装在主轴上。对15”以下的轮辋,锥度盘小端朝外安装,再装轮胎。②装好后,用快速锁紧螺母锁紧。 2、接通电源,打开开关启动电脑轮胎平衡机。 三、进行实测 1、输入轮辋数据:①输入轮辋距离a值。首先,拉出仪器的测量尺,顶住轮辋边缘,读出距离值;然后,按面板a图标下方的down和up键选择到读出的轮辋距离值。②输入轮辋宽度b值。首先,使用宽度测量尺,测出轮辋宽度值,然后,按F键使显示屏幕上的值转换为轮胎宽度b值,按面板b图标下方的down 和up键选择到读出的轮辋距离值。③输入轮辋直径d值。按F键使显示屏幕上的值转换为轮胎直径d值,然后按面板d图标下方的down和up键选择到轮胎上标有的直径值即可。 2、车轮平衡操作:①放下保护罩,轮胎开始转动,待轮胎转动停止后,左右侧显示窗口分别显示轮胎内外侧不平衡值,按照内外不平衡值选平衡块备用。 ②用手逆时针缓慢旋转轮胎,至外侧不平衡指示灯全亮,在轮辋外侧的最高点(十二点钟位置)加相应质量的平衡块;用手逆时针缓慢旋转轮胎,至内侧不平衡指示灯全亮,在轮辋内侧的最高点(十二点钟位置)加相应质量的平衡块。③放下保护罩,再次检测,按照不平衡量的大小、位置,调节平衡块的位置或重新换平衡块,直至显示器两边都显示00为止。 四、仪器设备整理 1、将受检轮胎从平衡机上拆卸下来,放回原位。 2、关掉电脑轮胎平衡机开关,拔下电源插头。 3、整理实验用到的仪器设备,并将其放置到原来位置。 1

正确操作便携式动平衡测试仪方法

正确操作便携式动平衡测试仪方法 便携式动平衡测试仪采用大规模集成电路和单片机技术。该仪器具有多功能性,既可作转速表用,又可作振动测试用,特别是具有测量动平衡的一切功能,该仪器操作简单,人机对话,菜单提示。具有多功能性,既可作转速表用,又可作振动测试用,特别是具有测量动平衡的一切功能,该仪器操作简单,人机对话,菜单提示,测量数据可随时锁定保持,配机内蓄电池和市电双重供电,很方便地用于现场旋转机械的动平衡测试。也可与平衡机相配套,直接替代平衡机电箱,用于老平衡机的改造。 新手正确操作便携式动平衡测试仪方法: ▲用户在连续测量过程不要轻易按“复位"键,否则会丢失按键的所有数据。如果手边有影响系数,可以重新输入。 ▲一定要认真做好光电标志,观察机器转速的准确性。这是仪器开展动平衡测试的重要保证。 ▲引起机器振动大的原因是多方面。只有在同频振幅占总振幅较大分量时,用动平衡办法才能减少振动。反之不能获得理想效果。 ▲在动平衡试重法中,须要将巳知试重加到被测面的巳知位置上,要注意加重后的振动幅值与相位和原始的振动幅值与相位的变化情况。如果数据变化不明显的话,以后经过计算处理的减振效果也不明显。如果振幅变化不明显,就应加大试重的重量。如果相位变化不明显,就应重新移动试重的位置。 ▲初次对某转子进行平衡必须用试重法。通过试重法得到影响系

数后,对同类型转子进行平衡可用影响系数法,操作比较简单。 ▲仪器可以用交流220V供电,也可以用机内12V蓄电池供电。一般要求用交流220V充电,12V蓄电池供电,这样机内噪声相对要小。请注意当蓄电池电压低于10V时,要求及时充电。否则会影蓄电池的寿命。 ▲传感器所配磁吸座吸力很大极易夹手,请十分注意。

动平衡实验台使用说明书

动平衡实验台 使 用 说 明 书

转子动平衡实验 一、实验目的 1. 加深对转子动平衡概念的理解。 2. 掌握刚性转子动平衡试验的原理及基本方法。 二、实验设备 1. PH-I 型动平衡试验台 2. 转子试件 3. 平衡块 4. 百分表0~10mm 三、PH-I 型动平衡试验台的工作原理与结构 1. 动平衡试机的结构 动平衡机的简图如图1、图2、所示。待平衡的试件3安放在框形摆架子的支承滚轮上,摆架的左端固结在工字形板簧2中,右端呈悬臂。电动机9通过皮带10带动试件旋转;当试件有不平衡质量存在时,则产生离心惯性力使摆架绕工字形板簧上下周期性地振动,通过百分表5可观察振幅的大小。 通过转子的旋转和摆架的振动,可测出试件的不平衡量(或平衡量)的大小和方位。这个测量系统由差速器4和补偿盘6组成。差速器安装在摆架的右端,它的左端为转动输入端(n 1)通过柔性联轴器与试件3联接;右端为输出端(n 3)与补偿盘相联接。 差速器是由齿数和模数相同的三个圆锥齿轮和一个外壳为蜗轮的转臂H 组成的周转轮系。 (1)当差速器的转臂蜗轮不转动时n H =0,则差速器为定轴轮系,其传动比为: 13 11331-=-== Z Z n n i ,13n n -= (1) 1、 摆架 2、工字形板簧座 3、转子试件 4、差速器 5、百分表 6、补偿盘 7、蜗杆 8、弹簧 9、电机 10、皮带 图1 3 2 1 (1) (2) 4 5 6 7 8 9 10 1 2 3 N 1 N 3

这时补偿盘的转速n 3与试件的转速n 1大小相等转向相反。 (2)当n 1和n H 都转动则为差动轮系,传动比周转轮系公式计算: 13 11331-=-=--= Z Z n n n n i H H H ;132n n n H -= (2) 蜗轮的转速n H 是通过手柄摇动蜗杆7,经蜗杆蜗轮副在大速比的减速后得到。因此蜗轮的 转速n H <

望远镜安装与使用

观测攻略之如何选购望远镜 FSQ106-赤道式 FSQ106物镜

Meade203-地平式

目镜 开普勒折射镜原理图 我该买什么样的天文望远镜? 相信这是每个想买望远镜的同好面临的第一个问题,也是各大天文论坛的相关版面经常能见到的问题。对于这个问题,大家一般都能热心的进行解答,但是常见的解答往往是先问提问者:你准备投资多少

钱?你主要希望观测什么目标?是以目视观测为主还是摄影观测为主?不同的观测对象和观测形式应该选择不同的望远镜……等等。 等到提问者回答了,大家就又热心的帮助,告诉他应该买什么类型的望远镜,参数是什么样的,大约需要多少钱……等等。这样就基本解决了问题。 必须承认,这是对于这个问题的一个比较科学的解答流程。但是,这种解答方式只适用于提问者本身具备一定的观测基础。其实,更多的提问者只是刚刚入门的同好,他们并不知道自己主要会观测什么目标,也不太清楚会常用哪种观测形式,这样问反而有可能把他们问晕,导致最后买不到合适的器材。并且,对于杂志这样的平面媒体,交互性远远不如网络,也不可能针对每一个读者的需求提出建议,因此我倒是觉得,应该换一个思路来推荐器材。 这个思路有一个基本的假设,那就是假定大多数同好在刚入门时对于观测的需求和我类似,观测水平的成长性也和我类似。这样,我

就可以根据自己的情况来制定一个适合多数入门同好的器材购买方案。剩下的一些有比较特殊需求的同好再进行单独讨论。 以折射镜起步 望远镜不外乎三大类——折射式、反射式、折反射式。其中最基础,也是最容易上手的,非折射镜莫属。折射镜的制造成本不是三类中最低的,但它的光路结构是最简单的,也最符合普通人对于望远镜的认识和使用习惯。入门级的折射镜价格便宜,成像清晰锐利,比较明显的缺陷可能只是会有一些色差(什么叫色差我们后面的文章会谈到)。折射镜适用的观测范围非常之大,日常维护却比较省心。这种种优点决定了折射镜是入门级爱好者最适合使用的天文望远镜。 在经济条件允许的情况下,我建议大家购买这么一套装备(第一遍看可能很多名词和参数看不懂,没关系,后面我们会详细解释): 1、购买知名品牌的产品。国内品牌在价格上有一些优势,国际品牌在质量上可能会略胜一筹,如果你是第一次购镜手头又不是特别宽裕,还是考虑国内品牌吧。 2、主镜口径80mm-102mm,焦距600mm-1000mm。

动平衡操作

品牌:合英型号:DPH8-D1 NHY-2000 合英动平衡研究所产品介绍NHY-2000型电脑动平衡仪是一种智能化的动平衡专用测量仪器,专门为各种机械传动工件做动平衡测量校正使用。该仪器配有动平衡测量的专用软、硬件,测量精度高,稳定性好,抗干扰能力强。采用14"屏幕显示,它能将动平衡所需要的参数:转速、方位、偏量以图形和数字相结合的方式显示给操作者,即直观又准确,而且可以存储多达48种工件的影响系数和几何尺寸数据,避免了重复定标的麻烦。该仪器采用汉字提示,菜单操作方式,操作简便,容易掌握,一般只需20分钟即可学会操作。DPH-D1型电脑数显动平衡仪是一种适用于如风机、水泵、电机、传动轴等需要双面动平衡测试的各类转子的仪器,该仪器能将动平衡所需的参数、转速、左右方位及偏量用数字的显示的方式给操作者,并有停机自动记忆功能,把本来复杂的动平衡操作变得十分简单,广泛应用于各类通用和专用动平衡机上,同时适用于各类动平衡机的改造。DPH-F1型电脑数显动平衡仪是一种通用单面动平衡仪,适用于各种盘类转子如风机、轴轮、金刚石砂轮、电机、平板电机等需要单面动平衡测试的仪器。该仪器能将动平衡所需的参数、转速、方位及偏量用数字显示的方式显示给操作者,并有停机自动记忆功能,把本来复杂的动平衡操作变得十分简单,广泛应用于各类通用和专用动平衡机上,同时适用于各类动平衡机的改造DPH-F2型电脑数显动平衡仪是一种适用于如风机、水泵、电机、传动轴等需要双面动平衡测试的各类转子的仪器,该仪器能将动平衡所需的参数、转速、左右方位及偏量用数字的显示的方式给操作者,并有停机自动记忆功能,把本来复杂的动平衡操作变得十分简单,广泛应用于各类通用和专用动平衡机上,同时适用于各类动平衡机的改造。主要技术参数测试范围测试精度分辨率 1.平衡转速120~20rpm ±2%0.01转/分 2.相位角度0~360°±2%1° 3.偏量数值0~19g?mm/kg±2%0.1g?mm/kg 4.仪器电源AC180~260V、50Hz、20W 5.校正面数:1面(静平衡)、2面(动平衡)6.使用环境:-20~40℃7.最小可达剩余不平衡量:emar≤0.3g?mm/kg或≤0.3μ 8.不平衡量减少率:URR≥90% DPH-D1型电脑数显动平衡机是专门为各类蜗轮增压器专门设计制造的专用动平衡机,它能将动平衡所需要的参数,转速、方位、偏量用数字直接显示给操作者,并具有记忆功能,把本来复杂的动平衡测试变得十分简单,一般只需20分钟即可学会操作。 使用方法 1.动平衡仪接通220V电源后初调各旋钮位置 序号旋纽名称作用初位置备注说明 4:13 放大倍率调节灵敏度100倍共10圈总计1000倍 5:12 A、B分离减少相互影响黑.位置分离时调整 6 轻重选择去重时选择重、加重时选择轻 按需而定轻重相差180° 8:10 等分调节圆周等分数按需而定按蜗轮叶片等分或分成12.0等分 11 记忆开关手动记忆下位上位时记忆数据 9 光电调节调节光电传感器的灵敏度,使其既观测到黑色标记,又能排除其他干扰。 2.动平衡机与动平衡仪的信号联接 动平衡机与动平衡仪的信号联接对联动平衡仪上的插孔 传感器A 信号输入A 传感器B 信号输入B 记忆信号记忆插孔 光电传感器光电输入 3.操作步骤 1、调节仪器上的8和10使方位显示为12,即一周分为12等分。 2、用黑色记号笔在蜗轮轴上画一条宽度为3~4mm长度为10~20mm的黑色标记,此黑色标

动平衡仪操作步骤

现场动平衡仪操作步骤 一、准备工作 1、可移动多孔插座一个(220V电源); 2、电焊机一台; 3、临时及正式配重块(临时配重约50g,正式配重约500g); 4、精密电子天平一台。 二、测前准备 1、把转速探头安装在磁座支架上,在所测平衡转子得测量点贴一个 反光片,并把振动探头用电缆连接起来,各安装在前后轴承座得 侧平面上(注意:反光片应牢固地贴在转子上,以免甩出伤人)。 2、连接电源线与主机、转速探头及振动探头。 3、开机,适当调整转速探头与平衡转子间位置及灵敏度。转速探头与 反光片距离约5mm,此位置为红、绿灯合亮时得位置。 4、开机后进入初始方式,选择单面平衡,即按下方式键MODE,显 示为1PL,再按确认键ENT确认,此时INIT灯应为亮。如其它 灯亮,按CAN键3秒清零后重新选择单面平衡。 三、初始化操作 1、开机后,检查操作面板上得灯及指示器(INIT灯亮)。 2、检查平衡转子就是否在无临时配重及平衡配重得初始状态。 3、开启电机,带动转子转动,通过检查转速指示器(数显),在转速达到 匀速状态下,按下开始键START。 4、在操作过程中,实际波形高度及不平衡角度在指示器1#区显示5 次,当初始化完成时,TEST1灯亮(其中转速在操作过程中不显示, 完成时转速显示)。 5、停机。

四、加临时配重 1、在停止得叶轮任意边缘处加一块已知重量得临时配重块,此位置 将就是极座标平衡得0°角及分量平衡得第一个点(注:平衡配重 应固定在配重相同得直径上)。 2、启动电机,待叶轮达到一定转速且稳定时,按开始键START。 3、开始后,转速同样不显示,实际波形高度及不平衡角度在指示器中 显示5次,完成操作时,显示转速,TEST1灯闪烁(如TEST1灯 不闪烁,说明临时配重太轻,在这种情况下,增加更大得临时配重, 重新操作)。 4、停止平衡转子后,取下临时配重,数字1、00在不平衡波形高度 栏中显示,“1”闪烁,在其位置精确输入临时配重数值,用设置键 输入,ENT键确认。 5、输入临时配重数值后,平衡角度及平衡配重得重量在操作面板上 显示。 五、加平衡配重 1、按照转子旋转方向,以0°为基准,按平衡角度找出增加平衡配重得 位置,焊牢平衡配重(注:往叶轮上焊临时配重及平衡配重时都应考虑所用焊条得重量)。 2、完成后启动电机,测量振动值,如理想即完成,如不理想,重复操作。 天泽永丰设备技术科 2009年7月31日 动平衡仪错误代码翻译 Errorcontents When an errorisdetected during themeasurenentcontents is displayedwith the errorcodes、

相关文档
最新文档