基于双轴太阳跟踪器及温度监测系统的新型太阳能碟式浓缩器(IJEM-V8-N1-2)

基于双轴太阳跟踪器及温度监测系统的新型太阳能碟式浓缩器(IJEM-V8-N1-2)
基于双轴太阳跟踪器及温度监测系统的新型太阳能碟式浓缩器(IJEM-V8-N1-2)

I.J. Engineering and Manufacturing, 2018, 1, 16-24

Published Online January 2018 in MECS (https://www.360docs.net/doc/5b9728756.html,)

DOI: 10.5815/ijem.2018.01.02

Available online at https://www.360docs.net/doc/5b9728756.html,/ijem

An Automatic Dual Axis Sun Tracker and Temperature Monitoring System for Novel Solar Dish Concentrator

Krishna Kumar.N a*, Venkat Subramaniam b

a Ph.D Scholar, Department of Electronics, PSG College of Arts & Science, Coimbatore, 641 014, India

b Associate Professor, Department of Electronics,PSG College of Arts & Science, Coimbatore, 641 014, India

Received: 07 May 2017; Accepted: 11 September 2017; Published: 08 January 2018

Abstract

Nonpolluting, renewable energy can be harnessed from the sun using solar thermal concentrator and photovoltaic systems. A novel asymmetric oblique compound conical solar concentrator was designed and constructed with automatic solar tracking system. The experimental study of the developed system was carried out to inspect the efficiency of the designed solar concentrator and automatic azimuth and altitude tracking. In this solar tracking, the RTC (Real Time clock) based active solar tracking method is used to track the sun in order to attain the maximum temperature. A simple microcontroller based control system is used to control this open loop solar tracking system, further the concentrated thermal power was measured using both the K-type temperature sensor and thermometer gun. The temperature obtained at the receiver of solar concentrator is sent to the measurement unit using GSM wireless module available at remote location. The monitoring unit receives the temperature values and recoded them regularly. Besides, the maximum average solar thermal power of the system was observed to be during 10.00 AM to 3.00 PM. This temperature is useful for various heating applications.

Index Terms: RTC, Sun Tracker, Ray Trace, GSM Module, Solar Concentrator, Microcontroller.

? 2018 Published by MECS Publisher. Selection and/or peer review under responsibility of the Research Association of Modern Education and Computer Science.

1.Introduction

Non-renewable energy sources such as fossil fuels are finite and will be running down the timeline in future. Renewable energy sources are clean and least environmental polluting than usual energy sources such as coal, oil, and gas etc. There are different automatic solar tracking systems is used in the different solar concentrators. * Corresponding author. Tel.: +91-9894888862;

E-mail address: nkrishnamsc@https://www.360docs.net/doc/5b9728756.html,

In solar concentrators using tracking a simple timing device is used to adjusting azimuth angle by three times at three fixed position east, south and west from the morning of the day, noon of the day and afternoon of the day. The solar tracking system increases daily collection of radiation and the annual collectible solar radiation by 92% [1]. The PLC based dual axis sun tracking for parabolic solar concentrator was designed and constructed in order to overcome the continuous tracking and manual operations. PLC is used to control the overall tracking mechanism and water reaches only 90 o C inside the receiver tube [2]. Chong and Wong developed a general formula for On-Axis Sun-Tracking System. The tracking accuracy of solar concentrator is also studied. The most common method of azimuth elevation and tilt tracking mechanism are used in the solar tracking in order to orient the concentrator in sun’s position at all the times. Solar tracking method plays a main role to make sure that the solar concentrator can collect maximum solar irradiation. Normally, the photo sensor signal is used as a feedback signal to track the sun at all the time [3]. The design of PLC (Programmable Logic Control) based dual axis solar tracking system uses an open loop control method. Various controlling functions are implemented using software which is stored into PLC’s memory and these functions are used to track the sun and orient the solar concentrator. A maximum temperature of only 93 o C was obtained [4] in spite of enough instrumentation and technology. Abouzied developed programmable logic array based closed loop solar tracking system. It includes PLA (Programmable Logic Array), 8/6 four-phase RSC (Reluctance Stepper Motor), two separate sensing cells and power supply of 220 VDC. Two separate sensing cell outputs are fed to the PLA control circuit in order to determine the subsequent angular position of sun. It was mainly used for stand-alone system in remote areas. The power consumption of this system and as well the cost seems to be high [5]. The output of the LDR (light dependent resistor) sensor was given to closed loop programming method in order to track the sun. The efficiency of the system depends on design of the shadow mask of LDR sensors or photodiode whichever was preferred. The entire solar tracking process and temperature measurements are transmitted to the computer via zigbee wireless module and monitored by the computer. The advantage of the system is low cost and low power. The drawback of using zigbee module for data transmission is the range which is maximum of around 100 meters distance and LDR fails to predict the precise location of the sun especially under cloudy conditions of a day [6]. A PLC based active and passive solar tracking system is used for a large dish solar concentrator system. It included four electro-optical sensors which are used to detect the light intensity. The output of optical sensor was based on the light intensity. When the output meets the requirements of the system, then the system turn into passive solar tracking mode otherwise, it will run in active solar tracking mode. The accuracy of this system depends on the sensor and software coding. The efficiency of a concentrator could therefore be improved when the concentrator and its instrumentation has the good combination of active tracking and passive tracking [7]. A solar tracking system based on computer image processing of a sensor based shadow arrangement when investigated was found to be independent of the geographical place and stage alignment of equipment. This solar tracking system included computer, AVR Microcontroller, DC motor and Photo sensor. The main drawback of this system is portability and cost [8]. Hamed and El-Moghany designed and implemented FLC (Fuzzy Logic Control) based on FPGA for solar tracking mechanism and tested using Matlab/Simulink software tool. This solar tracking system uses two LDRs placed at the east-west direction or north-south direction in order to detect the sun’s position by receiving light intensity. LDR sensor was understood to be more reliable, for this low cost and low power consuming system. But the sensing accuracy is less for cloudy conditions, dust on the sensor and physical damages on it [9]. In PV/T systems, automation is found to be a requirement in order to orient towards the sun. An AT89C52 microcontroller based solar tracking system is used to control the entire automation. This system automation is also dependant on LDR sensor, which is used to detect and provide output based on light intensity on it. The disadvantage of this solar tracking system is that it goes to idle mode when cloudy or under dark conditions [10]. MPPT (Maximum Power Point Tracking) for a PV system under different solar irradiation conditions and temperature is simulated using an artificial intelligent neural network. The effectiveness of this system is better. Maximum power point tracking system requires more power for scanning voltage and orienting the PV panel [11].Considering all these studies on tracking concentrators and understanding the need of a cost effective, low power consuming, portable, and good outcome based system design was on top priority in my work, which is

independent of non-linearity at the component -level for various environmental conditions. Also the RTC included in the system determines the position of the sun at specific times and orients the concentrator subsequently making it a real time system.

2.Mechanical Design of the Solar Dish and Equations

The proposed dish concentrator system was designed using CAD tool (Computer Aided Drawing). The elliptical based entry aperture of the dish is used to receive the maximum radiation on the dish concentrator and this solar radiation converges on the receiver. The aspect ratio of the each mirror used is 1:1 inch. The supporting system of the entire system is low cost, portable and easily assembled. The entry aperture designed has 138.0 cm major axis and 122.0 cm minor axis. Top and bottom view of the dish is shown in figure 1(A) and (B). The major axis of the dish is x and minor axis of the dish is y. c1, c2, and c3 are circumferences of the compound oblique cone dish. The depth of the dish is represented as d. The focal length (f) of the dish is 109.0 cm. The area of an elliptical based entry aperture is calculated using the length of the major axis (half of x) and the length of the minor axis (half of y).

Fig.1. (a) Top View; (b) Front View

The following formula is used to calculate the area of an elliptical based entry aperture,

b a ??=A π (1) The half of the major and minor axis is ‘a’ and ‘b’ respectively. The ‘A’ represents an area of an ellipse. Circumference formula of an ellipse approximated by Ramanujan is,

()()()()[]a b b a b a ++-+=P 333π (2)

Fig.2. Ray Tracing (a) 11.00 am; (b) 12.00 pm; (c) 13.00 pm

‘P’ is the perimeter of an elliptical based entry aperture. The ray trace was done with the help of AutoCAD software tool. Fig. 2(A), (B) and (C) shows the ray trace for different time interval 11.00 am, 12.00 pm, 13.00 pm respectively. The focus will vary within the elliptical receiver. The major axis of the receiver is 22.5 cm and minor axis of the receiver is 6 cm.

The ray trace has been done for a designed dish concentrator model using AutoCAD software tool. For different timing, ray trace has shown in the above figure. According to the ray trace design, the solar tracking concentrator was tested and observations were recorded.

3.Hardware and Software Description of the RTC Based Solar Tracker

A simple stepper motor based mechanical structure is used in the solar tracking system. It has a combination of adjustable tilt angle and azimuth solar tracking system. A small tilt angle can adjust in every month is provide the same focus point. The entire dish concentrator system rotates from east to west to follow the solar azimuth.

The entire system is rotated by the 120 teeth gear wheel arrangement, which is driven by the 16 teeth small gear wheel. The driving gear ‘1’ is connected with stepper motor and it will drive the gear ‘2’. The gear ratio between the drive and driven wheel is 7.5:1.A manual mechanical tilt arrangement is provided in addition to the tracking arrangement for monthly creeping movement of the sun. The driven wheel coupled with a cylindrical pipe and this entire set up is inserted into the polished central axis rod and it allows clear movement of the dish. An azimuth action will be done only by the driven gear.

Fig.3. Mechanical Design

Fig. 3, number 1 is represented driven gear, 2 and 3 are represents driving gear & stepper motor respectively. The vertical rod marked Number 4, is used to adjust the tilt alignment. The cylindrical steel pipe with Number 5 is the base plate holding the concentrator. Number 6 corresponds to solar concentrator & vertical pipe number 7 is a supporting structure. Initially, the complete set up is placed towards the east at the fixed zenith angle and it changes periodically, every month. The tracking system was designed to orient the concentrator towards the sun’s position and it is a regularly required process. It allows the concentrator to receive the maximum incoming solar energy. In this method of tracking accurate stepping movement is obtained based on RTC (Real Time Clock) which drives the software. The timing pulses from RTC form the basis of tracking forming the bottom layer and the overall software is a layer above it.

Fig.4. Entire Tracking System

Fig.5. Temperature Measurement Unit

The device tracking starts from 10.00 AM and this motion is activated at the predefined time interval. The performance of the tracking is increased by changing the different angle and time interval between every an hour. The system starts to follow the sun at 10.00 AM to 3.00 PM. The solar concentrator has programmed to rotate every 2 min at an angle of 7.2o from 10.00 AM to 11.00 AM and every 4 min at an angle of 3.6o from 11.00 AM to 1.00 PM. The system again rotates with 2 min time interval between 1.00 PM to 3.00 PM at an angle of 7.2o. Fig. 4 shows the whole tracking system. The tracking system will orient the concentrator for diverting the solar irradiation to the receiver. The shape of the receiver was elliptical, so it can observe the solar radiation in the best possible way for the proposed concentrator design. The collected thermal energy has

measured using K-type thermocouple sensor and thermometer gun. Fig. 5 is the temperature measurement unit. The temperature values recorded as data is continuously sent to the computer at regular time intervals.

4.Results and Discussion

The operation of the experimental arrangement was verified and temperature data were recorded. The temperature at the receiver point was recorded daily in specified time. K-type and thermometer gun were used to measure the obtained temperature from the concentrator (K-type thermocouple temperature sensor is the combination of chromium and aluminum and with temperature range of -200 to 1350 o C and sensitivity of 0.041mv). The infrared thermometer gun (model-BEETECH-MT4) used to measure the temperature in the range from -50 to 550 o C / -58 o F – 1022 o F.

The infrared thermometer measurement ratio of distance to spot size (D:S) is 12:1. The received temperature data was transmitted using GSM wireless unit from the remote area to monitoring unit. In monitoring area, the computer receives temperature values and maintains record regularly. The temperature value of 342 o C was noted during measurement of temperature using thermometer gun, which is the maximum value recorded. RTC (Real Time Clock) with open loop programming method gives an accurate data for aligning the solar concentrator at the sun’s position. The temperature of the receiver increases until it reaches the maximum temperature up to noon and decreases on sunset. The graphical representation was drawn with recorded values shows the favorable result of phenomenal heating. Fig. 6 and Fig. 7 show the received temperature and ambient temperature recorded at the time of performing the experiment. The mechanical design and programming software were tested and gave appropriate results, as could be observed by the temperature values recorded. The practical experiments performed to examine the efficiency of simple RTC based open loop dual axis solar tracking system resulted in successful implementation of a new technique in tracking method. The received temperature data were sent to GSM module and it is also stored in the computer as data logger.

Fig.6. Received Temperature Variation

Fig.7. Received Ambient Temperature

5.Conclusion

The automated and tested dual axis solar tracking system for innovatively designed model novel solar concentrator showed good performance and outcome. Since RTC (Real Time Clock) was used for solar tracking, it gave an appropriate tracking data in a real time. The accuracy of this solar tracking system is found to be better than the sensor based tracking system. The advantage in RTC based tracking method is its independence to the geographical topography and other environmental conditions. Various programming functions are used in software and so, errors in tracking are drastically reduced. Compared to other solar tracking systems, the RTC based solar tracking system consumes least power. The AOCCC system produces a maximum temperature of 342 o C for normal experimental conditions. The tracking system used for the concentrator is also very portable.

Acknowledgments

The authors wishes to thank the technical support from OMTRONICS LED LIGHTING SOLUTIONS, Coimbatore, TamilNadu and M/s THRIVE TECHNOLOGY, Coimbatore, TamilNadu, India which lead to designing the solar concentrator along with tracking system, perform observations and test the system. References

[1]Yi Ma, Guihua Li and Runsheng Tang.. “Optical performance of vertical axis three azimuth angles

tracked solar panels”. Applied Energy-2011. 88:1784–1791.

[2]Mohammed S. Al-Sou, Essam Abdallah, Ali Akayleh, Salah Abdalla h and Eyad S. Hrayshat. “A parabolic

solar cooker with automatic two axes sun tracking system”. Applied Energy-2010. 87: 463–470.

[3]Keong Chong, Chee-Woon Wong, “General Formula for On-Axis Sun-Tracking System”, Solar

Collectors and Panels, Theory and Applications. October 2010.

[4]Riyad Abu-Malouh, Salah Abdallah and Iyad M. Muslih. “Design, construction and operation of spherical

solar cooker with automatic sun tracking system”. Energy Conversion and Management-2011. 52:615–620.

[5]M. Abouzeid, Use of a reluctance stepper motor for solar tracking based on a programmable logic array

(PLA) controller, Renewable Energy -2001.23. 551–560.

[6]Tsung-Chieh Cheng, Wei-Cheng Hung, and Te-Hua Fang. “Two-Axis Solar Heat Collection Tracker

System for Solar Thermal Applications”. International Journal of Photoenergy-2013. Article ID 803457.

[7]M Xiaoshan Jin, Guoqiang Xu, Rongjiu Zhou, Xiang Luo and Yongkai Quan. “A Sun Tracking System

Design for a Large Dish Solar Concentrator”. International Journal of Clean Coal and Energy-2013. 2: 16-

20.

[8]H. Arbab, B. Jazi and M. Rezagholizadeh. “A computer tracking system of solar dish with based on

picture processing of bar shadow, Renewable Energy-2009.34: 1114–1118.

[9]Basil M. Hamed, Mohammed S. El-Moghany, “Fuzzy Controller Design using FPGA for Sun Tracking in

Solar Array System”, I.J. Intelligent Systems and Applications, 2012, 1, 46-52.

[10]Salihu O. Aliyu, Michael Okwori and Elizabeth N. Onwuka, “A Prototype Automatic Solar Panel

Controller (ASPC) with Night-time Hibernation”, I.J. Intelligent Systems and Applications, 2016, 8, 18-

25.

[11]M.T. Makhloufi, M.S. Khireddine, Y. Abdessemed, A. Boutarfa, “Tracking Power Photovoltaic System

using Artificial Neural Network Control Strategy”, I.J. Intelligent Systems and Applications, 2014, 12, 17-

26.

Authors’ Profiles

Krishna Kumar.N received his B.Sc and M.Sc. degree from the Electronics Department at PSG

College of Arts and Science, Coimbatore, TamilNadu, India (Affiliated to Bharathiyar

University) in 2006 and 2013 respectively. He has pursuing Ph.D in electronics at the same

university from 2013. He has worked as Associate Supervisor from 2006 to 2008 at Larsen &

Toubro, Mysore, Karnataka, Inida in the Department of Energy Meter. He has worked as

Embedded Engineer at Thrive Technology, Coimbatore, TamilNadu, India from 2008 to 2011.

Dr. Venkat Subramaniam received his Master’s degree and Ph.D. degree from the Physics

Department at Bharathiyar University in 1986 and 2011, respectively. He has been Professor

from 1987 to till date in the Department of Electronics at PSG College of Arts and Science,

Coimbatore, Tamil Nadu, India. He has served as chairman, Board of Examiners for

PhD/Mphil and PG at Bharathiar University, Coimbatore and Bharathidasan University,

Trichy respectively. He has served as member, Board of Examiners for Madurai Kamaraj University,Madurai and Periyar University,Salem. He has served as Vidyalaya Management Committee Member (twice), Kendriya Vidyalaya, HRD Ministry, Govt. of India.

How to cite this paper: Krishna Kumar.N, Venkat Subramaniam,"An Automatic Dual Axis Sun Tracker and Temperature Monitoring System for Novel Solar Dish Concentrator", International Journal of Engineering and Manufacturing(IJEM), Vol.8, No.1, pp.16-24, 2018.DOI: 10.5815/ijem.2018.01.02

双轴跟踪

ZXS双轴跟踪支架的介绍与技术参数 紫旭光电ZXS采用西班牙技术,比固定系统增加40%以上的电力输出。紫旭ZXS双轴太阳能跟踪器,平台接收面积最大可达93平方米,拥有252度旋转方位角和60度提升角旋转器。回转轴承和减速电机通过齿轮环驱动垂直轴电动升降机系统驱动水平轴,基于三角公式计算天文位置的创新型混合控制系统,可获得 太阳精确位置。 主要特点 1.先进的定位控制 CP125为ZXS提供最佳的定位控制,向日葵方式跟踪,做到精确定位计算,精确地移动控制及风速的安 全控制。 2.提高能量输出 紫旭ZXS太阳能地面支架追踪系统比固定的太阳能安装系统多了40%的能量输出。 3.良好的适应性 不受天气、季节和地理位置的影响,可以安装于多种户外环境。 4.安全性 使用独立的传动电动机,驱动受控仪,因此不会受到不均匀沉降的影响,同时提供防雷击系统及台风防 止系统。 5.高品质 无论是原材料的选择,还是生产过程,紫旭光电都进行严格的质量管制,以确保系统的结构强度以及使 用寿命达到最优。 技术参数 安装地点户外 追踪系统类型双轴 追踪精度±1o 最大系统面积 15m2-93m2 系统排列按设计图纸 跟踪轴水平和垂直 垂直和水平旋转角垂直轴最大旋转角度252度 水平轴旋转角70度 跟踪器允许的最大组件功率直至12.9KWp(可调接收平台) 地基按地面性质情况设计尺寸的钢筋混泥土 抗风能力风载1:通常状态-14m/s(50km/h) 风载2:安全状态-35m/s(126km/h) 风载3:瞬间最大-66.5m/s(240km/h) 质保年限十年

阳能双轴跟踪系统/太阳能双轴跟踪/双轴太阳能跟踪系统 产品规格:RY-SL-B 产品说明: 系统介绍 目前,国内外太阳能路灯主要采用固定安装方式,其全天的有效日照时间约为5小时,其余日照时间内因太阳光光强不足或阳光入射角小的原因而导致发电量大幅度下降。 常州润源电子科技有限公司RY-SL-B型双轴太阳跟踪系统采用了自主研发设计的阳光跟踪传感器、控制器及传动执行机构,其最大特点是跟踪控制系统的低功耗。 实际测试结果表明,100W的太阳能电池板配上RY-SL-B型双轴太阳能路灯跟踪系统后,发电量至少增加45%,而系统本身的能耗为0.1W,达到了实用化及市场推广应用的目的。 系统组成 RY-SL-B型双轴太阳跟踪系统由阳光跟踪传感器、控制器和传动执行机构三部分组成。 阳光跟踪传感器 在有效光照条件下的全程对阳光高精度测量,并将太阳光方位信号转换成电信号,传送给跟踪控制器。 控制器 跟踪控制器接收太阳光跟踪定位传感器的信号后,驱使传动执行机构运转,使太阳能电池板垂直于太阳光。 传动执行机构 采用独特的机械结构设计,实现水平方向360°、俯仰180°旋转,最大抗风可达10级。

太阳能跟踪器工作原理

太阳能跟踪器的工作原理 一工作原理 “太阳光寻迹传感器”安装在太阳能装置上,根据太阳光的位置,驱动电机,带动机械转动机构,始终跟随太阳位置运动。当太阳偏转一定角度时(一般5--10分钟左右),控制器发出指令,转动机构旋转几秒钟,到达正对太阳位置时时停止,等待下一个太阳偏转角度,一直这样间歇性运动;当阴天或晚上没有太阳出现时停止动作;只要出现太阳它就自动寻找并跟踪到位,全自动运行,无需人工干预,东西向、南北向二维控制,也可单方向控制,使用电源直流12伏,技术指标 1. 跟踪起控角度:1°--10°(不同应用类型) 2. 水平(太阳方位角)运行角度:Ⅰ型0°--360°,Ⅱ型-20°-- +200° 3. 垂直(太阳高度角)调整角度:10°--120°(太阳光与地面夹角) 4. 传动方式:丝杠、涡轮蜗杆、齿轮 5. 承载重量:10Kg-- 500Kg 6. 系统重量:2 Kg--500Kg 7. 电机功率:0.4W--15W 8. 电源电压 DC6V--24V 9. 运行环境温度: -40--85℃ 10.运行时间≥10万小时 11.室外全天候条件运行现有的太阳能自动跟踪控制器无外乎两种:一是使用一只光敏传感器与施密特触发器或单稳态触发器,构成光控施密特触发器或光控单稳态触发器来控制电机的停、转;二是使用两只光敏传感器与两只比较器分别构成两个光控比较器控制电机的正反转。由于一年四季、早晚和中午环境光和阳光的强弱变化范围都很大,所以上述两种控制器很难使大阳能接收装置四季全天候跟踪太阳。这里所介绍的控制电路也包括两个电压比较器,但设在其输人端的光敏传感器则分别由两只光敏电阻串联交叉组合而成。每一组两只光敏电阻中的一只为比

太阳能自动跟踪系统方案

摘要 人类正面临着石油和煤炭等矿物燃料枯竭的严重威胁,太阳能作为一种新型能源具有储量无限、普遍存在、利用清洁、使用经济等优点,但是太阳能又存在着低密度、间歇性、空间分布不断变化的缺点,这就使目前的一系列太阳能设备对太阳能的利用率不高。太阳光线自动跟踪装置解决了太阳能利用率不高的问题。本文对太阳能跟踪系统进行了机械设计和自动跟踪系统控制部分设计。 第一,机械部分设计: 机械结构主要包括底座、主轴、齿轮和齿圈等。当太阳光线发生偏离时,控制部分发出控制信号驱动步进电机1带动小齿轮1转动,小齿轮带动大齿轮和主轴转动,实现水平方向跟踪;同时控制信号驱动步进电机2带动小齿轮2,小齿轮2带动齿圈和太阳能板实现垂直方向转动,通过步进电机1、步进电机2的共同工作实现对太阳的跟踪。 第二,控制部分设计: 主要包括传感器部分、信号转换电路、单片机系统和电机驱动电路等。系统采用光电检测追踪模式实现对太阳的跟踪。传感器采用光敏电阻,将两个完全相同的光敏电阻分别放置于一块电池板东西方向边沿处下方。当两个光敏电阻接收到的光强度不相同时,通过运放比较电路将信号送给单片机,驱动步进电机正反转,实现电池板对太阳的跟踪。 关键词太阳能;跟踪;光敏电阻;单片机;步进电机

Abstract Human being is seriously threatened by exhausting mineral fuel, such as coal and fossil oil. As a kind of new type of energy sources, solar energy has the advantages of unlimited reserves, existing everywhere,using clean and economical .But it also has disadvantages ,such as low density,intermission,change of space distributing and so on.These make that the current series of solar energy equipment for the utilization of solar energy is not high. In order to keep the energy exchange part to plumb up the solar beam,it must track the movement of solar.In this paper, the solar tracking system of the mechanical part and control system part are designed. First,the mechanical part is designed. Mechanical structure mainly includes the main spindle, stepping motors, gears and gear ring, and so on. When the sun's rayshas a deviation, small gear arerotated by stepper motor according to the control signal from MCU. And the large gear and main spindle is rotated by small gear in order to track to achieve the level direction.At the same time, another small gear is rotated by another stepper motor according to the control signal.And the large gear and the solar panels are rotated by the small gear in order to track to achieve the vertical direction. Solar is tracked by the two stepper motors together. Second, control system part is designed. Control system mainly includesthe sensors part, stepper motor, MCU system and the corresponding external circuit, and so on. Photoelectric detection systemisused to track solar. Sensors use photosensitive resistance. The two same photosensitive resistances were placed in east and west direction of the bottom edge .When the two photosensitive resistances receiveddifferent light at the same time, the signal from comparison circuit is sent to MCU in order to rotate stepping motors. Keywords Solar energyTrackingPhotosensitive resistance SCMSteppingmotor

太阳能路灯双轴跟踪系统设计

太阳能路灯双轴跟踪系统设计 摘要:针对当前太阳能路灯转换效率低的弊端,介绍了一种太阳能路灯双轴跟踪系统,通过实时检测光强的变化驱动执行机构,保证太阳能电池板始终垂直于太阳光线,从而提高太阳能利用效率。实验表明,太阳能电池板在双轴跟踪情况下,发电量要比最佳角度固定安装提高34%。 关键词: AVR单片机;太阳能路灯;双轴跟踪;光伏发电;蓝牙 随着科技日新月异的发展,太阳能产品层出不穷,太阳能路灯应运而生并得以飞速发展。太阳能路灯的供电方式主要有两种:一种是太阳能市电互补方式,另外一种是纯太阳能供电方式。前者除了需要挖沟渠,铺设电缆等大量的繁琐基础工程,还要长期不断地对线路和其他配置进行维护和更新,成本较高。但因其以市电作为储备能源,所以对太阳能发电量要求不高。后者不需要铺设电缆,无储备能源,成本低。为了使路灯正常工作,需要保证太阳能电池板的功率足够高,以产生充足的电量。而由于发电效率不高的问题,有时候会出现蓄电池电量低,无充足电量供予路灯照明的现象,其可靠性大大不如市电互补方式。为了提高其工作可靠性,本文提出一种太阳能路灯双轴跟踪系统。此系统通过在东西、南北两个方向实时跟踪太阳,达到提高太阳能利用效率和增加发电量的目的,以提高纯太阳能式供电的可靠性。 1 系统概述 太阳能路灯双轴跟踪系统由控制系统、太阳能充放电控制器、12 V铅酸蓄电池、电机、太阳能电池板、跟踪支架以及路灯等组成。其中控制系统主要包括供电电路、单片机及外围电路、光电检测电路、掉电检测电路、位置反馈电路、蓝牙无线传输电路、电机驱动电路等。太阳能双轴跟踪装置的原理框图。 核心的控制单元采用了ATMEL公司的ATmage16,ATmage16拥有16 KB的系统内可编Flash,512 B EEPROM,1 KB SRAM,32个通用I/O口,8路10位具有可选差分输入级可编程增益的ADC,3个具有比较模式的灵活的定时器/计数器和具有片内振荡器的可编程看门狗定时器,功能齐全且强大。 当太阳从东方升起且达到一定光照强度时,系统开始识别太阳的方位,并调整相应的角度,开始进行一天的跟踪。傍晚,当太阳光线弱到一定程度时,停止跟踪。为了避免晚上因为其他灯光的影响导致系统电机的误动作,在停止跟踪后,系统将休眠10个小时,此期间,光电检测模块停止工作,电机不动作。直到10小时过后,单片机将驱动电机回到最东边,光电检测模块也重新开始检测太阳光线,开始新的一天的工作。太阳能充放电控制器可以有效地控制蓄电池的充放电,防止蓄电池因过充或过放等不正常使用而降低寿命。本系统以经济、节能、实用为核心设计思想,除了能够在东西、南北两个方向上同时跟踪太阳,还能实现以下四个功能: (1)位置反馈功能。使系统能够辨别自己所处的跟踪方位。 (2)蓝牙通信功能。维修人员可以通过手机客户端实现双轴跟踪系统的控制、参数设定和系统的状态检测。 (3)掉电检测功能。使系统在检测到蓄电池低电量时停止跟踪,以防止蓄电池的过放。系统实时检测蓄电池电量,当蓄电池电量不足时,控制模块将驱动电机,使太阳能电池板置于最佳安装角度,并停止跟踪。蓄电池并不会因此停止对控制系统的供电。 (4)抗风性设计。当遇到狂风或是暴风雨天气时,控制系统将驱动电机,将太阳能电池板放平,使之所受外力最小。 2 机械结构

太阳能自动跟踪系统的设计

太阳能自动跟踪系统的设计 1引言 开发新能源和可再生资源是全世界面临的共同课题,在新能源中,太阳能发电已成为全球发展最快的技术。太阳能作为一种清洁无污染的能源,开发前景十分广阔。然而由于太阳存在着间隙性,光照强度随着时间不断变化等问题,这对太阳能的收集和利用装置提出了更高的要求(见图1)。目前很多太阳能电池板阵列基本都是固定的,不能充分利用太阳能资源,发电效率低下。据测试,在太阳能电池板阵列中,相同条件下采用自动跟踪系统发电设备要比固定发电设备的发电量提高35%左右。 所谓太阳能跟踪系统是能让太阳能电池板随时正对太阳,让太阳光的光线随时垂直照射太阳能电池板的动力装置,能显著提高太阳能光伏组件的发电效率。目前市场上所使用的跟踪系统按照驱动装置分为单轴太阳能自动跟踪系统和双轴太阳能自动跟踪系统。所谓单轴是指仅可以水平方向跟踪太阳,在高度上根据地理和季节的变化人为的进行调节固定,这样不仅增加了工作量,而且跟踪精度也不够高。双轴跟踪可以在水平方位和高度两个方向跟踪太阳轨迹,显然双轴跟踪优于单轴跟踪。 图1 太阳能的收集装置现场 从控制手段上系统可分为传感器跟踪和视日运动轨迹跟踪(程序跟踪)。传感器跟踪是利用光电传感器检测太阳光线是否偏离电池板法线,当太阳光线偏离电池板法线时,传感器发出偏差信号,经放大运算后控制执行机构,使跟踪装置从新对准太阳。这种跟踪装置,灵敏度高,但是遇到长时间乌云遮日则会影响运行。视日运动轨迹跟踪,是根据太阳的实际运行轨迹,按照预定的程序调整跟踪装置。这种跟踪方式能够全天候实时跟踪,其精度不是很高,但是符合运行情况,应用较广泛。 从主控单元类型上可以分为PLC控制和单片机控制。单片机控制程序在出厂时由专业人员编写开发,一般设备厂家不易再次进行开发和参数设定。而学习使用PLC比较容易,通过PLC厂家技术人员的培训,设备使用厂家的技术人员可以很方便的学会简单的调试和编写,并且PLC能够提供多种通讯接口,通讯组网也比较方便简单。

光伏双轴跟踪装置

光伏双轴跟踪装置

说明书摘要 一种光伏双轴跟踪装置,主要内容为:水平电机固定安装在水平蜗轮蜗杆减速器上,而水平蜗轮蜗杆减速器固定安装在水平壳体上,水平蜗轮蜗杆减速器输出轴通过水平联轴器与水平小齿轮轴连接,水平大齿轮与水平小齿轮啮合带动水平大齿轮轴的转动,来调整太阳能电池板在经度方向上的跟踪;竖直电机固定安装在竖直蜗轮蜗杆减速器上,而竖直蜗轮蜗杆减速器固定安装在竖直壳体上,竖直蜗轮蜗杆减速器输出轴通过竖直联轴器与竖直小齿轮轴连接,竖直大齿轮与竖直小齿轮啮合带动竖直轴的转动,来调整太阳能电池板在纬度方向上的跟踪。本装置可在经度和纬度方向上进行调整,使其与太阳光线时刻保持垂直,提高了光伏发电装置的发电能力。

摘要附图1234567891011 12 13 14 15 16 17 18 19 20 21 22

权利要求书 1.一种光伏双轴跟踪机构,其特征在于,该系统包括水平电机(10)固定安装在水平蜗轮蜗杆减速器(9)上,而水平蜗轮蜗杆减速器(9)固定安装在水平下壳体(11)上,水平蜗轮蜗杆减速器(9)输出轴通过水平联轴器(8)与水平小齿轮轴(3)连接,水平大齿轮(5)与水平小齿轮(6)啮合带动水平大齿轮轴(2)的转动,水平大齿轮轴(2)、水平小齿轮轴(3)采用水平轴承(4)支撑,来调整太阳能电池板(1)在经度方向上的跟踪;竖直电机(13)固定安装在竖直蜗轮蜗杆减速器(14)上,而竖直蜗轮蜗杆减速器(14)固定安装在竖直壳体(19)上,竖直蜗轮蜗杆减速器(14)输出轴通过竖直联轴器(15)与竖直小齿轮轴(16)连接,竖直大齿轮(18)与竖直小齿轮(17)啮合带动竖直轴(12)的转动,竖直轴(12)、竖直小齿轮轴(17)采用竖直轴承(20)支撑,来调整太阳能电池板(1)在纬度方向上的跟踪。 2.如权利要求1所述的一种光伏双轴跟踪机构,其特征在于采用水平涡轮蜗杆减速器(9)带动水平齿轮传动副(5,6)实现水平方向高的传动比,竖直涡轮蜗杆减速器(14)带动竖直齿轮传动副(17,18)实现竖直方向高的传动比。 3.如权利要求1所述的一种光伏双轴跟踪机构,其特征在于竖直轴(12)采用三对竖直轴承(,20)支撑,水平大齿轮轴(2)采用三对水平轴承(4)支撑。

太阳能自动跟踪系统的设计

太阳能自动跟踪系统的设计 解决方案: 跟踪系统驱动器接口电路 步进电机驱动电路 限位信号采集电路 太阳能是已知的最原始的能源,它干净、可再生、丰富,而且分布范围广,具有非常广阔的利用前景。但太阳能利用效率低,这一问题一直影响和阻碍着太阳能技术的普及,如何提高太阳能利用装置的效率,始终是人们关心的话题,太阳能自动跟踪系统的设计为解决这一问题提供了新途径,从而大大提高了太阳能的利用效率。 跟踪太阳的方法可概括为两种方式:光电跟踪和根据视日运动轨迹跟踪。光电跟踪是由光电传感器件根据入射光线的强弱变化产生反馈信号到计算机,计算机运行程序调整采光板的角度实现对太阳的跟踪。光电跟踪的优点是灵敏度高,结构设计较为方便;缺点是受天气的影响很大,如果在稍长时间段里出现乌云遮住太阳的情况,会导致跟踪装置无法跟踪太阳,甚至引起执行机构的误动作。 而视日运动轨迹跟踪的优点是能够全天候实时跟踪,所以本设计采用视日运动轨迹跟踪方法和双轴跟踪的办法,利用步进电机双轴驱动,通过对跟踪机构进行水平、俯仰两个自由度的控制,实现对太阳的全天候跟踪。该系统适用于各种需要跟踪太阳的装置。该文主要从硬件和软件方面分析太阳自动跟踪系统的设计与实现。 系统总体设计 本文介绍的是一种基于单片机控制的双轴太阳自动跟踪系统,系统主要由平面镜反光装置、调整执行机构、控制电路、方位限位电路等部分组成。跟踪系统电路控制结构框图如图1所示,系统机械结构示意图如图2所示。

任意时刻太阳的位置可以用太阳视位置精确表示。太阳视位置用太阳高度角和太阳方位角两个角度作为坐标表示。太阳高度角指从太阳中心直射到当地的光线与当地水平面的夹角。太阳方位角即太阳所在的方位,指太阳光线在地平面上的投影与当地子午线的夹角,可近似地看作是竖立在地面上的直线在阳光下的阴影与正南方的夹角。系统采用水平方位步进电机和俯仰方向步进电机来追踪太阳的方位角和高度角,从而可以实时精确追踪太阳的位置。上位机负责任意时刻太阳高度角和方位角的计算,并运用软件计算出当前状况下俯仰与水平方向的步进电动机运行的步数,将数据送给跟踪系统驱动器,单片机接收上位机送来的数据,驱动步进电机的运行。系统具有实现复位、水平方位的调整,俯仰方向的调整,太阳的跟踪及手动校准等功能。 硬件电路设计 1跟踪系统驱动器接口电路

双轴跟踪说明书

太阳双轴跟踪说明书 此控制板板为太阳能双轴跟踪系统,控制两个直流电机的旋转,使电池板对准太阳。系统为12V系统,所以需要的是两个可以正反转的12V直流电机。实际连接时把仰俯的电机连接到上边,把旋转的电机连接到下边。 一、整体连接图如下:见图1 图1 二、左上角KEY1、KEY2、KEY3、KEY4为手动控制两个电机的正反转,见图2 KEY5无定义。 图2

三、下边红色拨码开关为跟踪的时间间隔,图3 1:为1小时间隔跟踪一次。 2:为2小时间隔跟踪一次。 3:为3小时间隔跟踪一次。 4:为1分钟间隔跟踪一次(只能作为测试用) 都不拨上的话,默认为1小时间隔跟踪一次。不可以组合拨码。组合默认为1小时。 图3 四、无线控制电机正反转。AB键控制一个电机的正反转,CD键控制另一个电机的正反转。图4为无线接收模块,安装在控制板上,有元器件的面朝外。 图4 图5为无线发射模块 图5

接收模块的安装,元器件朝外 六、LED显示定义,图6 第一个红色LED:快闪表示白天工作,慢闪表示进入黑夜状态,等待第二天继续工作。 第二个绿灯LED:亮表示进入黑夜状态,灭表示白天状态。 第三个绿色LED:亮表示南北电机需要旋转到太阳位置,灭表示南北方向太阳已经到达最佳位置。 第四个绿色LED:亮表示东西电机需要旋转到太阳位置,灭表示东西方向太阳已经到达最佳位置。 图6 七、左下角为传感器接入端口,图7 +PV-:表示需要把电池板的正负极接入,来判断黑夜和白天,如果不接入判断为黑夜状态。+WIN-:表示风速测试接口。 +GM-:表示光敏测试接口。 +X-:表示未知测试接口,用户可自己定义。 后三种都没有接入,如果需要的话,联系本人。 图7 八、数码管的显示,图8 数码管显示的是剩余时间,从60分钟到0分钟。如果测试的话每一分钟跟踪一次;如果一小时跟踪的话,则到0跟踪一次;2小时跟踪一次的话,需要两次60到0跟踪一次;同理三小时需要三次60到0的显示状态。 图8 九、RJ45网线接口为传感器的接线口,已经做好,连接上即可,自己做也可。单需要把传感器和板子的接口线顺序反过来。 图9 十、KEY6:复位键。 十一、电机连接,图10

太阳能自动跟踪装置设计报告

吉林铁道职业技术学院 电子制作职业技能大赛(论文) 题目太阳能自动跟踪装置设计

参赛人姓名王志会张卫国朱峰所在系电气工程系 指导教师陈冬鹤 完成时间2013年5月26日

吉林铁道电子制作职业技能大赛设计报告 题目:太阳能自动跟踪装置设计 主要内容、基本要求等: ◆主要内容:加强大学生动手操作能力,促进集体荣誉感。 ◆基本要求:1,利用单片机控制实现太阳能电池板随着太阳(光源)的位置变 化而调整自身相应的姿态,以达到太阳光能的最佳利用。 2,实现一定的姿态控制精度。 3,以低成本、低功耗完成设计并实现目标电路的组装。 ◆主要参考资料:电路基础、电工技术、电子手工焊接、单片机原理及应用、传感器原理与应用。 完成日期:2013年5月26日 指导教师:陈冬鹤 实验组组长:王志会 2013年 6 月 5 日

太阳能自动跟踪装置 研制目的 人类正面临着石油和煤炭等矿物燃料枯竭的严重威胁,太阳能作为一种新型能源具有储量无限、普遍存在、利用清洁、使用经济等优点,太阳能光伏发电是改善生态环境、提高人类生存质量的绿色能源之一,但由于传统太阳能板方向固定,受光时间有限。因此研制可随光移动的太阳能跟随系统。

一自动跟踪系统整体设计 1.1 系统总体结构 本系统包括光电转换器、步进电机、89C5系列单片机以及相应的外围电路等。太阳能电池板可以360度自由旋转。控制机构将分别对水平方向进行调整。单片机加电复位后,首先由TRCT5000构成的定位系统对整个系统进行预置定位,然后单片机将对两光敏电阻采样进来的两个电平进行比较,电平有高电平和低电平两种,若两电平相等则电池板停止转动,若不等单片机将对两电平进行比较判定,驱动步进电机让太阳能板与之相对应转动,实现电池板对太阳的跟踪。图1-1所示: 1.2 光电转换器

基于52单片机 太阳能自动跟踪系统设计.

摘要 太阳能是已知的最原始的能源,它干净、可再生、丰富,而且分布范围广,具有非常广阔的利用前景。但太阳能利用效率低,这一问题一直影响和阻碍着太阳能技术的普及。太阳能自动跟踪系统的设计为解决这一问题提供了新途径,从而大大提高了太阳能的利用效率。本设计采用光电跟踪的方法,利用步进电机双轴驱动,由光电传感器根据入射光线的强弱变化产生反馈信号到微机处理器。微机处理器运行程序,通过对跟踪机构进行水平、俯仰两个自由度的控制,调整太阳能电池板的角度实现对太阳的跟踪。采用单片机来实现的太阳能追踪系统能有效提高太阳板的光电转化效率,并具有较广泛的应用前景。 关键词:太阳能;跟踪;光敏二极管;单片机;步进电机

Abstract Solar energy is known as the most primitive energy, and it is clean, renewable, rich, and wide distribution and has wide prospects of use. But the solar energy utilization efficiency is low; the problem has been influencing and hindering the popularity of solar energy technology. Solar energy to be automatic tracking system designed to solve the problem provide the new way,which greatly improve the efficiency in the use of solar energy. This design uses the photoelectric tracking method, and use the stepping motor driver, by photoelectric sensor incident, then the strength of the light’s changes produce feedback signals to the computer processor, and computer processor will run the program, through the horizontal tracking mechanism and pitch two degrees of freedom control to adjust the angle of solar panels to achieve the tracking of the sun. Solar tracking system by single chip microcomputer to achieve can improve the efficiency of conversion of photoelectric solar panels, and has a broad prospect of application. Key words: Solar energy;Tracking;Photosensitive diode ;SCM;Stepping motor

太阳能自动跟踪系统

1.绪论 1.1课题背景 由于现今高科技环境下,能源是促进经济发达和社会进步的原动力。从工业革命以来,人类所使用的主要能源为石化能源,然而其蕴藏量有限,大量使用造成全球环境生态和气候产生莫大的变化,同时大气中的温室气体浓度大幅提高,造成气温逐渐升高、海平面上升等温室效应的现象,威胁了我们生存的环境。因此在环保意识抬头的今日,积极开发低污染及低危险性能源乃为迫切的需要。 虽然在可预见的将来,煤炭,石油,天然气等矿物燃料仍将在世界能源结构中占有相当的比重,但是人们对核能及太阳能,风能,地热能,水力能,生物能等可持续能源资源的利用日益重视,在整个能源消耗中所占的比例正在显著的提高。据统计,20世纪90年代,全球煤炭和石油的发电量每年增长1%,而太阳能发电每年增长达20%,风力发电的年增长率更是高达26%。预计在未来,可持续能源将与矿物燃料相抗衡,从而结束矿物燃料一统天下的局面。 相对日益枯竭的化石能源来说,太阳能似乎是未来社会能源的希望所在。1.1.1我国太阳能资源 我国幅员广大,有着十分丰富的太阳能资源。我国的国土跨度从南到北、自西至东,距离都在5000km以上,总面积达960×10 km2,占世界总面积的7%,居世界第三位。据估算,我国陆地表面每年接收的太阳辐射能约为50×10kJ,全国各地太阳年辐射总量达335~837KJ/cm2A,中值为586KJ/cm2A。从全国太阳年辐射总量的分布来看,西藏、青海、新疆、内蒙古南部、山西、陕西北部、河北、山东、辽宁、吉林西部、云南中部和西南部、广东东南部、福建东南部、海南岛东部和西部以及台湾省的西南部等广大地区的太阳辐射总量很大。尤其是青藏高原地区最大,那里平均海拔高度在4000m以上,大气层薄而清洁,透明度好,纬度低,日照时间长。例如,被人们称为“日光城”的拉萨市,1961年至1970年的平均值,年平均日照时间为3005.7h,相对日照为68%,年平均晴天为108.5天,阴天为98.8天,年平均云量为4.8,太阳总辐射为816KJ/cm2A,比全国其它省区和同纬度的地区都高。全国以四川和贵州两省的太阳年辐射总量最小,其中尤以四川盆地为最,那里雨多、雾多,晴天较少。例如素有“雾都”之称的成

太阳能自动跟踪机械装置

太阳能自动跟踪机械装置 11 310 9A—A4 15 8 2147 16AA 513 171612 1118 太阳能自动跟踪装置原理图 1-支座;2-支柱;3-电池板支架;4-销轴;5-减速箱体;6、15-主轴;7-丝杆;8-横支架;9、18-电机;10-减速器;11-铰链;12、13-齿轮;14-连接轴;16-蜗轮;17-蜗杆1(东西方向跟踪 在减速箱体5内安装由电机18、齿轮12、13、蜗轮16、蜗杆17构成的传动机构。齿轮13固定在连接轴14中部,连接轴通过轴承安装在减速箱体上,蜗轮16固定在主轴6的上端,主轴通过轴承安装在减速箱体上,主轴的下端固定在支座1上,支柱2的下端固定在减速箱体上,支柱2的上端通过销轴4与电池板支架连接。电机18通过齿轮12、13带动蜗杆17转动,并带动减速箱体、电池板支架转动,完成东西方向的跟踪。 2(南北方向跟踪

支柱2上设置一个横支架8,横支架8端部铰接一个减速器10,减速器中设有蜗杆(图中未画出)与电机9相连,蜗杆与设在减速器中的蜗轮啮合,蜗轮中心设有螺孔与丝杆7连接配合,丝杆7的一端通过铰链11与电池板支架连接。电机9通过蜗轮蜗杆、丝杆螺孔机构,带动电池板支架转动,完成南北方向的跟踪。 俯仰跟踪控制。动力源电机1通过联轴器7带动蜗杆8与蜗轮9啮合运动,蜗轮9与齿轮10同轴,经过齿轮10与11的啮合运动,带动与齿轮11同轴的支架12转动,从而实现与支架12固接的硅光电池板13达到仰俯运动跟踪的目的。周转跟踪控制。动力源电机6通过联轴器5带动蜗杆4与蜗轮3啮合运转,从而带动与蜗轮3同轴固联的上箱2实现周转运动,因仰俯控制的传动机构都装在上箱2内,从而达到硅光电池板周转运动跟踪的目的。 两轴分别由两个电机控制,图a表示电机1输出轴连接固定在转台上的减速器1输入轴,减速器1输出轴连接小齿轮,大齿轮固定,当电机转动时驱动小齿轮绕

太阳能电池板双轴自动跟踪伺服控制系统的设计

题目:光伏发电太阳能电池板双轴伺服控制系统研究 一、题目说明 1、双轴跟踪的基本原理 双轴跟踪又可以分为两种方式:极轴式全跟踪和高度----方位角式全跟踪。极轴式全跟踪原理如图1.1所示,太阳能设备的能量转换部分的一轴指向地球北极,即与地球自转轴相平行,故称为极轴;另一轴与极轴垂直,称为赤纬轴。工作时太阳能设备的能量转换部分所在平面绕极轴运转,其转速的设定与地球自转角速度大小相同方向相反用以跟踪太阳方位角:反射镜围绕赤纬轴作俯仰转动是为了适应太阳高度角的变化,通常根据季节的变化定期调整。 图1.1 极轴式跟踪 高度角---方位角式太阳跟踪方法又称为地平坐标系双轴跟踪,其原理如图1.2所示。太 图1.2 高度---方位角式全跟踪

阳能设备的能量转换部分的方位轴垂直于地平面,另一根轴与方位轴垂直,称为俯仰轴。工作时太阳能设备的能量转换部分根据太阳的视日运动绕方位轴转动改变方位角,绕俯仰轴作俯仰运动改变太阳能设备的能量转换部分的倾斜角,从而使能量转换部分所在平面的主光轴始终与太阳光线平行。这种跟踪系统的特点是跟踪精度高,而且太阳能设备的能量转换部分的重量保持在垂直轴所在的平面内,支承结构的设计比较容易。 2、光伏发电系统光电板自动跟踪系统的原理 太阳电池方阵的发电量与阳光入射角有关,光线与太阳电池方阵平面垂直时发电量最大,如果改变入射角,发电量将明显下降。其基本原理与结构为:由2台电动机和减速机分别构成方位角转动机构和高度角转动机构,光电传感器与太阳能电池板方阵平面垂直安装。随着光线方向的细微改变,传感器失衡,引起系统输出信号产生偏差,达到一定幅度时,方向开关电路启动,执行机构开始进行纠正,使光电传感器重新达到平衡,即太阳能电池板方阵平面与光线构成90度角而停止转动,并完成一次调整周期。如此不断地调整,时刻沿着太阳的运行轨迹追随太阳,构成一个闭路负反馈系统,实现了跟踪功能。该系统不需设定基准位置,跟踪器永远不会迷失方向。系统还设有防杂光干扰及夜间停止跟踪电路,并附有手动控制开关,以方便调试。光电板跟踪系统框图如图1.3所示。 图1.3 光电板自动跟踪系统框图 3、太阳高度角和方位角 1) Coper方程 太阳光线与地球赤道面的交角就是太阳的赤纬角,以 表示。在一年中,太阳赤纬每天都在变化,但不超过士23°27′的范围。夏天最大变化到夏至日的+23°27′;冬季最小变化到冬至日的-23°27′.太阳赤纬随季节变化,按照Coper方程, 计算得:

太阳能自动跟踪装置控制系统设计

本科生毕业论文 题目太阳能自动跟踪装置控制系统设计 系别机械交通学院 班级机制 122 姓名李鹏万 学号 123731214 答辩时间 2016年5月 新疆农业大学机械交通学院

目录 摘要:太阳能作为一种新型清洁能源,受到了世界各国的广泛重视。现阶段影响太阳能普及的主要原因是太阳能电池的成木较高而光电转化效率却较低。因此,如何提高太阳能利用效率是太阳能行业发展的关键问题。在国内,大多数太阳能电池阵列都是固定安装的,无法保证太阳光实时垂直照射,导致太阳能资源不能得到充分利用。自动太阳跟踪控制系统在跟踪太阳旋转的情况下可接收到更多的太阳辐射能量,从而提高太阳能电池板的输出功率,该技术在各种太阳跟踪装置中可以广泛应用。 0 1 设计研究背景及意义 (2) 2 主要研究内容 (2) 2.1 系统的设计目标 (2) 2.2 设计的主要内容 (2) 3 系统的总体设计 (3) 3.1 太阳自动跟踪方式的确定 (3) 3.2 本设计的设计思想 (3) 4 太阳能充电控制器的设计 (4) 4.1 太阳能电池的选型 (4) 4.2 蓄电池的选型 (6) 4.2.1 铅酸蓄电池基本概念 (6) 4.2.2 本系统蓄电池的选型 (7) 4.3 太阳能充电控制器的设计 (8) 4.3.1 UC3906芯片的介绍 (8) 4.3.2 BUCK电路的设计 (8) 4.4 充电控制器外围电路设计 (10) 5 跟踪系统传感器检测装置的设计 (12) 5.1 阴天检测装置的设计 (12) 5.2 白天黑夜检测装置 (14) 5.3 太阳位置传感器的介绍 (14) 5.3.1 传感器检测部分的设计 (14) 5.3.2 光敏二极管的介绍 (16) 5.3.3 LM324芯片的介绍 (16) 6 视日运动轨迹模块设计 (17) 6.1 太阳赤纬角的计算 (17) 6.2 太阳高度角的计算 (17) 6.3 太阳方位角的计算 (18) 6.4 日出日落时间计算 (18) 7 执行器件的选型 (18) 7.1 步进电机的选型 (18) 7.2 步进电机驱动器的选型 (19) 7.3 执行器件的连接方式 (20) 8 控制系统的设计 (21) 8.1 单片机电源模块的设计 (22) 8.2 驱动器电源模块的设计 (22)

自动跟踪太阳智能型太阳能系统设计

图书分类号: 密级: 摘要 人类正面临着石油和煤炭等矿物燃料枯竭的严重威胁,太阳能作为一种新型能源具有储量无限、普遍存在、利用清洁、使用经济等优点,但是太阳能又存在着低密度、间歇性、空间分布不断变化的缺点,这就使目前的一系列太阳能设备对太阳能的利用率不高。太阳光线自动跟踪装置解决了太阳能利用率不高的问题。本文对太阳能跟踪系统进行了机械设计和自动跟踪系统控制部分设计。 第一,机械部分设计: 机械结构主要包括底座、主轴、齿轮和齿圈等。当太阳光线发生偏离时,控制部分发出控制信号驱动步进电机1带动小齿轮1转动,小齿轮带动大齿轮和主轴转动,实现水平方向跟踪;同时控制信号驱动步进电机2带动小齿轮2,小齿轮2带动齿圈和太阳能板实现垂直方向转动,通过步进电机1、步进电机2的共同工作实现对太阳的跟踪。 第二,控制部分设计: 主要包括传感器部分、信号转换电路、单片机系统和电机驱动电路等。系统采用光电检测追踪模式实现对太阳的跟踪。传感器采用光敏电阻,将两个完全相同的光敏电阻分别放置于一块电池板东西方向边沿处下方。当两个光敏电阻接收到的光强度不相同时,通过运放比较电路将信号送给单片机,驱动步进电机正反转,实现电池板对太阳的跟踪。 关键词太阳能;跟踪;光敏电阻;单片机;步进电机

Abstract Human being is seriously threatened by exhausting mineral fuel, such as coal and fossil oil. As a kind of new type of energy sources, solar energy has the advantages of unlimited reserves, existing everywhere,using clean and economical .But it also has disadvantages ,such as low density,intermission,change of space distributing and so on.These make that the current series of solar energy equipment for the utilization of solar energy is not high. In order to keep the energy exchange part to plumb up the solar beam,it must track the movement of solar.In this paper, the solar tracking system of the mechanical part and control system part are designed. First, the mechanical part is designed. Mechanical structure mainly includes the main spindle, stepping motors, gears and gear ring, and so on. When the sun's rays has a deviation, small gear are rotated by stepper motor according to the control signal from MCU. And the large gear and main spindle is rotated by small gear in order to track to achieve the level direction.At the same time, another small gear is rotated by another stepper motor according to the control signal.And the large gear and the solar panels are rotated by the small gear in order to track to achieve the vertical direction. Solar is tracked by the two stepper motors together. Second, control system part is designed. Control system mainly includes the sensors part, stepper motor, MCU system and the corresponding external circuit, and so on. Photoelectric detection system is used to track solar. Sensors use photosensitive resistance. The two same photosensitive resistances were placed in east and west direction of the bottom edge .When the two photosensitive resistances received different light at the same time, the signal from comparison circuit is sent to MCU in order to rotate stepping motors. Keywords Solar energy Tracking Photosensitive resistance SCM Stepping motor

基于单片机的太阳能电池自动跟踪系统的设计-图文(精)

第24卷第3期 V ol 124 N o 13师学院学报(自然科学版Journal of Chang Chun T eachers C ollege (Natural Science 2005年8月Aug 2005 基于单片机的太阳能电池自动跟踪系统的设计 薛建国 (学院电子信息工程系,351100 [摘要]本系统以单片机为核心,构建了由光电二极管检测和比较,方位角和高度角双轴机械跟踪 定位系统组成的自动控制装置,设计出一套自动使太阳能电池板保持与太垂直的自动跟踪系统。 在晴天检测时能自动跟踪太阳并实时回存正确数据,消除因季节变化而产生的积累误差,在阴天时能 自动引用晴天时的位置,控制精度高,具有广泛的应用潜力。实现了追踪太阳的效果,达到提高发电 效率的目的。 [关键词]太阳跟踪;光电检测;自动定位;单片机;设计 [中图分类号]T N710 [文献标识码]A [文章编号]1008-178X (200 [收稿日期]2005-06-05 [作者简介]薛建国(1965-,男,人,省学院电子信息工程系高级讲师,从事多媒体、电子技术、单片机 研究。

太阳能作为一种清洁无污染的能源,发展前景非常广阔,太阳能发电已成为全球发展速度最快的技术。然而它也存在着间歇性、光照方向和强度随时间不断变化的问题,这就对太阳能的收集和利用提出了更高的要求。目前很多太阳能电池板阵列基本上都是固定的,没有充分利用太阳能资源,发电效率低下。据实验,在太阳能光发电中,相同条件下,采用自动跟踪发电设备要比固定发电设备的发电量提高35%,因此在太阳能利用中,进行跟踪是十分必要的[1]。 本文提出一种新型的基于单片机的太自动跟踪系统设计方案,该系统不仅能自动根据太方向来调整太阳能电池板朝向,结构简单、成本低,而且在跟踪过程中能自动记忆和更正不同时间的坐标位置,不必人工干预,特别适合天气变化比较复杂和无人值守的情况,有效地提高了太阳能的利用率,有较好的推广应用价值。 11自动跟踪系统的组成和结构 111 组成。自动跟踪系统由光电检测电路,双轴机械跟踪定位系统,时钟电路,单片机控制系统等几部分组成。 11111 光电检测电路 太阳的方位随着观测位置和观测时间的不同而不同,因此,欲跟踪太阳就必须先对太阳进行检测定位。 图1是太电定位装置中光电检测电路的俯视简图,共由9个光电三极管组成。正中央1个,旁边8个围成一圈。将此检测板用一不透光的下方开口的圆柱体盖住,圆柱体的直径略大于图中的外圆。圆柱体的上方中央开一个与检测用的光电二极管直径相同的洞,以让光线通过(如图2所示。将整个光电检测装置安装在太阳能光电池板上,光电二极管的检测面与电池板平行。在圆柱体的外面不受圆柱体遮挡的地方(确保会受到光线的照射也安装一个光电二极管(其朝向与圆柱体的光电二极管朝向相同,用于检测环境亮度,并与圆柱体的每个光电二级管及运放(可用LM324集成电路中的一个构成一个比较电路(如图3。适当调整图中电阻的阻值,这样当圆柱体的光电二极管没有受光线照射时,运放将输出低电平。此电平可对接到的输入端进

相关文档
最新文档