高浊度水处理装置说明

高浊度水处理装置说明
高浊度水处理装置说明

高浊度水处理方案说明

高浊度水中主要含有胶体物质,不易沉淀,如果后续采用RO系统,会造成膜的堵塞,运行费用升高。

处理高浊度废水主要手段是加入混凝剂和絮凝聚,利用混凝剂的压缩双电荷作用,使胶体的带电颗粒失稳而从水中分离出来,同时加入絮凝剂,有网捕和架桥作用,使失稳的胶体颗粒结成较重的块状物质在重力作用下沉淀分离,或利用气浮产生的微细气泡带到水面上刮除。

处理高浊度水的设备有DH型高效污水净化器、混凝+斜管沉淀、水力循环澄清池、气浮池等。下面分别介绍方案情况:

一、DH高效污水净化器

1、DH高效污水净化器的原理

DH高效污水净化器是将物理、化学反应有机融合在一起,集成了直流混凝、临界絮凝、离心分离、动态过滤及污泥浓缩沉淀技术,短时间内(25~30min)在同一罐体中完成废水快速多级净化的一体化组合设备。该设备SS去除率高达99.9%,COD 去除率达到40%~70%。净化器为钢制罐体,上中部为圆柱体,下部为锥体,自下而上分别为污泥浓缩区、混凝区、离心分离区、动态过滤区、清水区。

直流混凝和临界絮凝技术取代了混凝反应池,在泵前及泵后投加絮凝和助凝药剂,利用泵、管道、水流完成药剂的水解、混合、压缩双电层,吸附中和作用后高速沿切线方向进入罐体快速完成

吸附架桥,絮凝形成矾花。

离心分离是利用废水沿切线方向进入罐体产生高速旋流、产生离心力,在离心力的作用下废水中形成的悬浮颗粒及矾花被甩向器壁,并随下旋流及自身重力作用沿罐内壁下滑至锥形污泥浓缩区,废水向下作螺旋运动到一定程度后向中心靠拢,又形成向上的旋流,这股旋流水质较清,流向设置在上层动态过滤区。在离心分离区一般粒径大于20μm的悬浮颗粒(矾花)被固液分离至污泥浓缩区。废水经离心分离进入动态过滤区再次完成吸附作用,过滤区采用表面吸附的悬浮滤料,表面积大、吸附能力强,可截留5μm以上的粒径的悬浮物。在动态状态下过滤,因此滤料不易堵塞,吸附的颗粒物易脱落又下沉至离心分离区,因此滤料反洗周期长(0.5~1个月反冲洗一次)。废水经多级固液分离及净化后排出。

离心分离和过滤脱落的悬浮颗粒在离心力及重力的作用下进入污泥浓缩区,污泥在锥形泥斗区中上部经聚合力的作用下,颗粒群体结合成一整体,各自保持相对不变位置共同下沉,在泥斗区中下部SS很高,颗粒间将缝隙中液体挤出界面,固体颗粒被浓缩压密后从锥体底部排出,一般污泥含水率≤90%(排污量只有传统工艺的1/6)。

2、DH高效净化器和配套设备

2.1 DH高效净化器主体

设备本体直径2.8m,高8m,处理流量50m3/h

2.2 配套设备

进水泵2台,一用一备,流量50m3/h 扬程20m

反洗泵1台,流量100m3/h 扬程20m

二、旋流混凝+斜管沉淀

1、原理

混凝剂和进水在旋流混凝池内充分反应,再加入絮凝剂结成块体,进入斜管沉淀池,斜管沉淀池是利用浅层沉淀原理,在沉淀池内加入斜管可以增加沉淀面积,提高沉淀效果和减小设备尺寸,主要优点技术比较成熟,效果稳定

2、设备和配套

高浊度水设计流量Q=50m3/h

为了运输方便,设备尺寸一般为:

L×B×H=7.5×3×3m,

如果现场加工可以根据现场情况加工,尺寸可以做成

L×B×H=5×5×3m

配套设备:

进水泵2台,Q=50 m3/h 扬程10m

三、水力澄清池

水力澄清池一般适用于大型水处理工程,钢筋混凝土结构,造价较高,本项目不适用。

四、高效气浮池

气浮一般用于絮体形成较轻的物质,如油类、纤维类等,本工程由于

形成的絮体较重,故不太适用,而且气浮配套设备较多,运行管理较复杂,本处不多叙述。

混凝浑液面沉速与混凝剂投加量的关系

摘要:探讨了黄河高浊度水混凝沉淀浑液面沉迷与自然沉迷之间的相关性,经过对实验数据进行线性回归提出了混凝过程中浑液面沉速与自然沉速、含沙量、pam投加量之间的经验公式。运用该经验公式得出的浑液面沉速计算值与实测相对误差在0.43%-12.27%之间。 混凝沉淀是黄河高浊度水处理常用的方法。提高浑液面沉速,节约药剂(pam)的投加量达到多出清水是高浊度水处理的主要目标。然而混凝过程极其复杂,影响浑液面沉速的因素有高浊度水的性质、pam投加量、速度梯度c、搅拌时间t 等。因为高浊度水自然沉淀沉速与原水的性质密切相关。在实际处理一定组成的高浊度水时,可以借助实验得到的经验关系,根据浑液面的自然沉速以及所希望达到的浑液面沉速来确定pam的投加量。本文先采用正交实验的方法确定混凝 过程的混合、反应的最佳水力条件,然后在此基础上研究浑液面沉速与pam投 加量及高浊度自然沉速之间的关系。 1实验方法 1.1自然沉降实验 高浊度水采用郑州上街段黄河泥沙配制而成。试验过程中所有水样水温 15±1℃。用nsy-1光电颗分仪测泥沙粒度,其当量直径dm由下式计算:dm=1/(∑(△pi/di)) 式中di——颗粒粒径,pi——粒径di颗粒占所有颗粒质量百分数。选出dm 相近的几组水样用比重瓶测定其含沙量,以cw(kg/m3)表示。然后用直径62mm,高500mm,有效体积1500ml的自制沉降筒做静置沉降实验,根据沉降曲线求得等速沉降段混液面沉降速度作为自然沉速,以从(mm/s)表示。 试样的含沙量cw,浑液面自然沉速u0,当量直径dm, 1.2加药混凝实验 实验所选的药剂为江苏南天生产的阳离子型pam,阳离子度30%,配制成0.5%溶液。 取1.5l上述配制的水样置于2l的烧杯中,以600r/s的转速搅拌5min,然后投加pam,再调整转速和时间确定混凝的水力条件:笔者通过对搅拌速度。搅拌时间、pam投加量做正交实验得出具有最大浑液面沉速时的最佳的速度梯度与搅拌时间乘积,即(ct)umax为2180,这与崔俊华验证的(ct)umax为1900-2000[1]相

低浊度原水处理方法

低浊度原水处理方法 国内水厂在处理低浊度原水时,絮凝反应一般采用铝系或铁系无机絮凝剂[1]。铝盐水解过 程产生的矾花大,絮体卷扫和夹杂作用明显,工艺路线成熟[2]。但铝盐的水解是吸热反应,温 度低时投药量较大,且铝盐作为混凝剂有时会使出厂水中铝含量增加[3],对人体造成毒害。铁 盐具有操作简单、费用低、受温度影响小、絮体对微生物的亲和力强等特点,被广泛应用[4]。 低浊度水因含有的颗粒数量少,颗粒发生碰撞的几率降低,容易产生絮凝体较小、不易沉降 等问题[5]。为提高沉淀效率,节约制水成本,通常投加生石灰[6]、聚丙烯酰胺[7]、活化硅酸[8, 9]等助凝剂来提高混凝效果。 某水厂原水为低浊度的水库水,考虑采用絮凝、沉淀、过滤及消毒的常规工艺进行处理,为 确定合理的絮凝剂投加量及助凝剂,需进行絮凝试验。笔者根据低浊水的特点,以氯化铁为絮凝剂,投加氢氧化钠来确定反应的最佳pH,并进一步确定氯化铁的最佳投加量,最后考察了聚丙烯酰胺、高岭土和硅藻土的助凝效果,旨在找出适合低浊、低碱度水的助凝技术,以服务于工程实践。 1 试验材料与方法 (1)原水水质。主要水质指标:色度<15度,浊度2~4 NTU,pH为6.5~7,高锰酸盐0.9~1.2 mg/L,无异臭、异味。 (2)絮凝试验条件。在MY3000-6六联搅拌器上进行静态烧杯试验,参数根据水厂絮凝池设计 参数设置,如表1所示。 (3)试验方法。分别取若干1 L水样置于1 L烧杯中,用1.0 mol/L的NaOH溶液调节水样pH,投加10 g/L的FeCl3作为絮凝剂,并分别投加高岭土、硅藻土、PAM溶液(1 g/L)作为助凝剂, 将其置于六联搅拌机上,按上述絮凝试验条件进行试验。 (4)分析方法。pH使用HQ30 d型pH计(美国哈希公司)测定;浊度使用DR890浊度仪(美国哈 希公司)检测;肉眼可见物由直接观察法检测;嗅和味由嗅气和尝味法检测。 2 结果与讨论 2.1 pH对FeCl3絮凝效果的影响 pH对絮凝效果有较大影响。Mingquan Yan等[10]利用CaO调节原水pH,再配合低盐基度聚 合氯化铝处理低碱度水,可大大提高对天然有机物和颗粒物的去除效果。王桂荣等[11]先加入适 量氢氧化钠调节原水pH,再加入聚合氯化铝,可大幅降低出水浊度,形成的矾花较大且密实,达到理想的处理效果。 试验中水样pH约为6.9,水温18 ℃,初始浊度约为2~4 NTU。FeCl3投加量为3.6 mg/L, 投加NaOH溶液调节原水pH,按表1参数进行絮凝沉淀试验。不同pH下的絮凝沉淀效果如表2所示。

不同类型高分子絮凝剂处理高浊度水的沉淀浓缩性能的比较

不同类型高分子絮凝剂处理高浊度水的沉淀浓缩性能的比较 近年来,高分子絮凝剂越来越多地用于水处理领域。由于投加高分子絮凝剂后,絮体的沉速较大,所产生污泥比较密实且投药量较无机混凝剂少,因此在高浊度水处理中,采用高分子絮凝剂已得到了大家的公认。高分子絮凝剂按其基团带电性可分为:非离子型、阳离子型和阴离子型三类。国内对于非离子型和阴离子型高分子絮凝剂(如聚丙烯酰胺(PAM)等)的应用研究已开展了很多年,PAM已成功地用于黄河高浊度水的处理,但新近投入市场的阳离子型则处于实验阶段。本项研究通过不同类型高分子絮凝剂对高浊度水沉淀浓缩性能的比较,拟探讨分子量、基团带电性及投药量对沉速、浓缩污泥浓度、余浊的影响,同时结合以前的工作及本次实验结果,探求在一定条件高分子絮凝剂投药量与浑液面自然沉速的相关性。 1 实验条件 实验采用西安黄土和黄河泥沙,黄河泥沙取自黄河宁夏大坝段,西安黄土取自地表下2—5米、无明显杂质。将两种泥用西安市市政自来水人工搅拌浸泡7日,浸透的泥浆配成含砂量200kg/m3左右的原水,根据实验要求配至需要的浓度。两种泥样的颗分曲线如图1。 实验采用的高分子絮凝剂主要性能见表1:

采用沉降筒实验,检测数据包括:浑液面自然沉速及絮凝沉速(mm/s),90分钟后上清液余浊(NTU),由沉降曲线根据肯奇理论计算沉降90min后的沉泥浓度(kg/m3)。 2 实验结果及分析 2.1 阴离子絮凝剂的沉降性能比较 不同品种阴离子絮凝剂的沉降性能如表2: 由表2中的结果可知,在相同条件下,投加低分子量的PAM时絮体沉速较大,浓缩污泥密实,且上清液余浊较小。 2.2 阳离子度的影响 阳离子度反映了合成絮凝剂的单体上正电荷的电性强弱。采用不同阳离子度的阳离子絮凝剂,用西安黄土配成的水样进行沉降筒实验,结果如表3: 从实验结果可以看出,随阳离子度的增大,阳离子絮凝剂的沉降性能愈好,但增加到一定程度后,阳离子度对沉降性能的影响变得比较迟缓,因此在实际生产中,没有必要一味追求高的阳离子度。 2.3 基团带电性的影响 为使线型分子链在水溶液中充分伸展,增强架桥和卷扫沉淀作用,一般在非离子型高分子絮凝剂的构

高浊度水处理装置说明

高浊度水处理方案说明 高浊度水中主要含有胶体物质,不易沉淀,如果后续采用RO系统,会造成膜的堵塞,运行费用升高。 处理高浊度废水主要手段是加入混凝剂和絮凝聚,利用混凝剂的压缩双电荷作用,使胶体的带电颗粒失稳而从水中分离出来,同时加入絮凝剂,有网捕和架桥作用,使失稳的胶体颗粒结成较重的块状物质在重力作用下沉淀分离,或利用气浮产生的微细气泡带到水面上刮除。 处理高浊度水的设备有DH型高效污水净化器、混凝+斜管沉淀、水力循环澄清池、气浮池等。下面分别介绍方案情况: 一、DH高效污水净化器 1、DH高效污水净化器的原理 DH高效污水净化器是将物理、化学反应有机融合在一起,集成了直流混凝、临界絮凝、离心分离、动态过滤及污泥浓缩沉淀技术,短时间内(25~30min)在同一罐体中完成废水快速多级净化的一体化组合设备。该设备SS去除率高达99.9%,COD 去除率达到40%~70%。净化器为钢制罐体,上中部为圆柱体,下部为锥体,自下而上分别为污泥浓缩区、混凝区、离心分离区、动态过滤区、清水区。 直流混凝和临界絮凝技术取代了混凝反应池,在泵前及泵后投加絮凝和助凝药剂,利用泵、管道、水流完成药剂的水解、混合、压缩双电层,吸附中和作用后高速沿切线方向进入罐体快速完成

吸附架桥,絮凝形成矾花。 离心分离是利用废水沿切线方向进入罐体产生高速旋流、产生离心力,在离心力的作用下废水中形成的悬浮颗粒及矾花被甩向器壁,并随下旋流及自身重力作用沿罐内壁下滑至锥形污泥浓缩区,废水向下作螺旋运动到一定程度后向中心靠拢,又形成向上的旋流,这股旋流水质较清,流向设置在上层动态过滤区。在离心分离区一般粒径大于20μm的悬浮颗粒(矾花)被固液分离至污泥浓缩区。废水经离心分离进入动态过滤区再次完成吸附作用,过滤区采用表面吸附的悬浮滤料,表面积大、吸附能力强,可截留5μm以上的粒径的悬浮物。在动态状态下过滤,因此滤料不易堵塞,吸附的颗粒物易脱落又下沉至离心分离区,因此滤料反洗周期长(0.5~1个月反冲洗一次)。废水经多级固液分离及净化后排出。 离心分离和过滤脱落的悬浮颗粒在离心力及重力的作用下进入污泥浓缩区,污泥在锥形泥斗区中上部经聚合力的作用下,颗粒群体结合成一整体,各自保持相对不变位置共同下沉,在泥斗区中下部SS很高,颗粒间将缝隙中液体挤出界面,固体颗粒被浓缩压密后从锥体底部排出,一般污泥含水率≤90%(排污量只有传统工艺的1/6)。 2、DH高效净化器和配套设备 2.1 DH高效净化器主体 设备本体直径2.8m,高8m,处理流量50m3/h

高浊度微污染黄河水的处理工艺

高浊度微污染黄河水的处理工艺 论文名称:高浊度微污染黄河水的处理工艺 作者:方晞,聂建校 摘要:在混凝处理中采用5%的清水回流与PAC+HPAM联合投加相结合的方法,形成高浊度微污染黄河水的处理工艺。应用该技术对高浊度水进行生产性试验,除浊效果与传统工艺相比约提高40%~50%,对有机物和NH3-N的去除率也有所提高,同时可使出水的致突变活性呈阴性。 关键字:给水处理高浊度水微污染混凝 Treatment Process of High Turbid and Slightly-Polluted Water from the Yellow River FANG Xi, NIE Jian-xiao (College of Environmental Engineering, Chang‘an University, Xi‘an 710061,China) Abstract: 50% clean water backflow plus PAC+HPAM coagulation process was employed to treat high tur- bid and slightly-polluted water from the Yellow River at a pilot scale.Compared with the traditional ones,this process increased 40%~50% in turbidity removal,and also increased the removal of organic substances and NH3-N.At the same time the mutation activity of the treated water showed negative.

不锈钢过滤罐常见处理方式及水质预处理

不锈钢过滤罐常见处理方式及水质预处理 不锈钢过滤罐其拦截作用可通过许多罐体过滤材料进行过滤效果,并去除大颗粒杂质粒子的浓度大小及胶体和悬浮物,是一种常见的方式,并成本低、操作方便、维护和管理等。 不锈钢过滤罐其拦截作用可通过许多罐体过滤材料进行过滤效果,并去除大颗粒杂质粒子的浓度大小及胶体和悬浮物,水处理碳钢罐是一种常见的方式,并成本低、操作方便、维护和管理等。 不锈钢过滤罐其过滤精度在0.005 ~ 0.01微米之间,能有效去除胶体粒子和高分子有机化合物,常温操作,耐酸碱、氧化、PH值范围宽,可以配置完善的保护体系和监测仪器,实现自动和手动控制。共同使用石英砂、无烟煤滤料、磁铁矿等高过滤速度,降低承载能力大,过滤周期长。 一、可用于石英砂过滤器和活性炭过滤器、软化过滤器、锰砂过滤器、除氟过滤器。 结构:上有上进下出、和上进上出、侧进侧出这几种进出水处理方式。 二、石英砂机械过滤器是水质预处理部份的主要设备之一,要根据水质的情况采用相应的设计方案,以高交效去除水体中的悬浮物,胶体,泥沙,有机物,微生物、氯、嗅味及部分重金属离子,降低水的浊度,使给水得到净化的水处理传统方法之一;滤料为精制石英砂和无烟煤等。性能特点主要是,设备造价低廉,运行费用低,管理简便;滤料经过反洗可多次使用,滤料寿命长;过滤效果好,占地面积小。机械过滤器广泛应用于水处理过程中,主要用于给水处理除浊,反渗透、以及离子离换软化除盐系统的前级预处理,也可用于地表水、地下水除泥沙。设备主要材质为碳钢防腐和不锈钢。进水浊度要求小于20度,出水浊度可达3度以下。 三、活性炭吸附过滤器利用活性炭自身具有的吸付和脱色能力,能吸附水中的有机物、细菌、胶体微料、微生物、胶体硅、余氯、对臭味、色度、重金属离子的吸附能力很强。活性炭过滤器的大小依据水量而定,根据用途不同可选用A3钢材质或不锈钢材质(可根据需方选择不同型号的活性炭)。 四、除铁锰过滤器采用的一般工艺为:含铁锰水—曝气—天然锰砂过滤、催化氧化与离子交换等原理去除。由于需要曝气,所以传统方法存在能耗高的缺点,有效除铁锰过滤器是在过滤器中填充一种新型滤料,此新型过滤器无需曝气,就可以直接氧化地下水中的Fe2+、Mn2+等离子。更有效节能地去除水中的铁锰。 五、常用活性料度为0.4-2.4mm之间,形状有圆柱型、球型、无定形炭等。 六、过滤速度:7-15m/h 进水浊度<15mg/L 出水浊度<5mg/L 进水PH值:6-9 工作温度:常温工作压力

高浊水处理方法

高浊水处理方法 粉煤灰是燃煤电厂排放的固体废弃物,具有吸附和助凝作用,逐渐用于废水处理领域。研究 表明,粉煤灰对废水中的COD、有机化合物、金属离子、浊度有去除作用,但将粉煤灰直接用于 废水处理效果并不理想[1, 2, 3]。壳聚糖是一种有机高分子助凝剂,无毒,具有电中和与吸附 架桥作用,但其在酸性条件下才溶解,且溶解速度较慢,直接应用受到一定限制,而且壳聚糖价 格较贵,直接使用成本较高,故将其与膨润土、蒙脱石、硅藻土、粉煤灰等联合起来处理废水是 当前的研究热点[4, 5, 6, 7]。笔者制备了改性粉煤灰与壳聚糖的复合吸附剂,利用壳聚糖的电 中和与架桥作用,以及粉煤灰的吸附作用去除高浊水的浊度,并对其除浊性能进行研究。 1 实验部分 1.1 材料与仪器 实验所用粉煤灰取自银川某电厂,其主要成分如表1所示。 实验试剂:盐酸,分析纯,四川西陇化工有限公司;硫酸,分析纯,成都市科龙化工试剂厂; 氢氧化钠,分析纯,天津市致远化学试剂有限公司;冰乙酸,分析纯,天津市瑞金特化学品有限 公司;壳聚糖,分析纯,国药集团化学试剂有限公司;高岭土,分析纯,天津市光复精细化工研究所。主要仪器:T8-1型磁力加热搅拌器,重庆吉祥教学实验设备有限公司;FA2004B型电子天平,上海精密科学仪器有限公司;HSB-B88循环水式多用真空泵,郑州长城科工贸有限公司;101型电 热鼓风干燥箱,北京科伟永兴仪器有限公司;pHS-25型pH计,上海精密科学仪器有限公司;ZD型 浊度仪,无锡优量仪表公司。 1.2 吸附剂的制备 (1)粉煤灰的酸浸。选用2 mol/L H2SO4溶液,以液固比10 mL∶3 g对粉煤灰进行酸浸,常 温搅拌后静置24 h,抽滤,并用蒸馏水多次冲洗,放入105 ℃电热鼓风干燥箱中烘干,冷却至 室温,用研钵研细即得改性粉煤灰。 (2)吸附剂的制备。将质量分数为98%的冰醋酸稀释至5%的溶液,用此稀释溶液将壳聚糖配 制成质量分数为2%的壳聚糖溶液,按不同的质量比加入改性粉煤灰,常温下搅拌均匀呈糊状后,放入105 ℃电热鼓风干燥箱中烘干,冷却后磨细,即得吸附剂。 1.3 实验方法 取一定量校园池塘水加入一定量的高岭土,搅拌均匀,静置24 h后,取上清液。测其浊度 为200 NTU,pH为6.8。 取该高浊水100 mL,加入一定量的吸附剂,搅拌一定时间后静置15 min,用移液管吸取液 面下10 mm处水样测定浊度,并计算除浊率。除浊率按式(1)计算。

关于次高浊度水沉淀池的计算方法

关于次高浊度水沉淀池的计算方法 次高浊度水是指泥沙浓度在低浊度水与高浊度水之间的水,即沉淀时会呈现出拥挤沉降的特点,但是没有浑液面,这种水处于高浊度向低浊度过渡阶段。次高浊度水具有的从高浊度水到低浊度水的过渡性质等浓度面的沉速及其沉降曲线的测定原理;在等浓度面的概念和浑水动水沉淀浓缩规律的基础上,提出了等浓度型和沙峰型次高浊度水沉淀池的计算方法。 关键词:次高浊度水;沉淀池;计算方法 一、次高浊度水的相关概念 水的浊度是指水的浑浊程度。定义为在1升水中含白陶土(或)所产生的浑浊程度为1度。由于水中含有的泥沙、粘土及有机物等能够使水浑浊,所以可以用浊度来表示水中悬浮物的量。水的浊度高,说明水中的悬浮物(沙石、粘土等)含量高,对水处理运行不利。控制水的浊度是化学水处理的一项重要内容。水的用途不同,对水的浊度要求也不同。例:生活饮用水的浊度不能超过5度;循环冷却水的浊度不能超过10度。用于化学水处理的水:顺流再生固定床不能超过5度;对流床则不能超过2度等。当河水中的泥沙含量较高时,水流的形态不管是静水沉淀还是动水沉淀,都会在这一过程中形成一个清、浊水层分界面非常清晰的浑液面,这种水拥挤沉降的形式为浑液面,因此称其为高浊度水。当高浊度水以静水的形态进行沉淀时,浑液面下会呈现出一个浑水层,该浑水层的浓度变化相对较慢,称其为均浓浑水层。这种水层是由于自然絮凝的泥沙拥挤沉降形成的。均浑水层的主要成分是水中的细粒泥沙,而一些粗粒泥沙则会不断的沉淀、除去,因此属于均浑水层的不稳定部分;而那些不会被沉淀除去的细粒泥沙则是均浓浑水层的稳定组成部分。因此按照这个概念,原水中的泥沙区可以分为两个部分,即稳定部分和不稳定部分。高浊度的水进行沉淀时,原水中的稳定的泥沙浓度对形成均浓浑水层及出现浑液面等均有直接的影响。当原水中的泥沙浓度在低浊度和高浊度之间,在沉淀时有拥挤沉降的特点,但并没有出现浑液面,该水层的性质表现出高浊度向低浊度过渡,因此称其为次高浊度水。 二、次高浊度水沉淀池在自然沉降工作状态的计算 在沉淀池中,次高浊度水的流动与沉淀状况和高浊度水相近,其表现在以下几点:第一,高浊度水在池中所呈现出的异重流现象,次高浊度水也同样具备,只是其典型性不如高浊度水;第二,次高浊度水沉淀的过程中不会出现浑液面,但是会呈现出一个过渡层,其等浓度面可以类比高浊度水的浑液面;第三,次高浊度水沉淀池的出水泥沙浓度和过波层的高程位置有着密切的关系。因此浑水的动水沉淀浓缩规律同样适用于次高浊度水。

高浊度净水处理10.08.10

把高浊度原水处理到达标状态才是硬道理 潘桂明 2010年7月18日始,嘉陵江水源水由300NTU上涨到7月26日的4800NTU。沙坪坝水厂采用强化水处理工艺的技术方法,控制好水的物理稳定性和化学稳定性。合理利用预沉池、沉淀池、滤池,特别注意掌握混凝剂的类型与剂量,以及水体的碱度等,强化净水处理,混凝以预沉池为主,沉淀池为辅。为此,沙坪坝水厂做好了以下两方面工作: 一、制水方面 1、由于嘉陵江水位最高达到188米,当深井一级取水车间开3台车时,取水的有效率比平时高,达到12400m3/h。所以,水源水浊度在1000至5000 NTU时,高制水车间处于超负荷运行壮态。采用两点投药,混凝剂的剂量控制在1.2%~2.5%。在整个高浊度强化净水处理过程中,合理使用聚合氯化铝和聚二甲基二烯丙基氯化铵(HCA),采用在聚合氯化铝水溶液中添加0.2%~0.5%的HCA高分子助凝剂的方法,其制水效果很好。 2、合理设置v型滤池自动化反冲洗的编程,调整了气冲、气水混冲、水冲、表洗及稳定等用时。 3、定时洗池子,清除墙体的积泥和藻类等物及池底的积泥和沙,定时分段排泥。根据进水量和浊度变化及时调控净水剂及消毒剂的投加量。沉淀池出水浊度控制在2~5NTU,控制好出厂水的两项主要指标,那就是出厂水浊度≤0.30NTU;出厂水余氯0.60~1.00mg/L. 二、化验方面 1、高浊度时,化验室全程监控净水处理过程,化验员日常现场检测:① - 1 -

原水浊度、预沉池浊度、沉淀池浊度、每口滤池的滤后水浊度、出厂水浊度、出厂水余氯等,原则上每2小时检测一次。 ②pH值、总碱度、色度、肉眼可见物、细菌总数、总大肠菌群、粪大肠菌群、耗氧量耗、氨氮等项目等每日检测一次。水质检验数据及时反馈制水车间。 2、对出厂水是否达到符合国家饮用水标准,应该以实验室的数据为准。因为,水质检测的全部项目均符合标准评价为合格饮用水;当微生物学指标、毒理学指标和放射性指标不符合标准评价为不安全不能饮用的水;当感官性状和一般化学指标不符合标准评价为感官或口感不良的饮用水。 把水质检验与净水处理工作结合在一起来做,对水厂出厂水的水质是极为重要的。当高峰供水时,水源水正处高浊度时期,浊度高,水量大,存在滤前水浊度过高,影响滤池的接触混凝和渗透过滤,处理不好有可能出现出厂水浊度超标的水质事故。总之,在即保水质又保水量的前提下,把高浊度原水处理到达标状态才是硬道理。 - 2 -

低温低浊水处理工艺

低温低浊水处理工艺研究进展 2008-08-27 13:23:38 来源:网友发表浏览次数:119 从混凝剂的选择和生产的工艺、技术措施上探讨了低温低浊水处理的研究进展,笔者认为可从优选聚硅酸金属盐混凝荆,完善混合、絮凝工艺,优化过滤工艺等方面加强对低温低浊水的处 理。 关键字:低温低浊水聚硅酸金属盐混凝荆混合絮凝助滤剂 董铺水库位于合肥市西北部,水源水质较好,全年大部分时间基本符合“地表水环境质量标准”(GB3838-2002)Ⅱ类标准,是合肥市重要的给水水源地之一。该水源从每年11月下旬到次年4月上旬水温低于10℃,长年浊度低于1ONTU,每年水质属于低温低浊水的时间有半年时间。低温低浊水具有温度低、浊度低、耗氧量低、粘度大等特点,在冬季给自来水厂的水处理造成了很大的困难,出现了混凝剂投药量低不起作用,投药量多处理效果不明显而且处理成本增加的现象。因此,解决低温低浊水的水质净化技术问题具有重要的现实意义。 1低温低浊对水质净化过程的影响 1.1低温对水质净化过程的影响低温对水质净化过程的影响在于水温低时,通常絮凝体形成缓慢,絮凝体颗粒细小、松散。其原因有:①低温水的牯度大,使水中杂质颗粒布朗运动减弱,碰撞机会减少,不利于胶粒脱稳凝聚。当水温低于10℃时,由于颗粒碰撞机会少且水的剪切力增大,也使生成的矾花易于破碎,又因水的粘度增大使矾花的沉降速度减慢,颗粒絮凝速度大大降低,减慢、不易沉淀,故混凝效果差。②无机盐混凝剂水解是吸热反应,低温水絮凝剂水解速度降低,水解产物的形态不佳。随着水温每降低10℃,水解速度常数减小2-4倍,导致反应速度减慢,OH浓度低,水离子体积小,以致水解进行不完全,药剂利用不充分。同时,水温低时,聚合反应速度降低,混凝剂的水解产物主要是高电荷、低聚合度的聚合物,不利于在胶体颗粒间进行吸附架桥,从而降低絮凝效果。 ③低温时,胶体颗粒水化作用增强.颗粒周围水化作用突出,絮状物粘附力和强度降低,妨碍胶体凝聚,而且水化膜内的水由于粘度增大,影响了颗粒问的结合强度,使絮体松散易破碎,密度小,颗粒强度低。④水温与pH值有关。水温低时,水的pH值提高,相应地混凝最佳pH值也随之提高。 1.2低浊对水质净化过程的影响低浊对水质净化过程的影响表现在:①水的浊度低时。水中杂质主要是以细的胶体分散体系溶于水中,而且胶体颗粒较为均匀,具有很强的动力稳定性和凝聚稳定性,且带负电的胶体颗粒数量少,达到电中和所需的混凝剂也少,形成的絮体细、小、轻,难以沉淀,易穿透滤层。②由于浊度低,胶体颗粒数目较少,颗粒间相互碰撞而聚集的机会减少,絮凝体难以形成,而要通过增大搅拌强度以提高颗粒碰撞的几率,同时又会产生很高的水流剪切强度,使原先形成的低强度的絮凝体被剪碎。③低浊度水由于固相浓度很小,分散相的浓度面积较小,易形成易溶解的产物,由于缺乏大量高聚物形成的有效空间网格交联的键.很容易被破坏。

第4章 水的预处理与深度处理.

第4章水的预处理与深度处理 4.1 概述 我国经济发展迅速,但环境污染日益严重,尤其是饮用水源污染尤为突出。据我国环境部门统计,82%的河流受到不同程度的污染,七大水系中,不适合做饮用水源的河段接近40%;城市水域中78%的河段不适合作饮用水源。目前,从水中检出的有机污染物已达2000余种,部分对人体有急性或慢性、直接或间接的毒害作用,其中许多是具有或被疑有致癌、致畸、致突变的物质。 2004年中国环境状况公报报道,我国湖泊中富营养化水体的已达66%,巢湖、太湖、滇池的总氮、总磷和氨氮的浓度分别是20世纪80年代初的十几倍,蓝藻泛滥日益严重。2002年太湖的20个检测点位中,属Ⅲ类、Ⅳ类、Ⅴ类和劣Ⅴ类水质的位点分别为5%、35%、5%和55%。滇池的外海为Ⅴ类水质,草海为劣Ⅴ类水质。草海和外海的营养状态指数分别为79.0和60.8,平均达72.8,属重度富营养状态。巢湖湖体高锰酸盐指数达到Ⅲ类水质标准,但由于总氮和总磷污染严重,湖体12个检测点位中,Ⅴ类、劣Ⅴ类水质各占一半。 表4-1 2002年各湖体主要污染指标浓度值 2003年我国地下水资源评价结果显示,我国约一半城市市区的地下水污染较严重,地下水水质呈下降趋势。主要污染指标有矿化度、总硬度、硝酸盐、亚硝酸盐、氨氮、铁、铁、锰、氯化物、硫酸盐、氟化物、硫酸盐、pH值等。三氮污染在全国各地区均较严重,矿化度和总硬度超标主要分布在东北、华北、西北和西南等地区,铁和锰超标主要在东北和南方地区。同时,各地都不同程度地存在着与饮用水水质有关的地方病区。全国约有7000多万人仍在饮用不符合饮用水水质标准的地下水。 常规给水处理工艺,包括混凝、沉淀、过滤、消毒等。主要以去除水中的悬浮物、胶体和细菌等为目的,它对受污染水中的有机物、氨氮等污染物去除率很低。研究表明,水的浊度与有机物密切相关,如将水的浊度降低至0.5NTU以下,有机物可减少80%。因此,要提高饮用水水质,必须进行水的预处理或者深度处理。 4.2 格栅与筛网

水处理的混凝工艺原理

水处理混凝原理 1、混凝定义 向原水中投加混凝剂,破坏水中胶体颗粒的稳定性,通过胶粒间以及其他微粒疸的互相碰撞和聚焦,形成易于从水中分离的絮状物质的过程,称为混凝。 混凝是去除天然水中浊度的最主要的方法。水中浊度是由细微悬浮物所造成的,分散度处于胶体状态时将产生最大的光散射,因而胶体物质是形成浊度的主要因素。 混凝也是去除天然色度的重要方法。水中天然色度来源于腐败的有机植物,主要是土壤中所含的腐殖质。腐殖质是成分十分复杂的物质,分子量从几百到数万。有一部分天然色度属于高分子真溶液,但投加混凝剂可以使天然色度分子与铝或铁形成难溶的络合物,或者是通过混凝剂带的正电荷的水解产物与色度分子的负电荷中和而形成凝絮。 混凝对某些无机物和某些有机污染物,也有一定的去除效果。 水中的铁、硅可以以有机物、亚铁盐的形式,也可以胶体络合物的形式存在于水中。当以胶体形式存在时,可以用混凝的方法去除。如上海黄浦江原水总硅量约16.8毫克/升,溶解性硅为5.6毫克/升,采用混凝-沉淀-过滤处理后,总硅量可降到6.7毫克/升。如果用加强混凝的方法,胶体硅可下降到0.2-0.4毫克/升。 生活饮用水中规定的十种无机物和重金属污染,除了硝酸盐和氟化物外,混凝对常见八种重金属污染都有一定的去除效果。 2、混凝过程 混凝常见分为凝聚和絮凝两个阶段。 胶体颗粒具有十分巨大的比表面积,胶核表面的电位离子吸收相反的离子,形成内外两个电离层。胶体核心外是扩散层和吸附层,当同号电荷颗粒接近到扩散层时同电荷会产生斥力,这是胶体颗粒不会聚集的主要原因。当原水投加混凝剂时,随着采用混凝剂的品种、投加量、胶体颗粒的性质以及介质环境温度等多种因素发生以下变化: ⑴压缩扩散层。当向水中投加电解质盐类时,水中的离子浓度增加,扩散层厚度减少。 ⑵吸附和电荷中和。当采用铝盐或铁盐作为混凝剂时,随着PH值的不同,会有不同的水解产物。当pH较低时,带正电荷。与多数为负电荷的胶体(胶核)颗粒起中和作用,从而导致颗粒相互聚集。 ⑶凝絮网捕。以原沉淀物为网状核心,水中的胶体颗粒可被这些析出的沉析物捕获,水中有胶体越多,沉降分离速度越快。 ⑷粘结架桥。投加高分子物质时,胶体颗粒对高分子物质产生吸附作用,通过高分子链状物吸附胶体,从而减少投加混凝剂的量。 凝聚过程可分为混凝剂投加混合、胶体脱稳、异向絮凝。胶体脱稳是混凝剂水解和杂质胶体脱稳聚集,异向絮凝主要是颗粒的布朗布朗运动聚集,同向絮凝是液体运动聚集。 絮凝是指同向絮凝是液体运动聚集成大片状的凝絮物。 3、影响因素 ⑴混凝剂的影响 聚铝、聚铁为常见水解阳离子的无机盐炎。聚丙烯酰胺,处理高浊度的水以及污泥脱水有一定应用。天然骨胶与三氧化铁同时使用,也有较好效果。活化硅酸经常使用为低温度低浊度水的常用助凝剂。 当水的pH值非常低时,如小于3,此时通过铝离子或铁离子的阳离子浓度增加,压缩胶体颗粒的扩散层使胶体失稳,这种絮凝作用非常有限,起不到效果。 铝盐或铁盐水解产物溶解度非常的低,当投加量超过溶解度时,将产生氢氧化铝或氢氧化铁沉淀,在沉淀过程中形成了一系列的金属羟基聚合物。如溶液的pH值较低时,低于金

SPR高浊度污水处理技术-高浊度水处理技术

SPR高浊度污水处理技术:高浊度水处理技术 在天然淡水资源已被充分开发、自然灾害日益频繁暴发的今天,缺水已经对世界各国众多城市的经济和市民生活构成了十分严重的威胁,缺水危机已经是我们面临的现实,解决城市缺水问题的重要途径应该是将城市污水变为城市供水水源。城市污水就近可得,来源稳定,容易收集,是可*且稳定的供水水源。城市污水经净化后回用主要可作为市政绿化、景观用水和工业用水。城市污水再生回用工程包括污水收集系统、污水净化处理技术及其系统、出水输配系统、回用水应用技术和监测系统。其中污水净化再生技术及其系统是关键,污水净化处理的流程要简单可*,投资和运行费用要为该城市经济实力所能承受,处理后出水的水质要满足回用的要求。沿用了许多年的传统的“一级处理”及“二级处理”水处理工艺技术和设备已经难以适应当今的高浊度和高浓度污水的净化处理要求,处理后出水更不能满足城市对水回用的水质要求。沿着传统的工艺技术路线只能进一步附加传统的“三级处理”设备系统,既回避不了庞大复杂的传统二级生化处理系统,也回避不了投资和运行费用都十分昂贵的传统三级过滤吸附处理系统。这些恰恰是实现污水回用的忌讳之处。所以,环保市场十分迫切需要净化效率更高、处理后出水能满足现有环保标准并且能回用于城市,投资和运行费用又要为现有城市的经济实力所能接受的污水处理新技术和新设备。最新发明的“SPR高浊度污水净化系统”(美国发明专利)将污水的“一级处理”和“三级处理”程序合并设计在一个SPR污水净化器罐体内,在30分钟流程里快速完成。它容许直接吸入悬浮物(浊度)高达500毫克/升至5000毫克/升的高浊度污水,处理后出水的悬浮物(浊度)低于3毫克/升(度);它容许直接吸入CODcr为200毫克/升至800毫克/升的高浓度有机污水,处理后出水CODcr可降为40毫克/升以下。只需用相当于常规的一、二级污水处理厂的工程投资和低于常规二级处理的运行费用,就能够获得三级处理水平的效果,实现城市污水的再生和回用。SPR污水处理系统首先采用化学方法使溶解状态的污染物从真溶液状态下析出,形成具有固相界面的胶粒或微小悬浮颗粒;选用高效而又经济的吸附剂将有机污染物、色度等从污水中分离出来;然后采用微观物理吸附法将污水中各种胶粒和悬浮颗粒凝聚成大块密实的絮体;再依*旋流和过滤水力学等流体力学原理,在自行设计的SPR高浊度污水净化器内使絮体与水快速分离;清水经过罐体内自我形成的致密的悬浮泥层过滤之后,达到三级处理的水准,出水实现回用;污泥则在浓缩室内高度浓缩,定期*压力排出,由于污泥含水率低,且脱水性能良好,可以直接送入机械脱水装置,经脱水之后的污泥饼亦可以用来制造人行道地砖,免除了二次污染。最新发明的SPR污水净化技术以其流程简单可*、投资和运行费用低、占地少、净化效果好的众多优势将为当今世界的城市污水的再利用开创一条新路。城市污水实现再利用之后,为城市提供了第二淡水水源,为城市的可持续发展提供了必不可少的条件,其经济效益和社会效益是不可估量的.。SPR污水处理系统与众不同的技术特点1、城市生活污水和处理药剂的混合主要是在泵前吸药管道、污水泵叶轮、蛇形反应管和瓷球反应罐的组合作用下完成的,依照紊流速度、混合时间、和水力学结构数据设计,得以十分充分的混合,为取得最佳混凝净化效果和最大限度地节省药剂创造了前提条件。这是过去常规的一级处理和二级处理之水工结构所做不到的。2、SPR系统处理城市污水时,采用五种以上污水处理药剂及其最佳配方组合使用,*化学反应使污水中溶解状态的有机污染物、重金属离子和有害的盐类从水中析出,成为有固相界面的微小颗粒(它包含有污水三级处理的作用)。其中还选用了一种吸附效果很好而价钱又很便宜的吸附剂,以吸附有机污染物和色度。*消毒剂在30分钟的流程内杀灭细菌和大肠杆菌。*混凝的物理化学吸附作用将悬浮物及各类杂质凝聚成大而且密实的絮团。这样发挥各药剂的单独作用和它们之间的交联作用的用药方式是与常规的物理化学法不相同的。而且SPR系统使用的组合药剂配方,只能在具有十分精细的水动力学参数设计的SPR污水净化器及其系统里才能充分发挥作用,在常规的水工系统里是无法使用的。3、SPR系统装置能够依照模拟试验得出的

水的预处理(过滤器)

第三节水的预处理(过滤器) 我们知道,水的混凝处理后,其水质情况会发生以下变化: ?除掉部分: 1、基本上除掉了水中悬浮物。 2、水中的有机物能除去60%--80% 。 3、降低了一部分重碳酸盐硬度,即降低了一部分重碳酸盐碱度。 4、除去水中胶态硅酸,约占全部硅酸的25%--50% 。 ?增加部分: 1、增加了SO42- ,等于加药量。 2、增加了CO2。 3、增加了水中的非碳酸盐硬度。 4、水中的溶解固形物增加。 为满足后续处理反渗透或离子交换除盐时的水质要求,还需要对水进行进一步的预处理。 一、过滤过程与原理 将水自上而下通过装有粒状填料(滤料)的设备,其中细小悬浮物被滤料吸附截留的过程。 滤料分层排布,小颗粒的在上。由于上层砂砾排列致密,使悬浮物易于被其表面吸附、重叠和架桥形成滤膜。滤膜起主要过滤作用称为薄膜过滤。水进入滤层内部后,悬浮物在深层滤料的复杂空隙通道内更容易发生碰撞,从而被吸附截留,称之为渗透过滤或深层过滤。 失效滤料可以通过自下而上的反洗而再生。 二、过滤中的压力损失 测定出水浊度和水通过滤层的压降均可知滤池运行效果。出水浊度变化规律性不强,不能及时反映滤层的污染程度;后者因变化明显,测量方便而成为反映滤池运行效果的实际指标。 水流经滤层的压降与滤料污染程度和滤池的出力有关,二者的增加都会导致其值增大。在压降一定时,出力会随着滤料污染程度的增加而下降。 若保持滤池的出力不变,随着滤料的污染加重,进水压力(压降)必须增大。压降过大,可能造成滤层局部破裂,过滤作用破坏,出水水质恶化,滤料污染加重,反洗时不易洗净,滤料结块等。 实际运行中,压降应比导致滤层破裂的临界值低很多。 三、滤料 工艺要求:粒度、机械强度和化学稳定性等。 常用滤料有石英砂、无烟煤和大理石等。 1、粒度常用粒径和不均匀系数两个指标表示,在105℃烘干、筛分、称重、作筛分曲线而得。 (1)粒径:平均粒径d50和有效粒径d10(下标指通过筛孔的质量百分比),后者反映滤料中较细颗粒的尺寸。 粒径过大:滤层孔隙大,出水水质不好,且反洗强度要求较高,影响反洗效果,进而可能造成其它不良影响。

纯化水系统原水预处理部分清洗维护操作规程

纯化水系统原水预处理部分清洗维护操作规程 1.目的:建立纯化水系统原水预处理部分清洗维护规程,规范清洗维护操作,保证纯化水系统正常运行。 2.范围:适用于扬州众诚水处理科技有限公司生产的纯化水系统的预处理部分:石英砂过滤器和活性炭过滤器的清洗和维护保养。 3.职责:制水岗位操作人员对本规程的实施负责。 4.内容: 4.1石英砂过滤器的清洗 本系统中石英砂过滤器主要作用为除去水中悬浮物和胶状物。过滤器工作到一定时间后由于悬浮物的截留,致使过滤器压差≥0.08Mpa时,需要反冲洗填料。 4.1.1反洗:打开“上污”阀、“反洗”阀,“原水泵”启动,反洗时间为10分钟后。 4.1.2正洗:打开“下污”阀、“正洗”阀,关闭“反洗”阀、“上污”阀,正洗时间为10分钟。 4.1.3打开“出水”阀,关闭“下污”,调节“总进水”阀至额定流量。 4.2活性炭过滤器的清洗 4.2.1反洗:打开“上污”阀、“反洗”阀,反洗时间为10分钟后。 4.2.2正洗:打开“下污”阀、“正洗”阀,关闭“反洗”阀、“上污”阀,正洗时间为10分钟后。 4.3运行:打开“出水”阀,关闭“下污”。 注:“正洗”阀与“进水”阀为同一阀门。 4.3预处理系统的日常维护 预处理设备运转一定时期后,出水水质会变差,为保证其出水达到RO装置的进水要求,需定期对其产水进行检查。 4.3.1产水水质分析: 产水水质分析结果如是浊度高、污染指数高,原因一般在多介质过滤器;如余氯高,原因一般在活性炭过滤器。 4.3.2原水水质分析:如果原水浊度、COD上升,对多介质过滤器的周期制水量,产水水质影响最大。当在周期内产水水质超标时,需立即采取措施。 4.3.3活性炭检查

水处理工艺原则流程图

水质指标严重超标一览表 表2-1 肉眼可见物 〕 从上表可以看出,该校净水厂的供水水质超标情况十分严重。再加上近年来学校发展较快,师生人数由原有的2000余人增加到3500余人,使该校净水厂的贮水能力、供水设备与用水人数相比不配套,该校只得长期采用定时供水制度,严重影响到该校全体师生的生活学习。 鉴于上述原因,对该校净水厂的改造已势在必行,必须完善净水处理流程,增加贮水能力和提高供水水量及供水水质,使改造后的净水厂的供水水质满足国家的GB5749-85《生活饮用水卫生标准》,并达到全天均衡供水的目的。

第二节改造规模 XXX净水厂目前存在的主要问题如下所述: (1)供水水质严重超过国家的GB5749-85《生活饮用水卫生标准》的要求。 (2)供水水量较小,不能满足全校师生的生活用水要求,只能采用定时供水的方式供水。 造成以上问题的主要原因有以下几点: (1)水处理工艺流程不完善。 (2)水处理手段落后。 (3)水处理构筑物过于简易,无法正常运行。 为从根本上解决XXX净水厂存在的问题,根据本室与XXX签订的《技术服务合同》(见附件一)和该校就此工程项目的《委托书》(见附件二),在本次技术改造中,考虑完善该校净水厂的水处理工艺流程、重新设计和配套水处理构筑物。其技术改造的具体内容如下: 一、按XXX净水厂的供水水质超标情况,重新确定净水厂的水处理工艺流程,增加必要的过滤和消毒设施,以保证供水水质符合GB5749-85《生活饮用水卫生标准》的要求。 二、根据《建筑给水排水设计手册》规定的居住区生活用水定额,四川省属第五分区,最高日用水量为150~200L/人.d,按XXX现有师生人数,考虑到时变化系数以及不可预见的因素,XXX最高时用水量为177 M3 /h,平均时用水量88 M3 /h。而XXX净水厂现有清水池两座,有效容积合计为1000 M3 (700 M3、300 M3清水池各一座),

浊循环水处理工艺说明书

说明书 连铸浊循环水处理工艺 所属技术领域 本实用新型涉及连铸浊循环水处理工艺。 背景技术 连铸浊循环水主要用户有二次喷淋冷却和设备直接冷却、火焰切割机及铸坯钢渣粒化用水、快速水冷装置及火焰清理机用水等。 连铸浊循环水中含有大量的氧化铁皮、少量的润滑油和油脂(液压元件油缸的泄漏和检修时流出的)。 目前连铸浊循环冷却水处理常用的工艺流程为:①车间内各用户含氧化铁皮水→氧化铁皮沟→一次铁皮沉淀池(铁皮坑或旋流沉淀池)→二次沉淀池(平流沉淀池或斜板沉淀池)→中高速过滤器→冷却塔→冷水池→冷水池提升泵→回水至车间内用户,二次沉淀池设刮油刮渣机去除水中浮油;②车间内各用户含氧化铁皮水→氧化铁皮沟→一次铁皮沉淀池(铁皮坑或旋流沉淀池)→化学除油器→热水池→冷却塔→冷水池→冷水池提升泵→回水至车间内用户。 通过上述工艺流程能有效去除水中的SS杂质并降低水温,满足工艺生产的要求。但是上述工艺的二次沉淀池、中高速过滤器、化学除油器等均为大型水处理构筑物或设备且构造复杂,导致水处理设施占地面积大。对于钢铁企业的连铸工艺而言,水处理设施的占地面积往往达到了主车间用地面积的50%左右。

在当今工业用地日趋紧张的形势下,再建设大规模的配套水处理设施是不适宜的。另外,采用二次沉淀池、中高速过滤器、化学除油器等,其本身构筑物、设备数量众多,且还须另外配置刮泥行车、污泥泵、过滤器给水泵、过滤器反冲洗水泵导致运行、维护、检修工作量也大。 发明内容: 本实用新型提出了一种新的连铸循环水处理工艺流程。该工艺流程既可确保浊循环水处理的效果,同时又节约占地、节约投资,具有较大的推广和应用价值。 具体实施方式: 新的连铸浊循环水处理工艺流程为:车间内各用户含氧化铁皮水→氧化铁皮沟→一次铁皮沉淀池(铁皮坑)→固液分离器→冷却塔→冷水池→冷水池提升泵→回水至车间内用户,一次沉淀池设刮油刮渣机去除水中浮油,固液分离器出水有余压可以直接上冷却塔,固液分离器所排出的含固率较高的废水送污泥处理设施。 本流程采用固液分离器取代传统工艺的平流沉淀池、中高速过滤器及化学除油器等。固液分离器依据离心分离原理,用于分离液体中可沉淀固体物。固液分离器内部加速运动产生高速旋转的涡流,进而高效率地分离出液体中的固体杂质。目前新型的固液分离器可分离出3μm至9mm比重大于液体的固体颗料。热轧浊循环水中主要含氧化铁皮颗粒,完全符合被分离固体颗粒的要求。 采用固液分离器后极大地节省了水处理占地空间,节约了已经日趋紧张的

相关文档
最新文档