FT_NIR光谱仪测定酒糟成分不同谱区范围对数学模型的影响_唐利

FT_NIR光谱仪测定酒糟成分不同谱区范围对数学模型的影响_唐利
FT_NIR光谱仪测定酒糟成分不同谱区范围对数学模型的影响_唐利

数学建模小实例

数学建模小实例 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

1、司乘人员配备问题 某昼夜服务的公交路线每天各时间区段内需司机和乘务人员如下: 设司机和乘务人员分别在各时间区段一开始上班,并连续工作八小时,问该公交线路至少配备多少名司机和乘务人员 解: 设i x为第i班应报到的人员 i,建立线性模型如下: )6, ( ,2,1 LINGO程序如下: MODEL:

min=x1+x2+x3+x4+x5+x6; x1+x6>=60; x1+x2>=70; x2+x3>=60; x3+x4>=50; x4+x5>=20; x5+x6>=30; END 得到的解为: x1=60,x2=10,x3=50,x4=0,x5=30,x6=0; 配备的司机和乘务人员最少为150人。 2、铺瓷砖问题 要用40块方形瓷砖铺下图所示形状的地面,但当时市场上只有长方形瓷砖,每块大小等于方形的两块。一人买了20块长方形瓷砖,试着铺地面,结果无法铺好。试问是这人的功夫不到家还是这个问题根本无解呢 解答:

3、 棋子颜色问题 在任意拿出黑白两种颜色的棋子共n 个,随机排成一个圆圈。然后在两颗颜色相同的棋子中间放一颗黑色棋子,在两颗颜色不同的棋子中间放一颗白色棋子,放完后撤掉原来所放的棋子,再重复以上的过程,这样放下一圈后就拿走前次的一圈棋子,问这样重复进行下去各棋子的颜色会怎样变化呢 分析与求解: 由于在两颗同色棋子中放一颗黑色棋子,两颗不同色的棋子中间放一颗白色棋子,故可将黑色棋子用1表示,白色棋子用-1表示。这是因为-1×(-1)=1,1×1=1,这代表两颗同色棋子中放一颗黑色棋子;1×(-1)= -1,这代表两颗不同色的棋子中间放一颗白色棋子。 设棋子数为n ,12,,,n a a a 为初始状态。 当n=3时 步数 状态(舍掉偶次项) 0 1a 2a 3a 1 21a a 32a a 13a a 2 31a a 21a a 32a a 3 32a a 31a a 21a a

19191-数学建模-3.1

微分方程模型 浙江大学数学建模实践基地

§3.1 微分方程的几个简单实例 在许多实际问题中,当直接导出变量之间的函数关系较为困难,但导出包含未知函数的导数或微分的关系式较为容易时,可用建立微分方程模型的方法来研究该问题, 本节将通过一些最简单的实例来说明微分方程建模的一般方法。在连续变量问题的研究中,微分方程是十分常用的数学工具之一。

例1(理想单摆运动)建立理想单摆运动满足的微 分方程,并得出理想单摆运动的周期公式。 从图3-1 中不难看出,小球所受的合力为mgsin θ,根据牛顿第二定律可得:sin ml mg θ θ=-从而得出两阶微分方程:0sin 0(0)0,(0)g l θθθθθ+==?=????(3.1)这是理想单摆应满足的运动方程 (3.1)是一个两阶非线性方程,不 易求解。当θ很小时,sin θ≈θ,此时,可 考察(3.1)的近似线性方程: 0(0)0,(0)g l θθθθθ+==?=?? ??(3.2)由此即可得出2g T l π=(3.2)的解为: θ(t )=θ0cosωt g l ω=其中当时,θ(t )=04T t =42g T l π =故有M Q P mg θl 图3-1 (3.1)的 近似方程

例2我方巡逻艇发现敌方潜水艇。与此同时敌方潜水艇也发现了 我方巡逻艇,并迅速下潜逃逸。设两艇间距离为60哩,潜水艇最大航速为30节而巡逻艇最大航速为60节,问巡逻艇应如何追赶潜水艇。 这一问题属于对策问题,较为复杂。讨论以下简单情形:敌潜艇发现自己目标已暴露后,立即下潜,并沿着直线方向全速逃逸,逃逸方向我方不知。 设巡逻艇在A 处发现位于B 处的潜水艇,取极坐标,以B 为极点,BA 为极轴,设巡逻艇追赶路径在此极坐标下的方程为r =r (θ),见图3-2。 B A A1 dr ds dθ θ图3-2 由题意,,故ds =2dr 2ds dr dt dt =图3-2可看出, 2 2 2 ()()()ds dr rd θ=+

matlab数学建模实例

第四周 3. 中的三个根。 ,在求8] [0,041.76938.7911.1-)(2 3=-+=x x x x f function y=mj() for x0=0:0.01:8 x1=x0^3-11.1*x0^2+38.79*x0-41.769; if (abs(x1)<1.0e-8) x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(ε分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20; k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1; end x1 k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0); k=1; while (abs(x3-x0)>=1.0e-3) x0=x3; x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1; end 2 ,020102)(023==-++=x x x x x f

x3 k 牛顿法: function y=newton(x0) x1=x0-fc(x0)/df(x0); k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>=1.0e-8 x0=s; s=B*x0+G;

EELS和XPS的功能区别

EELS电子能量损失谱(electron energy loss spectroscopy) 原理: 将要研究的材料置于电子显微镜中,用一束动能分布很窄的电子轰击。一部分入射电子经历非弹性散射,其动能发生改变(通常是减小)。动能损失的机理有很多,包括:电子-声子相互作用,带内或带间散射,电子-等离子体相互作用,内壳层电子电离,及切连科夫辐射。电子的能量损失可以被电子谱仪定量的测量出来。内壳层电子电离引起的非弹性散射对于分析材料的元素构成尤为有用。比方说,碳原子的1s电子电离能为285eV。如果285eV的动能损失被探测到,则材料中一定存在碳元素。 EELS与EDX EDX(Energy-dispersive X-ray spectroscopy)也可以用与元素分析,尤其善于分辨重元素。与EDX相比,EELS对于轻元素分辨效果更好,能量分辨率也好出1-2个量级。由于EELS电子伏甚至亚电子伏的分辨率,它可以用于元素价态分析,而这是EDX 不擅长的。 其他用途EELS也可以用来测量薄膜厚度。不难证明,没有经历非弹性散射的电子数目随样品厚度指数衰减。而这部分电子的相对数目可以通过计算零损失峰的面积I与整个谱的面积之比I0而获得。利用公式:I/I0 =Exp(?t/l),l是非弹性散射长度,与材料特性有关;样品厚度t因此可以计算出来。 xps(X射线光电子能谱分析) XPS的原理是用X射线去辐射样品,使原子或分子的内层电子或价电子受激发射出来。被光子激发出来的电子称为光电子。可以测量光电子的能量,以光电子的动能/束缚能binding energy,(Eb=hv光能量-Ek动能-w功函数)为横坐标,相对强度(脉冲/s)为纵坐标可做出光电子能谱图。从而获得试样有关信息。 主要用途:

matlab数学建模实例

第四周3. 中的三个根。 ,在求8] [0,041.76938.7911.1-)(2 3=-+=x x x x f function y=mj()for x0=0:0.01:8 x1=x0^3-11.1*x0^2+38.79*x0-41.769;if (abs(x1)<1.0e-8)x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(ε分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20;k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1;end x1k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10;x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=1; while (abs(x3-x0)>=1.0e-3) x0=x3; x1=(20-2*x0^2-x0^3)/10;x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1;end 2 ,020102)(023==-++=x x x x x f

x3 k 牛顿法: function y=newton(x0) x1=x0-fc(x0)/df(x0); k=1; while(abs(x1-x0)>=1.0e-3) x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>=1.0e-8 x0=s; s=B*x0+G;

电子能量损失谱eels

复习 原子中的电子的四个量子数:
壳层 K L 角量子数l 0 0 1 M 0 1 2 N 0 1 2 3 自旋量子数j 电子数 2 8 电子在亚层中的分布 1s2 2s22p22p4
? ? ?
3/2
? ?
3/2 3/2 5/2
18
3s23p23p42s23d43d6
? ?
3/2 3/2 5/2 5/2 7/2
32
4s24p24p44s24d44d64f64f8

M5 M4 M3 M2 (n-3)
M1
Lα1
Kβ1
L3 (2p 3/2) L2 (2p1/2) L1 (2s) (n-2)
Kα2
Kα1
K (n=1, 1s轨道)


分析电子显微镜 设备: 超高真空扫描透射电镜(STEM) 分析型透射电子显微镜(电子束可会聚的很小的,通常配有 扫描附件, EDX, EELS) 主要分析方法: 结构---微衍射和会聚束衍射 成分---X射线能谱和电子能量损失谱

X射线能谱的缺点 1 探测效率低 X光的荧光产额低,特别是轻元素(Z<11),远小于2% Backscattered electrons 接收角小,只有1%的信号能收到 2 能量分辨率低 轻元素的谱线重叠比较严重 电子能量损失谱的优点 1 接收效率高, 非弹性散射电子集中在顶角很小的圆锥内 2 能量分辨率高~1 eV 可进行定性定量分析,精细结构可以提供化学键态信息 适合做mapping 3 在探测轻元素上有优势 电子能量损失谱的缺点
Secondary electrons
Probe electrons
Auger electrons
X rays (EDXS)
Specimen
Elastic scattering (Diffraction)
Inelastic scattering
(EELS)
厚样品多重散射的问题比较严重,背底相对较高,信号的定域性较差

数学建模案例分析线性代数建模案例例

线性代数建模案例汇编 目录

案例一. 交通网络流量分析问题 城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。 【模型准备】 某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆). 图3 某城市单行线车流量 (1) 建立确定每条道路流量的线性方程组. (2) 为了唯一确定未知流量, 还需要增添哪几条道路的流量统计? (3) 当x 4 = 350时, 确定x 1, x 2, x 3的值. (4) 若x 4 = 200, 则单行线应该如何改动才合理? 【模型假设】 (1) 每条道路都是单行线. (2) 每个交叉路口进入和离开的车辆数目相等. 【模型建立】 根据图3和上述假设, 在①, ②, ③, ④四个路口进出车辆数目分别满足 500 = x 1 + x 2 ① 400 + x 1 = x 4 + 300 ② x 2 + x 3 = 100 + 200 ③ x 4 = x 3 + 300 ④ 【模型求解】根据上述等式可得如下线性方程组 12142334500100300300x x x x x x x x +=??-=-??+=??-+=? 其增广矩阵 (A , b ) =1100500100110001103000011300?? ?-- ? ? ?-??????→初等行变换10011000101600001130000000--?? ? ?-- ? ?? ? 由此可得

142434 100600300x x x x x x -=-??+=??-=-? 即 14243 4100600300x x x x x x =-??=-+??=-?. 为了唯一确定未知流量, 只要增添x 4统计的值即可. 当x 4 = 350时, 确定x 1 = 250, x 2 = 250, x 3 = 50. 若x 4 = 200, 则x 1 = 100, x 2 = 400, x 3 = ?100 < 0. 这表明单行线“③?④”应该改为“③?④”才合理. 【模型分析】(1) 由(A , b )的行最简形可见, 上述方程组中的最后一个方程是多余的. 这意味着最后一个方程中的数据“300”可以不用统计. (2) 由142434100600300x x x x x x =-??=-+??=-?可得213141500200100x x x x x x =-+??=-??=+?, 123242500300600x x x x x x =-+??=-+??=-+?, 13234 3200300300x x x x x x =+??=-+??=+?, 这就是说x 1, x 2, x 3, x 4这四个未知量中, 任意一个未知量的值统计出来之后都可以确定出其他三个未知量的值. Matlab 实验题 某城市有下图所示的交通图, 每条道路都是单行线, 需要调查每条道路每小时的车流量. 图中的数字表示该条路段的车流数. 如果每个交叉路口进入和离开 图4 某城市单行线车流量 (1)建立确定每条道路流量的线性方程组. (2)分析哪些流量数据是多余的. (3)为了唯一确定未知流量, 需要增添哪几条道路的流量统计.

数学建模spss-时间预测-心得总结及实例

《一周总结,底稿供参考》 我们通过案例来说明: 假设我们拿到一个时间序列数据集:某男装生产线销售额。一个产品分类销售公司会根据过去10 年的销售数据来预测其男装生产线的月销售情况。 现在我们得到了10年120个历史销售数据,理论上讲,历史数据越多预测越稳定,一般也要24个历史数据才行! 大家看到,原则上讲数据中没有时间变量,实际上也不需要时间变量,但你必须知道时间的起点和时间间隔。 当我们现在预测方法创建模型时,记住:一定要先定义数据的时间序列和标记!

这时候你要决定你的时间序列数据的开始时间,时间间隔,周期!在我们这个案例中,你要决定季度是否是你考虑周期性或季节性的影响因素,软件能够侦测到你的数据的季节性变化因子。

定义了时间序列的时间标记后,数据集自动生成四个新的变量:YEAR、QUARTER、MONTH 和DATE(时间标签)。 接下来:为了帮我们找到适当的模型,最好先绘制时间序列。时间序列的可视化检查通常可以很好地指导并帮助我们进行选择。另外,我们需要弄清以下几点: ?此序列是否存在整体趋势?如果是,趋势是显示持续存在还是显示将随时间而消逝??此序列是否显示季节变化?如果是,那么这种季节的波动是随时间而加剧还是持续稳定存在? 这时候我们就可以看到时间序列图了! 我们看到:此序列显示整体上升趋势,即序列值随时间而增加。上升趋势似乎将持续,即为线性趋势。此序列还有一个明显的季节特征,即年度高点在十二月。季节变化显示随上升序列而增长的趋势,表明是乘法季节模型而不是加法季节模型。

此时,我们对时间序列的特征有了大致的了解,便可以开始尝试构建预测模型。时间序列预测模型的建立是一个不断尝试和选择的过程。 spss提供了三大类预测方法:1-专家建模器,2-指数平滑法,3-ARIMA ?指数平滑法 指数平滑法有助于预测存在趋势和/或季节的序列,此处数据同时体现上述两种特征。创建最适当的指数平滑模型包括确定模型类型(此模型是否需要包含趋势和/或季节),然后获取最适合选定模型的参数。

数学建模实例—-汽车购买决策

实用标准 购买汽车的选择 摘要 “我没有车我没有房”攒了几年钱终于有钱买车了,但我又担心买不到最称心的车子,于是我们团队就试图用数学建模的方法解决这个问题。 对于这种关键因素难以量化的问题,我们决定用最适合的层次分析法。首先,考虑到课题目标除了“做出购买决定”之外还要评出配置最高、最舒适、最漂亮的车子,所以我们将这个决策问题分成四层:首层是目标层,即本课题最重要的目标—购买汽车的决策,第二层是准则层,分成“舒适”“配置”“美观”“价格”四个准则,这样做的好处是便于达到课题的二级目标。第三层是次准则层,将准则层的四大准则细分为八个准则,需要指出的是“价格”因为无法细分我们将它设定为同时属于二三层。第四层,即最后一层是方案层,有三套方案供选择。 当思维过程转化为层次结构之后,从层次结构的第二层开始,对于从属于或影响上一层每个因素的同一层诸因素,用层次比较法和1-9比较尺度构造成对比较阵,直到最下层。 对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标,随机一致性指标和一致性比率做一致性检验,若检验通过,特征向量即为权向量;若不通过则需重新构造【1】。 最后组合权向量并做一致性检验。都通过之后就便得到了一个决策。此刻我们做的是重新审视模型讨论模型的局限以及不完整之处,力求改进,直到做出满意的模型。

Ⅰ问题重述 工作五年后,你决定要购买一辆汽车,预算十万左右。在汽车网上浏览了很久,初步确定将从三种价格相当的车型中选购一种。一般在购买汽车时考虑的标准可能包括:品牌、配置、动力、耗油量大小、舒适程度和外观美观情况等等。(以上提到的标准仅供参考,因人而异 (1 )不同的标准在你心目中的比重也许是不同的,请用定量的方法将其按比重的高低进行排序。 (2 )请用定量的方法说明哪种车配置最好、哪种车最舒适、哪种车最漂亮? (3 )建立数学模型,用确定的量化方法作出购买决定。 Ⅱ问题分析 本题要求用定量的方法研究购买汽车的决策。而购买汽车,人们多半是凭经验或者主观判断的提出决策方案。如何用定量的方法解决定性的问题,是首先要解决的问题。我们马上想到了层次分析法(AHP),这是一种定性和定量相结合的系统化的、层次化的分析方法。用这种方法,首先我们需要查阅大量资料,了解汽车主要构造,相关配置,外观设置等。之后就是尝试着将这些资料整合分类为能为决策提供帮助的一个个准则,然后去确定这些准则在心中的比重。于是得到了层次结构模型。结合三款车子资料,通过成对比较阵、最大特征根、组合权向量等方法求出一个决策结果,接下来并不着急给模型定型,而是审视模型改进模型直到获得满意的模型。 Ⅲ模型假设 1)获得的三款车子资料准确无误。 2)三款车子都没有质量问题。 3)车子的售后服务都一样。 Ⅳ模型的建立与求解 4.1 建立模型

matlab数学建模实例

第四周 3. function y=mj() for x0=0:0.01:8 x1=x0^3-11.1*x0^2+38.79*x0-41.769; if (abs(x1)<1.0e-8) x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度( 分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20; k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1; end x1 k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0); k=1; while (abs(x3-x0)>=1.0e-3) x0=x3; x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1; end x3 k 牛顿法: function y=newton(x0)

x1=x0-fc(x0)/df(x0); k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>=1.0e-8 x0=s; s=B*x0+G; n=n+1; end n Seidel迭代法: function s=seidel(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1);

matlab数学建模实例

m a t l a b数学建模实例集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

第四周3. function y=mj() for x0=0::8 x1=x0^*x0^2+*; if (abs(x1)< x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20; k=1; while (abs(x1-x0)>= x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1; end x1 k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0); k=1; while (abs(x3-x0)>= x0=x3; x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1; end x3 k 牛顿法: function y=newton(x0) x1=x0-fc(x0)/df(x0);

k=1; while (abs(x1-x0)>= x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>= x0=s; s=B*x0+G; n=n+1; end n Seidel迭代法: function s=seidel(a,d,x0) D=diag(diag(a));

简单数学建模100例

“学”以致用 -----简单数学建模应用问题100例 数学教学过程中学习了一个数学公式后,需要做大量的应用题,通过训练来加深理解所学公式。但是在生活中又有多少实际问题是可以直接套用公式的呢?理想状态下的公式直接运用,在生产及生活中的实例是少之又少。为此学生总感到学了数学没有什么实际用处,所以对学习数学少有兴趣。数学建模的引入对培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径,让中职学生从中体会到数学是来源于生活并应用于生活的. 数学建模是一种思维方式,它是一个动态的过程,通过此过程可以将一个实际的问题,经过模型准备、模型假设、模型构成、模型解析、模型检验与应用等五个具体步骤,转变为可以用数学方法(公式)来解决的,在理想状态下的数学问题,上述的整个流程统称为数学建模 如果想解决某个实际问题(也许它和数学没有直接的关系),可以按下面流程对问题进行数学建模。 一.模型准备先了解该问题的实际背景和建模目的,尽量弄清要建模的问题属于哪一类学科的问题,可能需要用到哪些知识,然后学习或复习有关的知识,为接下来的数学建模做准备.由于人们所掌握的专业知识是有限的,而实际问题往往是多样和复杂的,模型准备对做好数学建模问题是非常重要的. 二.模型假设有了模型准备的基础,要想把实际问题变为数学问题还要对其进行必要合理的简化和假设.明确了建模目的又掌握了相关资料,再去除一些次要因素.以主要矛盾为主来对该实际问题进行适当的简化并提出一些合理的假设。模型假设不太可能一蹴而就,可以在模型的不断修改中得到逐步完善. 三.模型构成在模型假设的基础上,选择适当的数学工具并根据已知的知识和搜

数学建模实例人口预报问题

数学建模实例:人口预报问题 1.问题 人口问题是当前世界上人们最关心的问题之一.认识人口数量的变化规律,作出较准确的预报,是有效控制人口增长的前提.下面介绍两个最基本的人口模型,并利用表1给出的近两百年的美国人口统计数据,对模型做出检验,最后用它预报2000年、2010年美国人口. 表1 美国人口统计数据 2.指数增长模型(马尔萨斯人口模型) 此模型由英国人口学家马尔萨斯(Malthus1766~1834)于1798年提出. [1] 假设:人口增长率r是常数(或单位时间内人口的增长量与当时的人口成正比). ()t x,由于量大,[2] 建立模型:记时刻t=0时人口数为x0, 时刻t的人口为 ()t x可视为连续、可微函数.t到t +时间内人口的增量为: t?

()()()t rx t t x t t x =?-?+ 于是()t x 满足微分方程: ()??? ??==0 0x x rx dt dx (1) [3] 模型求解: 解微分方程(1)得 ()rt e x t x 0= (2) 表明:∞→t 时,()∞→t x (r>0). [4] 模型的参数估计: 要用模型的结果(2)来预报人口,必须对其中的参数r 进行估计,这可以用表1的数据通过拟合得到.拟合的具体方法见本书第16章或第18章. 通过表中1790-1980的数据拟合得:r=0.307. [5] 模型检验: 将x 0=3.9,r=0.307 代入公式(2),求出用指数增长模型预测的1810-1920的人口数,见表2. 表2 美国实际人口与按指数增长模型计算的人口比较

以后的误差越来越大. 分析原因,该模型的结果说明人口将以指数规律无限增长.而事实上,随着人口的增加,自然资源、环境条件等因素对人口增长的限制作用越来越显著.如果当人口较少时人口的自然增长率可以看作常数的话,那么当人口增加到一定数量以后,这个增长率就要随着人口增加而减少.于是应该对指数增长模型关于人 口净增长率是常数的假设进行修改.下面的模型是在修改的模型中著名的一个. 3. 阻滞增长模型(Logistic 模型) [1]假设: (a )人口增长率r 为人口 ()t x 的函数()x r (减函数),最简单假定 ()0, ,>-=s r sx r x r (线性函数),r 叫做固有增长率. (b )自然资源和环境条件年容纳的最大人口容量m x . [2]建立模型: 当 m x x =时,增长率应为0,即()m x r =0,于是 m x r s =,代入 ()sx r x r -=得: ()??? ? ??- =m x x r x r 1 (3) 将(3)式代入(1)得: 模型为: ()?? ???=???? ??-=001x x x x x r dt dx m (4)

数学建模小实例

1、司乘人员配备问题 某昼夜服务的公交路线每天各时间区段内需司机和乘务人员如下: 设司机和乘务人员分别在各时间区段一开始上班,并连续工作八小时,问该公交线路至少配备多少名司机和乘务人员? 解: 设i x 为第i 班应报到的人员 )6,,2,1( =i ,建立线性模型如下: ∑==6 1min i i x Z

?????? ?????≥≥+≥+≥+≥+≥+≥+0 ,...,,3020 506070 60..62 1655 4433221 61x x x x x x x x x x x x x x x t s LINGO 程序如下: MODEL: min=x1+x2+x3+x4+x5+x6; x1+x6>=60; x1+x2>=70; x2+x3>=60; x3+x4>=50; x4+x5>=20; x5+x6>=30; END 得到的解为: x1=60,x2=10,x3=50,x4=0,x5=30,x6=0; 配备的司机和乘务人员最少为150人。

2、铺瓷砖问题 要用40块方形瓷砖铺下图所示形状的地面,但当时市场上只有长方形瓷砖,每块大小等于方形的两块。一人买了20块长方形瓷砖,试着铺地面,结果无法铺好。试问是这人的功夫不到家还是这个问题根本无解呢?

3、 棋子颜色问题 在任意拿出黑白两种颜色的棋子共n 个,随机排成一个圆圈。然后在两颗颜色相同的棋子中间放一颗黑色棋子,在两颗颜色不同的棋子中间放一颗白色棋子,放完后撤掉原来所放的棋子,再重复以上的过程,这样放下一圈后就拿走前次的一圈棋子,问这样重复进行下去各棋子的颜色会怎样变化呢? 分析与求解: 由于在两颗同色棋子中放一颗黑色棋子,两颗不同色的棋子中间放一颗白色棋子,故可将黑色棋子用1表示,白色棋子用-1表示。这是因为-1×(-1)=1,1×1=1,这代表两颗同色棋子中放一颗黑色棋子;1×(-1)= -1,这代表两颗不同色的棋子中间放一颗白色棋子。 设棋子数为n ,12,,,n a a a 为初始状态。 当n=3时 步数 状态(舍掉偶次项) 0 1a 2a 3a 1 21a a 32a a 13a a 2 31a a 21a a 32a a 3 32a a 31a a 21a a

简单数学建模应用问题100例

附件2 简单数学建模应用问题100例

前言 “数学建模”之解读 数学教学过程中学习了一个数学公式后,需要做大量的应用题,通过训练加深理解所学公式。但是在生活中又有多少实际问题是可以直接套用公式的呢?理想状态下的公式直接运用,在生产及生活中的实例是少之又少。为此学生总感到学了数学没有什么实际用处,所以对学习数学少有兴趣。数学建模的引入对培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径,让中职学生从中体会到数学是来源于生活并应用于生活的. 数学建模是一种思维方式,它是一个动态的过程,通过此过程可以将一个实际的问题,经过模型准备、模型假设、模型构成、模型解析、模型检验与应用等五个具体步骤,转变为可以用数学方法(公式)来解决的,在理想状态下的数学问题,上述的整个流程统称为数学建模 如果想解决某个实际问题(也许它和数学没有直接的关系),可以按下面流程对问题进行数学建模。 一.模型准备先了解该问题的实际背景和建模目的,尽量弄清要建模的问题属于哪一类学科的问题,可能需要用到哪些知识,然后学习或复习有关的知识,为接下来的数学建模做准备.由于人们所掌握的专业知识是有限的,而实际问题往往是多样和复杂的,模型准备对做好数学建模问题是非常重要的. 二.模型假设有了模型准备的基础,要想把实际问题变为数学问题还要对其进行必要合理的简化和假设.明确了建模目的又掌握了相关资料,再去除一些次要因素.以主要矛盾

为主来对该实际问题进行适当的简化并提出一些合理的假设。模型假设不太可能一蹴而就,可以在模型的不断修改中得到逐步完善. 三.模型构成在模型假设的基础上,选择适当的数学工具并根据已知的知识和搜集的信息来描述变量之间的关系或其他数学结构(如数学公式、定理、算法等).做模型构成时可以使用各种各样的数学理论和方法,但要注意的是在保证精度的条件下尽量用简单的数学方法是建模时要遵循的一个原则. 四.模型解析在模型构成中建立的数学模型可以采用解方程、推理、图解、计算机模拟、定理证明等各种传统的和现代的数学方法对其进行求解,其中有些可以借助于计算机软件来做这些工作。 五.模型检验与应用把模型解析得到的结果与实际情况对比,以检验其合理和有效性,检验后获取的正确模型对研究的实际问题给出预报或对类似实际问题进行分析、解释,以供决策者参考称为. 不难发现,在上述的五个步骤中,关键的是第三步“模型构成”——由数字、字母或其它数学符号组成的,描述现实对象数量规律的数学公式、图形或算法。所以说模型构成是数学建模的核心,它和数学的关系最密切。所得出的数学公式、图形或算法称之为数学模型(即解决实际问题的数学描述)。通常所说的数学建模实际上就是:寻找有用的数学模型的过程 为了避免作业书写中不必要的繁琐,通常用“分析”,“假设”,“模型”,“解析”,“检验”来表示数学建模的五个不同步骤,虽然每题不一定面面俱到,但假设,模型,解析三个步骤要求明确

相关文档
最新文档