粒子群算法和蚁群算法的结合及其在组合优化中的应用e

粒子群算法和蚁群算法的结合及其在组合优化中的应用e
粒子群算法和蚁群算法的结合及其在组合优化中的应用e

2007年第2期空间电子技术收稿日期:2006-04-03;收修改稿日期:2006-04-30

粒子群算法和蚁群算法的结合及其在

组合优化中的应用

张长春苏昕易克初

(西安电子科技大学综合业务网国家重点实验室,西安710071)

摘要文章首次提出了一种用于求解组合优化问题的PAAA 算法。该算法有效地

结合了粒子群算法和蚁群算法的优点,先利用粒子群算法的随机性、快速性、全局性得到

初始信息素分布(即粗搜索),再利用蚁群算法的并行性、正反馈性、求解精度高等优点求

精确解(即细搜索)。将文中提出的算法用于经典TSP 问题的求解,仿真结果表明PAAA 算

法兼有两种算法的优点,同时抛弃了各自的缺点。该算法在时间效率上优于蚁群算法,在

求精效率上优于粒子群算法,是综合了两种算法长处的一种新的启发式算法,达到时间性

能和优化性能上的双赢,获得了非常好的效果。

主题词蚁群算法粒子群算法旅行商问题PAAA

0引言

近年来对生物启发式计算(Bio-inspired Computing )的研究,越来越引起众多学者的关注和兴趣,产生了神经网络、遗传算法、模拟退火、粒子群算法、蚁群算法等许多用于解决复杂优化问题的新方法。然而,面对各种问题的特殊性和复杂性,每种算法都表现出了自身的优势和缺陷,都存在时间性能和优化性能不能兼得的矛盾。

粒子群优化(Particie Swarm Optimization ,PSO )算法[1,

2]是由Eberhart 和Kennedy 于1995年提出的一种全局优化算法,该算法源于对鸟群觅食行为的模拟。它的优势在于:(1)

算法简洁,可调参数少,易于实现;(2)

随机初始化种群,具有较强的全局搜索能力,类似于遗传算法;(3)利用评价函数衡量个体的优劣程度,搜索速度快;(4)具有较强的可扩展性。其缺点是:不能充分利用系统中的反馈信息,求解组合优化问题的能力不强。

蚁群算法[3,4](Ant Coiony Optimization ,ACO )

是由意大利学者M.Dorigo ,V.Maniezzo 和A.Coiorni 于20世纪90年代初提出的一种新型的智能优化算法,已经被应用到TSP 问题[5,6]、二次分配问题、工

件调度问题、图着色问题等许多经典组合优化问题中,取得了很好的效果。它的优点是:(1)采用一种正反馈机制,通过信息素的不断更新,达到最终收敛于最优路径上的目的;(2)是一种分布式的优化方法,易于并行实现;(3)是一种全局优化的方法,不仅可用于求解单目标优化问题,而且可用于求解多目标优化问题;(4)适合于求解离散优化问题;(5)鲁棒性强。但由于在算法的初始阶段信息素匮乏,所以求解速度较慢。

文章将粒子群算法和蚁群算法有机地结合,提出了PAAA 算法。它利用粒子群算法的较强的全局搜索能力生成信息素分布,再利用蚁群算法的正反馈机制求问题的精确解,汲取各自的优势,以达空间电子技术

SPACE ELECTRONIC TECHNOLOGY !"

2007年第2期到优势互补。最后,将该算法用于经典旅行商(TSP )问题的求解,获得了很好的效果。

1旅行商(TSP )问题

TSP

(Traveling Salesman Problem )问题[7]属于NP 完全问题,如用穷举搜索算法,则需要考虑所有可能的情况,找出所有的路径,再对其进行比较,以找到最佳的路径。这种方法随着城市数I 的上升,算法时间随I 按指数规律增长,即存在“指数爆炸”问题。

TSP 问题描述十分简单,

即寻找一条最短的遍历N 个城市的路径,其数学描述为:设有N 个城市的集合c ={c 1,c 2,…,c N },每两个城市之间的距离为i (c 1,c 2) R +,其中c i ,c j c

(1!i ,j !N )

,求使目标函数:T i =N -1i =1Z i

(c H (i ),c H (i +1))+i (c H

(N ),c H (1))(1)达到最小的城市序列{C

H (1),C H (2),…,C H (N )

},其中H (1),H (2),…,H (N )是1,2,3,……,N 的全排列。2

蚁群算法描述2.1蚁群算法的忧化思想

蚂蚁在觅食的途中会留下一种信息素,蚂蚁利用信息素与其他蚂蚁交流,找到较短路径;经过某地的蚂蚁越多,信息素的强度也就越大。蚂蚁择路偏向选择信息素较强的方向,又因为通过较短路径往返于食物和蚁穴之间的蚂蚁能以更短的时间经过这条路径上的点,所以这些点上的信息素就会因蚂蚁经过的次数增多而增多,这样就会有更多的蚂蚁选择此路径,这条路径上的信息素就会越来越强,选择此路径的蚂蚁也越来越多,直到最后,几乎所有蚂蚁都选择这条最短的路。这是一种正反馈机制。

2.2蚁群忧化原理分析

假如路径(i ,j )在I 时刻信息素强度为 ij ,蚂蚁k 在路径(i ,j )

上留下的信息素强度为A k ij ,信息素的挥发系数为 ,则该路径上的信息素强度按下式更新:

ij (I +1)=(1- )? ij (I )

+"A k ij (I )(2)设L k 为第k 只蚂蚁在本次周游中所走的路径长度,则A k ij (I )=O L k ,O 为常数;

设1ij =1i ij 为启发式因子,i ij 为路径(i ,j )的长度,启发式因子和信息素强度的相对重要程度分别为O 、B ,

设U 为蚂蚁下一步运动的候选集,则蚂蚁k 在I 时刻的转移概率为:

p k ij (I )= ij (I [])O 1ij []B "l U ij (I [])O 1ij []B j U 0其他

\<\L

(3)2.3MMAS 算法对基本蚁群算法进行改进得到的算法有许多种,其中最大-最小蚂蚁系统(MMAS )是到目前为止解决TSP 、OAP 等问题最好的ACO 算法。它直接来源于AS 算法,主要做了如下改进: 每次迭代结束后只有最优解路径上的信息素被更新,更好地利用了历史信息; 将各条路径的信息素强度限制在[ min , max ],有效地避免了算法过早的收敛及不扩散; 各路径的信息素初始值设为 max ,有利于算法发现更好的解。

张长春等:粒子群算法和蚁群算法的结合及其在组合忧化中的应用!!

!"

2007年第2期

空间电子技术

3粒子群优化算法

3.l基本粒子群忧化算法描述

在某一空间中初始化一群随机粒子,粒子的位置代表问题可能的解,每个粒子都在以一定的速度飞行,粒子群通过多次飞行,即迭代,逐步逼近最优位置,从而得到问题的最优解。在每一次迭代中,粒子根据两个极值来更新自己:一个是单个粒子找到的最优解,即个体极值;另一个是整个粒子群找到的最优解,即全局极值。

粒子根据上述两个极值,按照下面两个公式更新自己的速度和位置:

V=!!V+c1!rand()!(pbest-X)+c2!rand()!(gbest-X)(4)

X=X+V(5)其中,V=[1l,12,…,1d]是粒子的速度,X=[x l,x2,…,x d]是粒子的当前位置,d是解空间的维数。pbest 是个体极值。gbes t是全局极值。rand()是(0,l)之间的随机数。c l,c2被称为学习因子,用于调整粒子更新的步长,!是加权系数。

粒子通过不断的学习更新,粒子群逐渐靠近最优解所在位置,最终得到的gbest就是算法找到的全局最优解。

3.2对基本PSO的改造

PSO算法成功地应用于连续优化问题,但如果引入交换子和交换序[8]的概念,对基本的PSO算法进行改造,它也可以对TSP问题进行求解。改造后,速度更新公式为:

V*id=V id""(P id-X id)"#(P gd-X id)(6)其中"、#为随机数,"(P id-X id)表示基本交换序(P id-X id)中的交换子以概率"保留;同理,#(P gd-X id)表示基本交换序(P gd-X id)中的交换子以概率#保留。"为两个交换序的合并因子。

4粒子群算法和蚁群算法的结合

4.l PAAA(Particle Algorithm-Ant Algorithm)算法原理分析

虽然粒子群算法更适合于求解连续优化问题[2],在求解组合优化问题上显得逊色了一些,但是由于初始粒子的随机分布,将其用于求解组合优化问题时,该算法仍具有较强的全局搜索能力和较快的求解速度;蚁群算法在求解组合优化问题时优于粒子群优化算法,但由于信息素的初始分布为均匀分布(对于MMAS而言,强度均为$max),使得蚁群算法在算法的早期具有盲目性,不能很快地收敛。

文章首次提出的PAAA算法就综合了这两种算法的优势,其基本思想是:在PAAA算法的第一阶段,采用改造的粒子群优化算法,充分利用其随机性、快速性、全局性,经过一定的迭代次数(如20代)得到问题的次优解(粗搜索),利用问题的次优解调整蚁群算法中的信息素的初始分布;在算法的第二阶段,PAAA利用第一阶段得到的信息素的分布,充分利用蚁群算法的并行性、正反馈性、求解精度高等优点,从而完成整个问题的求解(细搜索)。

粒子群算法和蚁群算法相结合,汲取了两种算法的优点,克服了各自的缺点,优势互补,在时间效率上优于蚁群算法,在求精效率上优于粒子群算法,是综合了两种算法长处的一种新的启发式算法。它与MMAS算法的不同之处在于:MMAS算法把各路径的信息素初值设为最大值$max,而在PAAA算法中,首先通过粒子群算法得到一定的路径信息素分布,然后在蚁群算法中将信息素的初值设为:

$S=$C+$P(7)其中,$C为根据具体问题而规定的一个信息素常数,相当于MMAS算法中的$min,而$P就是由粒

2007年第2期子群算法得到的信息素值。图l 表示了PAAA 算法的构成方法。

图l PAAA 算法的构成方法

4.2仿直试验

以TSP 的经典问题eil5l 、st70和eil76为例,

文中采用MATLAB 对所提算法的有效性进行验证。首先,粒子群算法进行20次迭代,

得到问题的次优解,然后利用次优解的路径长度,根据式(7)得到蚁群算法中的初始信息素分布;在蚁群算法中,!=0.02,蚂蚁个数等于城市个数,"=l.0,#=5.0,$min =0.000l 。表l 显示了PAAA 算法和基本MMAS 算法在求解能力和时间效率上的对比情况。

表!仿真试验结果对比

从仿真结果可以看出,PAAA 算法中的MMAS 的进化代数明显要比基本MMAS 算法少,这是因为经过粒子群算法后,信息素的初始分布得到了改善,避免了基本MMAS 算法初期由于信息素均匀分布而造成的搜索的盲目性,这样有利于蚁群算法对更精确解的搜索。

图2形象地表示了该算法搜索到的最优路径的情况。

图2PAAA 算法找到的最短路径

5结论

从对文中算法的分析以及仿真结果可以看出,该算法在时间性能和优化性能上都取得了非常好的效果,是一种切实可行的算法。另外该算法不只适用于TSP 问题的求解,它还可以广泛地用于各类组合优化问题的求解,如网络路由计算、天线调零、频段分配等通信领域中的复杂优化问题。可以相信,随着对该算法的深入研究,它将会展现出非常好的应用前景。

张长春等:粒子群算法和蚁群算法的结合及其在组合忧化中的应用MMAS 算法

PAAA 算法进化代数

eil5l st70eil76426675538429678545823l 034l 322429678545粒子群202020

MMAS

l52

235

28l 问题已知最优解最短路径进化代数最短路径"#

2007年第2期空间电子技术A Adaptive Egualization Algorithm Based

On Channel-Estimation

Wang Canlong,Xu Zhangi,Zhu Xiaoming

(ISDN Xidian University,Xi'an 710071)

Abstract Under HF multi-path fading channels,Inter symbol interference (ISI),serious falling and fast variety of the channel characters are the main factors which adversely affect the performance of digital communication systems.The capability of receiver lies on the performance of channel-estimation and channel-egualization.But when the training seguence is too short or having chosen a algorithm with low speed of convergence,the coefficients of egualization can not achieve their best value at the end of training process.Therefore estimating the channel impulse response first and mapping the channel parameters to the egualizer's coefficients by solving the Wiener-Hopf eguations.Then taking the sguare root kalman algorithm to adjust these coefficients and track the vary of channel in the https://www.360docs.net/doc/5f10170980.html,puter simulation results show that this algorithm has better performance compared to traditional adaptive methods,especially when the training seguence is short.

Subject Term decision feedback egualizer(DFE);sguare root Kalman algorithm;channel-estimation (上接第75页)

参考文献

1

Kennedy J,Eberhart R C.Particle swarm optimization[A].IEEE International Conference on Neural Networks [C].Perth,Australia,19952Shi Y,Eberhart R C.A modified swarm optimizer[A].IEEE International Conference of Evolutionary Computation

[C].Anchorage,Alaska,1998

3Dorigo M and Caro G D.The ant colony optimization meta-heuristic.In D.Corne,M.Dorigo and F.Glover,Editors,New Ideas in Optimization[M]:11~32.McGraw Hill,London,UK,1999

4Bonabeau E,Dorigo M and Theraulaz G.Swarm intelligence:from natural to artificial systems[M].New York:Oxford University.Press,1999

5张宏达,郑全弟.基于蚁群算法的TSP 的仿真与研究.航空计算技术.Vol 35,No 4:103~106,2005

6

吴斌,史忠植.一种基于蚁群算法的TSP 问题分段求解算法[J].计算机学报.2001,24(12):1328~13337

胡小兵.蚁群优化原理、理论及其应用研究.重庆大学博士学位论文.20048黄岚,王康平等.粒子群优化算法求解旅行商问题.吉林大学学报(理学版).Vol.41,No.4:477~480,2003

作者简介

张长春1980年生,

硕士。主要研究方向为通信信号处理、卫星通信。苏昕1979年生,

博士。主要研究方向为通信信号处理、数字通信。易克初1943年生,教授,现为西安电子科技大学综合业务网国家重点实验室副主任,博士生导师。发表学术论文100余篇,科研成果获奖中4项为省部级奖,获发明专利授权2项。主要研究方向:卫星通信、通信信号处理。

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!80

基于粒子群优化算法的图像分割

安康学院 学年论文(设计) 题目_____________________________________________ 学生姓名_______________ 学号_____________________________ 所在院(系)_______________________________________ 专业班级__________________________________________________ 指导教师_____________________________________________ 年月曰

基于粒子群优化算法的图像分割 (作者:) () 指导教师: 【摘要】本文通过对粒子群优化算法的研究,采用Java编程,设计出一套用于图像分割的系统。 基于粒子群优化算法的图像分割系统,可以将一幅给定的图像进行分割,然后将分割结果保存。图像分割的目的是将感兴趣的区域从图像中分割出来,从而为计算机视觉的后续处理提供依据。图像分割的方法有多种,阈值法因其实现简单而成为一种有效的图像分割方法。而粒子群优化(PSO)算法是一类随机全局优化技术,它通过粒子间的相互作用发现复杂搜索空间中的最优区域缩短寻找阈值的时间。因此,基于粒子群优化算法的图像分割以粒子群优化算法为寻优工具,建立具有自适应和鲁棒性的分割方法。从而可以在最短的时间内,准确地确定分割阈值。 关键词:粒子群优化(PSO,图像分割,阈值法,鲁棒性 Abstract T his paper based on the particle swarm optimizati on algorithm, desig ns a set of system for image segme ntati on using Java program min g. Image segme ntati on system based on particle swarm optimizati on algorithm, the image can be a given segmentation, and then the segmentation results would be saved. Image segmentation is the purpose of the interested area from the image, thus providing the basis for the subsequent processing of computer vision. There are many methods of image segmentation, threshold method since its simple realization, becomes a kind of effective method in image segmentation. Particle swarm optimization (PSO) algorithm is a stochastic global optimization technique; it finds optimal regions of complex search spaces for threshold time shorte ned through the in teractio n betwee n particles. Therefore, particle swarm optimization algorithm of image segmentation based on particle swarm optimization algorithm based on optimizati on tools; establish segme ntati on method with adaptive and robust. Therefore, it is possible for us in the shortest possible time to accurately determ ine the segme ntati on threshold. Key word s: PSO, image segmentation, threshold method, robust. 1引言 1.1研究的背景和意义 技术的不断向前发展,人们越来越多地利用计算机来获取和处理视觉图像信息。据统计,人类

基于混合信息粒子群优化算法

基于混合信息的粒子群优化算法 摘要:本文提出一种基于混合信息的粒子群优化算法。此算法具有充分利用种群信息,保证群体的多样性,快速收敛效果和避免陷入局部极值的能力。 abstract: this paper proposes a particle swarm optimization algorithm based on hybrid information. the new algorithm has the ability to make full use of the whole population information, ensure the diversity of population,has fast convergence effect and escape from local extremum. 关键词:粒子群优化算法;群体智能;混合信息 key words: particle swarm optimization;swarm intelligence;hybrid information 中图分类号:tp301.6 文献标识码:a 文章编号:1006-4311(2013)20-0240-02 0 引言 粒子群优化算法是由kennedy和eberhart[1,2]在1995年提出的一种新的群体智能计算技术。尽管传统的粒子群优化算法在低维空间的函数寻优问题上具有求解速度快、质量高的特点,但随着函数维数的增加,其优化性能便急剧下降,容易陷入局部极值,导致收敛精度低、不易收敛到全局最优。为了克服这一不足,研究者提出了很多粒子群优化算法的改进方法[3]。本文提出一种基于混合信息的粒子群优化算法,算法对粒子的速度进化公式进行改进,使

粒子群优化算法综述

粒子群优化算法综述 摘要:本文围绕粒子群优化算法的原理、特点、改进与应用等方面进行全面综述。侧重于粒子群的改进算法,简短介绍了粒子群算法在典型理论问题和实际工业对象中的应用,并给出了粒子群算三个重要的网址,最后对粒子群算做了进一步展望。 关键词;粒子群算法;应用;电子资源;综述 0.引言 粒子群优化算法]1[(Particle Swarm Optimization ,PSO)是由美国的Kenned 和Eberhar 于1995年提出的一种优化算法,该算法通过模拟鸟群觅食行为的规律和过程,建立了一种基于群智能方法的演化计算技术。由于此算法在多维空间函数寻优、动态目标寻优时有实现容易,鲁棒性好,收敛快等优点在科学和工程领域已取得很好的研究成果。 1. 基本粒子群算法]41[- 假设在一个D 维目标搜索空间中,有m 个粒子组成一个群落,其中地i 个粒子组成一个D 维向量,),,,(21iD i i i x x x x =,m i ,2,1=,即第i 个粒子在D 维目标搜索空间中的位置是i x 。换言之,每个粒子 的位置就是一个潜在的解。将i x 带入一个目标函数就可以计算出其适 应值,根据适应值得大小衡量i x 的优劣。第i 个粒子的飞翔速度也是一个D 维向量,记为),,,(21iD i i i v v v v =。记第i 个粒子迄今为止搜索到的最优位置为),,,(21iD i i i p p p p =,整个粒子群迄今为止搜索到的最优位置为),,,(21gD gi g g p p p p =。 粒子群优化算法一般采用下面的公式对粒子进行操作

)()(22111t id t gd t id t id t id t id x p r c x p r c v v -+-+=+ω (1) 11+++=t id t id t id v x x (2) 式中,m i ,,2,1 =;D d ,,2,1 =;ω是惯性权重, 1c 和2c 是非负常数, 称为学习因子, 1r 和2r 是介于]1,0[间的随机数;],[max max v v v id -∈,max v 是常数,由用户设定。 2. 粒子群算法的改进 与其它优化算法一样PSO 也存在早熟收敛问题。随着人们对算 法搜索速度和精度的不断追求,大量的学者对该算法进行了改进,大致可分为以下两类:一类是提高算法的收敛速度;一类是增加种群多样性以防止算法陷入局部最优。以下是对最新的这两类改进的总结。 2.1.1 改进收敛速度 量子粒子群优化算法]5[:在量子系统中,粒子能够以某一确定的 概率出现在可行解空间中的任意位置,因此,有更大的搜索范围,与传统PSO 法相比,更有可能避免粒子陷入局部最优。虽然量子有更大的搜索空间,但是在粒子进化过程中,缺乏很好的方向指导。针对这个缺陷,对进化过程中的粒子进行有效疫苗接种,使它们朝着更好的进化方向发展,从而提高量子粒子群的收敛速度和寻优能力。 文化粒子群算法]6[:自适应指导文化PSO 由种群空间和信念空间 两部分组成。前者是基于PSO 的进化,而后者是基于信念文化的进化。两个空间通过一组由接受函数和影响函数组成的通信协议联系在一起,接受函数用来收集群体空间中优秀个体的经验知识;影响函数利用解决问题的知识指导种群空间进化;更新函数用于更新信念空间;

粒子群算法综述

粒子群算法综述 【摘要】:粒子群算法(pso)是一种新兴的基于群体智能的启发式全局搜索算法,具有易理解、易实现、全局搜索能力强等特点,倍受科学与工程领域的广泛关注,已得到广泛研究和应用。为了进一步推广应用粒子群算法并为深入研究该算法提供相关资料,本文对目前国内外研究现状进行了全面分析,在论述粒子群算法基本思想的基础上,围绕pso的运算过程、特点、改进方式与应用等方面进行了全面综述,并给出了未来的研究方向展望。 【关键词】:粒子群算法优化综述 优化理论的研究一直是一个非常活跃的研究领域。它所研究的问题是在多方案中寻求最优方案。人们关于优化问题的研究工作,随着历史的发展不断深入,对人类的发展起到了重要的推动作用。但是,任何科学的进步都受到历史条件的限制,直到二十世纪中期,由于高速数字计算机日益广泛应用,使优化技术不仅成为迫切需要,而且有了求解的有力工具。因此,优化理论和算法迅速发展起来,形成一门新的学科。至今已出现线性规划、整数规划、非线性规划、几何规划、动态规划、随机规划、网络流等许多分支。这些优化技术在诸多工程领域得到了迅速推广和应用,如系统控制、人工智能、生产调度等。随着人类生存空间的扩大,以及认识世界和改造世界范围的拓宽,常规优化法如牛顿法、车辆梯度法、模式搜索法、单纯形法等已经无法处理人们所面的复杂问题,因此高效的

优化算法成为科学工作者的研究目标之一。 1.粒子群算法的背景 粒子群算法(particle swarm optimization,pso)是一种新兴的演化算法。该算法是由j.kennedy和r.c.eberhart于1995年提出的一种基于群智能的随机优化算法。这类算法的仿生基点是:群集动物(如蚂蚁、鸟、鱼等)通过群聚而有效的觅食和逃避追捕。在这类群体的动物中,每个个体的行为是建立在群体行为的基础之上的,即在整个群体中信息是共享的,而且在个体之间存在着信息的交换与协作。如在蚁群中,当每个个体发现食物之后,它将通过接触或化学信号来招募同伴,使整个群落找到食源;在鸟群的飞行中,每只鸟在初始状态下处于随机位置,且朝各个方向随机飞行,但随着时间推移,这些初始处于随机状态的鸟通过相互学习(相互跟踪)组织的聚集成一个个小的群落,并以相同的速度朝着相同的方向飞行,最终整个群落聚集在同一位置──食源。这些群集动物所表现的智能常称为“群体智能”,它可表述为:一组相互之间可以进行直接通讯或间接通讯(通过改变局部环境)的主体,能够通过合作对问题进行分布求解。换言之,一组无智能的主体通过合作表现出智能行为特征。粒子群算法就是以模拟鸟的群集智能为特征,以求解连续变量优化问题为背景的一种优化算法。因其概念简单、参数较少、易于实现等特点,自提出以来已经受到国内外研究者的高度重视并被广泛应用于许多领域。

基于MATLAB的粒子群优化算法的应用示例

对于函数f=x*sin(x)*cos(2*x)-2*x*sin(3*x),求其在区间[0,20]上该函数的最大值。 ?初始化种群 已知位置限制[0,20],由于一维问题较为简单,因此可以取初始种群N 为50,迭代次数为100,当然空间维数d 也就是1。 位置和速度的初始化即在位置和速度限制内随机生成一个N×d 的矩阵,对于此题,位置初始化也就是在0~20内随机生成一个50×1的数据矩阵,而对于速度则不用考虑约束,一般直接在0~1内随机生成一个50×1的数据矩阵。 此处的位置约束也可以理解为位置限制,而速度限制是保证粒子步长不超限制的,一般设置速度限制为[-1,1]。 粒子群的另一个特点就是记录每个个体的历史最优和种群的历史最优,因此而二者对应的最优位置和最优值也需要初始化。其中每个个体的历史最优位置可以先初始化为当前位置,而种群的历史最优位置则可初始化为原点。对于最优值,如果求最大值则初始化为负无穷,相反地初始化为正无穷。 每次搜寻都需要将当前的适应度和最优解同历史的记录值进行对比,如果超过历史最优值,则更新个体和种群的历史最优位置和最优解。 ?速度与位置的更新

速度和位置更新是粒子群算法的核心,其原理表达式和更新方式如下: 每次更新完速度和位置都需要考虑速度和位置的限制,需要将其限制在规定范围内,此处仅举出一个常规方法,即将超约束的数据约束到边界(当位置或者速度超出初始化限制时,将其拉回靠近的边界处)。当然,你不用担心他会停住不动,因为每个粒子还有惯性和其他两个参数的影响。 代码如下: clc;clear;close all; %% 初始化种群 f= @(x)x .* sin(x) .* cos(2 * x) - 2 * x .* sin(3 * x); % 函数表达式figure(1);ezplot(f,[0,0.01,20]); N = 50; % 初始种群个数 d = 1; % 空间维数 ger = 100; % 最大迭代次数 limit = [0, 20]; % 设置位置参数限制 vlimit = [-1, 1]; % 设置速度限制 w = 0.8; % 惯性权重 c1 = 0.5; % 自我学习因子 c2 = 0.5; % 群体学习因子 for i = 1:d

粒子群算法和遗传算法比较

粒子群算法(PSO)和遗传算法(GA)都是优化算法,都力图在自然特性的基础上模拟个体种群的适应性,它们都采用一定的变换规则通过搜索空间求解。PSO和GA的相同点: (1)都属于仿生算法。PSO主要模拟鸟类觅食、人类认知等社会行为而提出;GA主要借用生物进化中“适者生存”的规律。 (2)都属于全局优化方法。两种算法都是在解空间随机产生初始种群,因而算法在全局的解空间进行搜索,且将搜索重点集中在性能高的部分。 (3)都属于随机搜索算法。都是通过随机优化方法更新种群和搜索最优点。PSO 中认知项和社会项前都加有随机数;而GA的遗传操作均属随机操作。 (4)都隐含并行性。搜索过程是从问题解的一个集合开始的,而不是从单个个体开始,具有隐含并行搜索特性,从而减小了陷入局部极小的可能性。并且由于这种并行性,易在并行计算机上实现,以提高算法性能和效率。 (5)根据个体的适配信息进行搜索,因此不受函数约束条件的限制,如连续性、可导性等。 (6)对高维复杂问题,往往会遇到早熟收敛和收敛性能差的缺点,都无法保证收敛到最优点。 PSO和GA不同点 (1)PSO有记忆,好的解的知识所有粒子都保存,而GA没有记忆,以前的知识随着种群的改变被破坏。 (2)在GA算法中,染色体之间相互共享信息,所以整个种群的移动是比较均匀地向最优区域移动。PSO中的粒子仅仅通过当前搜索到最优点进行共享信息,所以很大程度上这是一种单项信息共享机制,整个搜索更新过程是跟随当前最优解的过程。在大多数情况下,所有粒子可能比遗传算法中的进化个体以更快速度收敛于最优解。 (3)GA的编码技术和遗传操作比较简单,而PSO相对于GA,不需要编码,没有交叉和变异操作,粒子只是通过内部速度进行更新,因此原理更简单、参数更少、实现更容易。 (4)在收敛性方面,GA己经有了较成熟的收敛性分析方法,并且可对收敛速度进行估计;而PSO这方面的研究还比较薄弱。尽管已经有简化确定性版本的收敛性分析,但将确定性向随机性的转化尚需进一步研究。 (5)在应用方面,PSO算法主要应用于连续问题,包括神经网络训练和函数优化等,而GA除了连续问题之外,还可应用于离散问题,比如TSP问题、货郎担问题、工作车间调度等。

粒子群优化算法介绍及matlab程序

粒子群优化算法(1)—粒子群优化算法简介 PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。这个过程我们转化为一个数学问题。寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。该函数的图形如下: 当x=0.9350-0.9450,达到最大值y=1.3706。为了得到该函数的最大值,我们在[0, 4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0, 4]之间的一个速度。下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。直到最后在y=1.3706这个点停止自己的更新。这个过程与粒子群算法作为对照如下: 这两个点就是粒子群算法中的粒子。 该函数的最大值就是鸟群中的食物。 计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。 更新自己位置的公式就是粒子群算法中的位置速度更新公式。 下面演示一下这个算法运行一次的大概过程: 第一次初始化 第一次更新位置

第二次更新位置 第21次更新 最后的结果(30次迭代) 最后所有的点都集中在最大值的地方。

粒子群优化算法(2)—标准粒子群优化算法 在上一节的叙述中,唯一没有给大家介绍的就是函数的这些随机的点(粒子)是如何运动的,只是说按照一定的公式更新。这个公式就是粒子群算法中的位置速度更新公式。下面就介绍这个公式是什么。在上一节中我们求取函数y=1-cos(3*x)*exp(-x)的在[0, 4]最大值。并在[0,4]之间放置了两个随机的点,这些点的坐标假设为x1=1.5,x2=2.5;这里的点是一个标量,但是我们经常遇到的问题可能是更一般的情况—x 为一个矢量的情况,比如二维z=2*x1+3*x22的情况。这个时候我们的每个粒子均为二维,记粒子P1=(x11,x12),P2=(x21,x22),P3=(x31,x32),......Pn=(xn1,xn2)。这里n 为粒子群群体的规模,也就是这个群中粒子的个数,每个粒子的维数为2。更一般的是粒子的维数为q ,这样在这个种群中有n 个粒子,每个粒子为q 维。 由n 个粒子组成的群体对Q 维(就是每个粒子的维数)空间进行搜索。每个粒子表示为:x i =(x i1,x i2,x i3,...,x iQ ),每个粒子对应的速度可以表示为v i =(v i1,v i2,v i3,....,v iQ ),每个粒子在搜索时要考虑两个因素: 1. 自己搜索到的历史最优值 p i ,p i =(p i1,p i2,....,p iQ ),i=1,2,3,....,n ; 2. 全部粒子搜索到的最优值p g ,p g =(p g1,p g2,....,p gQ ),注意这里的p g 只有一个。 下面给出粒子群算法的位置速度更新公式: 112()()()()k k k k i i i i v v c rand pbest x c rand gbest x ω+=+??-+??-, 11k k k i i i x x av ++=+. 这里有几个重要的参数需要大家记忆,因为在以后的讲解中将会经常用到,它们是: ω是保持原来速度的系数,所以叫做惯性权重。1c 是粒子跟踪自己历史最优值的权重系数,它表示粒子自身的认识,所以叫“认知”。通常设置为2。2c 是粒子跟踪群体最优值的权重系数,它表示粒子对整个群体知识的认识,所以叫做“社会知识”,经常叫做“社会”。通常设置为2。()rand 是[0,1]区间内均匀分布的随机数。a 是对位置更新的时候,在速度前面加的一个系数,这个系数我们叫做约束因子。通常设置为1。这样一个标准的粒子群算法就介绍结束了。下图是对整个基本的粒子群的过程给一个简单的图形表示。 判断终止条件可是设置适应值到达一定的数值或者循环一定的次数。 注意:这里的粒子是同时跟踪自己的历史最优值与全局(群体)最优值来改变自己的位置预速度的,所以又叫做全局版本的标准粒子群优化算法。

粒子群算法解决函数优化问题

粒子群算法解决函数优化问题 1、群智能算法研究背景 粒子群优化算法(Particle Swarm Optimization,PSO)是由Kennedy 和Eberhart 在研究鸟类和鱼类的群体行为基础上于1995 年提出的一种群智能算法,其思想来源于人工生命和演化计算理论,模仿鸟群飞行觅食行为,通过鸟集体协作使群体达到优。 PSO算法作为一种新的群智能算法,可用于解决大量非线性、不可微和多峰值的复杂函数优化问题,并已广泛应用于科学和工程领域,如函数优化、神经网络训练、经济调度、模式识别与分类、结构设计、电磁场和任务调度等工程优化问题等。 PSO算法从提出到进一步发展,仅仅经历了十几年的时间,算法的理论基础还很薄弱,自身也存在着收敛速度慢和早熟的缺陷。如何加快粒子群算法的收敛速度和避免出现早熟收敛,一直是大多数研究者关注的重点。因此,对粒子群算法的分析改进不仅具有理论意义,而且具有一定的实际应用价值。 2、国内外研究现状 对PSO算法中惯性权重的改进:Poli等人在速度更新公式中引入惯性权重来更好的控制收敛和探索,形成了当前的标准PSO算法。 研究人员进行了大量的研究工作,先后提出了线性递减权值( LDIW)策略、模糊惯性权值( FIW) 策略和随机惯性权值( RIW) 策略。其中,FIW 策略需要专家知识建立模糊规则,实现难度较大,RIW 策略被用于求解动态系统,LDIW策略相对简单且收敛速度快, 任子晖,王坚于2009 年,又提出了基于聚焦距离变化率的自适应惯性权重PSO算法。 郑春颖和郑全弟等人,提出了基于试探的变步长自适应粒子群算

法。这些改进的PSO算法既保持了搜索速度快的特点, 又提高了全局搜索的能力。 对PSO算法的行为和收敛性的分析:1999 年采用代数方法对几种典型PSO算法的运行轨迹进行了分析,给出了保证收敛的参数选择范围。在收敛性方面Fransvan den Bergh引用Solis和Wets关于随机性算法的收敛准则,证明了标准PSO算法不能收敛于全局优解,甚至于局部优解;证明了保证收敛的PSO算法能够收敛于局部优解,而不能保证收敛于全局优解。 国内的学者:2006 年,刘洪波和王秀坤等人对粒子群优化算法的收敛性进行分析,指出它在满足收敛性的前提下种群多样性趋于减小,粒子将会因速度降低而失去继续搜索可行解的能力,提出混沌粒子群优化算法。 2008 年,黄翀鹏和熊伟丽等人分析惯性权值因子大小对PSO算法收敛性所带来的影响,对粒子群算法进行了改进。2009 年,高浩和冷文浩等人,分析了速度因子对微粒群算法影响,提出了一种基于Gaussian 变异全局收敛的粒子群算法。并证明了它能以概率 1 收敛到全局优解。 2010 年,为提高粒子群算法的收敛性,提出了基于动力系统的稳定性理论,对惯性权重粒子群模型的收敛性进行了分析,提出了使得在算法模型群模型收敛条件下的惯性权重和加速系数的参数约束关系,使算法在收敛性方面具有显著优越性。在PSO算法中嵌入别的算法的思想和技术。 1997年,李兵和蒋慰孙提出混沌优化方法; 1998年,Angeline在PSO算法中引入遗传算法中的选择算子,该算法虽然加快了算法的收敛速度,但同时也使算法陷入局部优的概率大增,特别是在优化Griewank 基准函数的优值时得到的结果不理想; 2004 年,高鹰和谢胜利将混沌寻优思想引入到粒子群优化算法中,首先对当前群体中的优粒子进行混沌寻优, 再用混沌寻优的结果随机替换群体中的一个粒子,这样提出另一种混沌粒子群优化算法。

粒子群优化算法及其应用研究【精品文档】(完整版)

摘要 在智能领域,大部分问题都可以归结为优化问题。常用的经典优化算法都对问题有一定的约束条件,如要求优化函数可微等,仿生算法是一种模拟生物智能行为的优化算法,由于其几乎不存在对问题的约束,因此,粒子群优化算法在各种优化问题中得到广泛应用。 本文首先描述了基本粒子群优化算法及其改进算法的基本原理,对比分析粒子群优化算法与其他优化算法的优缺点,并对基本粒子群优化算法参数进行了简要分析。根据分析结果,研究了一种基于量子的粒子群优化算法。在标准测试函数的优化上粒子群优化算法与改进算法进行了比较,实验结果表明改进的算法在优化性能明显要优于其它算法。本文算法应用于支持向量机参数选择的优化问题上也获得了较好的性能。最后,对本文进行了简单的总结和展望。 关键词:粒子群优化算法最小二乘支持向量机参数优化适应度

目录 摘要...................................................................... I 目录....................................................................... II 1.概述. (1) 1.1引言 (1) 1.2研究背景 (1) 1.2.1人工生命计算 (1) 1.2.2 群集智能理论 (2) 1.3算法比较 (2) 1.3.1粒子群算法与遗传算法(GA)比较 (2) 1.3.2粒子群算法与蚁群算法(ACO)比较 (3) 1.4粒子群优化算法的研究现状 (4) 1.4.1理论研究现状 (4) 1.4.2应用研究现状 (5) 1.5粒子群优化算法的应用 (5) 1.5.1神经网络训练 (6) 1.5.2函数优化 (6) 1.5.3其他应用 (6) 1.5.4粒子群优化算法的工程应用概述 (6) 2.粒子群优化算法 (8) 2.1基本粒子群优化算法 (8) 2.1.1基本理论 (8) 2.1.2算法流程 (9) 2.2标准粒子群优化算法 (10) 2.2.1惯性权重 (10) 2.2.2压缩因子 (11) 2.3算法分析 (12) 2.3.1参数分析 (12) 2.3.2粒子群优化算法的特点 (14) 3.粒子群优化算法的改进 (15) 3.1粒子群优化算法存在的问题 (15) 3.2粒子群优化算法的改进分析 (15) 3.3基于量子粒子群优化(QPSO)算法 (17) 3.3.1 QPSO算法的优点 (17) 3.3.2 基于MATLAB的仿真 (18) 3.4 PSO仿真 (19) 3.4.1 标准测试函数 (19) 3.4.2 试验参数设置 (20) 3.5试验结果与分析 (21) 4.粒子群优化算法在支持向量机的参数优化中的应用 (22) 4.1支持向量机 (22) 4.2最小二乘支持向量机原理 (22)

粒子群算法(1)----粒子群算法简介

粒子群算法(1)----粒子群算法简介 二、粒子群算法的具体表述 上面罗嗦了半天,那些都是科研工作者写论文的语气,不过,PSO的历史就像上面说的那样。下面通俗的解释PSO算法。 PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO.中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。这个过程我们转化为一个数学问题。寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。该函数的图形如下: 当x=0.9350-0.9450,达到最大值y=1.3706。为了得到该函数的最大值,我们在[0,4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0,4]之间的一个速度。下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。直到最后在y=1.3706这个点停止自己的更新。这个过程与粒子群算法作为对照如下: 这两个点就是粒子群算法中的粒子。 该函数的最大值就是鸟群中的食物 计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。 更新自己位置的一定公式就是粒子群算法中的位置速度更新公式。 下面演示一下这个算法运行一次的大概过程: 第一次初始化

第一次更新位置 第二次更新位置

第21次更新 最后的结果(30次迭代) 最后所有的点都集中在最大值的地方。

启发式优化算法综述【精品文档】(完整版)

启发式优化算法综述 一、启发式算法简介 1、定义 由于传统的优化算法如最速下降法,线性规划,动态规划,分支定界法,单纯形法,共轭梯度法,拟牛顿法等在求解复杂的大规模优化问题中无法快速有效地寻找到一个合理可靠的解,使得学者们期望探索一种算法:它不依赖问题的数学性能,如连续可微,非凸等特性; 对初始值要求不严格、不敏感,并能够高效处理髙维数多模态的复杂优化问题,在合理时间内寻找到全局最优值或靠近全局最优的值。于是基于实际应用的需求,智能优化算法应运而生。智能优化算法借助自然现象的一些特点,抽象出数学规则来求解优化问题,受大自然的启发,人们从大自然的运行规律中找到了许多解决实际问题的方法。对于那些受大自然的运行规律或者面向具体问题的经验、规则启发出来的方法,人们常常称之为启发式算法(Heuristic Algorithm)。 为什么要引出启发式算法,因为NP问题,一般的经典算法是无法求解,或求解时间过长,我们无法接受。因此,采用一种相对好的求解算法,去尽可能逼近最优解,得到一个相对优解,在很多实际情况中也是可以接受的。启发式算法是一种技术,这种技术使得在可接受的计算成本内去搜寻最好的解,但不一定能保证所得的可行解和最优解,甚至在多数情况下,无法阐述所得解同最优解的近似程度。 启发式算法是和问题求解及搜索相关的,也就是说,启发式算法是为了提高搜索效率才提出的。人在解决问题时所采取的一种根据经验规则进行发现的方法。其特点是在解决问题

时,利用过去的经验,选择已经行之有效的方法,而不是系统地、以确定的步骤去寻求答案,以随机或近似随机方法搜索非线性复杂空间中全局最优解的寻取。启发式解决问题的方法是与算法相对立的。算法是把各种可能性都一一进行尝试,最终能找到问题的答案,但它是在很大的问题空间内,花费大量的时间和精力才能求得答案。启发式方法则是在有限的搜索空间内,大大减少尝试的数量,能迅速地达到问题的解决。 2、发展历史 启发式算法的计算量都比较大,所以启发式算法伴随着计算机技术的发展,才能取得了巨大的成就。纵观启发式算法的历史发展史: 40年代:由于实际需要,提出了启发式算法(快速有效)。 50年代:逐步繁荣,其中贪婪算法和局部搜索等到人们的关注。 60年代: 反思,发现以前提出的启发式算法速度很快,但是解得质量不能保证,而且对大规模的问题仍然无能为力(收敛速度慢)。 70年代:计算复杂性理论的提出,NP问题。许多实际问题不可能在合理的时间范围内找到全局最优解。发现贪婪算法和局部搜索算法速度快,但解不好的原因主要是他们只是在局部的区域内找解,等到的解没有全局最优性。由此必须引入新的搜索机制和策略。 Holland的遗传算法出现了(Genetic Algorithm)再次引发了人们研究启发式算法的兴趣。 80年代以后:模拟退火算法(Simulated Annealing Algorithm),人工神经网络(Artificial Neural Network),禁忌搜索(Tabu Search)相继出现。 最近比较火热的:演化算法(Evolutionary Algorithm), 蚁群算法(Ant Algorithms),拟人拟物算法,量子算法等。

基于粒子群优化算法的神经网络在

基于粒子群优化算法的神经网络在农药定量构效关系建模中的应用 张丽平 俞欢军3 陈德钊 胡上序 (浙江大学化工系,杭州310027) 摘 要 神经网络模型能有效模拟非线性输入输出关系,但其常规训练算法为BP 或其它梯度算法,导致训练时间较长且易陷入局部极小点。本实验探讨用粒子群优化算法训练神经网络,并应用到苯乙酰胺类农药的定量构效关系建模中,对未知化合物的活性进行预测来指导新药的设计和合成。仿真结果表明,粒子群优化算法训练的神经网络不仅收敛速度明显加快,而且其预报精度也得到了较大的提高。关键词 粒子群优化算法,神经网络,定量构效关系  2004201204收稿;2004207225接受 本文系国家自然科学基金资助项目(N o.20276063) 1 引 言 药物定量构效关系(QS AR )是研究药物生理活性和药物分子结构参数间的量变规律并建立相应的 数学模型,进而研究药物的作用机理,从而用于预测未知化合物的生物活性,探讨药物的作用机理,指导新药的设计和合成,在药物和农药的研究与设计中已经显示出广阔的应用前景1。以往QS AR 的建模方法大多基于统计原理,局限于线性模型,只进行简单的非线性处理,由此所建立的模型很难契合实际构效关系,并且其处理过程都比较繁琐2。神经网络通过学习将构效关系知识隐式分布在网络之中,适用于高度非线性体系。 在药物QS AR 中采用神经网络(NN )始于20世纪80年代末3,此后得到迅速的发展,目前已发展为除多重线性回归和多元数据分析之外的第3种方法4。通常多层前传网络采用BP 算法,通过误差反传,按梯度下降的方向调整权值。其缺点是可能陷入局部极小点,且对高维输入收敛速度非常缓慢。 粒子群优化算法(particle swarm optimization ,PS O )是K ennedy 等5源于对鸟群、鱼群和人类社会行为的研究而发展的一种新的进化型寻优技术。PS O 已成为进化寻优算法研究的热点,其最主要特点是简单、收敛速度快,且所需领域知识少。本实验拟将该方法初始化前传神经网络为苯乙酰胺类农药建立良好适用的QS AR 模型。 2 苯乙酰胺类农药的Q SAR 问题 苯乙酰胺类化合物是除草农药,其除草活性与其分子结构密切相关。所有的N 2(12甲基212苯乙基)苯乙酰胺都可用相应的羧酸酰胺通过霍夫曼反应生成。N 2(12甲基212苯乙基)苯乙酰胺的基本结构式为 : 其中X 为Me 、F 、Cl 、OMe 、CF 3和Br 等,Y 为Me 、Cl 、F 和Br 等,由不同的X 和Y 取代基可构成不同的化合物。常用以下7个理化参数描述化合物的分子组成和结构:log P 、log 2P (疏水性参数及其平方项)、 σ(电性效应参数)、E s (T aft 立体参数)、MR (摩尔折射度),1χ、2 χ(分子连接性指数)。于是这类化合物的QS AR 就转化为上述理化参数与除草活性间的关系。为研究这种关系,选用具有代表性的50个化合物, 他们的活性值取自文献1,见表1。 第32卷2004年12月分析化学(FE NXI H UAX UE ) 研究报告Chinese Journal of Analytical Chemistry 第12期1590~1594

粒子群优化算法车辆路径问题.

粒子群优化算法 计算车辆路径问题 摘要 粒子群优化算法中,粒子群由多个粒子组成,每个粒子的位置代表优化问题在D 维搜索空间中潜在的解。根据各自的位置,每个粒子用一个速度来决定其飞行的方向和距离,然后通过优化函数计算出一个适应度函数值(fitness)。粒子是根据如下三条原则来更新自身的状态:(1)在飞行过程中始终保持自身的惯性;(2)按自身的最优位置来改变状态;(3)按群体的最优位置来改变状态。本文主要运用运筹学中粒子群优化算法解决车辆路径问题。车辆路径问题 由Dan tzig 和Ram ser 于1959年首次提出的, 它是指对一系列发货点(或收货点) , 组成适当的行车路径, 使车辆有序地通过它们, 在满足一定约束条件的情况下, 达到一定的目标(诸如路程最短、费用最小, 耗费时间尽量少等) , 属于完全N P 问题, 在运筹、计算机、物流、管理等学科均有重要意义。粒子群算法是最近出现的一种模拟鸟群飞行的仿生算法, 有着个体数目少、计算简单、鲁棒性好等优点, 在各类多维连续空间优化问题上均取得非常好的效果。本文将PSO 应用于车辆路径问题求解中, 取得了很好的效果。 针对本题,一个中心仓库、7个需求点、中心有3辆车,容量均为1,由这三辆车向7个需求点配送货物,出发点和收车点都是中心仓库。 1233,1,7. k q q q l =====货物需求 量12345670.89,0.14,0.28,0.33,0.21,0.41,0.57g g g g g g g =======, 且 m a x i k g q ≤。利用matlab 编程,求出需求点和中心仓库、需求点之间的各 个距离,用ij c 表示。求满足需求的最小的车辆行驶路径,就是求m i n i j i j k i j k Z c x =∑∑∑。经过初始化粒子群,将初始的适应值作为每个粒子的个

粒子群算法和蚁群算法的结合及其在组合优化中的应用e

2007年第2期空间电子技术收稿日期:2006-04-03;收修改稿日期:2006-04-30 粒子群算法和蚁群算法的结合及其在 组合优化中的应用 张长春苏昕易克初 (西安电子科技大学综合业务网国家重点实验室,西安710071) 摘要文章首次提出了一种用于求解组合优化问题的PAAA 算法。该算法有效地 结合了粒子群算法和蚁群算法的优点,先利用粒子群算法的随机性、快速性、全局性得到 初始信息素分布(即粗搜索),再利用蚁群算法的并行性、正反馈性、求解精度高等优点求 精确解(即细搜索)。将文中提出的算法用于经典TSP 问题的求解,仿真结果表明PAAA 算 法兼有两种算法的优点,同时抛弃了各自的缺点。该算法在时间效率上优于蚁群算法,在 求精效率上优于粒子群算法,是综合了两种算法长处的一种新的启发式算法,达到时间性 能和优化性能上的双赢,获得了非常好的效果。 主题词蚁群算法粒子群算法旅行商问题PAAA 0引言 近年来对生物启发式计算(Bio-inspired Computing )的研究,越来越引起众多学者的关注和兴趣,产生了神经网络、遗传算法、模拟退火、粒子群算法、蚁群算法等许多用于解决复杂优化问题的新方法。然而,面对各种问题的特殊性和复杂性,每种算法都表现出了自身的优势和缺陷,都存在时间性能和优化性能不能兼得的矛盾。 粒子群优化(Particie Swarm Optimization ,PSO )算法[1, 2]是由Eberhart 和Kennedy 于1995年提出的一种全局优化算法,该算法源于对鸟群觅食行为的模拟。它的优势在于:(1) 算法简洁,可调参数少,易于实现;(2) 随机初始化种群,具有较强的全局搜索能力,类似于遗传算法;(3)利用评价函数衡量个体的优劣程度,搜索速度快;(4)具有较强的可扩展性。其缺点是:不能充分利用系统中的反馈信息,求解组合优化问题的能力不强。 蚁群算法[3,4](Ant Coiony Optimization ,ACO ) 是由意大利学者M.Dorigo ,V.Maniezzo 和A.Coiorni 于20世纪90年代初提出的一种新型的智能优化算法,已经被应用到TSP 问题[5,6]、二次分配问题、工 件调度问题、图着色问题等许多经典组合优化问题中,取得了很好的效果。它的优点是:(1)采用一种正反馈机制,通过信息素的不断更新,达到最终收敛于最优路径上的目的;(2)是一种分布式的优化方法,易于并行实现;(3)是一种全局优化的方法,不仅可用于求解单目标优化问题,而且可用于求解多目标优化问题;(4)适合于求解离散优化问题;(5)鲁棒性强。但由于在算法的初始阶段信息素匮乏,所以求解速度较慢。 文章将粒子群算法和蚁群算法有机地结合,提出了PAAA 算法。它利用粒子群算法的较强的全局搜索能力生成信息素分布,再利用蚁群算法的正反馈机制求问题的精确解,汲取各自的优势,以达空间电子技术 SPACE ELECTRONIC TECHNOLOGY !"

混合粒子群算法:基于模拟退火的算法

混合粒子群算法:基于模拟退火的算法 1. 算法原理 模拟退火算法在搜索过程中具有概率突跳的能力,能够有效地避免搜索过程中陷入局部极小解。模拟退火算法在退火过程中不但接受好的解,而且还以一定的概率接受差得解,同时这种概率受到温度参数的控制,其大小随温度的下降而减小。 2. 算法步骤 (1) 随机初始化种群中各微粒的位置和速度; (2) 评价每个微粒的适应度,将当前各微子的位置和适应值存储在各微子的i p 中,将所 有pbest 的中适应最优个体的位置和适应值存储在g p 中; (3) 确定初始温度; (4) 根据下式确定当前温度下各i p 的适配值: (()())/(()())/1 ()i g i g f p f p t i N f p f p t i e TF p e ----== ∑ (5) 采用轮盘赌策略从所有i p 中确定全局最优的某个替代值g p ',然后根据下式更新各 微粒的速度和位置: {},,11,,22,,(1)()[()][()]i j i j i j i j g j i j v t v t c r p x t c r p x t ?+=+-+- ,,,(1)()(1),1,2,...i j i j i j x t x t v t j d +=++= 12 C c c ?= =+ (6) 计算各微粒新的目标值,更新各微粒的i p 值及群体的g p 值; (7) 进行退温操作; (8) 若满足停止条件(通常为预设的运算精度或迭代次数),搜索停止,输出结果,否知 返回(4)继续搜索; (9) 初始温度和退温温度对算法有一定的影响,一般采用如下的初温和退温方式: 10,()/ln 5k k g t k t f p λ+== 3. 算法MATLAB 实现 在MATLAB 中编程实现的基于杂交的粒子群算法优化函数为:Sim uA P SO 。 功能:用基于模拟退火的粒子群算法求解无约束优化问题。

粒子群优化算法综述

粒子群优化算法 1. 引言 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),由Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究 PSO同遗传算法类似,是一种基于迭代的优化工具。系统初始化为一组随机解,通过迭代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍 同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域 2. 背景: 人工生命 "人工生命"是来研究具有某些生命基本特征的人工系统. 人工生命包括两方面的容 1. 研究如何利用计算技术研究生物现象 2. 研究如何利用生物技术研究计算问题 我们现在关注的是第二部分的容. 现在已经有很多源于生物现象的计算技巧. 例如, 人工神经网络是简化的大脑模型. 遗传算法是模拟基因进化过程的. 现在我们讨论另一种生物系统- 社会系统. 更确切的是, 在由简单个体组成的群落与环境以及个体之间的互动行为. 也可称做"群智能"(swarm intelligence). 这些模拟系统利用局部信息从而可能产生不可预测的群体行为 例如floys 和boids, 他们都用来模拟鱼群和鸟群的运动规律, 主要用于计算机视觉和计算机辅助设计. 在计算智能(computational intelligence)领域有两种基于群智能的算法. 蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization). 前者是对蚂蚁群落食物采集过程的模拟. 已经成功运用在很多离散优化问题上. 粒子群优化算法(PSO) 也是起源对简单社会系统的模拟. 最初设想是模拟鸟群觅食的过程. 但后来发现PSO是一种很好的优化工具. 3. 算法介绍

相关文档
最新文档