2015第十五讲基本不等式及其应用

高中数学新课标复习讲座 基本不等式及其应用

【基础回归】

1.下列命题中正确的是( )

A .函数x

x y 1

+=的最小值为2

B .函数2

32

2++=

x x y 的最小值为2

C .函数x x y 4

32-

-=(0>x )的最小值为342- D .函数x

x y 4

32--=(0>x )的最大值为342-

2.若23

0<

A .169

B .4

9 C .2

D .

4

9

3.若42=+y x ,则y

x 42+的最小值是( )

A .4

B .8

C .(22

D .24 4.设0>x ,0>y ,且404=+y x ,则y x lg lg +的最大值是( )

A .40

B .10

C .4

D .2

5.函数1

2

22+++=x x x y (1->x )的图象最低点的坐标是( )

A .(1,2)

B .(1,-2)

C .(1,1)

D .(0,2)

6.当2>x 时,不等式a x x ≥-+2

1

恒成立,则实数a 的取值范围是( )

A .(-∞,2]

B .(-∞,4]

C .[0,+∞)

D .[2,4]

7.某车间分批生产某种产品,每批的生产准备费用为800元。若每批生产x 件,则平均仓储时间为

8

x

天, 且每件产品每天的仓储费用为1元。为使平均到每件产品的生产准备费用与仓储费用之和最小, 每批应生产产品( )

A .60件

B .80件

C .100件

D .120件

8.函数1)3(log -+=x y a (0>a ,且1≠a )的图象恒过定点A 。

若点A 在直线01=++ny mx 上(其中m ,0>n ),则n

m 2

1+的最小值是( )

A .16

B .12

C .9

D .8

【知识解读】 一、基本不等式2

b

a a

b +≤

:(1)基本不等式成立的条件:_________ (2)等号成立的条件:当且仅当_________时取等号。 (3)其中

2

b

a +称为正数a ,

b 的________,ab 称为正数a ,b 的___________。 二、利用基本不等式求最值问题 已知0>x ,0>y ,则

(1)如果积xy 是定值P ,那么当且仅当_________时,有______值是_______(简记:积定和最小); (2)如果积y x +是定值S ,那么当且仅当_________时,有______值是_______(简记:和定积最大)。

三、几个常用的不等式

(1)ab b a 22

2≥+(R b a ∈,);(2)2)2(

b a ab +≤(R b a ∈,);(3)2≥+a

b

b a (b a ,同号且不为0)。 【典例剖析】

〖例1〗已知不等式9)1)((≥++y

a

x y x 对任意正实数x ,y 恒成立,求正实数a 的最小值。

〖例2〗设M 是△ABC 内一点,且ABC S ?的面积为1,定义=)(M f (m ,n ,p ),其中m ,n ,p 分别是△MBC ,△MCA ,△MAB 的面积,若=)(M f (21,x ,y ),则y

x 41+的最小值是( ) A .8

B .9

C .16

D .18

〖例3〗(2012浙江)若正数x ,y 满足xy y x 53=+,则y x 43+的最小值是( )

A .

524 B .5

28

C .5

D .6 〖例4〗已知0>x ,0>y ,且1=+y x ,求

y

x 4

3+的最小值。

〖例5〗(2008广东)某单位用2160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2000

平方米的楼房。经测算,如果将楼房建为x (10≥x )层,则每平方米的平均建筑费用为x 48560+(单位:元)。为了使楼房每平方米的平均综合费用最少,该楼房应建造多少层? (注:平均综合费用=平均建筑费用+平均购地费用,建筑总面积

购地总费用

平均购地费用=)

【课后作业】

1.已知向量a =(3,-2),b =(x ,y -1),若a ∥b ,则y

x

84+的最小值为 . 2.已知关于x 的不等式72

2≥-+

a

x x 在x ∈(a ,+∞)上恒成立,则实数a 的最小值为

基本不等式应用-解题技巧归纳

基本不等式应用解题技巧归纳 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x 技巧一:凑项 例1:已知54x <,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710(1)1 x x y x x ++=>-+的值域。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。例:求函数2 y = 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231,(0)x x y x x ++=> (2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈

2.已知01x <<,求函数y = 的最大值.;3.203x <<,求函数y =. 条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是 . 变式:若44log log 2x y +=,求11x y +的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且 191x y +=,求x y +的最小值。 变式: (1)若+∈R y x ,且12=+ y x ,求y x 11+的最小值 (2)已知+∈R y x b a ,,,且1=+y b x a ,求y x +的最小值 技巧七、已知x ,y 为正实数,且x 2 +y 22 =1,求x 1+y 2 的最大值. 技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab 的最小值. 变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。 2.若直角三角形周长为1,求它的面积最大值。

基本不等式在实际中的应用

基本不等式在实际中的应用 1.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 ( ) A .80元 B .120元 C .160元 D .240元 2.小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则 ( ) A .a v << B .v C 2a b v +< D .2 a b v += 3.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为8 x 天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品 ( ) A .60件 B .80件 C .100件 D .120件 4.如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20 y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程; (2)设在第一象有限一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.

5.某工厂生产某种产品,每日的成本C (单位:万元)与日产量x (单位:吨)满足函数关系式C =3+x ,每日的销售额S (单位:万元)与日产量x 满足函数关系式 35(06)814(6)k x x S x x ?++<

一元一次不等式组的实际应用

一元一次不等式组的实际 应用 Prepared on 22 November 2020

一元一次不等式组的实际应用 1、某市召开的出租汽车价格听证会上,物价局拟定了两套客运出租汽车运价调整方案.方案一:起步价调至7元/2公里,而后每公里元;方案二:起步价调至8元/3公里,而后每公里元.若某乘客乘坐出租车(路程多于3公里)时用方案一比较合算,则该乘客乘坐出租车的路程________5公里(填大于或小于) 2、李明家距离学校,现在李明需要用不超过18min的时间从家出发到达学校,已知他步行的速度为90m/min,跑步的速度为210m/min,则李明至少需要跑________分钟. 3、某火车站购进一种溶质质量分数为20%的消毒液,准备对候车室进行喷洒消毒,而从科学的角度知用含的消毒液喷洒效果最好,那么工作人员把这种溶质质量分数为20%消毒液稀释时,兑水的比例为1:100行不行________(填“行”或“不行”) 4、用若干辆载重量为8t的汽车运一批货物支援汶川地震灾区,若每辆汽车只装4t,则剩下20t货物;若每辆汽车装8t,则最后一辆汽车不满也不空,请问:有________辆汽车 5、现用甲、乙两种保温车将1800箱抗甲流疫苗运往灾区,每辆甲运输车最多可载200箱,每辆乙运输车最多可载150箱,并且安排车辆不超过10辆,那么甲运输车至少应安排_______辆. 6、某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到江阴儿童福利院看望孤儿.如果分给每位儿童5盒牛奶,那么剩下18盒牛奶;如果分给每位儿童6盒牛奶,那么最后一位儿童分不到6盒,但至少能有3盒.则这个儿童福利院的儿童最少有________人,最多有________人.

基本不等式及其应用知识梳理及典型练习题(含答案)

基本不等式及其应用 1.基本不等式 若a>0,,b>0,则 a + b 2 ≥ab ,当且仅当 时取“=”. 这一定理叙述为:两个正数的算术平均数 它们的几何平均数. 注:运用均值不等式求最值时,必须注意以下三点: (1)各项或各因式均正;(一正) (2)和或积为定值;(二定) (3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等) 2.常用不等式 (1)a 2+b 2≥ab 2(a ,b ∈R ). 2 a b +()0,>b a 注:不等式a 2+b 2≥2ab 和 2 b a +≥a b 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2 b a +)2 .

(3)ab≤ 2 2 ? ? ? ? ?+b a (a,b∈R). (4) b a + a b ≥2(a,b同号且不为0). (5) 2 2 ? ? ? ? ?+b a ≤ a2+b2 2 (a,b∈R). (6) b a ab b a b a 1 1 2 2 2 2 2 + ≥ ≥ + ≥ +()0 ,> b a (7)abc≤ a3+b3+c3 3 ;() ,,0 a b c> (8) a+b+c 3 ≥ 3 abc;() ,,0 a b c> 3.利用基本不等式求最大、最小值问题 (1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a +b≥,a2+b2≥. (2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.

设a,b∈R,且a+b=3,则2a +2b的最小值是( ) 解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42, 当且仅当a=b=3 2 时取等号,故选B. 若a>0,b>0,且a+2b-2=0, 则ab的最大值为( ) 解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤1 2 .当且仅当a =1,b=1 2 时等号成立.故选A.

(全)基本不等式应用_利用基本不等式求最值的技巧_题型分析

基本不等式应用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当 b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

基本不等式及其应用(优秀经典专题及答案详解)

专题7.3 基本不等式及其应用 学习目标 1.了解基本不等式的证明过程; 2.会用基本不等式解决简单的最大(小)值问题. 知识点一 基本不等式ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R);(4)????a +b 22≤a 2+b 2 2(a ,b ∈R); (5)2ab a +b ≤ab ≤a +b 2≤ a 2+b 22(a >0,b >0). 知识点三 算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2 ,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 知识点四 利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 2 4(简记:和定积最大). 【特别提醒】 1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立. 2.连续使用基本不等式时,牢记等号要同时成立. 考点一 利用基本不等式求最值

【典例1】(江西临川一中2019届模拟)已知x <54,则f (x )=4x -2+14x -5 的最大值为_______ 【答案】1 【解析】因为x <54 ,所以5-4x >0, 则f (x )=4x -2+ 14x -5=-????5-4x +15-4x +3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,取等号. 故f (x )=4x -2+ 14x -5 的最大值为1. 【方法技巧】 1.通过拼凑法利用基本不等式求最值的实质及关键点 拼凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.拼凑法的实质是代数式的灵活变形,拼系数、凑常数是关键. 2.通过常数代换法利用基本不等式求解最值的基本步骤 (1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1; (3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式; (4)利用基本不等式求解最值. 【变式1】(山东潍坊一中2019届模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 【答案】6 【解析】由已知得x +3y =9-xy , 因为x >0,y >0,所以x +3y ≥23xy , 所以3xy ≤????x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0. 令x +3y =t ,则t >0且t 2+12t -108≥0, 得t ≥6,即x +3y 的最小值为6. 【方法技巧】通过消元法利用基本不等式求最值的策略 当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值. 考点二 利用基本不等式解决实际问题 【典例2】 【2019年高考北京卷理数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果

数学:不等式的实际应用教案新人教B版必修

3.4不等式的实际应用教案 一、教材分析: 前面学生已经学习了一元二次不等式的解法,本节主要是一元二次不等式的实际应用。通过本节课的实例教学,让学生体验不等式在解决实际问题的作用,数学与日常及其他学科的联系。并通过解题过程,抽象出不等式模型,总结出解应用题的思路与步骤。本节课的内容对于解决线性规划问题提供了很好的解题思路。同时,应用题中不等式模型也是高考经常经常涉及的问题,其地位也就不言而喻了。 二、三维目标: 1、通过实际问题的情景,让学生掌握不等式的实际应用,掌握解决这类问题的一般步骤, 2、让学生经历从实际情景中抽象出不等式模型的过程。 3、通过实例,让学生体验数学与日常生活的联系,感受数学的实用价值,增强学生的应用意识,提高他们的实践能力。 三、教学重点和难点: 重点:不等式的实际应用 难点:数学建模 四、教学方法:通过启发、引导、归纳、总结与探究相结合的方法,组织教学活动,按照由特殊到一般的认知规律,引导学生分析归纳如何抽象不等式模型及解不等式应用题的一般步骤。 五、教具:多媒体 六、教学过程: (一)温故知新:

1、比较两实数大小的常用方法 2、联系一元二次不等式与相应的方程以及函数之间的关系,填写下表 △>0△=0△<0△=b2— 4ac Y=ax2 +bx+c (a>0)的 图象 ax2 +bx+c=0 (a>0)的 根 ax2 +bx+>0 (a>0)的 解集 ax2 +bx+c<0 (a>0)的 解集

(二)情景引入 b 克糖水中含有a 克糖(b>a>0),若在这些糖水中再添加m (m>0)克糖,则糖水就变甜了,根据此事实提炼一个关系式 ,师:引例就是不等式在我们的生活中的实际应用,今天,我们一起来学习不等式的实际应用。(引出课题) (三)、典例分析: 例1、 甲、乙两人同时同地沿同一路线去同一地点,甲有一半的时间以速度m 行走,另一半时间以速度n 行走;乙有一半路程以速度m 行走,另一半路程以速度n 行走,如果m ≠n,问甲、乙两人谁先到达指定地点? 分析:设总路程为s,甲、乙所用时间分别为t 甲、t 乙, 若要解决此问题,只需比较t 甲,t 乙的大小即可 解:设总路程为s,甲、乙所用时间分别为t 甲、t 乙,由题意得 s n t m t =+ 2 2 甲甲, 乙t n s m s =+22 所以 t 甲= n m s + , t 乙=mn n m s 2) (+ 所以t 甲— t 乙=n m s +—mn n m s 2)(+=()[] ()mn n m n m mn s ++-242 =()() n m mn n m s +--22 其中s,m,n 都是正数,且m ≠n,于是t 甲— t 乙<0 ,即t 甲<t 乙 答:甲比乙先到达指定地点。 方法二:做商比较。 回归情景:对糖水问题你能给出证明吗? 例2、有纯农药一桶,倒出8升后用水补满,然后倒出4升再用水补满,此时桶中的农药不超过容积的28%.问桶的容积最大为多少?

基本不等式及其应用

基本不等式及其应用 一、教学分析设计 【教材分析】 人教版普通高中课程标准试验教科书分不同的章节处理不等式问题。在必修5的第三章中,首先介绍了不等关系与不等式;然后是一元二次不等式及其解法,二元一次不等式(组)与简单的线性规划问题;最后在第四节介绍基本不等式。在选修教材《不等式选讲》中对不等式与绝对值不等式、证明不等式的基本方法、柯西不等式与排序不等式、数学归纳法证明不等式作了更详细的介绍。并在书中还安排章节复习了基本不等式,并将其推广到三元的形式。基本不等式从数学上凸显了沟通基础数学知识间的内在联系的可行性。 基本不等式的课程标准内容为:探索并了解基本不等式的证明过程;会用基本不等式解决简单的最值问题。教学要求为:了解基本不等式的代数背景、几何背景以及它的证明过程;理解算数平均数、几何平均数的概念;会用基本不等式解决简单的最值问题;通过基本不等式的实际应用,感受数学的应用价值(说明:突出用基本不等式解决问题的基本方法,不必推广到三个变量以上的情形)。《考试说明》中内容为:会用基本不等式解决简单的最值问题。通过对比分析,他们的共同都有“会用基本不等式解决简单的最值问题”。基本不等式与函数(包括三角函数)、数列、解析几何等内容均有丰富的联系,在《考试说明》中属于C及内容(含义:对该知识有实质性的理解并能与已有知识建立联系,掌握内容与形式的变化;相关技能已经形成,能用它来解决简单的相关问题)。 【学生分析】 从知识储备上看,高三学生已经基本掌握了不等式的简单性质和证明,并能用不等式及不等式组抽象出实际问题中的数学模型,也具备一定的几何知识。 从思维特点看,学生了解了不等关系的数学模型是解决实际问题的重要工具,具备一定的归纳、猜想、演绎证明和抽象思维的水平。 【目标分析】 结果性目标: 1、能在具体的问题情景中,通过抽象概括、数学建模以及逻辑推理获得基本不等式; 2、掌握基本不等式应用的条件“一正二定三相等”,和基本不等式的常见变形; 3、会用基本不等式解决一些简单的实际问题。 体验性目标: 1、在解决实际问题的过程中,体验基本不等式的本质是求二元的最值问题; 2、在解决实际问题中,体验“形”与“数”间的关联。 重点:创设基本不等式使用的条件。 难点:基本不等式的简单应用,以及使用过程中定值的取得。 【核心问题分析】 核心问题:在学校文化厘清过程中,拟对一块空地实行打造,现对其规划如下:将这块空地建成一个广场,在广场中间建一个长方形文化长廊,在其正中间造一个长方形景观池,并利用长廊内部左下角的那颗古树打造一条直线型景观带。请同学们按照以下要求实行数据设计: 问题1:文化长廊的周长为480米,要求文化长廊所围成的长方形面积最大,应怎样设计其长和宽? 问题2:已知景观池的容积为4800米,深为3米。已知景观池底每平米的造价是150元,池壁每平方米的造价是120元,问怎样设计,使造价最低,最低造价是多少? 问题3:设文化长廊为ABCD,现在长廊ABCD的左下角点E处有颗古树,且点E距左边AB和下边AD的D距离各为20米、10米,为保护古树,现经过古树E建造一直线型的景观带

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

用基本不等式解决应用题(精编文档).doc

【最新整理,下载后即可编辑】 用基本不等式解决应用题 例1.某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p (万元)和宿舍与工厂的距离()x km 的关系为:(08)35 k p x x = ≤≤+, 若距离为1km 时,测算宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设()f x 为建造宿舍与修路费用之和. (1)求()f x 的表达式; (2)宿舍应建在离工厂多远处,可使总费用()f x 最小,并求最小值. 变式:某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m ,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为x (m ),三块种植植物的矩 形区域的总面积... 为S (m 2). (1)求S 关于x 的函数关系式; (2)求S 的最大值.

17.解:(1)由题设,得 ()9007200822916 S x x x x ?? =--=--+ ???, ()8,450x ∈. ………………………6分 ( 2) 因 为 8450 x <<,所以 72002240x x + =≥, ……………………8分 当且仅当60 x =时等号成 立. ………………………10分 从 而 676S ≤. ………… ……………12分 答:当矩形温室的室内长为60 m 时,三块种植植物的矩形区

不等式的实际应用含答案

课时作业18 不等式的实际应用 时间:45分钟 满分:100分 课堂训练 1.某工厂第一年产量为A ,第二年产量的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x ,则( ) A .x =a +b 2 B .x ≤a +b 2 C .x >a +b 2 D .x ≥a +b 2 【答案】 B 【解析】 由题设有A (1+a )(1+b )=A (1+x )2,即x = (1+a )(1+b )-1≤1+a +1+b 2 -1=a +b 2. 2.设产品的总成本y (万元)与产量x (台)之间的函数关系是y =3 000+20x -0.1x 2(0

4万元/次.一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________吨. 【答案】 20 【解析】 每年购买次数为400x 次,∴总费用为400x ·4+ 4x ≥2 6 400=160,当且仅当1 600x =4x ,即x =20时等号成立.故x =20. 4.某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0

必修5--基本不等式几种解题技巧及典型例题

均值不等式应用(技巧)技巧一:凑项 1、求y = 2x+ 1 x - 3 (x > 3)的最小值 2、已知x > 3 2 ,求y = 2 2x - 3 的最小值 3、已知x < 5 4 ,求函数y = 4x – 2 + 1 4x - 5 的最大值。 技巧二:凑系数 4、当0 < x < 4时,求y = x(8 - 2x)的最大值。 5、设0 < x < 3 2 时,求y = 4x(3 - 2x)的最大值,并求此时x的值。 6、已知0 < x < 1时,求y = 2x(1 - x) 的最大值。 7、设0 < x < 2 3 时,求y = x(2 - 3x) 的最大值 技巧三:分离 8、求y = x2 + 7x + 10 x + 1 (x > -1)的值域; 9、求y = x2 + 3x + 1 x (x > 0)

的值域 10、已知x > 2,求y = x2 - 3x + 6 x - 2 的最小值 11、已知a > b > c,求y = a - c a - b + a - c b - c 的最小值 12、已知x > -1,求y = x + 1 x2 + 5x + 8 的最大值 技巧四:应用最值定理取不到等号时利用函数单调性 13、求函数y = x2 + 5 x2 + 4 的值域。 14、若实数满足a + b = 2,则3a + 3b的最小值是。 15、若 + = 2,求1 x + 1 y 的最小值,并求x、y的值。 技巧六:整体代换 16、已知x > 0,y > 0,且1 x + 9 y = 1,求x + y的最小值。

17、若x、y∈R+且2x + y = 1,求1 x + 1 y 的最小值 18、已知a,b,x,y∈R+ 且a x + b y = 1,求x + y的最小值。 19、已知正实数x,y满足2x + y = 1,求1 x + 2 y 的最小值 20、已知正实数x,y,z满足x + y + z = 1,求1 x + 4 y + 9 z 的最小值 技巧七:取平方 21、已知x,y为正实数,且x2 + y2 2 = 1,求x 1 + y2的最大值。 22、已知x,y为正实数,3x + 2y = 10,求函数y = 3x + 2y的最值。 23、求函数y = 2x - 1 + 5 - 2x(1 2 < x < 5 2 )的最大值。 技巧八:已知条件既有和又有积,放缩后解不等式 24、已知a,b为正实数,2b + ab + a = 30,求函数y = 1 ab 的最小值。

2020年高考数学复习题:基本不等式及其应用

基本不等式及其应用 [基础训练] 1.下列结论中正确的个数是( ) ①若a >0,则a 2 +1 a 的最小值是2a ; ②函数f (x )=sin 2x 3+cos 2x 的最大值是2; ③函数f (x )=x +1 x 的值域是[2,+∞); ④对任意的实数a ,b 均有a 2+b 2≥-2ab ,其中等号成立的条件是a =-b . A .0 B .1 C .2 D .3 : 答案:B 解析:①错误:设f (a )=a 2 +1 a ,其中a 是自变量,2a 也是变化的,不能说2a 是f (a )的最小值; ②错误:f (x )=sin 2x 3+cos 2 x ≤sin 2x +3+cos 2x 2 =2, 当且仅当sin 2x =3+cos 2x 时等号成立,此方程无解, ∴等号取不到,2不是f (x )的最大值; ③错误:当x >0时,x +1 x ≥2 x ·1x =2, 当且仅当x =1 x ,即x =1时等号成立; 当x <0时,-x >0,x +1 x =-? ?? ??-x +1-x ≤-2 -x ·1 -x =-2, ¥ 当且仅当-x =-1 x ,即x =-1时等号成立. ∴f (x )=x +1 x 的值域是(-∞,-2]∪[2,+∞); ④正确:利用作差法进行判断.

∵a 2+b 2+2ab =(a +b )2≥0,∴a 2+b 2≥-2ab , 其中等号成立的条件是a +b =0,即a =-b . 2.[2019河北张家口模拟]已知a +2b =2,且a >1,b >0,则 2 a -1+1 b 的最小值为( ) A .4 B .5 C .6 D .8 答案:D 解析:因为a >1,b >0,且a +2b =2, \ 所以a -1>0,(a -1)+2b =1, 所以2a -1+1b =? ????2 a -1+1 b ·[(a -1)+2b ] =4+4b a -1 +a -1b ≥4+2 4b a -1·a -1 b =8, 当且仅当4b a -1=a -1 b 时等号成立, 所以2a -1 +1b 的最小值是8,故选D. 3.若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞) D .(-∞,-2] ! 答案:D 解析:∵2x +2y ≥22x ·2y =22x +y (当且仅当2x =2y 时等号成立), ∴2 x +y ≤12,∴2x +y ≤14, 得x +y ≤-2.故选D. 4.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为( ) B .2 2 D .2 答案:D 解析:∵x >0,y >0,x +2y ≥22xy , ∴4xy -(x +2y )≤4xy -22xy , ∴4≤4xy -22xy ,

北师大版数学必修五:《基本不等式的实际应用》导学案(含答案)

第7课时基本不等式的实际应用 1.进一步熟悉基本不等式,并会用基本不等式来解题. 3.能利用基本不等式解决实际问题. 今天我们来探究基本不等式在实际生活中的应用,我们先来看个实际例子:如图,有一张单栏的竖向张贴的海报,它的印刷面积为72dm2(图中阴影部分),上下空白各2dm,左右空白各1dm,则四周空白部分面积的最小值是dm2. 问题1:设阴影部分的高为x dm,宽为错误!未找到引用源。dm,四周空白部分面积是y dm2.由题意得y=(x+4)(错误!未找到引用源。+2)-72=8+2(x+错误!未找到引用源。)≥8+2×2错误!未找到引用源。= . 当且仅当时,取得最小值. 问题2:用基本不等式解实际应用问题的步骤 (1)先理解题意,设变量,设变量时一般把定为函数; (2)建立相应的,把实际问题抽象为问题; (3)在定义域内,求出函数的; (4)正确写出答案. 问题3:利用基本不等式求最值时,必须保证等号能成立,否则不能用它来求最值,比如求f(x)=sin x+错误!未找到引用源。,x∈(0,π)的最值时,不能这样做:f(x)=sin x+错误!未找到引用源。≥2错误!未找到引用源。=2错误!未找到引用源。,因为当x∈(0,π)时无法满足sin x=错误!未找到引用源。. 问题4:利用基本不等式求最值时,一定要紧扣“一正,二定,三相等”这三个条件,即每个项都是正值,和或积是定值,所有的项能同时相等.而“二定”这个条件是对不等式巧妙地进行分析、组合、凑加系数等使之变成可用基本不等式的形式,倘若要多次利用不等式求最值,还必须保证每次取“=”号的一致性. 1.在下列不等式的证明过程中,正确的是().

基本不等式及其应用

2 第二节基本不等式及其应用 考纲解读 a + b I — 了解基本不等式 ab (a ,b ?R )的证明过程. 2 会用基本不等式解决简单的最大(小)值问题 利用基本不等式证明不等式 . 命题趋势探究 基本不等式是不等式中的重要内容,也是历年高考重点考查的知识点之一,其应用范围涉及高中数学的很多 章节,且常考常新,但考查内容却无外乎大小判断、求最值和求最值范围等问题 预测2019年本专题在高考中主要考查基本不等式求最值、大小判断 ,求取值范围问题? 本专题知识的考查综合性较强 ,解答题一般为较难题目,每年分值为5 8分. 知识点精讲 1.几个重要的不等式 (1)a 2 启 0(a € R ),需 兰 0(a 兰 0), a 3 0(a w R ). ④重要不等式串:-ab < 1 1 2 -+- 厶 a b 调和平均值 乞几何平均值 乞算数平均值 乞平方平均值(注意等号成立的条件). 2?均值定理 已知 x ,y ?二 R X + V c s 2 (1)如果X y = S (定值),则xy 乞( )2 (当且仅当“ x = y ”时取“ 2 4 大值”. (2)如果xy = p (定值),则x ■ y _ 2、, xy 二2 p (当且仅当“ x = y ”时取“ =”)?即积为定值,和有最小值”. 题型归纳及思路提示 题型91 基本不等式及其应用 思路提示 熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证 . a 2 + b 2 1. 2 . (2)基本不等式:如果 a b a,b R ,则 2 ..ab (当且仅当“ a =b ”时取 ”). 1 特例:a 0,a 2; a (3)其他变形: a b 「 (a, b 同号). b a 2 2 (a +b ) 2 ①a b (沟通两和a b 与两平方和 2 2 (沟通两积ab 与两平方和a 2 b 2的不等关系式) ②ab 4 2 2 a - b 的不等关系式) 2 a + b ③ab 乞( )2 (沟通两积ab 与两和a b 的不等关系式) 2 2 (a ,b R )即 a 2 b ”).即“和为定值,积有最

基本不等式应用技巧之高级篇

基本不等式应用技巧之高级篇 基本不等式在不等式的证明、求最大值、最小值的有些问题上给我们带来了很大的方便,但有时很想用基本不等式,却感到力不从心。这需要一点技巧,就是要能适当的配凑,即把相关的系数做适当的配凑。比如下面的例题1。 例题1. 已知5 4 x <,求函数14245y x x =-+-的最大值。 解:因54 x <,所以450 x -<。这可以先调整式子的符号,但 1 (42) 45 x x --不是常数,所以必须对 42x -进行拆分。 11 42(54)3231 4554y x x x x =-+=--++≤-+=-- 当且仅当1 5454x x -=-,即1x =时取等号。故当1x =时,max 1y = 但是有些题目的配凑并不是这么显然。我们应该如何去配凑,又有何规律可循呢?请看下面的例题2. 例题2. 设,,,x y z w 是不全为零的实数,求 2222 2xy yz zw x y z w +++++的最大值。 显然我们只需考虑0,0,0,0x y z w ≥≥≥≥的情形,但直接使用基本不等式是不行的,我们假设可以找到相应的正参数,αβ满足: 2222222222 ()(1)1x y z w x y y z z w ααββ+++=++-++-+≥++()故依据取等号的条件得, t = ==,参数t 就是我们要求的最大值。 消去,αβ我们得到一个方程24410t t --= 此方程的最大根为我们所求的最大值得到t = 从这个例子我们可以看出,这种配凑是有规律的,关键是我们建立了一个等式 = = ,这个等式建立的依据是等号成立的条件,目的就是为了取得最值。 我们再看一些类似的问题,请大家细心体会。 例题3. 设,,,x y z w 引入参数,αβ ,γ 使其满足: 2(1)(2)(1)x y z x x y x y z x αβαγβγαβ++=--++++-+≥--+

基本不等式及其应用-沪教版必修1教案

基本不等式是每年的高考热点,主要考察命题的判定,不等式的证明以及求 最值问题。特别是求最值问题往往在基本不等式的使用条件上设置一些问题。 考 察学生恒等变形的能力,运用基本不等式的和与积转化作用的能力。 教学目标 1. 知识与技能 理解基本不等式,了解变式结构;理解基本不等式的“和”、“积”放缩作用。 会运用基本不等式解决相关的问题。 2. 过程与方法 通过师生互动、学生主动的探究过程,让学生体会研究数学问题的基本思想 方法,学会学习,学会探究。 3. 情感态度与价值观 鼓励学生大胆探索,增强学生的信心,获得探索问题的成功情感体验。逐步 养成学生严谨的科学态度及良好的思维习惯。 重点:运用基本不等式求最值 难点:恰当变形转化,构建出满足运用基本不等式的条件 教学过程: 一、 要点梳理 1、基本不等式 若a 、b € R,则a 2+b 2> 2ab,当且仅当a=b 时取“=” b 2(a 、b 同号) a 3、求最大值、最小值问题 (1) __________________________________________________________ 如果x 、y € (0,+ g ),且xy=p(定值),那么当x=y 时,x+y 有 _______________ (2) __________________________________________________________ 如果x 、y € (0,+ g ),且x+y=s(定值),那么当x=y 时,xy 有 _______________ 例题精讲 例1、若正数a 、b 满足ab=a+b+3,求ab 的取值范围, 1 9 例2、已知x>0、y>0,且一 一 1,求x+y 的最小值 x y 2、 若 a 、b € R',则 常用变形形式: 宁,ab ,当且仅当a=b 时取 ■- ab 2 b 2 ——b a 0,b 0 ④ 2 b 2 2ab ab 2 a 2 b 2 2 概括为:

基本不等式及其应用

基本不等式及其应用 1.ab ≤a +b 2 (1)基本不等式成立的条件:a ≥0,b ≥0; (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号). (3)ab ≤? ????a +b 22 (a ,b ∈R ); (4)a 2+b 22≥? ????a +b 22(a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数 (1)设a ≥0,b ≥0,则a ,b 的算术平均数为a +b 2,几何平均数为ab . (2)基本不等式可叙述为两个非负数的算术平均数不小于它们的几何平均数;也可以叙述为两个正数的等差中项不小于它们正的等比中项. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)若x +y =s (和为定值),则当x =y 时,积xy 取得最大值s 2 4; (2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值2p . 选择题: 设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82 解析 ∵x >0,y >0,∴x +y 2≥xy ,即xy ≤(x +y 2)2=81,当且仅当x =y =9时,(xy )max =81 若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是( ) A.43 B.53 C .2 D.54 解析 由x >0,y >0,得4x 2+9y 2+3xy ≥2·(2x )·(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +

相关文档
最新文档