高考专题: 圆锥曲线定点、定值、探索性问题

高考专题: 圆锥曲线定点、定值、探索性问题
高考专题: 圆锥曲线定点、定值、探索性问题

圆锥曲线定点、定值、探索性问题

题型一 定点问题

典例 (优质试题·全国Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3?

???-1,32,P 4???

?1,32中恰有三点在椭圆C 上. (1)求C 的方程;

(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.

(1)解 由于P 3,P 4两点关于y 轴对称,故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b

2知,椭圆C 不经过点P 1, 所以点P 2在椭圆C 上.

因此??? 1b 2=1,1a 2+34b 2=1,解得?????

a 2=4,

b 2=1. 故椭圆C 的方程为x 24

+y 2=1. (2)证明 设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.

如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为?

????t ,4-t 22,?

????t ,-4-t 22,则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设. 从而可设l :y =kx +m (m ≠1).

将y =kx +m 代入x 24

+y 2=1, 得(4k 2+1)x 2+8kmx +4m 2-4=0.

由题设可知Δ=16(4k 2-m 2+1)>0.

设A (x 1,y 1),B (x 2,y 2),

则x 1+x 2=-8km

4k 2+1,x 1x 2=4m 2-44k 2+1. 而k 1+k 2=y 1-1x 1+y 2-1x 2

=kx 1+m -1x 1+kx 2+m -1x 2

=2kx 1x 2+(m -1)(x 1+x 2)x 1x 2

. 由题设知k 1+k 2=-1,

故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0.

即(2k +1)·4m 2-44k 2+1+(m -1)·-8km 4k 2+1

=0, 解得k =-m +12

. 当且仅当m >-1时,Δ>0,

于是l :y =-m +12

x +m , 即y +1=-m +12

(x -2), 所以l 过定点(2,-1).

思维升华 圆锥曲线中定点问题的两种解法

(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.

(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.

跟踪训练 (优质试题·长沙联考)已知椭圆x 2a 2+y 2

b 2=1(a >0,b >0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l 与x 轴正半轴和y 轴分别交于点Q ,P ,与椭圆分别交于

点M ,N ,各点均不重合且满足PM →=λ1MQ →,PN →=λ2NQ →.

(1)求椭圆的标准方程;

(2)若λ1+λ2=-3,试证明:直线l 过定点并求此定点.

(1)解 设椭圆的焦距为2c ,由题意知b =1,且(2a )2+(2b )2=2(2c )2,

又a 2=b 2+c 2,∴a 2=3.

∴椭圆的方程为x 23

+y 2=1. (2)证明 由题意设P (0,m ),Q (x 0,0),M (x 1,y 1),

N (x 2,y 2),设l 方程为x =t (y -m ),

由PM →=λ1MQ →知(x 1,y 1-m )=λ1(x 0-x 1,-y 1),

∴y 1-m =-y 1λ1,由题意y 1≠0,∴λ1=m y 1

-1. 同理由PN →=λ2NQ →知λ2=m y 2

-1. ∵λ1+λ2=-3,∴y 1y 2+m (y 1+y 2)=0,①

联立?????

x 2+3y 2=3,

x =t (y -m ),得(t 2+3)y 2-2mt 2y +t 2m 2-3=0, ∴由题意知Δ=4m 2t 4-4(t 2+3)(t 2m 2-3)>0,②

且有y 1+y 2=2mt 2

t 2+3,y 1y 2=t 2m 2-3t 2+3,③ ③代入①得t 2m 2-3+2m 2t 2=0,

∴(mt )2=1,

由题意mt <0,∴mt =-1,满足②,

得直线l 方程为x =ty +1,过定点(1,0),即Q 为定点.

题型二 定值问题

典例 (优质试题·广州市综合测试)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32

,且过点A (2,1). (1)求椭圆C 的方程;

(2)若P ,Q 是椭圆C 上的两个动点,且使∠P AQ 的角平分线总垂直于x 轴,试判断直线PQ 的斜率是否为定值?若是,求出该值;若不是,请说明理由.

所以4a 2+1b 2=1,c a =32, 又a 2=b 2+c 2,所以a 2=8,b 2=2, 所以椭圆C 的方程为x 28+y 2

2

=1. (2)方法一 因为∠P AQ 的角平分线总垂直于x 轴,

所以P A 与AQ 所在的直线关于直线x =2对称.

设直线P A 的斜率为k ,则直线AQ 的斜率为-k .

所以直线P A 的方程为y -1=k (x -2),

直线AQ 的方程为y -1=-k (x -2).

设点P (x P ,y P ),Q (x Q ,y Q ),

由?????

y -1=k (x -2),

x 28+y 22=1,

得(1+4k 2)x 2-(16k 2-8k )x +16k 2-16k -4=0.①

因为点A (2,1)在椭圆C 上,所以x =2是方程①的一个根,则2x P =16k 2-16k -41+4k

2, 所以x P =8k 2-8k -21+4k 2

. 同理x Q =8k 2+8k -21+4k

2. 所以x P -x Q =-16k

1+4k 2,x P +x Q =16k 2-41+4k 2. 又y P -y Q =k (x P +x Q -4)=-8k 1+4k 2, 所以直线PQ 的斜率k PQ =y P -y Q x P -x Q =12

所以直线PQ 的斜率为定值,该值为12

. 方法二 设直线PQ 的方程为y =kx +b ,

点P (x 1,y 1),Q (x 2,y 2),

则y 1=kx 1+b ,y 2=kx 2+b ,

直线P A 的斜率k P A =y 1-1x 1-2

, 直线QA 的斜率k QA =y 2-1x 2-2

. 因为∠P AQ 的角平分线总垂直于x 轴,

所以P A 与AQ 所在的直线关于直线x =2对称,

所以k P A =-k QA ,即y 1-1x 1-2=-y 2-1x 2-2

, 化简得x 1y 2+x 2y 1-(x 1+x 2)-2(y 1+y 2)+4=0.

把y 1=kx 1+b ,y 2=kx 2+b 代入上式,化简得

2kx 1x 2+(b -1-2k )(x 1+x 2)-4b +4=0.①

由?????

y =kx +b ,

x 28+y 22=1,

得(4k 2+1)x 2+8kbx +4b 2-8=0,②

则x 1+x 2=-8kb

4k 2+1,x 1x 2=4b 2-84k 2+1, 代入①,得2k (4b 2-8)4k 2+1-8kb (b -1-2k )4k 2+1

-4b +4=0, 整理得(2k -1)(b +2k -1)=0,

所以k =12

或b =1-2k . 若b =1-2k ,可得方程②的一个根为2,不符合题意.

所以直线PQ 的斜率为定值,该值为12

. 思维升华 圆锥曲线中的定值问题的常见类型及解题策略

(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值.

(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得.

(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.

跟踪训练 (优质试题届洛阳联考)如图,点F 是抛物线τ:x 2=2py (p >0)的焦点,点A 是抛物线

上的定点,且AF →=(2,0),点B ,C 是抛物线上的动点,直线AB ,AC 的斜率分别为k 1,k 2.

(1)求抛物线τ的方程;

(2)若k 2-k 1=2,点D 是抛物线在点B ,C 处切线的交点,记△BCD 的面积为S ,证明S 为定值.

(1)解 设A (x 0,y 0),由题意知F ???

?0,p 2, 所以AF →=???

?-x 0,p 2-y 0=(2,0), 所以?????

x 0=-2,

y 0=p 2,

代入x 2=2py (p >0)中得4=p 2,即p =2,

所以抛物线τ的方程是x 2=4y .

(2)证明 过D 作y 轴的平行线交BC 于点E ,

并设B ????x 1,x 214,C ????x 2,x 224,

由(1)知A (-2,1),

所以k 2-k 1=x 224-1x 2+2-x 214-1x 1+2

=x 2-x 14, 又k 2-k 1=2,所以x 2-x 1=8.

由y =x 24,得y ′=x 2

. 所以直线BD :y =x 12x -x 214

, 直线CD :y =x 22x -x 224

, 解得????? x D =x 1+x 22,

y D =x 1x 24,

因为直线BC 的方程为y -x 214=x 1+x 24

(x -x 1), 将x D 代入得y E =x 21+x 228

, 所以S =12|DE |(x 2-x 1)=12

(y E -y D )(x 2-x 1) =12·(x 2-x 1)28

·(x 2-x 1)=32(定值). 题型三 探索性问题

典例 在平面直角坐标系xOy 中,曲线C :y =x 24

与直线l :y =kx +a (a >0)交于M ,N 两点, (1)当k =0时,分别求C 在点M 和N 处的切线方程;

(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 解 (1)由题设可得M (2a ,a ),N (-2a ,a ),

或M (-2a ,a ),N (2a ,a ).

又y ′=x 2,故y =x 24

在x =2a 处的导数值为a , C 在点(2a ,a )处的切线方程为y -a =a (x -2a ),

即ax -y -a =0.

y =x 24

在x =-2a 处的导数值为-a , C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ), 即ax +y +a =0. 故所求切线方程为ax -y -a =0和ax +y +a =0.

(2)存在符合题意的点,证明如下:

设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),

直线PM ,PN 的斜率分别为k 1,k 2.

将y =kx +a 代入C 的方程得x 2-4kx -4a =0.

故x 1+x 2=4k ,x 1x 2=-4a .

从而k 1+k 2=y 1-b x 1+y 2-b x 2

=2kx 1x 2+(a -b )(x 1+x 2)x 1x 2

k (a +b )a . 当b =-a 时,有k 1+k 2=0,

则直线PM 的倾斜角与直线PN 的倾斜角互补,

故∠OPM =∠OPN ,所以点p (0,-a )符合题意.

思维升华 解决探索性问题的注意事项

探索性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.

(1)当条件和结论不唯一时要分类讨论;

(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件;

(3)当条件和结论都不知,按常规方法解题很难时,要开放思维,采取另外合适的方法.

跟踪训练 (优质试题·唐山模拟)已知椭圆E :x 2a 2+y 2

b 2=1的右焦点为F (c,0)且a >b >

c >0,设短轴

于C ,G 两点,且|GF →|+|CF →|=4.

(1)求椭圆E 的方程; (2)是否存在过点P (2,1)的直线l 与椭圆E 相交于不同的两点A ,B 且使得OP →2=4P A →·PB →成立?

若存在,试求出直线l 的方程;若不存在,请说明理由.

解 (1)由椭圆的对称性知|GF →|+|CF →|=2a =4,∴a =2.

又原点O 到直线DF 的距离为

32

, ∴bc a =32

,∴bc =3, 又a 2=b 2+c 2=4,a >b >c >0,∴b =3,c =1.

故椭圆E 的方程为x 24+y 2

3

=1. (2)当直线l 与x 轴垂直时不满足条件.

故可设A (x 1,y 1),B (x 2,y 2),

直线l 的方程为y =k (x -2)+1,

代入椭圆方程得(3+4k 2)x 2-8k (2k -1)x +16k 2-16k -8=0,

∴x 1+x 2=8k (2k -1)3+4k 2,x 1x 2=16k 2-16k -83+4k 2

, Δ=32(6k +3)>0,∴k >-12

. ∵OP →2=4P A →·PB →,

即4[(x 1-2)(x 2-2)+(y 1-1)(y 2-1)]=5,

∴4(x 1-2)(x 2-2)(1+k 2)=5,

即4[x 1x 2-2(x 1+x 2)+4](1+k 2)=5, ∴4????

??16k 2-16k -83+4k 2-2×8k (2k -1)3+4k 2+4(1+k 2)

=4×4+4k 2

3+4k 2

=5, 解得k =±12,k =-12

不符合题意,舍去. ∴存在满足条件的直线l ,其方程为y =12

x .

设而不求,整体代换

典例 (12分)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1,F 2,离心率为32

,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1.

(1)求椭圆C 的方程;

(2)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1,PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M (m,0),求m 的取值范围;

(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线PF 1,PF 2的斜率分别为k 1,k 2,若k 2≠0,证明1kk 1+1kk 2

为定值,并求出这个定值. 思想方法指导 对题目涉及的变量巧妙地引进参数(如设动点坐标、动直线方程等),利用题目的条件和圆锥曲线方程组成二元二次方程组,再化为一元二次方程,从而利用根与系数的关系进行整体代换,达到“设而不求,减少计算”的效果,直接得定值.

规范解答

解 (1)由于c 2=a 2-b 2

,将x =-c 代入椭圆方程x 2a 2+y 2b 2=1,得y =±b 2a .由题意知2b 2

a =1,即a =2

b 2.

又e =c a =32

,所以a =2,b =1. 所以椭圆C 的方程为x 24

+y 2=1.[2分] (2)设P (x 0,y 0)(y 0≠0),又F 1(-3,0),F 2(3,0),

所以直线PF 1,PF 2的方程分别为

1PF l :y 0x -(x 0+3)y +3y 0=0,

圆锥曲线中的定值定点问题教学提纲

圆锥曲线中的定值定 点问题

2019届高二文科数学新课改试验学案(10) ---圆锥曲线中的定值定点问题 1.已知椭圆()2222:10x y C a b a b +=>> 的离心率为2, 点(在C 上. (I )求C 的方程; (II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M , 证明:直线OM 的斜率与直线l 的斜率乘积为定值. 2.已知椭圆C :过点A (2,0),B (0,1)两点. (I )求椭圆C 的方程及离心率; (Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N , 求证:四边形ABNM 的面积为定值. 22 221x y a b +=

3.椭圆()2222:10x y C a b a b +=>>的离心率为12 ,其左焦点到点()2,1P (I )求椭圆C 的标准方程 (Ⅱ)若直线:l y kx m =+与椭圆C 相交于,A B 两点(,A B 不是左右顶点),且以AB 为直径的圆 过椭圆C 的右顶点。求证:直线l 过定点,并求出该定点的坐标.

<圆锥曲线中的定值定点问题>答案 1.【答案】(I )22 22184 x y +=(II )见试题解析 试题解析: 【名师点睛】本题第一问求椭圆方程的关键是列出关于22,a b 的两个方程,通过解方程组求出22,a b ,解决此类问题要重视方程思想的应用;第二问是证明问题,解析几何中的证明问题通常有以下几类:证明点共线或直线过定点;证明垂直;证明定值问题. 2.

圆锥曲线中的定点定值问题的四种模型

圆锥曲线中的定点定值问题的四种模型 定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。如果能够熟识这些常见的结论,那么解题必然会事半功倍。下面总结圆锥曲线中几种常见的几种定点模型: 模型一:“手电筒”模型 例题、已知椭圆C :13 42 2=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。求证:直线l 过定点,并求出该定点的坐标。 解:设1122(,),(,)A x y B x y ,由22 3412 y kx m x y =+??+=?得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ?=-+->,22340k m +-> 2121222 84(3) ,3434mk m x x x x k k -+=-?=++ 222 2 121212122 3(4) ()()()34m k y y kx m kx m k x x mk x x m k -?=+?+=+++=+ 以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ?=-, 1212122 y y x x ∴?=---,1212122()40y y x x x x +-++=, 222222 3(4)4(3)1640343434m k m mk k k k --+++=+++, 整理得:22 71640m mk k ++=,解得:1222,7 k m k m =-=- ,且满足22 340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾; 当27k m =- 时,2:()7l y k x =-,直线过定点2(,0)7 综上可知,直线l 过定点,定点坐标为2 (,0).7 ◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直 线交圆锥曲线于AB ,则AB 必过定点)) (,)((2 222022220b a b a y b a b a x +-+-。(参考百度文库文章:“圆锥曲线的弦对定点张直角的一组性质”) ◆模型拓展:本题还可以拓展为“手电筒”模型:只要任意一个限定AP 与BP 条件(如=?BP AP k k 定值,=+BP AP k k 定值),直线AB 依然会过定点(因为三条直线形似手电筒,固名曰手电筒模型)。 此模型解题步骤: Step1:设AB 直线m kx y +=,联立曲线方程得根与系数关系,?求出参数范围; Step2:由AP 与BP 关系(如1-=?BP AP k k ),得一次函数)()(k f m m f k ==或者; Step3:将)()(k f m m f k ==或者代入m kx y +=,得定定y x x k y +-=)(。

专题3:圆锥曲线中的定值定点问题(解析版)

专题3:圆锥曲线中的定值定点问题(解析版) 1.已知椭圆2222:1(0)x y C a b a b +=>> 的离心率为2 ,短轴一个端点到右焦点F 的 . (1)求椭圆C 的标准方程 ; (2)过点 F 的直线l 交椭圆于A 、B 两点,交y 轴 于P 点,设 12,PA AF PB BF λλ==,试判断12λλ+是否为定值?请说明理由. 【答案】(1)2 212 x y +=;(2)是定值-4,理由见解析. 【解析】 【分析】 (1)由题意可得a , c ,b ,可求得椭的圆方程. (2)设直线l 的方程为()1y k x =-,与椭圆的方程联立整理得: ()2 2 22124220k x k x k +-+-=,设()11,A x y ,()22,B x y , 由一元二次方程的根与 系数的关系可得2122 212241222 12k x x k k x x k ?+=??+?-?=?+? ,再根据向量的坐标运算表示出1111x x λ=-, 2 22 1x x λ= -, 代入计算可求得定值. 【详解】 (1 )由题可得a = ,又2 c e a = = ,所以1c = ,1b ==, 因此椭圆方程为2 212 x y +=, (2)由题可得直线斜率存在,设直线l 的方程为()1y k x =-, 由()22 112 y k x x y ?=-??+=??消去y ,整理得:()2222124220k x k x k +-+-=,

设()11,A x y ,()22,B x y , 则2122 2 1224122212k x x k k x x k ?+=??+?-?=?+? , 又()1,0F ,()0,P k -,则()11,PA x y k =+,()111,AF x y =--, 由1PA AF λ=可得()1111x x λ=-,所以1111x x λ=-,同理可得2 22 1x x λ=-, 所以 12121211x x x x λλ+= +--()()()12 121212121212 22111x x x x x x x x x x x x x x +-+-==---++2222 22 22 422 2121242211212k k k k k k k k --?++=--+ ++4=-, 所以,12λλ+为定值-4. 【点睛】 本题考查直线与椭圆的定值问题,关键在于联立方程组,得出交点的坐标的关系,将目标条件转化到交点的坐标上去,属于中档题. 2.已知椭圆C :()22 2210x y a b a b +=>>的离心率为12,且经过点31,2??-- ???, (1)求椭圆C 的标准方程; (2)过点()1,0作直线l 与椭圆相较于A ,B 两点,试问在x 轴上是否存在定点Q ,使得两条不同直线QA ,QB 恰好关于x 轴对称,若存在,求出点Q 的坐标,若不存在,请说明理由. 【答案】(1)22 143 x y +=; (2)存在(4,0)Q ,使得两条不同直线QA ,QB 恰好关于x 轴对称. 【解析】 【分析】 (1)将点坐标代入方程,结合离心率公式及222a b c =+ ,即可求出2,a b ==,进而可求得椭圆C 的标准方程; (2)设直线l 的方程为1x my =+,与椭圆联立,可得12y y +,12y y 的表达式,根据

高考圆锥曲线中的定点定值专题(附答案)

高考圆锥曲线中的定点定值问题 定点问题是常见的考题形式,解决这类问题的关键就是引进变参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和b 的一次函数关系式,代入直线方程即可 类型一:“手电筒”模型 例题、已知椭圆C :13 42 2=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。求证:直线l 过定点,并求出该定点的坐标。 解:设1122(,),(,)A x y B x y ,由22 3412 y kx m x y =+?? +=?得222 (34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ?=-+->,22340k m +-> 2121222 84(3) ,3434mk m x x x x k k -+=-?=++ 222 2 121212122 3(4) ()()()34m k y y kx m kx m k x x mk x x m k -?=+?+=+++=+ Q 以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ?=-, 1212122 y y x x ∴?=---,1212122()40y y x x x x +-++=, 222222 3(4)4(3)1640343434m k m mk k k k --+++=+++, 整理得:2 2 71640m mk k ++=,解得:1222,7 k m k m =-=- ,且满足22 340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾; 当27k m =-时,2 :()7 l y k x =-,直线过定点2(,0)7 综上可知,直线l 过定点,定点坐标为2 (,0).7 ◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直 线交圆锥曲线于AB ,则AB 必过定点)) (,)(( 2 222022220b a b a y b a b a x +-+-。 ◆模型拓展:本题还可以拓展为“手电筒”模型:只要任意一个限定AP 与BP 条件(如=?BP AP k k 定值,=+BP AP k k 定值),直线AB 依然会过定点(因为三条直线形似手电筒,固名曰手电筒模型)。

圆锥曲线中的定点定值问题(教师版)

第四讲 圆锥曲线中的定点定值问题 一、直线恒过定点问题 例1. 已知动点E 在直线:2l y =-上,过点E 分别作曲线2 :4C x y =的切线,EA EB , 切点为 A 、 B , 求证:直线AB 恒过一定点,并求出该定点的坐标; 解:设),2,(-a E )4,(),4,(2 22211x x B x x A ,x y x y 2 1 4'2=∴= , )(21 41121点切线过,的抛物线切线方程为过点E x x x x y A -=-),(2 1 421121x a x x -=--∴整理得:082121=--ax x 同理可得:2 22280x ax --= 8 ,2082,2121221-=?=+∴=--∴x x a x x ax x x x 的两根是方程 )2 4,(2+a a AB 中点为可得,又22 12 121212124442 AB x x y y x x a k x x x x - -+====-- 2(2)()22a a AB y x a ∴-+=-直线的方程为,2()2 a y x AB =+∴即过定点0,2. 例2、已知点00(,)P x y 是椭圆22:12x E y +=上任意一点,直线l 的方程为0012 x x y y +=, 直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒 过一定点G ,求点G 的坐标。 解:直线0l 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --= 设)0,1(-M 关于直线0l 的对称点N 的坐标为(,)N m n 则0000001 212022x n m y x n m y x y ?=-?+??-??--=??,解得3200020432 0000 2002344424482(4)x x x m x x x x x n y x ?+--=?-??+--?=?-? ∴ 直线PN 的斜率为4320000032 00004288 2(34) n y x x x x k m x y x x -++--==---+

高考数学专题复习-圆锥曲线定值定点问题

圆锥曲线问题的解题规律可以概括为: “联立方程求交点,韦达定理求弦长,根的分布范围,曲线定义不能忘,引参、用参巧解题,分清关系思路畅、数形结合关系明,选好,选准突破口,一点破译全局活。 定点、定直线、定值专题 已知直线l : y=x+,圆O :x 2+y 2=5,椭圆E :过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证两切线斜率之积为定值. 2.过点作不与y 轴垂直的直线l 交该椭圆于M 、N 两点,A 为椭圆的左顶点,试判断∠MAN 的大小是否为定值,并说明理由. 3.设A (x 1,y 1),B (x 2,y 2 )是椭圆,(a >b >0)上的两点,已知向量=(,),=(,),且,若椭圆的离心率,短轴长为2,O 为坐标原点: (Ⅰ)求椭圆的方程;

(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k 的值; (Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由. 4.已知椭圆C的中心在原点,焦点在x轴上,长轴长是短轴长的倍,且椭圆 C经过点M. (1)求椭圆C的标准方程; (2)过圆O:上的任意一点作圆的一条切线l与椭圆C交于A、B两点.求证:为定值. 5.已知平面上的动点P(x,y)及两定点A(﹣2,0),B(2,0),直线PA,PB的斜率分别是k1,k2且. (1)求动点P的轨迹C的方程; (2)设直线l:y=kx+m与曲线C交于不同的两点M,N. ①若OM⊥ON(O为坐标原点),证明点O到直线l的距离为定值,并求出这个定值 ②若直线BM,BN的斜率都存在并满足,证明直线l过定点,并求出这个定点.

圆锥曲线的定点、定值和最值问题

圆锥曲线的定点、定值、范围和最值问题 会处理动曲线(含直线)过定点的问题;会证明与曲线上动点有关的定值问题;会按条件建 . 一、主要知识及主要方法: 1. 形式出现,特殊方法往往比较奏效。 2.对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决。 3.解析几何的最值和范围问题,一般先根据条件列出所求目标的函数关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法、不等式法、单调性法、导数法以及三角函数最值法等求出它的最大值和最小值. 二、精选例题分析 【举例1】 (05广东改编)在平面直角坐标系xOy 中,抛物线2y x =上异于坐标原点O 的两不同 动点A 、B 满足AO BO ⊥. (Ⅰ)求AOB △得重心G 的轨迹方程; (Ⅱ)AOB △的面积是否存在最小值?若存在,请求出最小值; 若不存在,请说明理由. 【举例2】已知椭圆2 2142x y +=上的两个动点,P Q 及定点1,2M ? ?? ,F 为椭圆的左焦点,且PF ,MF ,QF 成等差数列.()1求证:线段PQ 的垂直平分线经过一个定点A ; ()2设点A 关于原点O 的对称点是B ,求PB 的最小值及相应的P 点坐标. 【举例3】(06全国Ⅱ改编)已知抛物线2 4x y =的焦点为F ,A 、B 是抛物线上的两动点,且 AF FB λ=u u u r u u u r (0λ>).过A 、B 两点分别作抛物线的切线(切线斜率分别为0.5x A ,0.5x B ),设其交点为 M 。 (Ⅰ)证明FM AB ?u u u u r u u u r 为定值;

圆锥曲线中的定点和定值问题的解题方法

寒假文科强化(四):圆锥曲线中的定点和定值问题的解答方法 【基础知识】 1、对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决. 2、在几何问题中,有些几何量与参数无关,这就构成了定值问题,解决这类问题一种思路是进行一般计算推理求出其结果;另一种是通过考查极端位置,探索出“定值”是多少,然后再进行一般性证明或计算,即将该问题涉及的几何式转化为代数式或三角形式,证明该式是恒定的.如果试题以客观题形式出现,特殊方法往往比较奏效. 题型一 :定点问题 法一:特殊探求,一般证明; 法二:设该直线(曲线)上两点的坐标,利用点在直线(曲线)上,建立坐标满足的方程(组),求出相应的直线(曲线),然后再利用直线(曲线)过定点的知识加以解决。 例1 设点A 和B 是抛物线?Skip Record If...?上原点以外的两个动点,且?Skip Record If...?,求证直线?Skip Record If...?过定点。 解:取?Skip Record If...?写出直线?Skip Record If...?的方程; 再取?Skip Record If...?写出直线?Skip Record If...?的方程;最后求出两条直线 的交点,得交点为?Skip Record If...?。 设?Skip Record If...?,直线?Skip Record If...?的方程为?Skip Record If...?, 由题意得?Skip Record If...?两式相减得 ?Skip Record If...?,即?Skip Record If...?, ?Skip Record If...?直线?Skip Record If...?的方程为?Skip Record If...?,整理得?Skip Record If...? ① 又?Skip Record If...??Skip Record If...?,?Skip Record If...??Skip Record If...?,?Skip Record If...?,?Skip Record If...? O A B

圆锥曲线中的定点定值问题的四种模型

2017届高三第一轮复习专题训练之 圆锥曲线中的定点定值问题的四种模型 定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。下面总结圆锥曲线中几种常见的几种定点模型: 模型一:“手电筒”模型 例题、(07山东)已知椭圆C :13 42 2=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。求证:直线l 过定点,并求出该定点的坐标。 解:设1122(,),(,)A x y B x y ,由22 3412 y kx m x y =+??+=?得222 (34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ?=-+->,22340k m +-> 2121222 84(3) ,3434mk m x x x x k k -+=-?=++ 222 2 121212122 3(4) ()()()34m k y y kx m kx m k x x mk x x m k -?=+?+=+++=+ 以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ?=-, 1212122 y y x x ∴?=---,1212122()40y y x x x x +-++=, 222222 3(4)4(3)1640343434m k m mk k k k --+++=+++, 整理得:22 71640m mk k ++=,解得:1222,7 k m k m =-=- ,且满足22 340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾; 当27k m =- 时,2:()7l y k x =-,直线过定点2(,0)7 综上可知,直线l 过定点,定点坐标为2 (,0).7 ◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直 线交圆锥曲线于AB ,则AB 必过定点)) (,)((2 222022220b a b a y b a b a x +-+-。(参考百度文库文章:“圆锥曲线的弦对定点张直角的一组性质”) ◆模型拓展:本题还可以拓展为“手电筒”模型:只要任意一个限定AP 与BP 条件(如=?BP AP k k 定值,=+BP AP k k 定值),直线AB 依然会过定点(因为三条直线形似手电筒,固名曰手电筒模型)。(参考优酷视频资料尼尔森数学第一季第13节) 此模型解题步骤: Step1:设AB 直线m kx y +=,联立曲线方程得根与系数关系,?求出参数范围; Step2:由AP 与BP 关系(如1-=?BP AP k k ),得一次函数)()(k f m m f k ==或者; Step3:将)()(k f m m f k ==或者代入m kx y +=,得定定y x x k y +-=)(。 ◆迁移训练 练习1:过抛物线M:px y 22 =上一点P (1,2)作倾斜角互补的直线PA 与PB ,交M 于A 、B 两点,求证:直线AB 过定点。(注:本题结论也适用于抛物线与双曲线)

(完整版)专题——圆锥曲线定值问题

高三二轮一一圆锥曲线中的“定值”问题 概念与用法 圆锥曲线中的定值问题是高考命题的一个热点,也是圆锥曲线问题中的一个难 点.解决这个难点的基本思想是函数思想, 可以用变量表示问题中的直线方程、数量积、 比例关系等,这些直线方程、数量积、比例关系等不受变量所影响的一个值,就是要求 的定值?具体地说,就是将要证明或要求解的量表示为某个合适变量的函数,化简消去 变量即得定值. 基本解题数学思想与方法 在圆锥曲线中,某些几何量在特定的关系结构中, 不受相关变元的制约而恒定不变, 则称该变量具有定值特征. 解答此类问题的基本策略有以下两种: 1、 把相关几何量的变元特殊化,在特例中求出几何量 的定值,再证明结论与特定状态 无关. 2、 把相关几何量用曲线系里的参变量表示,再证明结论与求参数无关. 题型示例 一?证明某一代数式为定值: 1、如图,M 是抛物线上y 2=x 上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA=MB. 解:由已知条件,得 F(0, 1), Z>O ?设 A(x 1, y 1), B(x 2, y 2).由 AF =入FB , 即得 (一x 1, 1 — y) = ?(X 2, y 2 — 1),所以 —X1=入2 ① 1 — y1 =心2— 1)② 若M 为定点,证明:直线 EF 的斜率为定值; 解:设M (y 0 ,y o ),直线 ME 的斜率为 k(l>0),直线 MF 的斜率为—k , 直线 ME 方程为y y o k(x y (). ???由 y o k (x yo) ,消 x 得 ky 2 y o (i ky o ) o 解得 y F 1 ky o X F 2 (1 ky o ) 厂; 同理 1 ky ,X F 1 ky 2 y E y F X E X F 1 k (1 ky 。) ky o 1 ky o 2 (1 ky °) 2 k 4ky o 2y o (定值) k 2 所以直线EF 的斜率为定值 k 2 ▲利用消元法 2、已知抛物线x 2= 4y 的焦点为 F , A 、B 是抛物线上的两动点, 且AF =入FB B 两点分别作抛物线的切线,设其交点为 M .证明FM -AB 为定值

圆锥曲线定点、定直线、定值问题

定点、定直线、定值专题 1、已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1. (Ⅰ)求椭圆C 的标准方程; (Ⅱ)若直线l :y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标. 【标准答案】(I)由题意设椭圆的标准方程为22 221(0)x y a b a b +=>> 3,1a c a c +=-=,2 2,1,3a c b ===22 1.43 x y ∴+ = (II)设1122(,),(,)A x y B x y ,由2214 3y kx m x y =+?? ?+=??得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ?=-+->,22340k m +->. 2121222 84(3) ,.3434mk m x x x x k k -?+=-?=++222 2 121212122 3(4) ()()().34m k y y kx m kx m k x x mk x x m k -?=+?+=+++=+ 以AB 为直径的圆过椭圆的右顶点(2,0),D 1AD BD k k ?=-,1212122 y y x x ∴ ?=---, (最好是用向量点乘来)1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mk k k k --+++=+++, 2271640m mk k ++=,解得1222,7 k m k m =-=- ,且满足22 340k m +->. 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾; 当27k m =- 时,2:()7l y k x =-,直线过定点2 (,0).7 综上可知,直线l 过定点,定点坐标为2 (,0).7 2、已知椭圆C 的离心率e = ()1A 2,0-,()2A 2,0。(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线x my 1=+与椭圆C 交于P 、Q 两点,直线1A P 与2A Q 交于点S 。试问:当m 变化时,点S 是否恒在一条定直线上?若是,请写出这条直线方程,并证明你的结论;若不是,请说明理由。

圆锥曲线中的定值定点问题

圆锥曲线中的定值定点 问题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

2019届高二文科数学新课改试验学案(10) ---圆锥曲线中的定值定点问题 1.已知椭圆()2222:10x y C a b a b +=>> 点(在C 上. (I )求C 的方程; (II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M , 证明:直线OM 的斜率与直线l 的斜率乘积为定值. 2.已知椭圆C :22 221x y a b +=过点A (2,0),B (0,1)两点. (I )求椭圆C 的方程及离心率; (Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N , 求证:四边形ABNM 的面积为定值. 3.椭圆()2222:10x y C a b a b +=>>的离心率为12 ,其左焦点到点()2,1P (I )求椭圆C 的标准方程 (Ⅱ)若直线:l y kx m =+与椭圆C 相交于,A B 两点(,A B 不是左右顶点),且以AB 为直径的圆 过椭圆C 的右顶点。求证:直线l 过定点,并求出该定点的坐标. <圆锥曲线中的定值定点问题>答案 1.【答案】(I )22 22184 x y +=(II )见试题解析

试题解析: 【名师点睛】本题第一问求椭圆方程的关键是列出关于22,a b 的两个方程,通过解方程组求出22,a b ,解决此类问题要重视方程思想的应用;第二问是证明问题,解析几何中的证明问题通常有以下几类:证明点共线或直线过定点;证明垂直;证明定值问题. 2.

圆锥曲线专题——定值定点问题(附解析)

第1页(共15页) 圆锥曲线专题——定值定点问题 1.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为1 2 ,以原点O 为圆心,椭圆的短半轴长为 半径的圆与直线0x y -+=相切. (Ⅰ)求椭圆C 的标准方程; (Ⅱ)若直线:l y kx m =+与椭圆C 相交于A 、B 两点,且2 2OA OB b k k a =-,判断AOB ?的面 积是否为定值?若为定值,求出定值;若不为定值,说明理由. 【解答】 解:(1)椭圆的短半轴长为半径的圆与直线0x y -=相切, ∴b == 又222a b c =+,1 2 c e a = =, 解得24a =,23b =, 故椭圆的方程为22 143 x y +=. ()II 设1(A x ,1)y ,2(B x ,2)y ,由22 14 3y kx m x y =+?? ?+=??化为222(34)84(3)0k x mkx m +++-=, △22226416(34)(3)0m k k m =-+->,化为22340k m +->. ∴122 834mk x x k +=-+,21224(3)34m x x k -=+. 222 2 121212122 3(4) ()()()34m k y y kx m kx m k x x mk x x m k -=++=+++=+, 3 4 OA OB k k =-,

第2页(共15页) ∴ 121234y y x x =-,12123 4 y y x x =-, 22222 3(4)34(3)34434m k m k k --=- + +,化为22 243m k - =, ||AB = = 又114d = =- = , 1 ||2 S AB d === 22 === (1)求椭圆E 的标准方程; (2)过F 作直线l 与椭圆交于A 、B 两点,问:在x 轴上是否存在点P ,使PA PB 为定值,若存在,请求出P 点坐标,若不存在,请说明理由. 【解答】解:( 1)由题意知1c =,过F 且与x 轴垂直的弦长为3, 则223b a =,即222() 3a c a -=,则2a =,b ∴椭圆E 的标准方程为22143 x y +=; (2)假设存在点P 满足条件,设其坐标为(,0)t , 设1(A x ,1)y ,2(B x ,2)y ,当l 斜率存在时,设l 方程为(1)y k x =-, 联立22 (1) 3412 y k x x y =-??+=?,整理得:2222(43)84120k x k x k +-+-=,△0>恒成立.

圆锥曲线中的定点,定值问题

圆锥曲线中的定点,定值问题 《学习目标》: 1. 探究直线和椭圆,抛物线中的定点定值问题 2. 体会数形结合,转化与化归的思想 3. 培养学生分析问题,逻辑推理和运算的能力 活动一 根深蒂固: 题根:已知AB 是圆O 的直径,点P 是圆O 上异于A,B 的两点,k 1,k 2是直线PA,PB 的斜率,则k 1k 2= -1. 问题1 这是一个师生都很熟悉的结论,这个结论能否类比推广到其它一些圆锥曲线呢? 问题2 如图,点P 是椭圆x 2 4+y 2 =1上除长轴的两个顶点外的任一点,A,B 是该椭圆长轴的2个端点,则直线PA,PB 的斜率之积为______. 问题 3 椭圆)0(122 22>>=+b a b y a x 长轴的两个顶点与椭圆上除这两个顶点外的任一点连线斜率之积为______ . 问题4 .证明: 设 A 、B 是椭圆22221(0)x y a b a b +=>>上关于原点对称的两点,点P 是该椭圆上不同于A,B 的任一点,直线PA,PB 的斜率为k 1,k 2,则k 1k 2 为2 2b a -

活动二 根深叶茂: 问题5(2012年南通二模卷)如图,在平面直角坐标系xOy 中,F 1,F 2分别为椭圆x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点,B 、C 分别为椭圆的上、下顶点,直线BF 2与椭圆的另一交 点为D.若cos∠F 1BF 2=725,则直线CD 的斜率为__________. 问题6:(2011年全国高考题江苏卷18)如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆12 42 2=+y x 的顶点,过坐标原点的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k 。 (1)略 (2)略 (3)对任意k>0,求证:PA ⊥PB

圆锥曲线中的定值定点问题

2019届高二文科数学新课改试验学案(10) ---圆锥曲线中的定值定点问题 ??????1?0a?b:C22,C上的离心率为在, 已知椭圆1.. 22yx2 点22ba2C的方程;)求(I lOlCABABM, ,与线段有两个交点,(II)直线中点为不经过原点,且不平行于坐标轴,OMl的斜率乘积为定值证明:直线. 的斜率与直线 22yx??1过点A(2,0),B(0,1)两点已知椭圆2.C:. 22ba)求椭圆C的方程及离心率;(I ,求轴交于点直线轴交于点M,PB与xNyPA上,为第三象限内一点且在椭圆设(Ⅱ)PC直线与. 证:四边形的面积为定值ABNM

????2,1P0a?1b??C:?10,其左焦点到点椭圆3.的距离为的离心率为 22yx1 22ab2C的标准方程I)求椭圆(C A,BA?m,Bl:y?kx AB为直径的圆与椭圆相交于,且以(Ⅱ)若直线不是左右顶点)两点(Cl过定点,并求出该定点的坐标. 过椭圆的右顶点。求证:直线

<圆锥曲线中的定值定点问题>答案22yx 1(II)见试题解析)【答案】(1.I2248 试题解析:

2222b,a,ab,,本题第一问求椭圆方程的关键是列出关于通过解方程组求出的两个方程【名师点睛】解析几何中的证明问题通常有以下几类:解决此类问题要重视方程思想的应用;第二问是证明问题,. 证明点共线或直线过定点;证明垂直;证明定值问题 2. c3??e.2a ????的面积为定值.从而四边形再证明定点、定值、定线,解决定值定点方法一般有两种:(1)

从特殊入手,求出定点、【名师点睛】直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线与变量无关;(2)应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的定值、定线.. 运用可有效地简化运算 1c??,0?cF:1:3ce??2??a:b:),设左焦点3.解:(112a 22????1c?10PF???c?20??1?,解得122yx1??3a?2,b???椭圆方程为34??2,0D 1)可知椭圆右顶点(2)由(??????2,0y,y,BDxA,x AB,以设为直径的圆过21210??DB?DA DBDA?DBDA??即 ????y?2,xDA?yx?2,?,DB2211 ???????4?yy?x??x?yy?2????DADBxx2?x2x0①2121211212 y?kx?m?????222??0?8mkx?3?4k43xm?联立直线与椭圆方程: ?22123y?x?4???23m?48mk?x?x??,xx? ??????22mx?mk?kx?mx?k?x?yy?xkx?m 212122?334k4k? 21212211??2234km?22k?mk3m128mk?2???m?,代入到① ??23m4?22k?3m128mkDA?DB??2??4??0 2224k?34k4?3k?3 2224k?34k?34k?32222km12??12?34m16?12?16mk?k??0 ????22?02kkmk?0??7m?m?72?16mk?4 2?34k 2m??2k k???m或72222?????l,0k?l:y?kxx?k?km??恒过当时,????

圆锥曲线中的定点定值问题

第四讲 圆锥曲线中的定点定值问题 、直线恒过定点问题 例1.已知动点E 在直线l : y 2上,过点E 分别作曲线C : x 2 4y 的切线EA, EB , 直线10过P 点与直线I 垂直,点M ( -1 , 0)关于直线10的对称点为 N 直线PN 恒 过一定点G 求点G 的坐标。 x ° (y y °) 2y °(x 沧),即 2y °x x °y ^y 。2 2 解:设 E(a, 2), AX,竺),B%,^), 4 4 2 x y 4 1 y 1 X 2 2 过点A 的抛物线切线方程为y x1 4 1 X 1(X 2 xj, 切线过E 点, 切点为A 、B ,求证:直线 AB 恒过一定点,并求出该定点的坐标; 2 X i 1 2 x 1(a x 1),整理得:x 1 2ax 1 8 0 2 4 同理可得: 2 x 2 2ax 2 8 0 2ax 8 0的两根 X 1 2 a, X 1 x 2 8 可得AB 中点为(a, 4 ),又k AB 上 y X 1 x 2 2 X 1 X 1 X | X 2 a 4 2 2 直线AB 的方程为y e 2) 評a ) ,即y 即2 AB 过定点(0,2 ). 例1改为:已知A 、B 是抛物线y 2 定点(2p,0). 2 px ( p 0)上两点,且OA OB ,证明:直线AB 过 x 2 例2、已知点P (x 0,y °)是椭圆E : 一 2 1上任意一点,直线 x °x 的方程为2 解:直线l 0的方程为 x 1, x 2是方程x 2

设M( 1,0)关于直线I 。的对称点 N 的坐标为N (m, n) 2y o x o 2y o 1 X °n 2x 。3 3x o 2 4x o 4 解得 直线 x °y ° x o 2 4 2x o 4 4x 。3 4x o 2 8x o 2 2y o (4 x o ) PN 的斜率为 y o x o 4 x o 4x 03 2x 02 8x 0 8 3 2 2y o ( x o 3x o 4) 从而直线 PN 的方程为: y o x 04 4x 03 2x 02 8 x 0 8 (x x o ) 3 2 2y o ( X o 3x o 4) 2y o ( X 。3 3x o 2 4) X o 4 4x o 3 2x o 2 8x 。8 从而直线PN 恒过定点G(1,0) 二、恒为定值问题 例3、已知椭圆两焦点 F |、F 2在y 轴上,短轴长为2 2,离心率为 一, 2 P 是椭圆在第 UJU UULU 象限弧上一点,且 PF 1 PF 2 1,过P 作关于直线F 1P 对称的两条直线 PA PB 分别交椭 圆于A 、B 两点。 (1) 求P 点坐标; (2) 求证直线 AB 的斜率为定值; 解:(1) 2 设椭圆方程为占 a 2 x _ 1,由题意可得 b 2 a 2,b ■ 2, c 2 2 ,所以椭圆的方程为 2 y 4 则 F 1(0, 2),F 2(0, 2),设 P(x o ,y o )(x o o, y o 0) uju r UULT l U UUT 则 PF 1 (心」2 y o ), PF 2 x o , y o ), UU LU UUU UUUU … … PF 1 PF 2 x 2 (2 y 2) 1 2 Q 点P(X o , y o )在曲线上,则' 2 2 y o 4 1. 2 X o 2 y o

圆锥曲线定值定

圆锥曲线定值定

————————————————————————————————作者:————————————————————————————————日期:

圆锥曲线问题的解题规律可以概括为: “联立方程求交点,韦达定理求弦长,根的分布范围,曲线定义不能忘,引参、用参巧解题,分清关系思路畅、数形结合关系明,选好, 选准突破口,一点破译全局活。 定点、定直线、定值专题 (2012?菏泽一模)已知直线l:y=x+,圆O:x2+y2=5,椭圆E:过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证两切线斜率之积为定值. 2.(2012?自贡三模);过点作不与y轴垂直的直线l交该椭圆于M、N两点,A为椭圆的左顶点,试判断∠MAN的大小是否为定值,并说明理由. 3.(2013?眉山二模)设A(x1,y1),B(x2,y2)是椭圆,(a>b>0)上的两点,已知向量=(,),=(,),且,若椭圆的离心率,短轴长为2, O为坐标原点: (Ⅰ)求椭圆的方程; (Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由. 4.已知椭圆C的中心在原点,焦点在x轴上,长轴长是短轴长的倍,且椭圆C经过点M. (1)求椭圆C的标准方程;

(2)过圆O:上的任意一点作圆的一条切线l与椭圆C交于A、B两点.求证:为定值. 5.已知平面上的动点P(x,y)及两定点A(﹣2,0),B(2,0),直线PA,PB的斜率分别是k1,k2且. (1)求动点P的轨迹C的方程; (2)设直线l:y=kx+m与曲线C交于不同的两点M,N. ①若OM⊥ON(O为坐标原点),证明点O到直线l的距离为定值,并求出这个定值 ②若直线BM,BN的斜率都存在并满足,证明直线l过定点,并求出这个定点. 6.(2011?新疆模拟)已知椭圆(a>b>0)的离心率为,以原点为圆心,椭 圆的短半轴为半径的圆与直线相切. (Ⅰ)求椭圆C的方程; (Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭圆C于另一点E,证明直线AE与x轴相交于定点Q; 7.已知椭圆Ω的离心率为,它的一个焦点和抛物线y2=﹣4x的焦点重合. (1)求椭圆Ω的方程; (2)若椭圆上过点(x0,y0)的切线方程为 . ①过直线l:x=4上点M引椭圆Ω的两条切线,切点分别为A,B,求证:直线AB恒过定点C; ②是否存在实数λ使得|AC|+|BC|=λ?|AC|?|BC|,若存在,求出入的值;若不存在,说明理由.

相关文档
最新文档