人教版高中物理选修3-1知识点整理及重点题型梳理] 闭合电路欧姆定律的应用 基础

人教版高中物理选修3-1知识点整理及重点题型梳理] 闭合电路欧姆定律的应用 基础
人教版高中物理选修3-1知识点整理及重点题型梳理] 闭合电路欧姆定律的应用 基础

人教版高中物理选修3-1

知识点梳理

重点题型(常考知识点)巩固练习

闭合电路欧姆定律的应用

【学习目标】

1.进一步加深对闭合电路各量及其关系的理解。

2.熟练地运用闭合电路欧姆定律对电路进行分析与计算。

3.能够综合运用电路有关知识(串、并联电路特点、部分电路欧姆定律等)对闭合电路进行动态分析和计算;如,路端电压、电压的输出功率、电源的效率等随外电阻的变化。 4.能够熟练地运用能的转化和守恒的知识解决非纯电阻电路问题(如电动机电路等)。 5.综合运用电路知识解决闭合电路问题。

6.电路的等效、简化和电路的极值问题 7.电路故障的判断等。

【要点梳理】

要点一、关于闭合电路欧姆定律 1.闭合电路欧姆定律

(1)已知电动势为E 、内电阻为r 的电源和电阻R 组成闭合回路,如图,电路中有电流I 通过,根据欧姆定律U IR =外,U Ir =内和E U U =+外内得

E IR Ir =+,即E I R r

=

+. (2)闭合电路的电流,跟电源的电动势成正比,跟整个电路的电阻成反比。

2、对闭合电路欧姆定律的理解 公式的适用对象

○1U

I R =

适用于纯电阻电路。 ○2E

I R r

=+适用于纯电阻电路。

○3E U U =+外内适用于各种电路,U E Ir =外-与E U U =+外内相同。

要点二、闭合电路欧姆定律应用

1.路端电压随负载的变化分析

负载即用电器,而R 是由负载的结构决定的,当R 变化时,路端电压U 、电流I 随之变化,由E Ir U =+得

1ER E

U E Ir r R r R

=-=

=++. 可见:

(1)U 随R 的增大而增大,随R 的减小而减小,U I -曲线如图所示。

(2)当0R →(短路)时,0U =,此时E

I r

=最大,会引起火灾。 (3)当R →∞(断路)时,U E =。 2.功率与电流之间的关系(如图)

1直线表示电源的总功率 P EI =总.

2曲线表示电源的输出功率 2

P UI EI I r ==-出.

3曲线表示电源内部消耗的功率 2r P I r =.

3.电源做功、功率和输出功率及效率问题的分析

(1)电源做功:W EIt = 电源的总功率:P EI = (2)电源的输出功率为

222

2

222

=()()4()4E E R E P I R R r R R r Rr R r r R

=

?==+-+-+出, 当R r =时,P 出有最大值

22

44m E E P R r

==.

P 出与外电阻R 的这种函数关系可用如图的图象定性地表示。由图象可知,当R r =(即外电阻等于内电阻)时,电源的输出功率最大为m P 。当R r ≠时,对于每一个电源输出功率

0P ,总有两个阻值不同的外电阻1R 和2R 与其对应。由图象还可知当R r <时,若R 增大,

则P 出增大;当R r >时,若R 增大,则P 出减小。 (3)电源的效率

221

()1I R R r R r I R r R

η===+++.

当R 增大时,效率η提高,当R r =时,电源有最大输出功率时,效率仅为50%,效率并不高。

(4)用电器获得最大功率的分析 处理这类问题通常采用等效电源法,解题时应根据需要选用不同的等效方式,将用电器获得最大功率问题转化为电源输出最大功率的问题。

要点三、元件的U -I 曲线和电源的U -I 曲线的比较

1.两种图象

图甲是定值电阻的U I -曲线,纵坐标和横坐标分别代表了该电阻两端的电压U 和通过该电阻的电流I ,反映了I 跟U 的正比例关系;图乙是对闭合电路整体而言的,U 表示路端电压,I 表示通过电源的电流,图线反映U 与I 的制约关系。

2.两种图象的物理意义

图甲表示导体的性质。而图乙所示是电源的性质,在图甲中,U 与I 成正比的前提是电阻R 保持一定;在图乙中,电源的电动势和内阻保持不变,外电阻是变的,正是R 的变化才有U 和I 的变化。

甲图直线的斜率是定值电阻的阻值,乙图直线的斜率表示电源的内阻。 3.两种图象的应用

将元件的U I -图线和电源的U I -图线放在同一个坐标系内,它们的交点坐标

00U I (,)就是元件接在该电源上时的工作状态,如图所示:

4.闭合电路的U I -图象

图中a 为电源的U I -图象;b 为外电阻的U I -图象;

a 的斜率的绝对值表示内阻大小;a 与纵轴的交点坐标E 表示电源的电动势;

b 的斜率的绝对值表示外电阻的大小;

两者的交点坐标(),M I U 表示该电阻接入电路时电路的总电流I 和路端电压U ;该点和原点之间的矩形的面积表示电源的输出功率. 要点诠释:

1.如果电流表、电压表是理想的,理想电流表内阻是零,理想电压表内阻可看作无穷大,当把电表接入电路中,它们的作用是显示电流、电压的仪器。

2.在有些电路中,电表的内阻对电路的影响很大,不能忽略,这时电表在电路中的作用是能显示电流、电压的电阻。

要点四、含有电容的直流电路

1.含容电路的简化 在直流电路中,当电容器充、放电时,电路里有充、放电电流。一旦电流达到稳定状态,电容器在电路中就相当于一个电阻值无穷大的元件,在电路分析时可看作是断路,简化电路时可去掉它,若要求电容器所带电荷量时,可在相应的位置上,用理想电压表代替,此电压表的读数即为电容器两端的电压。 2.含容电路的一些结论

(1)电路稳定后,由于电容器所在支路无电流通过,所以在此支路中的电阻上无电压降,因此电容器两极间的电压就等于该支路两端的电压。

(2)当电容器和电阻并联后接入电路时,电容器两极间的电压与其并联电阻两端的电压相等。

(3)电路中的电流、电压变化时,将会引起电容器的充(放)电,如果电容器两端电压升高,电容器将充电;如果电压降低,电容器将通过与它连接的电路放电。 要点诠释:

对电容器电荷量的变化问题,要注意电容器两个极板的电性变化;若极板电性不变,则

21Q Q Q ?=-;若极板电性互换,则21Q Q Q ?=+.

要点五、关于电路故障

1.电路出现故障的原因 (1)短路;(2)断路。 2.电路故障特点

(1)断路特点:电路中发生断路表现为电源电压不为零,而电流为零;断路后,电源电压将全部降落在断路之处。

(2)短路特点:电路中其一部分发生短路,表现为有电流通过电路而该电路两端电压为零。

3.电路故障的检测——用电压表检测

(1)若电路中某两点电压不为零,说明电压表上有电流通过,则在并联路段之外无断路或并联电路内无短路。

(2)若电路中某两点电压为零,说明电压表上无电流通过,则可能在并联路段之外有断路或并联电路内有短路。 要点诠释:

以上判断限于电路中只有一处故障。

4.假设法寻找电路故障发生原因及故障点

已知电路发生某种故障,寻找故障发生的位置时,可将整个电路划分为若干部分;然后逐一假设某部分电路发生故障,运用欧姆定律进行正向推理。推理结束若与题述物理现象不符合,则故障不是发生在这部分电路;若推理结果与题述物理现象符合,则故障可能发生在这部分电路。直到找出发生故障的全部可能为止,亦称排除法。

要点六、电路分析

1、电路分析的方法

闭合电路中由于局部电阻变化(或开关的通断)引起各部分电压、电流(或灯泡明暗)发生变化的问题的分析方法如下:

A .程序分析法:“部分→整体→部分” (1)由局部电阻变化判断总电阻的变化。 (2)由E

I R r

=

+判断总电流的变化。 (3)根据U E Ir =-判断路端电压的变化。

(4)由欧姆定律及串并联电路的规律判断各部分电路电压及电流的变化。 以上分析可形象表示为:

I R R I U U ?????????????????????

局端分增大增大增大小小小增大小总总减减减减

B .结论分析法

在闭合电路的动态分析过程中总结出如下(1)(2)两个结论,利用这两个结论进行电路分析方便快捷。

(1)任一电阻R 阻值增大,必引起该电阻中电流I 的减小和该电阻两端电压U 的增大。

I R U ?↓

?↑??↑

??

(2)任一电阻R 阻值增大,必将引起与之并联的支路中电流I 并的增大和与之串联的各电阻电压U 串的减小。

I R U ?↑

?↑??↓

??并串

C .极值或端值分析法

外电路上某个电阻的阻值发生变化时(往往是变阻器的阻值变化),电路中的某个量或某几个量也随之变化,可能出现最大值或最小值,求出最大值或最小值后,这些量的变化情况也就随之确定。例如一段电路上的电阻出现最大值,电流可能出现最小值,电压可能出现最大值。有些情况下在所讨论的范围内某个量没有出现不单调变化,此时变化范围的端值就是最大值或最小值。 D .特殊值验证法

在某个量的变化范围内取几个特殊的状态,利用这些状态进行计算并加以比较,以确定某些量的变化情况。 2.电路分析的技巧

(1)当讨论定值电阻上电压(电流)的变化时,可用部分电路欧姆定律分析,当讨论可变电阻R 上的电压(电流)变化时,不能再由欧姆定律U

I R

=

分析,因它的电阻减小(或增大),两端的电压也减小(或增大),I 不好确定,这时,应从总电流等于部分电流之和分析。

(2)在闭合电路中,任何一个电阻增大(或减小),则电路的总电阻将增大(或减小),任何一个电阻增大(或减小),该电阻两端的电压一定会增大(或减小),通过该电阻的电流减小(或增大)。 【典型例题】

类型一、闭合电路的计算

例1.如图所示,AB CD 、为两根平行、相同的均匀电阻丝,EF 为另一根电阻丝,其电阻为R ,它可以在AB CD 、上滑动并保持与AB 垂直,EF 与AB CD 、接触良好。图中电压表为理想电压表,电池的电动势和内阻都不变。B D 、与电池两极连接的导线的电阻可忽略。当EF 处于图中位置时,电压表的读数1 4.0 V U =。已知将EF 由图中位置向左移动一段距离L ?后,则电压表的读数变为2 3.0 V U =,若将EF 由图中位置向右移动L ?,电压表的读数3U 是多少?

【思路点拨】与理想电压表串联的电阻将其视为无电阻的导体,电压表的读数就是EF 两端的电压。应用闭合电路欧姆定律进行计算时,必须明确相应电路状态的外电阻、路端电压等。

【答案】6 V

【解析】设ρ表示AB CD 、单位长度电阻丝的电阻,当EF 处于图中位置时,设

EB FD 、两段电阻丝长的长度皆为L 。

由于电压表是理想电压表,故电压表的读数就是EF 两端的电压,由串联电压分压关系,得

12RE

U r R L

ρ=++.

当EF 由图中位置向左移动一段距离L ?后,EB FD 、两段电阻丝的总电阻为

2()L L ρ+?,

由串联电路分压关系得,得

22()

RE

U r R L L ρ=+++?.

当EF 由图中位置向右移动一段距离L ?后,EB FD 、两段电阻丝的总电阻为

2()L L ρ-?,

由分压关系,得

32()

RE

U r R L L ρ=++-?.

以上三式代入数值,得

3 6 V U =.

【总结升华】(1)凡与理想电压表串联的电阻将其视为无电阻的导体,该电阻两端电压视为零。

(2)应用闭合电路欧姆定律进行计算时,必须明确相应电路状态的外电阻、路端电压等。

举一反三:

【闭合电路欧姆定律的应用382478 例1 】

【变式1】在如图所示的电路中,123R R R 、、和4R 皆为定值电阻,5R 为可变电阻,电源的电动势为ε,电阻为r 。设电流表A 的读数为I ,电压表的读数为U 。当5R 的滑动触点向图中b 点移动时( )

A .I 变大,U 变小

B .I 变大,U 变大

C .I 变小,U 变大

D .I 变小,U 变小

【答案】B

【解析】1、观察电路。搞清电阻或者用电器之间的串并联关系。判断滑动变阻器的移动将导致的变化,如图,滑片向b 点移动,外电路的总电阻变大.

2、由闭合电路欧姆定律,判断干路电流和路端电压的变化。干路电流减小,路段电压增大.

3、在串联分压和并联分流来判断各支路电流、电压的变化。 此题中电流表和电压表的示数都变大.选“ B ”.

【总结升华】总结规律如下:

1总电路上R 增大时总电流I 减小,路端电压U 增大; ○

2变化电阻本身的电阻、电流、电压和总电路的电阻、电流、电压变化规律相同; ○3和变化电阻有串联关系的,看电流。(即总电流 减 小时,该电阻的电流、电压都减小);

4和变化电阻有并联关系的,看电压。(即路端电压增大时,该电阻的电流、电压都 增大)。

【闭合电路欧姆定律的应用382478 例2 】

【变式2】在如图所示电路中,当变阻器的滑动头P 向b 端移动时( )

A .电压表示数变大,电流表示数变小

B .电压表示数变小,电流表示数变大

C .电压表示数变大,电流表示数变大

D .电压表示数变小,电流表示数变小

【答案】B

类型二:闭合电路的动态分析

例2.如图所示,当滑动变阻器的触片向上端移动时,电流表12A A 、和电压表12V V 、示数如何变化?

【答案】1A 减小 2A 增大 1V 增大 2V 减小

【解析】当滑片上移时,4R 电阻变大,因此混联电路的总电阻也随之增大,总电阻增大,由E

I R r

=

+,总电流I 减小,表1A 变小。U E Ir =-外,路端电压变大,表1V 变大。21U IR =,I 减小,故2U 减小,表2V 减小,2U E Ir U =--并,故U 并并增大,223

U I R R =

+并,

故2I 增大,表2A 增大。

【总结升华】处理电路动态变化问题的一般思路是先部分(引起变化的部分),再整体(分析回路的总电阻、干路电流及路端电压的变化),最后回到部分(需要得出结论的部分)。

举一反三:

【闭合电路欧姆定律的应用382478 例3 】

【变式】在如图所示电路中,闭合电键S ,当滑动变阻器的滑动触头 P 向下滑动时,四个理想电表的示数都发生变化,电表的示数分别用12I U U 、、和3U 表示,电表示数变化量的大小分别用12I U U ???、、和3U ?表示.下列比值正确的是 ( )

A .1/U I 不变,1/U I ??不变.

B .2/U I 变大,2/U I ??变大.

C .2/U I 变大,2/U I ??不变

D .3/U I 变大,3/U I ??不变.

【答案】A C D 【解析】

11

1U U R I I

?==?,

2

2U R I

=,

211()

U I R r R r I I ??+==+??.

3

21U R R I

=+,

3U Ir

r I I

??==??. 故A 、C 、D 正确.

类型三、电路极值问题

例3.如图所示,电源电动势 6 V E =,内电阻0.4Ωr =,固定电阻12ΩR =,23ΩR =,

3R 是阻值范围为05Ω的滑动变阻器。合上开关S ,调节滑动变阻器的触头P ,试求通过

电源电流的最小值。

【思路点拨】先找出物理量的函数关系,再利用数学知识求取值。

【答案】2.07A

【解析】设滑动触头P 从最上端A 移至某一位置时,将3R 分成AP PB R R 、两部分,且设AP R 的阻值为x R ,R PB 的阻值为

3x R R (-),

这时外电路总电阻为

123123

()()

+x x R R R R R R R R R ++-=

+.

由数学知识知,当3Ωx R =,即两并联支路的电阻相等时, R 总有最大值max 2.5ΩR =,这时外电路电流最小,最小电流为

max max 6A=2.07A 2.50.4

E I R =

=+. 【总结升华】(1)解决极值问题常用的方法是:先找出物理量的函数关系,再利用数学知识求取值。

(2)本题容易误认为P 从3R 的最上端移至最下端过程中,并联总电阻单调增加的变化,这是易错点,当并联支路电阻相等时,并联电阻最大。

举一反三:

【变式】如图所示的电路中,已知电源电动势 6.3V E =,内电阻 0.5Ωr =,定值电阻12ΩR =,23ΩR =,滑动变阻器3R 的全值电阻为5Ω,今闭合电键K ,调节滑动电阻的滑动头P ,试通过电源的电流变化的范围。

【答案】2.1A 3A I ≤≤. 【解析】min max 28

1.6Ω

2.5Ω=28

R R R ?=

=≤≤+. 所以通过电源的电流范围为2.1A 3A I ≤≤.

【总结升华】注意:由极值知识可知P 滑至最左端时外电阻有最小值;P 滑至3R 的左侧电阻为3Ω时外电阻有最大值。 类型四、电流表、电压表对电路的影响

例4.如图所示,已知13k ΩR =,26k ΩR =,电压表的内阻为9 k Ω,当电压表接在1R 两端时,读数为2V ,而当电压表接在2R 两端时,读数为3.6 V ,试求电路两端(AB 间)

的电压和电阻R 的阻值。

【答案】 6.6 k ΩR =

【解析】当电压表接在1R 两端时,电路的总电流为

111228

()mA=mA 939

V U U I R R =

+=+. 所以有

12()U U I R R =++

当电压表接在2R 两端时,电路总电流为 '

222 3.6 3.6

()mA=1mA 96

V U U I R R =+=+. 所以有

'21()U U I R R =++ ②

将I 和'

I 代入①②两式可解得:

AB 间的电压13.2 V U =,电阻 6.6 k ΩR =。

【总结升华】由于电压表的内阻与电阻1R 和2R 的值均在一个数量级( k Ω)上,因此不能按理想电表讨论。

通过电压表的读数,可以间接地知道电路中的电流,在这里,电压表实际上充当了双重角色(既是电压表,又是电阻),流入电压表的电流不可忽略。

举一反三:

【变式】某同学在测定标称“3.8V"的小灯泡时是采用伏安法进行的,但他将电压表、电流表的位置颠倒了,接成了如图所示的电路,这将会使:

A 、小灯泡损坏

B 、小灯泡不亮

C 、电流表读数很小

D 、电压表读数大约为5V 【答案】B C D

类型五、含有电容的直流电路和计算

例5.在如图所示的电路中,电源电动势 3.0 V E =,内电阻1.0Ωr =;电阻110ΩR =,

210ΩR =,330ΩR =,435ΩR =;电容器的电容100μF C =,电容器原来不带电。求接通

开关S 后流过4R 的总电荷量。

【思路点拨】S 接通前,电容器上的电压、电荷量均为零。找出接通电键S ,待电路稳定后电容器两端的电压。

【答案】4

2.010C -?

【解析】由电阻的串并联公式得闭合电路的总电阻 123123

()

R R R R r R R R +=

+++总,

由欧姆定律得通过电源的电流

E I R

=

, 电源的路端电压

U E Ir =-,

3R 两端的电压

'3

23

R U U R R =

+。

通过4R 的总电荷量就是电容器的电荷量

Q CU ='

由以上各式并代入数据解得

42.010C Q -=?。

【总结升华】S 接通前,电容器上的电压、电荷量均为零;S 接通后,R 4上有电流,直至电容器充电结束,这时,电容器相当于断路,4R 上无电流,3R 上的电压即是C 上的电压,这是本题的关键。

举一反三:

【变式】(2015 大庆实验中学三模)如图为一电源电动势为E ,内阻为r 的恒定电路,电压表A 的内阻为10kΩ,B 为静电计,C 1、C 2分别是两个电容器,将开关闭合一段时间,下列说法正确的是:( )

A .若C 1>C 2,则电压表两端的电势差大于静电计两端的电势差

B .若将变阻器滑动触头P 向右滑动,则电容器

C 2上带电量增大 C .C 1上带电量为零

D .再将电键S 打开,然后使电容器C 2两极板间距离增大, 则静电计张角也增大 【答案】CD

【解析】A 、由于静电计的两个电极是彼此绝缘的,电压表是由电流表改装成的,电路稳定后,电路中没有电流,电压表两端没有电压,而电容器C 2充电,两端存在电压.所以电压表两端的电势差小于静电计两端的电势差,故A 错误;

B 、电路稳定后,电容器

C 2的电压等于电源的电动势,保持不变,将变阻器滑动触头P 向右滑动,电容器C 2的电压不变,电量不变,故B 错误;

C 、由于电压表两端没有电压,电容器C 1没有被充电,电量为零,故C 正确;

D 、将电键S 打开,电容器的电量Q 不变,板间距离增大,电容C 减小,由公式C=分析可知,板间电压增大,静电计张角增大,故D 正确。 故选:CD

【易错警示】本题难点在于分析电压表两端的电压,抓住静电计与电压表结构的区别:静电计两极是绝缘的,而电压表的两极是相通的。

类型六、电路故障判断

例6(2014 海阳市校级期末)如图所示是一电路板的示意图,a、b、c、d为接线柱,a、d与220V的电源连接,ab间、bc间、cd间分别连接一个电阻.发现电路中没有电流,为检查电路故障,用一电压表分别测得b、d两点间以及a、c两点间的电压均为220V,由此可知()

A.ab间电路通,cd间电路不通B.ab间电路不通,bc间电路通

C.ab间电路通,bc间电路不通D.bc间电路不通,cd间电路通

【思路点拨】电压表是一个内阻很大的元件,使用时应将其与被测电路并联,当将其与其他元件串联时,其示数将接近电源电压,造成元件无法正常工作.根据电压表的这一特点,结合电路的连接变化可依次做出判断,并推理出故障的原因。

【答案】CD

【解析】用电压表测得a、c两点间的电压为220V,说明c、d间是连通的;用电压表测得b、d两点间的电压为220V,说明a、b间是连通的,综合两次的测量结果可以看出,只有当b、c间不通时,才会出现上述情况.因此CD正确.

【总结升华】了解电压表是一个内阻很大的元件,知道电压表的使用特点,才能结合实际推导出电路的故障原因。

举一反三

【变式】如图所示电路,已知

34Ω

R=,闭合开关,电流表读数为0.75A,电压表读数为2V,经过一段时间,一个电阻被烧坏(断路),使电流表读数变为0.8A,电压表读数变为3.2V,问:

(1)哪个电阻发生断路故障? (2)1R 的阻值是多少?

(3)能否求出电源电动势E 和内阻r ?如果能,求出结果;如果不能,说明理由.

【答案】(1)2R (2) 4Ω (3) 4+14V R r E Ω=

,=.故只能求出电源电动势E 而不能求出内阻r .

【解析】(1)电压表和电流表有示数且示数增大,说明外电阻增大,故只能是2R 被烧断路了.

(2)'11'1 3.2

Ω=4Ω0.8

U R I ==.

(3)因

31120.75 4 V 2 V 1 V U I R U -?-===.

3331

A=0.25A 4

U I R =

=. 由

43.2 V+0.8 A (+)E R r ?=

40.75 A 4 +(0.25 A 0.75 A)(+)E R r ?Ω=+.

4+14V R r E Ω=,=.

故只能求出电源电动势E 而不能求出内阻r .

类型七、电路与静电场综合问题

例7.如图所示的电路中,两平行金属板A B 、水平放置,两板间的距离40cm d =。电源电动势24 V E =,内电阻1ΩR =,电阻15ΩR =。闭合开关S ,待电路稳定后,将一

带正电的小球从B 板小孔以初速度04m/s v =竖直向上射入板间,若小球带电荷量为

2110 C q -=?,质量为2210 kg m -=?,不考虑空气阻力。那么,滑动变阻器接入电路的阻值为多大时,小球恰能到达A 板?此时,电源的输出功率是多大?2

10m/s g (取)

【思路点拨】对“小球恰能到达A 板”的过程应用动能定理求出AB U 。再用闭合电路欧姆定律进行有关计算。

【答案】8Ω 23 W

【解析】

(1)小球进入板间后,受重力和电场力作用,且到A 板时速度为零,设两板间电压为

AB U ,由动能定理得

2

0102

AB mgd qU mv --=-. 所以滑动变阻器两端电压

8 V AB U U ==滑.

设通过滑动变阻器电流为I ,由欧姆定律得 1A E U I R r

-=

=+滑.

滑动变阻器接入电路的电阻

8ΩU R I

=

=滑滑.

(2)电源的输出功率

2

()23 W P I R R =+=出滑.

举一反三:

【变式】如图所示:10V E =,内阻不计,1230μF C C ==,14ΩR =,26ΩR =,先闭合开关S ,待电路稳定后,再将开关断开,则断开S 后流过1R 的电量为为多少?

【答案】4

4. 210C -? .

类型八、电源做功、功率和输出功率及效率的计算 【闭合电路欧姆定律的应用382478 例5 】

例8.如图所示直线A 为电源的U I -图线,直线B 为电阻的U I -图线,用该电源和该电阻组成闭合电路,则电源的输出功率和电源的效率分别是( )

A.4W, 33%

B.2W, 33.3%

C. 2W, 67%

D. 4W, 67%

【答案】D

【解析】由图线可知1ΩR =, 3V E =, 0.5Ωr =. 虚线和坐标轴所包围的面积等于输出功率

4W P =出.

6W P EI ==总.

P / P 4/667%η===出总.

【闭合电路欧姆定律的应用382478 例6 】

例9.在图示电路中,电池的电动势5V E =,10Ωr = ,固定电阻90ΩR =,0R 是可变电阻,在0R 由0增加到400Ω的过程中,求:

(1)可变电阻的消耗热功率最大的条件和最大热功率. (2) 电池的内阻和固定电阻R 上消耗的最小热功率之和.

【答案】(1)当0 100

ΩR =时,1

W 16

(2)0.01W 【解析】(1)将R 看作内电阻的一部分,则

1100Ωr r R =+=,

当0 100

ΩR =时,可变电阻的消耗热功率最大为 21251

W 440016

E P r ===.

(2)R 上消耗的热功率最小,则电流最小,总电阻最大,

()()2

0/0.01W P E R R r R r =+++=????

.

类型九、闭合电路欧姆定律综合应用

【闭合电路欧姆定律的应用382478 例8 】

例10.如图所示的电路中,电池的电动势为E ,内阻为r ,电路中的电阻1R 、2R 和3

R 的阻值都相同。在电键S 处处于闭合状态下,若将电键1S 由位置1切换到位置2,则( )

A .电压表的示数变大

B .电池内部消耗的功率变大

C .电阻2R 两端的电压变大

D .电池的效率变大

【答案】B

【解析】这是一个由开关的通断导致电路变化的问题,123R R R R ===

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 物 理 重 要 知 识 点 总 结 (史上最全) 高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是因为地球对物体的吸引而产生的. [注意]重力是因为地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,能够认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:因为发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素相关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存有压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向能够相同也能够相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件能够判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N实行计算,其中F N是物体的正压力,不一

人教版高一物理知识点归纳总结

质点参考系和坐标系

时间和位移

实验:用打点计时器测速度 知识点总结 了解打点计时器的构造;会用打点计时器研究物体速度随时间变化的规律;通过分析纸带测定匀变速直线运动的加速度及其某时刻的速度;学会用图像法、列表法处理实验数据。 一、实验目的 1.练习使用打点计时器,学会用打上的点的纸带研究物体的运动。 3.测定匀变速直线运动的加速度。 二、实验原理 ⑴电磁打点计时器 ①工作电压:4~6V的交流电源 ②打点周期:T=0.02s,f=50赫兹 ⑵电火花计时器 ①工作电压:220V的交流电源 ②打点周期:T=0.02s,f=50赫兹 ③打点原理:它利用火花放电在纸带上打出小孔而显示点迹的计时器,当接通220V的交流电源,按下脉冲输出开关时,计时器发出的脉冲电流经接正极的放电针、墨粉纸盘到接负极的纸盘轴,产生电火花,于是在纸带上就打下一系列的点迹。 ⑵由纸带判断物体做匀变速直线运动的方法 0、1、2…为时间间隔相等的各计数点,s1、s2、s3、…为相邻两计数点间的距离,若△s=s2-s1=s3-s2=…=恒量,即若连续相等的时间间隔内的位移之差为恒量,则与纸带相连的物体的运动为匀变速直线运动。 ⑶由纸带求物体运动加速度的方法

三、实验器材 小车,细绳,钩码,一端附有定滑轮的长木板,电火花打点计时器(或打点计时器),低压交流电源,导线两根,纸带,米尺。 四、实验步骤 1.把一端附有定滑轮的长木板平放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路,如图所示。 2.把一条细绳拴在小车上,细绳跨过滑轮,并在细绳的另一端挂上合适的钩码,试放手后,小车能在长木板上平稳地加速滑行一段距离,把纸带穿过打点计时器,并把它的一端固定在小车的后面。 3.把小车停在靠近打点计时器处,先接通电源,再放开小车,让小车运动,打点计时器就在纸带上打下一系列的点, 取下纸带, 换上新纸带, 重复实验三次。 4.选择一条比较理想的纸带,舍掉开头的比较密集的点子, 确定好计数始点0, 标明计数点,正确使用毫米刻度尺测量两点间的距离,用逐差法求出加速度值,最后求其平均值。也可求出各计数点对应的速度, 作v-t图线, 求得直线的斜率即为物体运动的加速度。 五、注意事项 1.纸带打完后及时断开电源。 2.小车的加速度应适当大一些,以能在纸带上长约50cm的范围内清楚地取7~8个计数点为宜。 3.应区别计时器打出的轨迹点与人为选取的计数点,通常每隔4个轨迹点选1个计数点,选取的记数点不少于6个。 4.不要分段测量各段位移,可统一量出各计数点到计数起点0之间的距离,读数时应估读到毫米的下一位。 常见考法 纸带处理时高中遇到的第一个实验,非常重要,在平时的练习中、月考、期中、期末考试均会高频率出现,以致在学业水平测试和高考中也做为重点考察内容,是选择、填空题的形式出现,同学们要引起重视。 误区提醒 要注意的就是会判断纸带的运动形式、会计算某点速度、会计算加速度,在运算的过

高中物理选修3-3知识点整理

选修3—3考点汇编 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子 间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点: 永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对 固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运 动、扩散现象都有力地说明物体内大量的分子都在永不停息地

做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010 -m ,相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十分微弱,可以忽略不 计了 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。热力学温度与摄氏温度的关系:273.15T t K =+ 5、内能 ①分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小) 当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加 ②物体的内能 物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(理想气体的内能只取决于温度) ③改变内能的方式

高中物理知识点归纳分享

高中物理知识点归纳分享 高中物理知识点归纳分享 1.光本性学说的发展简史 (1)牛顿的微粒说:认为光是高速粒子流.它能解释光的直进现象,光的反射现象. (2)惠更斯的波动说:认为光是某种振动,以波的形式向周围传播.它能解释光的干涉和衍射现象. 2、光的干涉 光的干涉的条件是:有两个振动情况总是相同的波源,即相干波源。(相干波源的频率必须相同)。形成相干波源的.方法有两种:⑴利用激光(因为激光发出的是单色性极好的光)。⑵设法将同一束光 分为两束(这样两束光都来源于同一个光源,因此频率必然相等)。 下面4个图分别是利用双缝、利用楔形薄膜、利用空气膜、利用平 面镜形成相干光源的示意图。 2.干涉区域内产生的亮、暗纹 ⑴亮纹:屏上某点到双缝的光程差等于波长的整数倍,即 δ=nλ(n=0,1,2,……) ⑵暗纹:屏上某点到双缝的光程差等于半波长的奇数倍,即 δ=(n=0,1,2,……) 相邻亮纹(暗纹)间的距离。用此公式可以测定单色光的波长。用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条 纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹。 3.衍射----光通过很小的孔、缝或障碍物时,会在屏上出现明暗相间的条纹,且中央条纹很亮,越向边缘越暗。

⑴各种不同形状的障碍物都能使光发生衍射。 ⑵发生明显衍射的条件是:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。(当障碍物或孔的尺寸小于0.5mm时,有明显衍射 现象。) ⑶在发生明显衍射的条件下当窄缝变窄时亮斑的范围变大条纹间距离变大,而亮度变暗。 4、光的偏振现象:通过偏振片的光波,在垂直于传播方向的平 面上,只沿着一个特定的方向振动,称为偏振光。光的偏振说明光 是横波。 5.光的电磁说 ⑴光是电磁波(麦克斯韦预言、赫兹用实验证明了正确性。) ⑵电磁波谱。波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线。各种电磁波中,除可见光以外, 相邻两个波段间都有重叠。 各种电磁波的产生机理分别是:无线电波是振荡电路中自由电子的周期性运动产生的;红外线、可见光、紫外线是原子的外层电子受 到激发后产生的;伦琴射线是原子的内层电子受到激发后产生的;γ 射线是原子核受到激发后产生的。 ⑶红外线、紫外线、X射线的主要性质及其应用举例。 种类产生主要性质应用举例 红外线一切物体都能发出热效应遥感、遥控、加热 紫外线一切高温物体能发出化学效应荧光、杀菌、合成VD2 X射线阴极射线射到固体表面穿透能力强人体透视、金属探伤 以上就是新编高中物理知识点归纳之光的波动性和微粒性的全部内容,希望能够对大家有所帮助!

人教版高一物理必修二知识点总结

曲线运动 一、曲线运动 (1)条件:质点所受合外力的方向(或加速度方向)跟它的速度方向不在同一直线上。 ①匀变速曲线运动:若做曲线运动的物体受的是恒力,即加速度大小、方向都不变的曲线运动,如平抛运动; ②变加速曲线运动:若做曲线运动的物体所受的是变力,加速度改变,如匀速圆周运动。 (2)特点: ①曲线运动的速度方向不断变化,故曲线运动一定是变速运动。 ②曲线运动轨迹上某点的切线方向表示该点的速度方向。 ③曲线运动的轨迹向合力所指一方弯曲,合力指向轨迹的凹侧。 ④当物体受到的合外力的方向与速度方向的夹角为锐角时,物体做曲线运动速率将增大;当物体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小;当物体受到的合外力的方向与速度方向的夹角为90度时,物体做曲线运动速率将不变。 2.运动的合成与分解(指位移、速度、加速度三个物理量的合成和分解) (1)合运动和分运动关系:等时性、等效性、独立性、矢量性、相关性 ①等时性:合运动所需时间和对应的每个分运动所需时间相等。 ②等效性:合运动的效果和各分运动的整体效果是相同的,合运动和分运动是等效替代关系,不能并存。 ③独立性:每个分运动都是独立的,不受其他运动的影响 ④矢量性:加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则 ⑤相关性:合运动的性质是由分运动性质决定的 (2)从已知的分运动来求合运动,叫做运动的合成;求已知运动的分运动,叫运动的分解。 ①物体的实际运动是合运动 ②速度、时间、位移、加速度要一一对应 ③如果分运动都在同一条直线上,需选取正方向,与正方向相同的量取正,相反的量取负,矢量运算简化为代数运算。如果分运动互成角度,运动合成要遵循平行四边形定则 3.小船渡河问题 一条宽度为L 的河流,水流速度为V s ,船在静水中的速度为V c (1)渡河时间最短: 设船上头斜向上游与河岸成任意角θ,这时船速在垂直于河岸方向的速度分量V 1=V c sin θ,渡河所需时间为:θsin c V L t = , sin90=1当船头与河岸垂直时,渡河时间最短,c V L t = m in (与水 速的大小无关) 渡河位移:222t v L s s += (2)渡河位移最短: ①当V c >V s 时V s = V c cos θ渡河位移最短L s =min ;渡河时间为θ sin v L t = 船头应指向河的上游,并与河岸成一定的角度θ=arccosV s /V c ②当V c >V s 时以V s 的矢尖为圆心,以V c 为半径画圆,当V 与圆相切时,α角最大,V c =V s cos θ,船头与河岸的夹角为:θ=arccosV c /V s 。 渡河的最小位移:L V V L s c s ==θcos

高中物理知识点大总结

高中物理知识点大总结 高中物理公式总结 物理定理、定律、公式表 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t 图/速度与速率、瞬时速度〔见第一册P24〕。 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh 注: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 (3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注: (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动、万有引力 1)平抛运动

高中物理必修2知识点归纳重点

新课标高中物理必修Ⅱ知识点总结 在学习物理的过程中,希望你能养成解题的好习惯,这一点很重要。 1、看题目的时候,很容易会看着头晕转向,这是心理问题,是自己逃避的 表现。因此再看题目的过程中,要手拿笔,画出重要的解题关键点。比 如:物体的开始与结束的状态、平衡状态等等;(这是一个积累过程,习 惯了就会事半功倍,不要不要在乎纸的清洁。); 2、画图;物理解题应该是想象思维、图形结合,再到推理的过程。画图真 的是必不可少的,不能懒而省了这一步。一定要画图,而且要整洁,不 可马虎; 3、辅导书是第二个老师;你若自学辅导书的每一章节前面的是总结梳理, 认真的记忆梳理,你课都可以不听了(不骗人,前提是你真的用功了)。 自习的时候,不要直接做辅导书的题那么快,认真看前面的知识点和例 题,消化好了,绝对受益匪浅。(任何一门理科都可以这么学的) 第一模块:曲线运动、运动的合成和分解 <一> 曲线运动 1、定义:运动轨迹为曲线的运动。 2、物体做曲线运动的方向:做曲线运动的物体,速度方向始终在轨迹的切线方向上。 3、曲线运动的性质:曲线运动一定是变速运动。(选择题) 由于曲线运动速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的加速度必不为零,所受到的合外力必不为零。(选择题) 4、物体做曲线运动的条件 物体所受合外力(加速度)的方向与物体的速度方向不在一条直线上。 总之,做曲线运动的物体所受的合外力一定指向曲线的凹侧。(选择题) 5、分类 ⑴匀变速曲线运动:物体在恒力作用下所做的曲线运动,如平抛运动。 ⑵非匀变速曲线运动:物体在变力(大小变、方向变或两者均变)作用下所做的曲线运动,如圆周运动。 <二> 运动的合成与分解(小船渡河是重点) 1、运动的合成:从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。运动合成重点是判断合运动和分运动,一般地,物体的实际运动就是合运动。(做题依据) 2、运动的分解:求一个已知运动的分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解。 3、合运动与分运动的关系: ⑴运动的等效性⑵等时性⑶独立性⑷运动的矢量性 4、运动的性质和轨迹

人教版高中物理选修3-5知识点总结

选修3-5知识梳理 一.量子论的建立黑体和黑体辐射Ⅰ (一)量子论 1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。 2.量子论的主要内容: ①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。 ②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。 3.量子论的发展 ①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。 ②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。 ③到1925年左右,量子力学最终建立。 4.量子论的意义 ①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。 ②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。 ③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应 ④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。 量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。 (二)黑体和黑体辐射

1.热辐射现象 任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。 这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。 ①.物体在任何温度下都会辐射能量。 ②.物体既会辐射能量,也会吸收能量。物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。 辐射和吸收的能量恰相等时称为热平衡。此时温度恒定不变。 实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。 2.黑体 物体具有向四周辐射能量的本领,又有吸收外界辐射 来的能量的本领。 黑体是指在任何温度下,全部吸收任何波长的辐射的 物体。 3.实验规律: 1)随着温度的升高,黑体的辐射强度都有增加; 2)随着温度的升高,辐射强度的极大值向波长较短方向移动。 二.光电效应光子说光电效应方程Ⅰ 1、光电效应

高中物理选修3-3知识点归纳

选修3-3知识点归纳 2017-11-15 一、分子动理论 1、物体是由大量分子组成:阿伏伽德罗第一个认识到物体是由 分子组成的。 ①分子大小数量级10-10m ②A N M m 摩分子=(对固体液体气体) A N V V 摩分子=(对固体和液体) 摩摩物物V M V m ==ρ 2、油膜法估测分子的大小: ①S V d 纯油酸=,V 为纯油酸体积,而不能是油酸溶液体积。 ②实验的三个假设(或近似):分子呈球形;一个一个整齐地紧密排列;形成单分子层油膜。 3、分子热运动: ①物体内部大量分子的无规则运动称为热运动,在电子显微镜才能观察得到。 ②扩散现象和布朗运动证实分子永不停息作无规则运动,扩散现象还说明了分子间存在间隙。 ③布朗运动是固体小颗粒在液体或气体中的运动,反映了液体分子或气体分子无规则运动。颗粒越小、 温度越高,现象越明显。从阳光中看到教室中尘埃的运动不是布朗运动。 4、分子力: ①分子间同时存在引力和斥力,都随距离的增大而减小,随距离的减小而增大,斥力总比引力变化得快。 ②当r=r 0=10-10m 时,引力=斥力,分子力为零;当r>r 0,表现为引力;当r

(完整版)高中物理知识点清单(非常详细)

高中物理知识点清单 第一章 运动的描述 第一节 描述运动的基本概念 一、质点、参考系 1.质点:用来代替物体的有质量的点.它是一种理想化模型. 2.参考系:为了研究物体的运动而选定用来作为参考的物体.参考系可以任意选取.通常以地面或相对于地面不动的物体为参考系来研究物体的运动. 二、位移和速度 1.位移和路程 (1)位移:描述物体位置的变化,用从初位置指向末位置的有向线段表示,是矢量. (2)路程是物体运动路径的长度,是标量. 2.速度 (1)平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值,即v =x t ,是矢量. (2)瞬时速度:运动物体在某一时刻(或某一位置)的速度,是矢量. 3.速率和平均速率 (1)速率:瞬时速度的大小,是标量. (2)平均速率:路程与时间的比值,不一定等于平均速度的大小. 三、加速度 1.定义式:a =Δv Δt ;单位是m/s 2 . 2.物理意义:描述速度变化的快慢. 3.方向:与速度变化的方向相同. 考点一 对质点模型的理解 1.质点是一种理想化的物理模型,实际并不存在. 2.物体能否被看做质点是由所研究问题的性质决定的,并非依据物体自身大小来判断. 3.物体可被看做质点主要有三种情况: (1)多数情况下,平动的物体可看做质点. (2)当问题所涉及的空间位移远大于物体本身的大小时,可以看做质点. (3)有转动但转动可以忽略时,可把物体看做质点. 考点二 平均速度和瞬时速度 1.平均速度与瞬时速度的区别 平均速度与位移和时间有关,表示物体在某段位移或某段时间内的平均快慢程度;瞬时速度与位置或时刻有关,表示物体在某一位置或某一时刻的快慢程度. 2.平均速度与瞬时速度的联系 (1)瞬时速度是运动时间Δt →0时的平均速度. (2)对于匀速直线运动,瞬时速度与平均速度相等. 考点三 速度、速度变化量和加速度的关系

高一物理知识点归纳大全

高一物理知识点归纳大全 从初中进入高中以后,就会慢慢觉得物理公式比以前更难学习了,其实学透物理公式并不是难的事情,以下是我整理的物理公式内容,希望可以给大家提供作为参考借鉴。 基本符号 Δ代表'变化的 t代表'时间等,依情况定,你应该知道' T代表'时间' a代表'加速度' v。代表'初速度' v代表'末速度' x代表'位移' k代表'进度系数' 注意,写在字母前面的数字代表几倍的量,写在字母后面的数字代表几次方. 运动学公式 v=v。+at无需x时 v2=2ax+v。2无需t时 x=v。+0.5at2无需v时 x=((v。+v)/2)t无需a时 x=vt-0.5at2无需v。时 一段时间的中间时刻速度(匀加速)=(v。+v)/2

一段时间的中间位移速度(匀加速)=根号下((v。2+v2)/2) 重力加速度的相关公式,只要把v。当成0就可以了.g一般取10 相互作用力公式 F=kx 两个弹簧串联,进度系数为两个弹簧进度系数的倒数相加的倒数 两个弹簧并联,进度系数连个弹簧进度系数的和 运动学: 匀变速直线运动 ①v=v(初速度)+at ②x=v(初速度)t+?at平方=v+v(初速度)/2×t ③v的平方-v(初速度)的平方=2ax ④x(末位置)-x(初位置)=a×t的平方 自由落体运动(初速度为0)套前面的公式,初速度为0 重力:G=mg(重力加速度)弹力:F=kx摩擦力:F=μF(正压力)引申:物体的滑动摩擦力小于等于物体的最大静摩擦 匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;

人教版高中物理必修一知识点大全

人教版高中物理必修一 知识点大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中物理学习材料 (灿若寒星**整理制作) 必修一知识点大全 1.参考系 ⑴定义:在描述一个物体的运动时,选来作为标准的假定不动的物体,叫做参考系。 ⑵对同一运动,取不同的参考系,观察的结果可能不同。 ⑶运动学中的同一公式中涉及的各物理量应以同一参考系为标准,如果没有特别指明,都是取地面为参考系。 2.质点 ⑴定义:质点是指有质量而不考虑大小和形状的物体。 ⑵质点是物理学中一个理想化模型,能否将物体看作质点,取决于所研究的具体问题,而不是取决于这一物体的大小、形状及质量,只有当所研究物体的大小和形状对所研究的问题没有影响或影响很小,可以将其形状和大小忽略时,才能将物体看作质点。 ⑴物体可视为质点的主要三种情形: ①物体只作平动时; ②物体的位移远远大于物体本身的尺度时; ③只研究物体的平动,而不考虑其转动效果时。 3.时间与时刻 ⑴时刻:指某一瞬时,在时间轴上表示为某一点。

⑵时间:指两个时刻之间的间隔,在时间轴上表示为两点间线段的长度。 ⑶时刻与物体运动过程中的某一位置相对应,时间与物体运动过程中的位移(或路程)相对应。 4.位移和路程 ⑴位移:表示物体位置的变化,是一个矢量,物体的位移是指从初位置到末位置的有向线段,其大小就是此线段的长度,方向从初位置指向末位置。 ⑵路程:路程等于运动轨迹的长度,是一个标量。 当物体做单向直线运动时,位移的大小等于路程。 5.速度、平均速度、瞬时速度 ⑴速度:是表示质点运动快慢的物理量,在匀速直线运动中它等于位移与发生这段位移所用时间的比值,速度是矢量,它的方向就是物体运动的方向。 ⑵平均速度:物体所发生的位移跟发生这一位移所用时间的比值叫这段时间内的平均速度,即t v x =,平均速度是矢量,其方向就是相应位移的方向。 ⑶瞬时速度:运动物体经过某一时刻(或某一位置)的速度,其方向就是物体经过某有一位置时的运动方向。 6.加速度 ⑴加速度是描述物体速度变化快慢的的物理量,是一个矢量,方向与速度变化的方向相同。 ⑵做匀速直线运动的物体,速度的变化量与发生这一变化所需时间的比值叫加速度,即t v v t v a 0-=??= ⑶对加速度的理解要点:

高中物理知识点总结大全

高考总复习知识网络一览表物理

高中物理知识点总结大全 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算. 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FNr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

人教版高中物理选修3-1知识点归纳总结

物理选修3-1 知识总结 第一章 第1节 电荷及其守恒定律 一、电荷守恒定律 表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个物 体,或从物体的一部分转移到另一部分,在转移的过程中,电荷的总量保持不变。 表述2、在一个与外界没有电荷交换的系统内,正、负电荷的代数和保持不变。 二、电荷量 1、电荷量:电荷的多少。 2、元电荷:电子所带电荷的绝对值1.6×10-19 C 3、比荷:粒子的电荷量与粒子质量的比值。 第一章 第2节 库仑定律 一、电荷间的相互作用 1、点电荷:带电体的大小比带电体之间的距离小得多。 2、影响电荷间相互作用的因素 二、库仑定律:在真空中两个静止点电荷间的作用力跟它们的电荷的乘积成正比,跟它们距离的平方 成反比,作用力的方向在它们的连线上。 2 2 1r Q Q k F 注意(1)适用条件为真空中静止点电荷 (2)计算时各量带入绝对值,力的方向利用电性来判断 第一章 第3节 电场 电场强度 一、电场 电荷(带电体)周围存在着的一种物质,其基本性质就是对置于其中的电荷有力的作用。 二、电场强度 1、检验电荷与场源电荷 2、电场强度 检验电荷在电场中某点所受的电场力F 与检验电荷的电荷q 的比值。 q F E = 国际单位:N /C 电场强度是矢量。规定:正电荷在电场中某一点受到的电场力方向就是那一点的电场强度的方向。 三、点电荷的场强公式 2r Q k q F E == 四、电场的叠加 五、电场线 1、电场线:为了形象地描述电场而在电场中画出的一些曲线,曲线的疏密程度表示场强的大小, 曲线上某点的切线方向表示场强的方向。

高中物理选修重要知识点总结.docx

选 修 3 - 5 知 识 汇 总 一、动量 1. 动量: p =mv {方向与速度方向相同} 2. 冲量: I =Ft {方向由 F 决定} 3. 动量定理: I = p 或 Ft =mv t –mv o { p: 动量变化 p =mv t –mv o ,是矢量式 } 4. 动量守恒定律: p 前总 =p 后总 或 p =p ’也可以是 m 1 v 1 m 2v 2 m 1v 1/ m 2v 2/ 5. ( 1)弹性碰撞:系统的动量和动能均守恒 m 1v 1 m 2v 2 m 1 v ' m 2v ' ① 1 m 1v 1 2 1 m 2 v 2 2 1 m 1v 1 '2 1 m 2 v 2 ' 2 ② 1 2 2 2 2 2 其中:当 v 2 =0 时,为一动一静碰撞, ' m 1 m 2 v 1 ' 2m 1 v 1 v 1 m 1 m 2 此时 v 2 m 1 m 2 (2)非弹性碰撞:系统的动量守恒,动能有损失 m 1v 1 m 2v 2 ' ' m 1v 1 m 2 v 2 (3)完全非弹性碰撞:碰后连在一起成一整体 m 1v 1 共 ,且动能损失最多 m 2 v 2 (m 1 m 2 )v 6. 人船模型——两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个 物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有 mv1=MV2(注意:几何关系) 注: (1) 正碰又叫对心碰撞,速度方向在它们“中心”的连线上 ; (2) 以上表达式除动能外均为矢量运算 , 在一维情况下可取正方向化为代数运算 ; (3)系统动量守恒的条件 : 合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等) ; (4) 碰撞过程 ( 时间极短,发生碰撞的物体构成的系统 ) 视为动量守恒 , 原子核衰变时动量守 恒; (5) 爆炸过程视为动量守恒,这时化学能转化为动能,动能增加; 思考 1:利用动量定理和动量守恒定律解题的步骤是什么?思考 2:动量变化 p 为正值,动量一定增大吗?(不一定) 思考 3:两个物体组成的系统动量守恒,其中一个物体的动量增大,另一个物体的动量一定减小吗?动能呢?(不一定) 思考 4:两个物体碰撞过程遵循的三条规律分别是什么? 思考 5:一动一静两个小球正碰撞,入射球和被撞球的速度范围怎样计算? 思考 6:有哪些模型可视为一动一静弹性碰撞?有哪些模型可视为人船模型?人船模型存在哪些特殊规律? 思考 7:同样是动量守恒,碰撞,爆炸,反冲三者有何不同?(有弹簧的弹性势能或火药的化学能,或者人体内的化学能转化为动能的情况下,总动能增大) 二、波粒二象性 1、1900年普朗克能量子假说,电磁波的发射和吸收是不连续的,而是一份一份的 E=hv 2、赫兹发现了光电效应, 1905年,爱因斯坦量解释了光电效应,提出光子说及光电效应方 程 3、光电效应

最详细的高中物理知识点总结(最全版)

高中物理知识点总结(经典版)

第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与 反作用力是同性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标 系,将不在坐标系上的力分解。如受力在三个以 内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的 方向确定,另一个分力与这个分力垂直是最小 值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

新课标人教版高中高一物理必修一知识点总结归纳

物理(必修一)——知识考点 考点一:时刻与时间间隔的关系 时间间隔能展示运动的一个过程,时刻只能显示运动的一个瞬间。对一些关于时间间隔和时刻的表述,能够正确理解。如: 第4s末、4s时、第5s初……均为时刻;4s内、第4s、第2s至第4s内……均为时间间隔。 区别:时刻在时间轴上表示一点,时间间隔在时间轴上表示一段。 考点二:路程与位移的关系 位移表示位置变化,用由初位置到末位置的有向线段表示,是矢量。路程是运动轨迹的长度,是标量。只有当物体做单向直线运动时,位移的大小 ..。 ..等于路程。一般情况下,路程≥位移的大小

考点五:运动图象的理解及应用 由于图象能直观地表示出物理过程和各物理量之间的关系,所以在解题的过程中被广泛应用。在运动学中,经常用到的有x -t 图象和v —t 图象。 1. 理解图象的含义: (1)x -t 图象是描述位移随时间的变化规律 (2)v —t 图象是描述速度随时间的变化规律 2. 明确图象斜率的含义: (1) x -t 图象中,图线的斜率表示速度 (2) v —t 图象中,图线的斜率表示加速度 考点一:匀变速直线运动的基本公式和推理 1. 基本公式: (1) 速度—时间关系式:at v v +=0 (2) 位移—时间关系式:202 1at t v x + = (3) 位移—速度关系式:ax v v 22 02=- 三个公式中的物理量只要知道任意三个,就可求出其余两个。 利用公式解题时注意:x 、v 、a 为矢量及正、负号所代表的是方向的不同。 解题时要有正方向的规定。 2. 常用推论: (1) 平均速度公式:()v v v += 02 1 (2) 一段时间中间时刻的瞬时速度等于这段时间内的平均速度:()v v v v t += =02 2 1 (3) 一段位移的中间位置的瞬时速度:2 2 202 v v v x += (4) 任意两个连续相等的时间间隔(T )内位移之差为常数(逐差相等): ()2aT n m x x x n m -=-=? 考点二:对运动图象的理解及应用 1. 研究运动图象: (1) 从图象识别物体的运动性质 (2) 能认识图象的截距(即图象与纵轴或横轴的交点坐标)的意义 (3) 能认识图象的斜率(即图象与横轴夹角的正切值)的意义 (4) 能认识图象与坐标轴所围面积的物理意义 (5) 能说明图象上任一点的物理意义

高中物理选修3-3知识点与题型复习

热学知识点复习→制作人:湄江高级中学:吕天鸿 一、固、液、气共有性质 1、组成物质的分子永不停息、无规则运动。温度T越高,运动越激烈,分子平均动能。 注意:对于理想气体,温度T还决定其内能的变化。 扩散现象:相互渗透的反应 2、分子运动的表现 布朗运动:看不见的固体小颗粒被分子不平衡碰撞,颗粒越大,运动越 3、分子间同时存在引力与斥力,且都随着分子间距r的增加而。 (1)分子力的合力F表现:是为F引还是F斥?看间距与分界点r0关系,看下图 当r=r0时,F引=F斥,分子力为0; 当r>r0时,F引>F斥,分子力表现为 当r

非晶体:无确定的熔点。 → 物理性质:各向同性。原子排列:无规则 2,、同一种物质可能以晶体与非晶体两种不同形态出现。如碳形成的金刚石与石墨 3、有些晶体与非晶体可以相互转化。 4、常考晶体有:金刚石与石墨、石英、云母、食盐。常考非晶体有:玻璃、蜂蜡、松香。 三、热力学定律→研究高考对象为→主要还是理想气体 1、热力学第一定律:ΔU =W+Q 表达式中正、负号法则:如下图 2、气体实验定律与热力学第一定律的结合量是气体的体积和温度,当温度变化时,气体的内能变化,当体积变化时,气体将伴随着做功,解题时要掌握气体变化过程的特点: (1)等温过程:内能不变,即ΔU=0。温度T ↑,则内能增加,ΔU >0 (2)等容过程:W=0。若体积V ↑,则气体对外界做功,W 取“—”负号计算。反之亦然 (3)绝热过程:Q=0。 3、再次强调:温度T 决定分子平均动能的变化。也决定理想气体的内能变化 四、气体实验定律→ 理想气体→P 、V 、T=t 0c+273 三个物理量关系 1、三条特殊线 (等温线:P 1V 1=p 2V 2 ) 2、液体柱模型 (1)明确点:P 液=egh 一般不用。当液体为汞时,大气压以 为单位时,高为h cm 时,P 液=h .计算气

相关文档
最新文档