直线与平面地平行垂直判定经典例题

直线与平面地平行垂直判定经典例题
直线与平面地平行垂直判定经典例题

一、教学目标

1. 巩固直线与平面的平行、垂直判定

二、上课内容

1、回顾上节课内容

2、直线与平面的平行、垂直判定知识点回顾

3、经典例题讲解

4、课堂练习

三、课后作业

见课后练习

一、上节课知识点回顾

1. 平面的基本性质

公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 2. 直线与直线的位置关系

(1)位置关系的分类

???

??

共面直线?????

平行相交异面直线:不同在任何一个平面内

3. 直线与平面平行的判定与性质

4.

二、直线与平面平行、垂直的判定知识点回顾

1.直线与平面垂直

(1)判定直线和平面垂直的方法

①定义法.

②利用判定定理:一条直线和一个平面内的两条相交直线都垂直,则该直线和

此平面垂直.

③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也

垂直这个平面.

①直线垂直于平面,则垂直于平面内任意直线.

②垂直于同一个平面的两条直线平行.

③垂直于同一条直线的两平面平行.

2.斜线和平面所成的角

斜线和它在平面内的射影所成的锐角,叫斜线和平面所成的角.

3.平面与平面垂直

(1)平面与平面垂直的判定方法

①定义法.

②利用判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.

(2)平面与平面垂直的性质

两平面垂直,则一个平面内垂直于交线的直线垂直于另一个平面.

4.二面角的有关概念

(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.

(2)二面角的平面角:二面角棱上的一点,在两个半平面内分别作与棱垂直的射

线,则两射线所成的角叫做二面角的平面角.

[难点正本疑点清源]

1.两个平面垂直的性质定理

两个平面垂直的性质定理,即如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面是作点到平面距离的依据,要过平面外一点P 作平面的垂线,通常是先作(找)一个过点P并且和α垂直的平面β,设β∩α=l,在β内作直线a⊥l,则a⊥α.

2.两平面垂直的判定

(1)两个平面所成的二面角是直角;(2)一个平面经过另一平面的垂线.

方法与技巧

(1)线面垂直的定义:a 与α内任何直线都垂直?a ⊥α; (2)判定定理1:

?

????m 、n ?α,m ∩n =A l ⊥m ,l ⊥n

?l ⊥α;

(3)判定定理2:a ∥b ,a ⊥α?b ⊥α; (4)面面平行的性质:α∥β,a ⊥α?a ⊥β;

(5)面面垂直的性质:α⊥β,α∩β=l ,a ?α,a ⊥l ?a ⊥β. 2. 证明线线垂直的方法

(1)定义:两条直线所成的角为90°; (2)平面几何中证明线线垂直的方法; (3)线面垂直的性质:a ⊥α,b ?α?a ⊥b ; (4)线面垂直的性质:a ⊥α,b ∥α?a ⊥b . 3. 证明面面垂直的方法

(1)利用定义:两个平面相交,所成的二面角是直二面角; (2)判定定理:a ?α,a ⊥β?α⊥β. 4. 转化思想:垂直关系的转化

在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决. 失误与防范

1.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直定义、判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的互相转化. 2.面面垂直的性质定理是作辅助线的一个重要依据.我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可.

三、经典例题讲解

(一)直线与平面垂直的判定与性质

例1:如图所示,在四棱锥P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.

证明:(1)CD⊥AE;

(2)PD⊥平面ABE.

(二)平面与平面垂直的判定与性质

例2:如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B

1C1的中点.

求证:(1)平面ADE⊥平面BCC1B1;

(2)直线A1F∥平面ADE.

(三)线面、面面垂直的综合应用

例3:如图所示,在四棱锥P—ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=4 5.

(1)设M是PC上的一点,求证:平面MBD⊥平面PAD;

(2)求四棱锥P—ABCD的体积.

(四)线面角、二面角的求法

例4:如图,在四棱锥P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.

(1)求PB和平面PAD所成的角的大小;

(2)证明AE⊥平面PCD;

(3)求二面角A—PD—C的正弦值.

四、课堂练习 选择题:

1、如图,四棱锥S -ABCD 的底面为正方形,SD ⊥底面ABCD ,

则下列结论中不正..确的是 ( )

A .AC ⊥S

B B .AB ∥平面SCD

C .SA 与平面SB

D 所成的角等于SC 与平面SBD 所成的角 D .AB 与SC 所成的角等于DC 与SA 所成的角

2、正方体ABCD -A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为 ( )

A.23

B.33

C.23

D.63

3、 已知l ,m 是不同的两条直线,α,β是不重合的两个平面,则下列命题中为真命题的是( )

A .若l ⊥α,α⊥β,则l ∥β

B .若l ∥α,α⊥β,则l ∥β

C .若l ⊥m ,α∥β,m ?β,则l ⊥α

D .若l ⊥α,α∥β,m ?β,则l ⊥m

4、已知矩形ABCD ,AB =1,BC =2,将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中 ( )

A .存在某个位置,使得直线AC 与直线BD 垂直

B .存在某个位置,使得直线AB 与直线CD 垂直

C .存在某个位置,使得直线A

D 与直线BC 垂直

D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直

填空题:

1.在正四棱锥P—ABCD中,PA=

3

2

AB,M是BC的中点,G是△PAD的重心,则在

平面PAD中经过G点且与直线PM垂直的直线有________条.

2.已知a、b、l表示三条不同的直线,α、β、γ表示三个不同的平面,有下列四个命题:

①若α∩β=a,β∩γ=b,且a∥b,则α∥γ;

②若a、b相交,且都在α、β外,a∥α,a∥β,b∥α,b∥β,则α∥β;

③若α⊥β,α∩β=a,b?β,a⊥b,则b⊥α;

④若a?α,b?α,l⊥a,l⊥b,l?α,则l⊥α.

其中正确命题的序号是________.

解答题:

1、(1)如图所示,证明命题“a是平面π内的一条直线,b

是π外的一条直线(b不垂直于π),c是直线b在π上的投影,

若a⊥b,则a⊥c”为真;

(2)写出上述命题的逆命题,并判断其真假(不需证明).

2、如图所示,已知长方体ABCD —A 1B 1C 1D 1的底面ABCD 为正方形,E 为线段AD 1的中点,F 为线段BD 1的中点, (1)求证:EF ∥平面ABCD ; (2)设M 为线段C 1C 的中点,当D 1D

AD

的比值为多少时,DF ⊥平

面D 1MB ?并说明理由.

3、如图,在三棱柱ABC —A 1B 1C 1中,AA 1⊥BC ,∠A 1AC =60°,

A 1A =AC =BC =1,A 1

B = 2.

(1)求证:平面A 1BC ⊥平面ACC 1A 1;

(2)如果D 为AB 中点,求证:BC 1∥平面A 1CD .

五、课后练习

1、已知三棱锥S-ABC中,底面ABC为边长等于2的等边三角形,SA垂直于底面

ABC,SA=3,那么直线AB与平面SBC所成角的正弦值为

( )

A.

3

4

B.

5

4

C.

7

4

D.

3

4

2、已知P为△ABC所在平面外一点,且PA、PB、PC两两垂直,则下列命题:

①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC.

其中正确的个数是________.

3、如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.

求证:(1)直线EF∥平面PCD;

(2)平面BEF⊥平面PAD.

直线与方程(经典例题)

直线与方程 知识点复习: 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即tan k α=。斜率反映直线与轴的倾斜程度。 当[ ) 90,0∈α时,0≥k ; 当( ) 180,90∈α时,0

直线和平面垂直的判定与性质

郸城二高高二年级集体备课教学案 直线和平面垂直的判定与性质(一) 一、素质教育目标 (一)知识教学点 1.直线和平面垂直的定义及相关概念. 2.直线和平面垂直的判定定理. 3.线线平行的性质定理(即例题1). (二)能力训练点 1.要善于应用平移手法将分散的条件集中到某一个图形中进行研究,特别是辅助线的添加.2.讲直线和平面垂直时,应注意引导学生把直线和平面关系转化为直线和直线的关系.如直线和平面垂直,只须这条直线垂直于这个平面内的两条相交直线,向学生渗透转化思想的应用.二、教学重点、难点、疑点 1.教学重点 (1)掌握直线和平面垂直的定义:如果一条直线和一个平面内的任何一条直线垂直,那么这条直线就和这个平面垂直. (2)掌握直线和平面垂直的判定定理: (3)掌握线线平行的性质定理: 若a∥b,a⊥α则b⊥α. 2.教学难点:在于线、面垂直定义的理解和判定定理的证明;同时还要解决好定理证明过程中,辅助线添加的方法和原因,及为何可用经过B点的两条直线说明“任意”直线的问题.3.教学疑点:判定定理的条件中,“相交”是关键,“两条”也是一个重要条件,对于初学立体几何的学生来讲,是不好理解的,教师应该用实例说明这两个条件缺一不可. 三、课时安排本课题共安排2课时,本节课为第一课时. 四、学生活动设计(略) 五、教学步骤 (一)温故知新,引入课题 1.空间两条直线有哪几种位置关系? (三种:相交直线、平行直线、异面直线) 2.经过一点和一条直线垂直的直线有几条? (从两条直线互相垂直的定义可知:经过一点有无数多条直线和已知直线垂直) 3.空间一条直线与一个平面有哪几种位置关系? (直线在平面内、直线和平面相交、直线和平面平行.) 4.怎样判定直线和平面平行? 我们已经知道,判定直线和平面平行的问题可以转化为考察直线和直线平行的关系.今天我们转入学习直线和平面相交的一种特殊情形——直线和平面垂直,这个问题同样可以从两条直线垂直的关系入手. (板书课题:§1.9直线和平面垂直) 郸城二高杨雅莉- 1 -

初三数学相似三角形典型例题(含问题详解)

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式 ::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2 =AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质: a b c d ad bc =?= ②合比性质: ±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0 3. 平行线分线段成比例定理: ①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。 则 ,,,…AB BC DE EF AB AC DE DF BC AC EF DF ===

直线与直线方程经典例题

必修2 第二章 解析几何初步 第一节:直线与直线方程(王建明) 一、直线的倾斜角和斜率 (1)倾斜角定义:平面直角坐标系中,对于一条与x 轴相交的直线l , 把__x 轴(正方向)_按__逆时针__方向绕着交点旋转到和直线l 重合所成的角, 叫作直线l 的倾斜角。(0°≤α<180°) (2)斜率k=tan α=1 212x x y y -- (0°≤α<180°),当α=90时,k 不存在。(两种求法,注意21x x =的情况)(3)函数y=tanx 在)90,0[0增加的,在)180,90(00也是增加的。 例1:过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为 。 例2:过两点A (m 2+2,m 2-3),B (3-m-m 2,2m )的直线l 的倾斜角为45°求m 的值。 例3:已知直线l 经过点P (1,1),且与线段MN 相交,又M (2,-3),N (-3,-2),求直线l 的斜率k 的取值范围。 例4:已知a >0,若平面内三点A (1,—a ),B (2,a 2),C(3,a 3)共线,则a 值为 。 练习: 1经过点P (2,m )和Q (2m ,5)的直线的斜率等于12 ,则m 的值是( B ) A .4 B .3 C .1或3 D .1或4 变:的取值范围的斜率的直线求经过点 )1,cos (),sin ,2( k l B A θθ-- 2. 已知直线l 过P(-1,2),且与以A(-2,-3)、B(3,0)为端点的线段相交,求直线l 的斜率的取值范围. 点评:要用运动的观点,研究斜率与倾斜角之间的关系!答案: ? ?? ??-∞,-12∪[5,+∞) 3.已知坐标平面内三点A (-1,1),B (1,1),C (2,3+1),若D 为△ABC 的边AB 上一动点,求直线CD 斜率k 的变化范围. 答案:? ???-∞,-12∪[5,+∞) 二、两直线的平行与垂直 1.平行的判定: 2. 垂直的判定: 例(1)l 1 经过点M (-1,0), N (-5,-2),l 2经过点R (-4,3),S (0,5),l 1与l 2是否平行? (2)l 1 经过点A (m ,1), B (-3,4), )l 2 经过点C (1,m ), D (-1, m+1),确定m 的值,使l 1//l 2。 练习: 例(1) l 1的倾斜角为45,l 2经过点P (-2,-1),Q (3,-6). 例(2)已知点M (2,2)和N (5,-2),点P 在x 轴上,且∠MPN 为直角,求点P 的坐标。 练习: 1.求a 为何值时,直线l 1:(a +2)x +(1-a )y -1=0与直线l 2:(a -1)x +(2a +3)y +2=0互相垂直? 答案:a=-1 2.求过点P (1,-1),且与直线l 2:2x +3y +1=0垂直的直线方程. 答案:3x -2y -5=0. 三、直线的方程 1、点斜式: y-y 0=k (x -x 0) (斜率存在,可为0) 1、 斜截式: y=kx +b (b 是与y 轴的交点) (斜率存在,可为0)

相似三角形经典模型总结与例题分类(超全)

相似三角形经典模型总结 经典模型 【精选例题】“平行型” 【例1】 如图,111EE FF MM ∥∥,若AE EF FM MB ===, 则1 11 1 1 1 :::_________AEE EE F F FF M M MM CB S S S S ?=四边形四边形四边形 【例2】 如图,AD EF MN BC ∥∥∥,若9AD =, 18BC =,::2:3:4AE EM MB =,则 _____EF =,_____MN = 【例3】 已知,P 为平行四边形ABCD 对角线,AC 上一点,过点P 的 直线与AD ,BC ,CD 的延长线,AB 的延长线分别相交于点E ,F ,G ,H 求证: PE PH PF PG = M 1F 1E 1M E F A B C M N A B C D E F P H G F E D C B A

【例4】 已知:在ABC ?中,D 为AB 中点,E 为AC 上一点,且 2AE EC =,BE 、CD 相交于点F , 求BF EF 的值 【例5】 已知:在ABC ?中,12AD AB = , 延长BC 到F ,使1 3 CF BC =,连接FD 交AC 于点E 求证:①DE EF = ②2AE CE = 【例6】 已知:D ,E 为三角形ABC 中AB 、BC 边上的点,连接DE 并延长交AC 的延长线于点F ,::BD DE AB AC = 求证:CEF ?为等腰三角形 【例7】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证: 111c a b =+. F E D C B A 【例8】 如图,找出ABD S ?、BED S ?、BCD S ?之间的关系,并证明你的结论. F E D C B A 【例9】 如图,四边形ABCD 中,90B D ∠=∠=?,M 是AC 上一点,ME AD ⊥于点E ,MF BC ⊥于点F 求证: 1MF ME AB CD += F E D C B A A B C D F E F E D C B A

高中数学§9.3.1直线与平面垂直的判定教案

§9.3.1直线与平面垂直的判定(2) 时间:2018、12、13 (总第69课时) 一、教学目标 1、知识与技能 (1)使学生掌握直线和平面垂直的定义及判定定理; (2)使学生掌握判定直线和平面垂直的方法; (3)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论。 2、过程与方法 (1)通过教学活动,使学生了解,感受直线和平面垂直的定义的形成过程; (2)探究判定直线与平面垂直的方法。 3、情态与价值 培养学生学会从“感性认识”到“理性认识”过程中获取新知。 二、教学重点、难点 直线与平面垂直的定义和判定定理的探究。 三、教学设计 (一)创设情景,揭示课题 1、教师首先提出问题:在现实生活中,我们经常看到一些直线与平面垂直的现象,例如:“旗杆与地面,大桥的桥柱和水面等的位置关系”,你能举出一些类似的例子吗?然后让学生回忆、思考、讨论、教师对学生的活动给予评价。 2、接着教师指出:一条直线与一个平面垂直的意义是什么?并通过分析旗杆与它在地面上的射影的位置关系引出课题内容。 (二)研探新知 1、为使学生学会从“感性认识”到“理性认识”过程中获取新知,可再借助长方体模型让学生感知直线与平面的垂直关系。然后教师引导学生用“平面化”的思想来思考问题:从直线与直线垂直、直线与平面平行等的定义过程得到启发,能否用一条直线垂直于一个平面内的直线来定义这条直线与这个平面垂直呢?并组织学生交流讨论,概括其定义。 如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。如图2.3-1,直线与平面垂直时,它们唯一公共点P叫做垂足。并对画示表示进行说明。

直线与平面垂直的判定教案

第 页(共4页) 1 直线与平面垂直的判定 【教学目标】 1.通过观察图片和折纸试验,使学生理解直线与平面垂直的定义,归纳和确认直线与平面垂直的判定定理,并能简单应用定义和判定定理; 2.通过对判定定理的探究和运用,初步培养学生的几何直观能力和抽象概括能力; 3.通过对探索过程的引导,努力提高学生学习数学的热情,培养学生主动探究的习惯. 【教学重点】 对直线与平面垂直的定义和判定定理的理解及其简单应用. 【教学重点】 探究、归纳直线与平面垂直的判定定理,体会定义和定理中所包含的转化思想. 【教学方式】探究式 【教学手段】 计算机、实物模型 【教学过程】 一、实例引入,理解概念 1.通过复习空间直线与平面的位置关系,让学生举例感知生活中直线与平面相交的位置关系,其中最特殊、最常见的一种就是线面的垂直关系,从而引出课题. 设计意图:希望通过学生的生活经验,提高学生学习数学的兴趣和自觉性. 2.给出学生非常熟悉的校园图片,引导他们观察直立于操场上篮球架的立柱与它在地面影子的关系,然后将其抽象为几何图形,再用数学语言对几何图形进行精确描述,引出直线与平面垂直的定义.即:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直. 设计意图:通过从“具体形象——几何图形——数学语言”的过程,让学生体会定义的合理性. 3.简单介绍线面垂直在我国古代的重要应用——“日晷”. 设计意图:通过我国古代用来计时的一种仪器——日晷,让学生感受数学的应用价值,提高学生学习数学的热情.同时,引出探究判定定理的必要性. 二、通过试验,探究定理 准备一个三角形纸片,三个顶点分别记作A ,B ,C .如图,过△ABC 的顶点A 折叠纸片,得到折痕AD ,将折叠后的纸片打开竖起放置在桌面上.(使BD 、DC 边与桌面接触) D C A B D B A C

直线与方程知识点及典型例题.docx

第三章直线与方程知识点及典型例题 1. 直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0 度。因此,倾斜角的取值范围是0°≤α<180° 2. 直线的斜率 ① 定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。 直线的斜率常用k 表示。即 k=tan 。斜率反映直线与轴的倾斜程度。 当直线 l 与 x 轴平行或重合时 ,α=0°,k = tan0 =0;° 当直线 l 与 x 轴垂直时 ,α= 90k°不,存在 . 当0,90时, k0 ;当90 ,180时, k0;当90 时,k不存在。 例 .如右图,直线l 1的倾斜角 =30°,直线 l1⊥ l 2,求直线 l1和 l2的斜率 . y 解: k1=tan30° =3∵ l1⊥ l2∴ k1· k2 =— 1l 1 3 ∴ k2 =—32x 1 例:直线 x 3 y50 的倾斜角是()o l2 °°°° ②过两点 P1 (x1, y1)、P1(x1,y1) 的直线的斜率公式: k y2y 1 ( x1x 2 ) x2x1 注意下面四点: (1)当x1x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k与 P1、 P2的顺序无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 例 .设直线l1经过点A(m,1)、B(—3,4),直线l2经过点C(1,m)、D(—1,m+1), 当 (1) l / / l 2(2) l⊥l时分别求出 m 的值 111 ※三点共线的条件:如果所给三点中任意两点的斜率都有斜率且都相等,那么这三点共线。 3. 直线方程 ① 点斜式:y y1k( x x1 )直线斜率k,且过点x1, y1 注意:当直线的斜率为0°时, k=0,直线的方程是y=y1。 当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都

直线与平面垂直的判定

直线与平面垂直的判定 [新知初探] 1.直线与平面垂直的定义 (1)自然语言:如果直线l与平面α内的任意一条直线都垂直,就说直线l与平面α互相垂直,记作l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们惟一的公共点P叫做垂足. (2)图形语言:如图. 画直线l与平面α垂直时,通常把直线画成与表示平面的平行四边形的一边垂直. (3)符号语言:任意a?α,都有l⊥a?l⊥α. [点睛] (1)直线与平面垂直是直线与平面相交的特殊情形. (2)注意定义中“任意一条直线”与“所有直线”等同但不可说成“无数条直线”. 2.直线与平面垂直的判定定理 (1)自然语言:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. (2)图形语言:如图所示. (3)符号语言:a?α,b?α,a∩b=P,l⊥a,l⊥b?l⊥α. [点睛]判定定理条件中的“两条相交直线”是关键性词语,此处强调“相交”,若两条直线平行,则直线与平面不一定垂直. 3.直线与平面所成的角 (1)定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条 直线和这个平面所成的角. 如图,∠PAO就是斜线AP与平面α所成的角. (2)当直线AP与平面垂直时,它们所成的角是90°. (3)当直线与平面平行或在平面内时,它们所成的角是0°. (4)线面角θ的范围:0°≤θ≤90°. [点睛]把握定义应注意两点:①斜线上不同于斜足的点P的选取是任意的;②斜线在平面上的射影是过斜足和垂足的一条直线而不是线段.

[小试身手] 1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)若直线l垂直于平面α,则l与平面α内的直线可能相交,可能异面,也可能平行() (2)若a∥b,a?α,l⊥α,则l⊥b() (3)若a⊥b,b⊥α,则a∥α() 答案:(1)×(2)√(3)× 2.直线l与平面α内的两条直线都垂直,则直线l与平面α的位置关系是() A.平行B.垂直 C.在平面α内D.无法确定 解析:选D 3.如图,∠BCA=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中: (1)与PC垂直的直线有 ________________________________________________________________________; (2)与AP垂直的直线有 ________________________________________________________________________.答案:(1)AB,AC,BC(2)BC 对直线与平面垂直的判定定理的理解 [典例]下列说法正确的有________(填序号). ①垂直于同一条直线的两条直线平行; ②如果一条直线与一个平面内的一条直线不垂直,那么这条直线就一定不与这个平面垂直; ③如果一条直线垂直于平面内的两条直线,那么这条直线与这个平面垂直; ④若l与平面α不垂直,则平面α内一定没有直线与l垂直. [答案]② (1)对于线面垂直的定义要注意“直线垂直于平面内的所有直线”说法与“直线垂直于平面内无数条直线”不是一回事,后者说法是不正确的,它可以使直线与平面斜交. (2)判定定理中要注意必须是平面内两相交直线.

初三数学相似三角形典型例题(含标准答案)

初三数学相似三角形典型例题(含答案)

————————————————————————————————作者:————————————————————————————————日期:

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质:a b c d ad bc =?= ②合比性质:±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0

直线与圆的方程典型例题(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 赠人玫瑰,手留余香。 高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 2224)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C

∴半径204)11(2 2 = ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 分析:根据问题的特征,宜用圆的标准方程求解. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242 2 =---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2 2 2 7)14()2(=-+-a ,或2 2 2 1)14()2(=-+-a (无解),故可得 1022±=a . ∴ 所 求 圆 方 程 为 2 224)4()1022(=-+--y x ,或 2224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2 2 2 7)14()2(=--+-a ,或2 2 2 1)14()2(=--+-a (无解),故 622±=a . ∴ 所 求 圆 的 方 程 为 2 224)4()622(=++--y x ,或 2224)4()622(=+++-y x . 说明:对本题,易发生以下误解: 由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如 2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其 圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2 2 2 7)14()2(=-+-a ,解

《231 直线与平面垂直的判定》优质课比赛教学设计

2.3.1 直线与平面垂直的判定的教学设计 一、内容和内容解析 本节课是在学生学习了空间点、直线、平面之间的位置关系和直线、平面平行的判定及其性质之后进行的,其主要内容是直线与平面垂直的定义、直线与平面垂直的判定定理及其应用。 直线与平面垂直是通过直线和平面内的任意一条直线(无一例外)都垂直来定义的,定义本身也表明了直线与平面垂直的意义,即如果一条直线垂直于一个平面,那么这条直线就垂直于这个平面内的所有直线,这也可以看成是线线垂直的一个判定方法;直线与平面垂直的判定定理本节是通过折纸试验来感悟的,即一条直线只要与平面内的两条相交直线垂直就可以判定直线与平面垂直了,它把原来定义中要求与任意一条(无限)垂直转化为只要与两条(有限)相交直线垂直就行了,概言之,线不在多,相交就行。直线与平面垂直的判定方法除了定义法、判定定理外,还有如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面,这是直线与平面垂直判定的一种间接方法,也是十分重要的。本节学习内容蕴含丰富的数学思想,即“空间问题转化为平面问题”,“无限转化为有限”“线线垂直与线面垂直互相转化”等数学思想。 直线与平面垂直是研究空间中的线线关系和线面关系的桥梁,为后继面面垂直的学习、距离的学习奠定基础。 二、目标和目标解析 1.借助对实例、图片的观察,提炼直线与平面垂直的定义,并能正确理解直线与平面垂直的定义; 2.通过直观感知,操作确认,归纳直线与平面垂直的判定定理,并能运用判定定理证明一些空间位置关系的简单命题; 3.在探索直线与平面垂直判定定理的过程中发展合情推理能力,同时感悟和体验“空间问题转化为平面问题”、“线面垂直转化为线线垂直”、“无限转化为有限”等数学思想. 三、教学问题诊断分析 学生已有的认知基础是熟悉的日常生活中的具体直线与平面垂直的直观形象(学生的客观现实)和直线与直线垂直的定义、直线与平面平行的判定定理等数学知识结构(学生的数学现实),这为学生学习直线与平面垂直定义和判定定理等新知识奠定基础。

相似三角形经典习题

相似三角形 一.选择题 1.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使△ABE和△ACD相似的是() A.∠B=∠C B.∠ADC=∠AEB C.BE=CD,AB=AC D.AD:AC=AE:AB 2.如图,△ACD和△ABC相似需具备的条件是() A. B. C.AC2=AD?AB D.CD2=AD?BD 3.如图,在等边三角形ABC中,D为AC的中点,,则和△AED(不包含△AED)相似的三角形有() A.1个 B.2个 C.3个 D.4个 4.如图,已知点P是Rt△ABC的斜边BC上任意一点,若过点P作直线PD与直角边AB或AC相交于点D,截得的小三角形与△ABC相似,那么D点的位置最多有() A.2处 B.3处 C.4处 D.5处 5.如图,在矩形ABCD中,E、F分别是CD、BC上的点.若∠AEF=90°,则一定有() A.△ADE∽△ECF B.△BCF∽△AEF C.△ADE∽△AEF D.△AEF∽△ABF 6.在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()

A. B. C. D. 7.如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED=∠B,②∠ADE=∠C,③,④,⑤AC2=AD?AE,使△ADE与△ACB一定相似的有() A.①②④ B.②④⑤ C.①②③④ D.①②③⑤ 8.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为() A.3:4 B.9:16 C.9:1 D.3:1 9.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为() A.18 B.C. D. 10.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论: ①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH?PC 其中正确的是() A.①②③④ B.②③ C.①②④ D.①③④ :S 11.如图,在平行四边形ABCD中,E为CD上一点,连接AE、BE、BD,且AE、BD交于点F,S △DEF =4:25,则DE:EC=() △ABF

高一数学直线方程知识点归纳及典型例题

直线的一般式方程及综合 【学习目标】 1.掌握直线的一般式方程; 2.能将直线的点斜式、两点式等方程化为直线的一般式方程,并理解这些直线的不同形式的方程在表示直线时的异同之处; 3.能利用直线的一般式方程解决有关问题. 【要点梳理】 要点一:直线方程的一般式 关于x和y的一次方程都表示一条直线.我们把方程写为Ax+By+C=0,这个方程(其中A、B不全为零)叫做直线方程的一般式. 要点诠释: 1.A、B不全为零才能表示一条直线,若A、B全为零则不能表示一条直线. 当B≠0时,方程可变形为 A C y x B B =--,它表示过点0, C B ?? - ? ?? ,斜率为 A B -的直线. 当B=0,A≠0时,方程可变形为Ax+C=0,即 C x A =-,它表示一条与x轴垂直的直线. 由上可知,关于x、y的二元一次方程,它都表示一条直线. 2.在平面直角坐标系中,一个关于x、y的二元一次方程对应着唯一的一条直线,反过来,一条直线可以对应着无数个关于x、y的一次方程(如斜率为2,在y轴上的截距为1的直线,其方程可以是2x―y+1=0, 也可以是 11 22 x y -+=,还可以是4x―2y+2=0等.) 要点二:直线方程的不同形式间的关系 直线方程的五种形式的比较如下表: 要点诠释: 在直线方程的各种形式中,点斜式与斜截式是两种常用的直线方程形式,要注意在这两种形式中都要求直线存在斜率,两点式是点斜式的特例,其限制条件更多(x1≠x2,y1≠y2),应用时若采用(y2―y1)(x―x1)―(x2―x1)(y―y1)=0的形式,即可消除局限性.截距式是两点式的特例,在使用截距式时,首先要判断是否满足“直线在两坐标轴上的截距存在且不为零”这一条件.直线方程的一般式包含了平面上的所有直线形式.一般式常化为斜截式与截距式.若一般式化为点斜式,两点式,由于取点不同,得到的方程也不同. 要点三:直线方程的综合应用 1.已知所求曲线是直线时,用待定系数法求. 2.根据题目所给条件,选择适当的直线方程的形式,求出直线方程. 对于两直线的平行与垂直,直线方程的形式不同,考虑的方向也不同.

直线与平面垂直的判定经典例题

2.3直线、平面垂直的判定及其性质 2.3.1直线与平面垂直的判定 一、基础达标 1.下列说法中正确的个数是() ①若直线l与平面α内一条直线垂直,则l⊥α. ②若直线l与平面α内两条直线垂直,则l⊥α; ③若直线l与平面α内两条相交直线垂直,则l⊥α; ④若直线l与平面α内任意一条直线垂直,则l⊥α; ⑤若直线l与平面α内无数条直线垂直,则l⊥α. A.1 B.2 C.3 D.4 答案 B 解析对①②⑤,均不能断定该直线与平面垂直,该直线与平面可能平行,可能斜交,也可能在平面内,所以是错误的.正确的是③④,故选B. 2.已知直线m,n是异面直线,则过直线n且与直线m垂直的平面() A.有且只有一个B.至多一个 C.有一个或无数个D.不存在 答案 B 解析若异面直线m、n垂直,则符合要求的平面有一个,否则不存在.3.(2014·淮北高一检测)线段AB的长等于它在平面α内的射影长的2倍,则AB 所在直线与平面α所成的角为() A.30°B.45° C.60°D.120° 答案 C 解析如图,AC⊥α,AB∩α=B,则BC是AB在平面α

内的射影,则BC =1 2AB ,所以∠ABC =60°,它是AB 与平面α所成的角. 4.空间四边形ABCD 的四边相等,则它的两对角线AC 、BD 的关系是( ) A .垂直且相交 B .相交但不一定垂直 C .垂直但不相交 D .不垂直也不相交 答案 C 解析 取BD 中点O , 连接AO ,CO , 则BD ⊥AO ,BD ⊥CO , ∴BD ⊥面AOC ,BD ⊥AC , 又BD 、AC 异面,∴选C. 5.已知△ABC 所在平面外一点P 到△ABC 三顶点的距离都相等,则点P 在平面ABC 内的射影是△ABC 的________. 答案 外心 解析 P 到△ABC 三顶点的距离都相等,则点P 在平面ABC 内的射影到△ABC 三顶点的距离都相等,所以是外心. 6.(2014·舟山高一检测)如图所示,P A ⊥平面ABC ,△ABC 中BC ⊥AC ,则图中直角三角形的个数有________. 答案 4 解析 ? ??? ?P A ⊥平面ABC BC ?平面ABC ?

相似三角形典型例题精选

相似三角形的判定与性质综合运用经典题型 考点一:相似三角形的判定与性质: 例1、如图,△PCD是等边三角形,A、C、D、B在同一直线上,且∠APB=120°. 求证:⑴△PAC∽△BPD;⑵ CD2 =AC·BD. 例2、如图,在等腰△ABC中, ∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B、C 重合),在AC上取一点E,使∠ADE=45° (1)求证:△ ABD∽△DCE; (2)设BD=x,AE=y,求y关于x函数关系式及自变量x值范围,并求出当x为何值时AE 取得最小值? (3)在AC上是否存在点E,使得△ADE为等腰三角形若存在,求AE的长;若不存在,请说明理由 例3、如图所示,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B: 1)求证:△ADF∽△DEC; 2)若AB=4,3 3 AD,AE=3,求AF的长。 A B C D F

考点二:射影定理: 例4、如图,在RtΔABC中,∠ACB=90°,CD⊥AB于D,CD=4cm,AD=8cm,求AC、BC及BD的长。 例5、如图,已知正方形ABCD,E是AB的中点,F是AD上的一点,且AF= 1 4 AD,EG⊥CF于点G, (1)求证:△AEF∽△BCE;(2)试说明:EG2=CG·FG. 例6、已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连结AF和CE. (1)求证:四边形AFCE是菱形; (2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长; (3)在线段AC上是否存在一点P,使得2AE2=AC·AP若存在,请说明点P的位置,并予以证明;若不存在,请说明理由. A B C D E F G

直线方程典型例题

【典型例题】 类型一:直线的倾斜角与斜率 例1.直线cos 20x α+=的倾斜角的范围是 A .5,,6226ππππ????? ?????? B .50,,66πππ???????????? C .50,6π? ????? D .5,66ππ?????? 【变式】已知动直线21y kx k =++ 与直线l : 122 y x =- +的交点在第一象限,求k 的取值范围。 类型二:两直线的位置关系 例2.四边形ABCD 的顶点为(22A +,,(22)B -,,(02C -,,(42)D ,,试 判断四边形ABCD 的形状. 【举一反三】 【变式1】直线l 1: ax+(1-a)y=3与直线l 2: (a-1)x+(2a+3)y=2互相垂直,求a 的值。 类型三:直线的方程 例3.过点P(2,1)作直线l 与x 轴、y 轴正半轴交于A 、B 两点,求△AOB 面积的最小值及此时直线l 的方程. 【变式1】求通过点(1,-2),且与两坐标轴围成的图形是等腰直角三角形的直线; 【变式2】直线l 过点(1,4)P -,且在两轴上的截距之和为零,求l 的方程。 类型三:对称问题 例4.求直线:240a x y +-=关于直线:3410l x y +-=对称的直线b 的方程。 【举一反三】 【变式】由点P (2,3)发出的光线射到直线1x y +=-上,反射后过点Q (1,1),则反射光线所在直线的一般方程为________. 类型五:综合应用 例5.(2014秋 渝中区校级期中)已知点A (1,1),B (2,2),C (4,0),D (,),点P 在线段CD 垂直平分线上,求: (1)线段CD 垂直平分线方程; (2)|PA|2+|PB|2取得最小值时P 点的坐标. 【举一反三】 【变式】(2014秋 渝中区校级期中)已知三角形的顶点是A (﹣5,0)、B (3,﹣3)、C (0,2), (1)求直线AB 的方程; (2)求△ABC 的面积; (3)若过点C 直线l 与线段AB 相交,求直线l 的斜率k 的范围.

直线与平面垂直的判定及其性质测试题

直线与平面垂直的判定与性质 一、选择题 1.两异面直线在平面α内的射影() A.相交直线 B.平行直线 C.一条直线—个点 D.以上三种情况均有可能 2.若两直线a与b异面,则过a且与b垂直的平面() A.有且只有—个 B.可能存在也可能不存在 C.有无数多个 D.—定不存在 3.在空间,下列哪些命题是正确的() ①平行于同一条直线的两条直线互相平行; ②垂直于同一条直线的两条直线互相平行; ③平行于同一个平面的两条直线互相平行; ④垂直于同—个平面的两条直线互相平行. A.仅②不正确 B.仅①、④正确 C.仅①正确 D.四个命题都正确 4.若平面α的斜线l在α上的射影为l′,直线b∥α,且b⊥l′,则b与l() A.必相交 B.必为异面直线 C.垂直 D.无法确定 5.下列命题 ①平面的每条斜线都垂直于这个平面内的无数条直线; ②若一条直线垂直于平面的斜线,则此直线必垂直于斜线在此平面内的射影; ③若平面的两条斜线段相等,则它们在同一平面内的射影也相等; ④若一条线段在平面外并且不垂直于这个平面,则它的射影长一定小于线段的长. 其中,正确的命题有() A.1个 B.2个 C.3个 n 4个 6.在下列四个命题中,假命题为() A.如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直 B.垂直于三角形两边的直线必垂直于第三边 C.过点A垂直于直线a的所有直线都在过点A垂直于a的平面内 D.如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面 7.已知P是四边形ABCD所在平面外一点且P在平面ABCD内的射影在四边形ABCD内,若P到这四边形各边的距离相等,那么这个四边形是() A.圆内接四边形 B.矩形 C.圆外切四边形 D.平行四边形 8.在△ABC中,AB=AC=5,BC=6,PA⊥平面ABC,PA=8,则P到BC的距离等于()A. B. C.3 D.4 二、填空题 9.AB是平面α的斜线段,其长为a,它在平面α内的射影A′B的长为b,则垂线A′A_________. 10.如果直线l、m与平面α、β、γ满足:l=β∩γ,l⊥α,mα和m⊥γ,现给出以下四个结论: ①α∥γ且l⊥m;②αγ且m∥β③αβ且l⊥m;④αγ且l⊥m;其中正确的为“________”.(写出序号即可) 11.在空间四面体的四个面中,为直角三角形的最多有____________个. 12.如图,正方形ABCD,P是正方形平面外的一点,且PA⊥平面A BCD则在△PAB、△PBC、△PCD、△PAD、△PAC及△PBD中,为直角三角形有_________个. 13.给出以下四个命题 (1)两条平行直线在同一平面内的射影一定是平行直线; (2)两条相交直线在同一平面内的射影一定是相交直线; (3)两条异面直线在同一平面内的射影—定是两条相交直线; (4)一个锐角在平面内的射影一定是锐角. 其中假命题的共有_________个. 14.若一个直角在平面α内的射影是一个角,则该角最大为___________. 三、解答题 15.已知直线a∥平面α,直线b⊥平面α,求证:a⊥b. 16.如图,在长方体AC1中,已知AB=BC=a,BB1=b(b>a),连结BC1,过B l作B1⊥BC1交CC1于E,

相关文档
最新文档