2016_2017学年高中数学第1章三角函数1.2.1任意角的三角函数学案

2016_2017学年高中数学第1章三角函数1.2.1任意角的三角函数学案
2016_2017学年高中数学第1章三角函数1.2.1任意角的三角函数学案

1.2.1 任意角的三角函数

1.理解三角函数的定义,会使用定义求三角函数值.(重点、易错点) 2.会判断给定角的三角函数值的符号.(重点)

3.会利用三角函数线比较两个同名三角函数值的大小及表示角的范围.(难点)

[基础2初探]

教材整理1 任意角三角函数的定义

阅读教材P 11~P 12第一自然段的有关内容,完成下列问题.

在平面直角坐标系中,设α的终边上任意一点P 的坐标是(x ,y ),它与原点的距离是

r (r =x 2+y 2>0),那么

sin α

若角α的终边经过点P ?

????2

2

,-22,则

sin α=________;cos α=________;tan α=________. 【解析】 由题意可知 |OP |=

? ????22-02+? ?

?

??-22-02=1,

∴sin α=-221=-2

2;

cos α=221=2

2;

tan α=-22

22=-1.

【答案】 -

22 22

-1 教材整理2 三角函数值的符号

阅读教材P 12第二自然段的有关内容,完成下列问题. 三角函数在各象限符号:

图1-2-1

(1)若α在第三象限,则sin αcos α________0;(填“>”,“<”) (2)若α在第二象限,则sin αtan α________0.(填“>”“<”) 【解析】 (1)∵α在第三象限, ∴sin α<0,cos α<0, ∴sin αcos α>0. (2)∵α在第二象限, ∴sin α>0,tan α<0. ∴sin αtan α<0. 【答案】 (1)> (2)< 教材整理3 三角函数线

阅读教材P 12第三自然段~P 14例1以上部分的内容,完成下列问题. 1.有向线段:规定了方向(即规定了起点和终点)的线段. 2.三角函数线

判断(正确的打“√”,错误的打“3”)

(1)α一定时,单位圆的正弦线一定.( )

(2)在单位圆中,有相同正弦线的角必相等.( )

(3)α与α+π有相同的正切线.( )

【解析】结合三角函数线可知(1)(3)正确,(2)错误.

【答案】(1)√(2)3(3)√

[质疑2手记]

预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:

疑问1:

解惑:

疑问2:

解惑:

疑问3:

解惑:

[小组合作型]

α,cos α,tan α的值.

【精彩点拨】以α的终边分别在第二、四象限为依据,分别取特殊点求sin α,cos α,tan α的值.

【自主解答】当α的终边在第二象限时,在α终边上取一点P(-1,2),则r= -1 2+22=5,

所以sin α=

2

5=255,cos α=-15

=-55,tan α=2-1=-2.

当α的终边在第四象限时, 在α终边上取一点P ′(1,-2), 则r =12

+ -2 2

=5,

所以sin α=-25=-255,cos α=15=55

,tan α=-2

1=-2.

1.已知角α的终边在直线上的问题,常分两类情况分别计算sin α,cos α,tan α的值.

2.当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.

[再练一题]

1.已知角α的终边上有一点P (-3a,4a )(a ≠0),求2sin α+cos α的值.

【导学号:06460006】

【解】 ∵x =-3a ,y =4a , ∴r = -3a 2

+ 4a 2

=5|a |. 当a >0时,r =5a ,角α为第二象限角,

∴sin α=y r =4a 5a =4

5

cos α=x r =

-3a 5a =-3

5

∴2sin α+cos α=2345-3

5

=1.

当a <0时,r =-5a ,角α为第四象限角, ∴sin α=y r =4a -5a =-4

5

cos α=x r =

-3a -5a =3

5

∴2sin α+cos α=23? ????-45+3

5

=-1.

判断下列各式的符号:

(1)α是第四象限角,sin α2tan α;

(2)sin 32cos 42tan ? ??

??-

23π4.

【精彩点拨】 先确定各角所在象限,再判定各个三角函数值符号,然后判定三角函数式的符号.

【自主解答】 (1)∵α是第四象限角, ∴sin α<0,tan α<0, ∴sin α2tan α>0. (2) ∵π2<3<π,π<4<3π

2,

∴sin 3>0,cos 4<0. 又∵-23π4=-6π+π

4

∴tan ?

????-23π4>0,

∴sin 32cos 42tan ? ??

??-

23π4

<0.

对于已知角α,判断α的相应三角函数值的符号问题,常依据三角函数的定义,或利用口诀“一全正、二正弦、三正切、四余弦”来处理

.

[再练一题]

2.确定下列式子的符号:

(1)tan 108°2cos 305°;(2)cos 5π62tan

11π

6

sin

2π3;

(3)tan 120°2sin 269°.

【解】 (1)∵108°是第二象限角,∴tan 108°<0. ∵305°是第四象限角,∴cos 305°>0. 从而tan 108°2cos 305°<0.

(2)∵5π6是第二象限角,11π6是第四象限角,2π3

是第二象限角,

∴cos 5π6<0,tan 11π6<0,sin 2π3>0.

从而cos 5π62tan

11π6

sin

2π3

>0.

(3)∵120°是第二象限角,∴tan 120°<0, ∵269°是第三象限角,∴sin 269°<0. 从而tan 120°sin 269°>0.

[探究共研型]

探究1 在单位圆中,满足sin α=2

的正弦线有几条?试在图中明确.

图1-2-2

【提示】 两条,如图所示,MP 1与NP 2都等于1

2

.

探究2 满足sin α≥1

2的角的范围是多少?试在上述单位圆中给予明确.

【提示】 如图中阴影部分所示,所求角α的取值范围为α???

2k

π+

π6≤α≤2k π

+5π

6

,k ∈Z .

求函数f (x )=1-2cos x +ln ? ??

??

sin x -22的定义域. 【精彩点拨】 借助单位圆解不等式组

?

????

1-2cos x ≥0sin x -22>0便可.

【自主解答】 由题意,自变量x 应满足不等式组

?

????

1-2cos x ≥0,

sin x -22>0,即???

??

cos x ≤1

2,sin x >2

2

.

则不等式组的解的集合如图(阴影部分)所示,

∴??????

???

?x ?

??

2k π+π3≤x <2k π+3

4π,k ∈Z

.

求三角函数定义域时,一般应转化为求不等式 组 的解的问题.利用数轴或三角函数线是解三角不等式常用的方法.解多个三角不等式时,先在单位圆中作出使每个不等式成立的角的范围,再取公共部分.

[再练一题]

3.在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合: (1)sin α≥

32;(2)cos α≤-12

. 【解】 (1)作直线y =

3

2

交单位圆于A ,B 两点,连接OA ,OB ,则OA 与OB 围成的区域(图①阴影部分)即为角α

的终边的范围,故满足条件的角α

的集合为

?

?????

???

?α?

??

2k π+π3π≤α≤2k π+2π3π,k ∈Z .

(2)作直线x =-1

2交单位圆于C 、D 两点,连接OC 、OD ,则OC 与OD 围成的区域(图②阴

影部分)即为角α

终边的范围,故满足条件的角α

的集合为

?

?????

???

?α?

??

2k π+23π≤α≤2k π+43π,k ∈Z . [构建2体系]

1.若角α的终边经过点P (-2,2),则sin θ=________. 【解析】 由题意可知,OP = -2 2

+22

=8, ∴sin θ=

28=2

2

. 【答案】

22

2.若sin α<0,tan α>0,则α为第________象限角.

【解析】 由sin α<0可知α的终边落在第三、四象限及y 轴的负半轴上. 由tan α>0可知α的终边落在第一、三象限内. 故同时满足sin α<0,tan α>0的角α为第三象限角. 【答案】 三

3.角α的终边经过点P (-b,4)且cos α=-3

5

,则b 的值为________.

【导学号:06460007】

【解析】 由三角函数的定义可知 -b

b 2+16=-35,

∴?????

b >0,b 2

b 2

+16=9

25

,解得b =3.

【答案】 3

4.利用三角函数线比较下列各组数的大小(用“>”或“<”连接): (1)sin 2π3________sin 4π5;

(2)cos 2π3________cos 4π

5

(3)tan 2π3________tan 4π

5

.

【解析】 借助单位圆中的三角函数线易得sin 2π3>sin 4π5;cos 2π3>cos 4π

5;

tan 2π3<tan 4π

5

.

【答案】 (1)> (2)> (3)<

5.已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值. 【解】 ∵角α的终边在直线3x +4y =0上,∴在角α的终边上任取一点P (4t ,-

3t )(t ≠0),则x =4t ,y =-3t ,r =x 2+y 2= 4t 2+ -3t 2

=5|t |,

当t >0时,r =5t ,sin α=y r =-3t 5t =-35,cos α=x r =4t 5t =45,tan α=y x =-3t

4t

-34

. 当t <0时,r =-5t ,sin α=y r =-3t -5t =35,cos α=x r =4t -5t =-45,tan α=y x =

-3t

4t

=-34

.

综上可知,sin α=-35,cos α=45,tan α=-3

4

或sin α=35,cos α=-45,tan α=-3

4

.

我还有这些不足:

(1) (2)

我的课下提升方案: (1) (2)

学业分层测评(三) 任意角的三角函数

(建议用时:45分钟)

[学业达标]

一、填空题

1.已知sin α=35,cos α=-4

5

,则角α终边在第________象限.

【解析】 由sin α=35>0得,角α的终边在第一或第二象限;由cos α=-4

5<0

得,角α的终边在第二或第三象限,故角α的终边在第二象限.

【答案】 二

2.若角α的终边落在y =-x 上,则tan α的值为________. 【解析】 设P (a ,-a )是角α上任意一点, 若a >0,P 点在第四象限,tan α=-a

a =-1,

若a <0,P 点在第二象限,tan α=-a

a

=-1. 【答案】 -1

3.有三个结论:①π6与5π6的正弦线相等;②π3与4π3的正切线相等;③π4与5π

4的余弦

线相等.其中正确的是________.

【解析】 在单位圆中画出相应角的正弦线、正切线,余弦线,分析可知①正确,②正确,③错误.

【答案】 ①②

4.在△ABC 中,若sin A 2cos B 2tan C <0,则△ABC 是________三角形. 【解析】 ∵A ,B ,C 是△ABC 的内角,∴sin A >0. ∵sin A 2cos B 2tan C <0,∴cos B 2tan C <0, ∴cos B 和tan C 中必有一个小于0,

即B ,C 中必有一个钝角,故△ABC 是钝角三角形. 【答案】 钝角

5.(20162扬州高一检测)如果α的终边过点P (2sin 30°,-2cos 30°),则sin α的值等于________.

【解析】 ∵P (1,-3),∴r =12

+ -3 2

=2, ∴sin α=-32. 【答案】 -

32

6.(20162南通高一检测)在(0,2π)内,使sin α>cos α成立的α的取值范围是________.

【解析】 如图所示,当α∈? ????π4,5π4时,恒有MP >OM ,而当

α∈? ????0,π4∪? ??

??5π4,2π时,则是MP <OM .

【答案】 ?

????π4

,5π4

7.若α为第二象限角,则

|sin α|sin α-cos α

|cos α|

=________.

【解析】 由已知sin α>0,cos α<0, ∴

|sin α|sin α-cos α|cos α|=sin αsin α-cos α

-cos α

=1+1=2.

【答案】 2

8.(20162无锡高一检测)已知角α的终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则α的取值范围是________.

【解析】 因为cos α≤0,sin α>0,所以角α的终边在第二象限或y 轴非负半轴上.

因为α的终边过点(3a -9,a +2),

所以{ 3a -9≤0, a +2>0,所以-2<a ≤3. 【答案】 (-2,3] 二、解答题

9.判断下列各式的符号: (1)sin 340°cos 265°;

(2)sin cos θ cos sin θ (θ为第二象限角). 【导学号:06460008】 【解】 (1)∵340°是第四象限角,265°是第三象限角, ∴sin 340°<0,cos 265°<0, ∴sin 340°cos 265°>0. (2)∵θ为第二象限角,

∴0<sin θ<1<π2,-π

2<-1<cos θ<0,

∴sin(cos θ)<0,cos(sin θ)>0, ∴

sin cos θ

cos sin θ

<0.

10.已知1|sin α|=-1

sin α,且lg cos α有意义.

(1)试判断角α所在的象限;

(2)若角α的终边上一点M ? ??

??35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.

【解】 (1)由1|sin α|=-1

sin α可知sin α<0,

∴α是第三或第四象限角或终边在y 轴的负半轴上的角. 由lg cos α有意义可知cos α>0,

∴α是第一或第四象限角或终边在x 轴的正半轴上的角. 综上可知角α是第四象限的角.

(2)∵|OM |=1,∴? ??

??352+m 2

=1,

解得m =±4

5

.

又α是第四象限角,故m <0,从而m =-4

5.

由正弦函数的定义可知 sin α=y r =m |OM |=-451=-4

5

.

[能力提升]

1.(20162南京高一检测)若α为第四象限角,则下列函数值一定是负值的是

________.(填序号)

①sin α2;②cos α2;③tan α

2

;④cos 2α.

【解析】 由α为第四象限角,得2k π+3π2<α<2k π+2π(k ∈Z ),故k π+3π

4<

α

2

<k π+π(k ∈Z ). 当k =2n (n ∈Z )时,α2∈? ????2n π+3π4,2n π+π, 此时,α

2

是第二象限角;

当k =2n +1(n ∈Z )时,α2∈? ????2n π+7π4,2n π+2π,此时,α2是第四象限角. 故无论α2落在第二还是第四象限,tan α

2<0恒成立.

又4k π+3π<2α<4k π+4π,(k ∈Z ). 故cos 2α有可能为正也有可能为负.

【答案】 ③

2.若角α的终边与直线y =3x 重合,且sin α<0,又P (m ,n )是角α终边上一点,且|OP |=10,则m -n 等于________.

【解析】 由题意得{ n =3m <0, m 2

+n 2

=10,

∴?

??

??

m =-1,n =-3,∴m -n =2.

【答案】 2

3.点P 从(1,0)出发,沿单位圆x 2+y 2

=1逆时针方向运动23π弧长到达点Q ,则点Q

的坐标为________.

【解析】 设Q (cos α,sin α),由2π3=α21可知α=2π

3,

所以Q ? ????cos 2π3,sin 2π3,即Q ? ????-12,32.

【答案】 ? ??

??-1

2,32

4.已知:cos α<0,tan α<0. (1)求角α的集合;

(2)试判断角α

2

是第几象限角;

(3)试判断sin α2,cos α2,tan α

2

的符号.

【解】 (1)因为cos α<0,所以角α的终边位于第二或第三象限或x 轴负半轴上.因为tan α<0,所以角α的终边位于第二或第四象限,所以角α的终边只能位于第二象限.故角α的集合为

?

???

??

????α?

??

π2+2k π<α<π+2k π,k ∈Z . (2)因为π

2+2k π<α<π+2k π(k ∈Z ),

所以π4+k π<α2<π

2+k π(k ∈Z ).

当k =2n (n ∈Z )时,

π4+2n π<α2<π

2+2n π(n ∈Z ). 所以α

2

是第一象限角;

当k =2n +1(n ∈Z ),

5π4+2n π<α2<3π

2+2n π(n ∈Z ), 所以α

2是第三象限角.

(3)当α

2

为第一象限角时,

sin α2>0,cos α2>0,tan α

2>0.

当α

2

为第三象限角时, sin α2<0,cos α2<0,tan α

2>0.

任意角的三角函数及基本公式

第 18 讲 任意角的三角函数及基本公式 (第课时) 任意角的三角函数? ? ?? ? ? ? ?? ??? ????? ?? ??????? ±±--?±?+????? ????? ??的函数关系与以及的函数关系 与以及的函数关系与的函数关系与诱导公式倒数关系式 商数关系式平方关系式系式同角三角函数的基本关任意角三角函数定义 弧度制角的概念的扩充三角函数的概念ααπαπααααααα232360180360k 重点:1.任意角三角函数的定义;2.同角三角函数关系式;3.诱导公式。 难点:1.正确选用三角函数关系式和诱导公式;2.公式的理解和应用。 2.理解任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义;3.掌握同角三角函数的基本关系式;4. 掌握正弦、余弦的诱导公式。 ⑴ 角可以看成是一条射线绕着它的端点旋转而成的,射线旋转开始的位置叫做角的始边,旋转终止的位置叫做角的终边,射线的端点叫做角的顶点。 ⑵ 射线逆时针旋转而成的角叫正角。射线顺时针旋转而成的角叫负角。射线没有任何旋转所成的角叫零角。 2.弧度制 ⑴ 等于半径长的圆弧所对的圆心角叫做1弧度的角。用“弧度” 作单位来度量角的制度叫做“弧度制”。 注意:1sin 表示1弧度角的正弦,2sin 表示2弧度角的正弦,它们与?1sin 、?2sin 不是

一回事。 ⑵ 一个圆心角所对的弧长与其半径的比就是这个角的弧度数的绝对值。正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。 ⑶ 设一个角的弧度数为α,则 r l = α (l 为这角所对的弧长,r 为半径)。 ⑷ 所有大小不同的角组成的集合与实数集是一一对应的,这个对应是利用角的弧度制建立的。 ⑸ 1π=?弧度,1弧度?=)180 ( 。 设扇形的弧长为l ,扇形面积为S ,圆心角大小为α弧度,半径为r , 则 αr l = ,α22 1 21r lr S == 。 3.角的集合表示 ⑴ 终边相同的角 设β表示所有终边与角α终边相同的角(始边也相同),则 αβ+??=360k (也可记为 απβ+=k 2 Z k ∈) 。 ⑵ 区域角 介于某两条终边间的角叫做区域角。例如 ?+??<

任意角的三角函数一

. 1.2.1 任意角的三角函数(一)2015.12 【预习案】 目标: 1.初步掌握任意角三角函数(正弦、余弦、正切)的定义; 2.初步从任意角三角函数定义认识函数值的符号。 1、初中时在直角三角形中如何定义一个锐角的正弦、余弦、正切? 特别地,r =1时,sin= ___ ,cos= ___ ,tan= _____ (). 5、任意角的三角函数在各个象限的符号有什么规律? 7、终边相同的角有什么关系?他们的三角函数有什么关系? 8、三角函数在坐标轴上的取值情况 角 0 90180270360 弧度数 sin cos tan

【课堂案】 例1、已知角的终边经过点P(-3,4),求角的正弦,余弦和正切值. 强化1: 已知角的终边经过点P(12,-5),求角的正弦,余弦和正切值. 强化2:已知角的终边经过点P(6m,-8m),其中m0,求角的三角函数值. 强化3:已知角的终边在直线y = 3x上,求角的三角函数值。 例 2.确定下列三角函数值的符号. (1) cos 250(2)sin(- ) (3) tan(-672) (4)tan3 强化:1.若角的终边过点(-3,-2)则( ) A.sin tan0 B. cos tan0 C.sin cos0 D.sin cos0 强化:2. 若sin0,tan0则是第象限角? 反之成立吗?

强化:3.设是三角形的一个内角,则sin,cos, tan, tan中,哪些可以取负值?

强化2、 2cos +tan(- 7 )+cos 2 13 +sin 3 2 4 6 2 巩固案】 1、角 的终边上有一点P (a ,a ) , a 0,则sin 的值是( ) 2、已知角 的终边经过点 p (—1, 3 ),则sin + cos 的值是( ) 已知角 的终边上一点P (- 3,m ),且sin = 2m ,求cos 的值. 5、若cos 0,tan 0则在( ) 6、若sin cos 0 ,则 在( ) A. 第一、四象限 B. 第一、三象限 7、下列命题中,正确命题的个数是( ) (1)终边相同的角的同名三角函数的值相同 (3)若sin 0则 是第一、二象限的角 (2)终边不同的角的同名三角函数的值不等 4)若 是第二象限的角,且 p (x,y )是其终边 A.第一象限 B.第一、二象限 C.第三象限 D. 第四象限 上一点,则 cos = -x 例 3、求值: (1) sin1485 (2)cos 9 强化 1、(1)cos1140 (2)tan 19 (3)sin(-1050) (4)tan(-31) 3、 已知角的终边经过点 P ( x ,1),且 cos = 25 5 则x 的值是( 4、 C. 第一、二象限 D. 第二、四象限

任意角的三角函数知识点复习

任意角的三角函数 任意点到原点的距离公式:d = x 2+y 2 1.三角函数定义 在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐 标为(,)x y ,它与原点的距离为(0)r r ==>,那么 sin y r α= ;cos x r α=;tan y x α=; 正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。 求解三角函数值 一般角:利用三角函数的定义 特殊角:先化为0至360度之间的角 ) Z (tan )2tan()Z (cos )2cos() Z (sin )2sin(∈=+∈=+∈=+k k k k k k ααπααπααπ 例1已知角α的终边经过点(2,3)P -,求α的三角函数值。 练:已知角α的终边过点(,2)(0)a a a ≠,求α的四个三角函数值。 例2.求下列三角函数的值: (1)9cos 4π (2)11tan()6 π - ,

练: .____________tan600o 的值是 D 3.D 3.C 3 3 .B 33.A -- 例3.确定下列三角函数值的符号: (1)cos 250 ; (2)sin()4π-; (3)tan(672)- ; (4)11tan 3 π . 练: 确定下列三角函数值的符号 (1)cos250?; (2)sin()4 π -; (3)tan(672)?-; (4)tan 3π. 例4 若θ是第二象限角,则( ) A.sin 2 θ >0 B.cos 2 θ <0 C.tan 2 θ >0 D.cot 2 θ<0 2.三角函数线的定义: 设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交 与点P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T .

任意角的三角函数定义

任意角的三角函数定义 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-

教材:任意角的三角函数(定义) 目的:要求学生掌握任意角的三角函数的定义,继而理解角与=2k+(kZ)的同 名三角函数值相等的道理。 过程:一、提出课题:讲解定义: 1.设是一个任意角,在的终边上任取(异于原点的)一点P (x,y ) 则P 与原点的距离0222 2>+=+=y x y x r (图示见P13略) 2.比值 r y 叫做的正弦 记作: r y =αsin 比值r x 叫做的余弦 记作: r x = αcos 比值x y 叫做的正切 记作: x y = αtan 比值 y x 叫做的余切 记作: y x =αcot 比值x r 叫做的正割 记作: x r =αsec 比值 y r 叫做的余割 记作: y r =αcsc 注意突出几个问题: ①角是“任意角”,当=2k+(kZ)时,与的同名 三角函数值应该是相等的,即凡是终边相同的角的三角函数值相等。 ②实际上,如果终边在坐标轴上,上述定义同样适用。(下面有例 子说明) ③三角函数是以“比值”为函数值的函数

④0>r ,而x,y 的正负是随象限的变化而不同,故三角函数的符号 应由象限确定(今后将专题研究) ⑤定义域: αααtan cos sin ===y y y )(2 Z k k R R ∈+≠π πα αααcsc sec cot ===y y y ) ()(2) (Z k k Z k k Z k k ∈≠∈+≠∈≠παπ παπα 二、例一 已知的终边经过点P(2,3),求的六个三角函数值 解:13)3(2,3,22 2=-+=-==r y x ∴sin=13133 cos=1313 2 23 cot=32 213 csc=3 13 例二 求下列各角的六个三角函数值 ⑴ 0 ⑵ ⑶ 2 3π ⑷ 2 π 解:⑴ ⑵ ⑶的解答见P16-17 ⑷ 当=2 π 时 r y x ==,0 ∴sin 2π=1 cos 2π=0 tan 2π不存在 cot 2π=0 sec 2π不存在 csc 2 π =1 例三 《教学与测试》P103 例一 求函数x x x x y tan tan cos cos + =的值域 解: 定义域:cosx0 ∴x 的终边不在x 轴上

《任意角的三角函数一》 教案苏教版

数学:1.2.1《任意角的三角函数(一)》教案(苏教版必修4) 第 3 课时:§1.2.1 任意角的三角函数(一) 【三维目标】: 一、知识与技能 1.掌握任意角的正弦、余弦、正切的定义; 2.掌握正弦、余弦、正切函数的定义域和这三种函数的值在各象限的符号。 3.树立映射观点,正确理解三角函数是以实数为自变量的函数; 二、过程与方法 1.通过网络载体,利用几何画板的直观演示,培养学生主动探索、善于发现的创新意识和创新精神; 2.在学习过程中通过相互讨论培养学生的团结协作精神; 3.通过学生积极参与知识的"发现"与"形成"的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。 三、情感、态度与价值观 1.使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式; 2.学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;

3.让学生在任意角三角函数概念的形成过程中,体会函数思想,体会数形结合思想。 【教学重点与难点】: 重点:任意角三角函数的定义(包括这三种三角函数的定义域和函数值在各象限的符号)。 难点:任意角的三角函数概念的建构过程 【学法与教学用具】: 1. 学法: 2. 教学用具:多媒体、实物投影仪. 3. 教学模式:启发、诱导发现教学. 【授课类型】:新授课 【课时安排】:1课时 【教学思路】: 一、创设情景,揭示课题 用与用坐标均可表示圆周上点,那么,这两种表示有什么内在的联系?确切地说, ● 用怎样的数学模型刻画与之间的关系? 二、研探新知 1.三角函数的定义 【提问】:初中锐角的三角函数是如何定义的? 在平面直角坐标系中,设的终边上任意一点的坐标是,它与原点的距离是。当为锐角时,过作轴,垂足为,在中,,,

任意角的三角函数教学设计

《任意角的三角函数》第一课时教学设计 会宁县第二中学数学教研组曹蕊 一、教学内容分析 本节课是三角函数这一章里最重要的一节课,它是本章的基础,主要是从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义。在《课程标准》中:三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。《课程标准》还要求我们借助单位圆去理解任意角的三角函数(正弦、余弦、正切)的定义。二、学生情况分析 本课时研究的是任意角的三角函数,学生在初中阶段曾经研究过锐角三角函数,其研究范围是锐角;其研究方法是几何的,没有坐标系的参与;其研究目的是为解直角三角形服务。以上三点都是与本课时不同的,因此在教学过程中要发展学生的已有认知经验,发挥其正迁移。 三、教学目标 知识与技能目标:借助单位圆理解任意角的三角函数(正弦、余弦、正切)的定义;能根据任意角的三角函数的定义求出具体的角的各三角函数值;能根据定义探究出三角函数值在各个象限的符号。 方法与过程目标:在定义的学习及概念同化和精致的过程中培养学生类比、分析以及研究问题的能力。 情感态度与价值观: 在定义的学习过程中渗透数形结合的思想。 四、教学重、难点分析: 重点:理解任意角三角函数(正弦、余弦、正切)的定义。 难点:引导学生将任意角的三角函数的定义同化,帮助学生真正理解定义。 五、教学方法与策略: 教学中注意用新课程理念处理教材,采用学生自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程. 根据本节课内容、高一学生认知特点,本节课采用“启发探索、讲练结合”的方法组织教学. 六、教具、教学媒体准备: 为了加强学生对三角函数定义的理解,帮助学生克服在理解定义过程中可能遇到的障碍,本节课准备在计算机的支持下,利用几何画板动态地研究任意角与其终边和单位圆交点坐标的关系,构建有利于学生建立概念的“多元联系表示”的教学情境,使学生能够更好地数形结合地进行思维. 七、教学过程 (一)教学情景 1.复习锐角三角函数的定义 问题1:在初中,我们已经学过锐角三角函数.如图1(课件中)在直角△POM中,∠M是直角,那么根据锐角三角函数的定义,∠O的正弦、余弦和正切分别是什么?

三角函数最全知识点总结

三角函数、解三角形 一、任意角和弧度制及任意角的三角函数 1.任意角的概念 (1)我们把角的概念推广到任意角,任意角包括正角、负角、零角. ①正角:按__逆时针__方向旋转形成的角. ②负角:按__顺时针__方向旋转形成的角. ③零角:如果一条射线__没有作任何旋转__,我们称它形成了一个零角. (2)终边相同角:与α终边相同的角可表示为:{β|β=α+2kπ,k∈Z},或{β|β=α+k·360°,k∈Z}. (3)象限角:角α的终边落在__第几象限__就称α为第几象限的角,终边落在坐标轴上的角不属于任何象限. 象限角 轴线角 2.弧度制 (1)1度的角:__把圆周分成360份,每一份所对的圆心角叫1°的角__. (2)1弧度的角:__弧长等于半径的圆弧所对的圆心角叫1弧度的角__. (3)角度与弧度的换算: 360°=__2π__rad,1°=__π 180__rad,1rad=(__180 π__)≈57°18′. (4)若扇形的半径为r,圆心角的弧度数为α,则此扇形的弧长l=__|α|·r__, 面积S=__1 2|α|r 2__=__1 2lr__.

3.任意角的三角函数定义 (1)设α是一个任意角,α的终边上任意一点(非顶点)P的坐标是(x,y),它与 原点的距离为r,则sinα=__y r__,cosα=__ x r__,tanα=__ y x__. (2)三角函数在各象限的符号是: (3)三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的__正弦__线、__余弦__线和__正切__线. 4.终边相同的角的三角函数 sin(α+k·2π)=__sinα__, cos(α+k·2π)=__cosα__, tan(α+k·2π)=__tanα__(其中k∈Z), 即终边相同的角的同一三角函数的值相等.

巩固练习_任意角的三角函数_基础

【巩固练习】 1.角θ的终边经过点12? ? ? ??? ,那么tan θ的值为( ) A .12 B .- C . D .2.若角0420的终边上有一点()a ,4-,则a 的值是( ) A .34 B .34- C .34± D .3 3.下列三角函数值结果为正的是( ) A .cos100° B .sin700° C .2tan 3π??- ??? D .9sin 4π??- ??? 4.化简0sin 390的值是( ) A . 12B .12-C .5.若42π π θ<<,则下列不等式成立的是( ) A .sin θ>cos θ>tan θ B .cos θ>tan θ>sin θ C .sin θ>tan θ>cos θ D .tan θ>sin θ>cos θ 6.设α角属于第二象限,且2cos 2cos α α -=,则2 α角属于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 7.若θ为锐角且2cos cos 1-=--θθ,则θθ1cos cos -+的值为( ) A .22 B .6 C .6 D .4 8.若cos θ>0,且sin2θ<0,则角θ的终边所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.5sin90°+2cos0°―3sin270°+10cos180°=________。 10.若α为第二象限角,则|sin |cos sin |cos | αααα-=________。 11.已知角α的终边经过点(230,2cos30)P sin -o o ,则cos α=。 12.已知角α的终边在直线2y x =上,则sin α=。

必修四任意角的三角函数(一)(附答案)

任意角的三角函数(一) [学习目标] 1.借助单位圆理解任意角的三角函数定义.2.掌握正弦、余弦、正切函数在各象限内的符号.3.通过对任意角的三角函数的定义理解终边相同角的同一三角函数值相等. 知识点一 三角函数的概念 1.利用单位圆定义任意角的三角函数 如图,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: (1)y 叫做α的正弦,记作sin α, 即sin α=y ; (2)x 叫做α的余弦,记作cos α,即cos α=x ; (3)y x 叫做α的正切,记作tan α,即tan α=y x (x ≠0). 对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数. 2.一般地,设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α=y r ,cos α=x r ,tan α=y x . 思考 角α三角函数值的大小与角α终边上的点P 离原点距离的远近有关吗? 答案 角α的三角函数值是比值,是一个实数,这个实数的大小与点P (x ,y )在终边上的位置无关,只由角α的终边位置决定,即三角函数值的大小只与角有关. 知识点二 正弦、余弦、正切函数值在各象限的符号 口诀概括为:一全正、二正弦、三正切、四余弦(如图). 思考 三角函数在各象限的符号由什么决定? 答案 三角函数值的符号是根据三角函数定义和各象限内坐标符号推导出的.从原点到角的终边上任意一点的距离r 总是正值.因此,三角函数在各象限的符号由角α的终边所在象限决定.

任意角的三角函数练习题及答案详解

任意角的三角函数 一、选择题 1.以下四个命题中,正确的是( ) A .在定义域内,只有终边相同的角的三角函数值才相等 B .{α|α=k π+6 π,k ∈Z }≠{β|β=-k π+6 π ,k ∈Z } C .若α是第二象限的角,则sin2α<0 D .第四象限的角可表示为{α|2k π+2 3π<α<2k π,k ∈Z } 2.若角α的终边过点(-3,-2),则( ) A .sin α tan α>0 B .cos α tan α>0 C .sin α cos α>0 D .sin α cot α>0 3.角α的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin α的值是( ) A . 2 2 B .- 2 2 C .± 2 2 D .1 4.α是第二象限角,其终边上一点P (x ,5),且cos α=42 x ,则sin α的值为 ( ) A .410 B .46 C .42 D .-410 5.使lg (cos θ·tan θ)有意义的角θ是( ) A .第一象限角 B .第二象限角 C .第一或第二象限角 D .第一、二象限角或终边在y 轴上 6.设角α是第二象限角,且|cos 2α|=-cos 2α,则角2α 是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 7.点P 是角α终边上的一点,且 ,则b 的值是( ) A 3 B -3 C ±3 D 5 8.在△ABC 中,若最大的一个角的正弦值是 ,则△ABC 是( ) A 锐角三角形 B 钝角三角形 C 直角三角形 D 等边三角形 9.若α是第四象限角,则 是( ) A 第二象限角 B 第三象限角 C 第一或第三象限角 D 第二或第四象限角 10.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( )

任意角的三角函数和弧度制 基础练习(含解析)

任意角的三角函数和弧度制 基础练习 一、选择题 1.下列选项中与-80°终边相同的角为( ) A. 100° B. 260° C. 280° D. 380° 2.在平面直角坐标系中,角 3πα+ 的终边经过点P (1,2),则sin α=( ) 3.若5sin 13α=- ,且α为第四象限角,则tan α的值等于( ) A. 125 B. 512- C. 512 D. 125 - 4.小明出国旅游,当地时间比中国时间晚一个小时,他需要将表的时针旋转,则转过的角的弧度数是 ( ) A. π3 B. π6 C. -π3 D. -π6 5.已知角α的终边经过点(sin 48,cos48)P ??,则 sin(12)α?-=( ) A. 12 C. 12- D. 6.若12cos 13x = ,且x 为第四象限的角,则tanx 的值等于 A 、125 B 、-125 C 、512 D 、-512 7.若函数 ()cos 2()6f x x xf π=+',则()3f π-与()3f π的大小关系是( ) A. ()()33f f π π-= B. )3()3(ππf f <- C. )3()3(π πf f >- D. 不确定 8.若θ是第四象限角,则下列结论正确的是( ) A .sin 0>θ B .cos 0<θ C .tan 0>θ D .sin tan 0>θθ 9.一扇形的中心角为2,对应的弧长为4,则此扇形的面积为( ) A .1 B .2 C .3 D .4 10.已知tan 2α ,其中α为三角形内角,则cos α=() A. 5 - D.

二、填空题 11.若扇形的面积是1 cm 2,它的周长是4 cm,则扇形圆心角的弧度数为______. 12.已知角2α的终边落在x 轴下方,那么α是第 象限角. 13.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=1 3,则 sin β=_________. 14.已知一扇形所在圆的半径为10cm ,扇形的周长是45cm ,那么这个扇形的圆心角为 弧度. 15.弧长为3π,圆心角为135°的扇形,其面积为____. 三、解答题 16.已知角α的终边经过点P (54,5 3-). (1)求 sin α的值. (2) 17.(本小题满分14分)某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O 为圆心的两个 同心圆弧和延长后通过点O 的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的 半径为10米.设小圆弧所在圆的半径为x 米,圆心角为θ(弧度). (1)求θ关于x 的函数关系式; (2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为 9元/米.设花坛的面积与装饰总费用的比为y ,求y 关于x 的函数关系式,并求出x 为何值时,y 取得最 大值?

任意角的三角函数一

【预习案】 目标: 1.初步掌握任意角三角函数(正弦、余弦、正切)的定义; 2.初步从任意角三角函数定义认识函数值的符号。 1、 初中时在直角三角形中如何定义一个锐角的正弦、余弦、正切? 2、 写出下列特殊锐角的正弦,余弦和正切值 3、课本如何定义的任意角的三角函数? 4、三角函数定义:设α是一个任意角,在它的终边上任取一点P (y x ,),它与原点的距离 r = ,则 )._____( tan ____,cos ____,sin ===ααα 特别地,r =1时,)._____(tan ____,cos ____,sin ===ααα 5、任意角的三角函数在各个象限的符号有什么规律? 6、三角函数在各象限的符号 αsin αcos αtan 7、终边相同的角有什么关系?他们的三角函数有什么关系? 8、三角函数在坐标轴上的取值情况 y o x y o x y o x

【课堂案】 例1、已知角α的终边经过点P(4,3-),求角α的正弦,余弦和正切值. 强化1: 已知角α的终边经过点P(5,12-),求角α的正弦,余弦和正切值. 强化2:已知角θ的终边经过点P )8,6(m m -,其中0≠m ,求角θ的三角函数值. 强化3:已知角α的终边在直线x y 3=上,求角α的三角函数值。 例2.确定下列三角函数值的符号. (1) 250cos (2))4 sin(π - (3) )672tan( - (4)tan π3 强化:1.若角α的终边过点(-3,-2)则( ) A.0tan sin >αα B.0tan cos >αα C.0cos sin >αα D.0cos sin <αα 强化:2. 若0tan ,0sin ><θθ则θ是第 象限角? 反之成立吗? 强化:3.设α是三角形的一个内角,则2 tan ,tan ,cos ,sin α ααα中,哪些可以取负值?

任意角的三角函数知识点

2.1任意角的三角函数 课前复习: 1. 特殊角的三角函数值记忆 新课讲解: 任意点到原点的距离公式: 1.三角函数定义 在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y , 它与原点的距离为(0)r r == >,那么 (1)比值y r 叫做α的正弦,记作sin α,即sin y r α=; (2)比值x r 叫做α的余弦,记作cos α,即cos x r α=; (3)比值y x 叫做α的正切,记作tan α,即tan y x α=; (4)比值x y 叫做α的余切,记作cot α,即cot x y α=; 说明:①α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α 的大小,只表明与α的终边相同的角所在的位置; ②根据相似三角形的知识,对于确定的角α,四个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小; ③当()2k k Z π απ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等 于0,所以tan y x α= 无意义;同理当()k k Z απ=∈时,y x =αcot 无意义; ④除以上两种情况外,对于确定的值α,比值 y r 、x r 、y x 、x y 分别是一个确定的实数。 正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。

当角的终边上一点(,)P x y 1=时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。 有向线段: 坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。 规定:与坐标轴方向一致时为正,与坐标方向相反时为负。 有向线段:带有方向的线段。 2.三角函数线的定义: 设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与点 P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T . 由四个图看出: 当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有 sin 1y y y MP r α====, cos 1x x x OM r α====,tan y MP AT AT x OM OA α==== 我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。 (Ⅳ) (Ⅲ)

任意角的三角函数及同角三角函数的基本关系式同步测试(含答案)

任意角的三角函数及同角三角函数的基本关系式同步测试 一、选择题(每小题5分,共60分,请将所选答案填在括号内) 1.已知的正弦线与余弦线相等,且符号相同,那么的值 为() A. B. C. D. 2.若为第二象限角,那么的值() A.正值 B.负值C.零 D.不能确定 3.已知的值() A.-2 B.2 C. D.- 4.函数的值域是() A.{-1,1,3} B.{-1,1,-3} C.{-1,3} D.{-3,1} 5.已知锐角终边上一点的坐标为(则= ()

A. B.3 C.3- D.-3 6.已知角的终边在函数的图象上,则的值为()A. B.- C.或- D. 7.若那么2的终边所在象限为() A.第一象限 B.第二象限 C.第三象 限 D.第四象限 8.、、的大小关系为() A. B. C. D. 9.已知是三角形的一个内角,且,那么这个三角形的形状 为() A.锐角三角形B.钝角三角形 C.不等腰的直角三角形 D.等腰直角三角形

10.若是第一象限角,则中能确定为正值有() A.0个 B.1个 C.2 个 D.2个以上 11.化简(是第三象限角)的值等于() A.0 B.- 1 C. 2 D.-2 12.已知,那么的值为() A. B.- C.或- D.以上全错 二、填空题(每小题4分,共16分,请将答案填在横线上) 13.已知则 . 14.函数的定义域是_________. 15.已知,则=______. 16.化简 .

三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.已知 求证:. 18.若, 求角的取值范围. 19.角的终边上的点P和点A()关于轴对称()角的终边上的点Q与A关于直线对称. 求 的值. 20.已知是恒等式. 求a、b、c 的值.

任意角的三角函数练习题及标准答案详解

任意角的三角函数练习题及答案详解

————————————————————————————————作者:————————————————————————————————日期:

任意角的三角函数 一、选择题 1.以下四个命题中,正确的是( ) A .在定义域内,只有终边相同的角的三角函数值才相等 B .{α|α=k π+ 6π,k ∈Z }≠{β|β=-k π+6 π ,k ∈Z } C .若α是第二象限的角,则sin2α<0 D .第四象限的角可表示为{α|2k π+ 2 3 π<α<2k π,k ∈Z } 2.若角α的终边过点(-3,-2),则( ) A .sin α tan α>0 B .cos α tan α>0 C .sin α cos α>0 D .sin α cot α>0 3.角α的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin α的值是( ) A . 2 2 B .- 2 2 C .± 2 2 D .1 4.α是第二象限角,其终边上一点P (x ,5),且cos α=42 x ,则sin α的值为( ) A .410 B .46 C .42 D .-410 5.使lg (cos θ·tan θ)有意义的角θ是( ) A .第一象限角 B .第二象限角 C .第一或第二象限角 D .第一、二象限角或终边在y 轴上 6.设角α是第二象限角,且|cos 2α|=-cos 2α,则角2α 是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 7. 已知集合E={θ|cos θ<sin θ,0≤θ≤2π},F={θ|tan θ<sin θ},那么E ∩F 是区间( )

(精心整理)任意角的三角函数一

目标: 1.初步掌握任意角三角函数(正弦、余弦、正切)的定义; 2.初步从任意角三角函数定义认识函数值的符号。 1、 初中时在直角三角形中如何定义一个锐角的正弦、余弦、正切? 2、 写出下列特殊锐角的正弦,余弦和正切值 3、课本如何定义的任意角的三角函数? 4、三角函数定义:设α是一个任意角,在它的终边上任取一点P (y x ,),它与原点的距离 r = ,则 )._____( tan ____,cos ____,sin ===ααα 特别地,r =1时,)._____(tan ____,cos ____,sin ===ααα 5、任意角的三角函数在各个象限的符号有什么规律? 6 、三角函数在各象限的符号 αsin αcos αtan 7、终边相同的角有什么关系?他们的三角函数有什么关系? 8 y o x y o x y o x

例1、已知角α的终边经过点P(4,3-),求角α的正弦,余弦和正切值. 强化1: 已知角α的终边经过点P(5,12-),求角α的正弦,余弦和正切值. 强化2:已知角θ的终边经过点P )8,6(m m -,其中0≠m ,求角θ的三角函数值. 强化3:已知角α的终边在直线x y 3=上,求角α的三角函数值。 例2.确定下列三角函数值的符号. (1) 250cos (2))4 sin(π - (3) )672tan( - (4)tan π3 强化:1.若角α的终边过点(-3,-2)则( ) A.0tan sin >αα B.0tan cos >αα C.0cos sin >αα D.0cos sin <αα 强化:2. 若0tan ,0sin ><θθ则θ是第 象限角? 反之成立吗? 强化:3.设α是三角形的一个内角,则2 tan ,tan ,cos ,sin α ααα中,哪些可以取负值? 例3、求值:

任意角的三角函数(一)解读

任意角的三角函数(一) ------陈少漫 一、教学目标: 1、知识与技能 (1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);(2)理解任意角的三角函数不同的定义方法;(3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;(4)掌握并能初步运用公式一;(5)树立映射观点,正确理解三角函数是以实数为自变量的函数. 2、过程与方法 初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习. 3、情态与价值 任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于 用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解. 本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.这个定义清楚地表明了 正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系. 二、教学重、难点 重点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一). 难点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解. 三、学法与教学用具 任意角的三角函数可以有不同的定义方法,本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系. 另外,这样的定义使得三角函数所反映的数与形的关系更加直接,数形结合更加紧密, 这就为后续内容的学习带来方便,也使三角函数更加好用了. 教学用具:投影机、三角板、圆规、计算器 四、教学设想 第一课时任意角的三角函数(一) 提问:锐角O的正弦、余弦、正切怎样表示? 借助右图直角三角形,复习回顾. 数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗 如图,设锐角α的顶点与原点O重合,始边与x轴的正半轴重合,

任意角的三角函数公开课教案(精.选)

任意角的三角函数(第一课时) 教学目标 1.掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义. 2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程. 领悟直角坐标系的工具功能,丰富数形结合的经验. 3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观. 4.培养学生求真务实、实事求是的科学态度. 一、重点、难点、关键 重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法. 难点:把三角函数理解为以实数为自变量的函数. 关键:如何想到建立直角坐标系;六个比值的确定性(α确定,比值也随之确定)与依赖性(比值随着α的变化而变化). 二、教学过程 [执教线索: 回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)——问题情境:能推广到任意角吗?——它山之石:建立直角坐标系(为何?)——优化认知:用直角坐标系研究锐角三角函数——探索发展:对任意角研究六个比值(与角之间的关

系:确定性、依赖性,满足函数定义吗?)——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)——例题与练习——回顾小结——布置作业] (一)复习引入、回想再认 开门见山,面对全体学生提问: 在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢? 探索任意角的三角函数(板书课题),请同学们回想,再明确一下: (情景1)什么叫函数?或者说函数是怎样定义的? 让学生回想后再点名回答,投影显示规范的定义,教师根据回答情况进行修正、强调: 传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫做自变量,自变量x的取值范围叫做函数的定义域. 现代定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数,在集合B中都有唯一确定的数 f(x)和它对应,那么就称映射?:A→B为从集合A到集合B的一个函数,记作: f(x),x∈A ,其中x叫自变量,自变量x的取值范围A叫做函数的定义域. (情景2)我们在初中通过锐角三角形的边角关系,学习

高考数学总复习教案:任意角和弧度制及任意角的三角函数

第三章 三角函数、三角恒等变换及解三角形第1课时 任意角和弧度制及任意角的三角函数 (对应学生用书(文)、(理)40~41页) 页 考情分析 考点新知 ① 了解任意角的概念;了解终边相同的角的意义. ② 了解弧度的意义,并能进行弧度与角度的互化. ③ 理解任意角三角函数(正弦、余弦、正切)的定义;初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切. ① 能准确进行角度与弧度的互化. ② 准确理解任意角三角函数的定义,并能准确判断三角函数的符号. 1. (必修4P15练习6改编)若角θ同时满足sin θ<0且tan θ<0,则角θ的终边一定落在第________象限. 答案:四 解析:由sin θ<0,可知θ的终边可能位于第三或第四象限,也可能与y 轴的非正半轴重合.由tan θ<0,可知θ的终边可能位于第二象限或第四象限,可知θ的终边只能位于第四象限. 2. 角α终边过点(-1,2),则cos α=________. 答案:-5 5 3. 已知扇形的周长是6cm ,面积是2cm2,则扇形的圆心角的弧度数是________. 答案:1或4 4. 已知角α终边上一点P(-4a ,3a)(a<0),则sin α=________. 答案:-3 5 5. (必修4P15练习2改编)已知角θ的终边经过点P(-x ,-6),且cos θ=-5 13,则sin θ=____________,tan θ=____________. 答案:-1213 12 5 解析:cos θ= -x x2+36=-513,解得x =5 2.sin θ=-6? ?? ?-52 2 +(-6)2=-1213,tan θ=12 5.

优秀教案----任意角的三角函数(1)

第一课时任意角的三角函数的定义 知识与技能: 1.掌握任意角的三角函数的定义; 2.已知角α终边上一点,会求角α的各三角函数值; 3.记住三角函数的定义域、值域,诱导公式(一)。 过程与方法: 1理解并掌握任意角的三角函数的定义; 2树立映射观点,正确理解三角函数是以实数为自变量的函数; 3通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、解决问题的能力。 情感态度与价值观: 1使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式 2学习转化的思想,培养学生严谨治学、一丝不苟的科学精神; 教学重点:三角函数的定义;三角函数的定义域及其确定方法;三角函数值在各个象限内的符号以及诱导公式一 教学难点:任意角三角函数的定义. 一.复习引入 思考:我们已经学过锐角三角函数,知道它们都是以锐角为自变量,以比值为函数值的函数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗? ——————————————第 1 页(共6页)——————————————

——————————————第 2 页 (共 6页)—————————————— 结论:在Rt △ABC 中,设A 对边为a ,B 对边为b ,C 对边为c ,锐角A 的正弦,余弦,正切依次为:,,a b a sinA cosA tanA c c b = = = 锐角三角函数就是以锐角为自变量,以比值为函数值的函数 思考1:角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义. 你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗? 如图,设锐角α的顶点与原点O 重合,始边与x 轴的正半轴重合 ,那么它的终边在第一象限.在α的终边上任取一点(,)P a b ,它与原点的距离0r =>.过P 作x 轴的垂线, 垂足为M ,则线段O M 的长度为a ,线段M P 的长度为b . 则sin M P b O P r α= =; cos O M a O P r α= = ; tan M P b O M a α==. 思考2:对于确定的角α,这三个比值是否会随点P 在α的终边上的位置的改变而改变呢?为什么? 根据相似三角形的知识,对于确定的角α,三个比值不以点P 的位置的改变而改变大小. 我们可以将点P 取在使线段O P 的长1r =的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数: sin M P b O P α= =; cos O M a O P α= =; tan M P b O M a α= =. 单位圆:在直角坐标系中,我们称以原点O 为圆心,圆. 上述P 点就是α的终边与单位圆的交点, 锐角α的三角函数可以用单位圆上点的坐标表示. 二新课讲授 1.任意角的三角函数的定义 结合上述锐角α的三角函数值的求法,我们应如何求解任意角的三角函数值呢? 显然,我们可以利用单位圆来定义任意角的三角函数.

相关文档
最新文档