等角螺旋天线

等角螺旋天线
等角螺旋天线

等角螺旋天线仿真分析

Abstract:本文基于等角螺旋天线的基本原理,利用电磁让真软件HFSS构建并仿真分析了一个基本的等角螺旋天线。通过仿真结果,得到了一个频带为442MHz~929MHz,频带内S参数小于-10dB的天线,并分别给出450MHz,670MHz,900MHz处的E、H面方向图。关于结果的分析也列于最后。

1.引言

螺旋天线属于非频变天线,具有可观的带宽比,通常都具有圆极化特性,半功率带宽一般约为70°~90°。由于螺旋天线具有体积小,宽带宽的特性,因而广泛应用于国防,遥感等方面。螺旋天线阵列还用于1~18GHz的军用飞行器方面。

2.天线设计

本文仿真的等角螺旋天线如图1所示,可由4个公式表示定义每个支臂的内外半径

r1=r0e aφ(1)

r2=r0e a(φ-δ)(2)

r2=r0e a(φ-π)(3)

r2=r0e a(φ-π-δ)(4) 式中r0为φ=0时的矢径,a为一个常数,用于控制螺旋的张率。用式(1)可以建立起图1所示的平面等角螺旋天线。当δ=π/2时,图1所示的结构是自补的,在这种情况下,方向图对称性最好。

自补天线有如下特性:

Z金属=Z空气=η/2=188.5Ω(5) 这就要求在HFSS中仿真的时候馈电对口阻抗大致设为188.5Ω。

等角螺旋天线工作频带的上限f u 由亏点结构决定,最小半径r0在馈电区的周长2πr0=λu=c/f u。当然,螺旋在该店终止,连接到馈电传输线。下限频率通过天线整体半径R来限制,使其约为f L的1/4波长。

实验发现半圈到三圈的螺旋对参数a和δ相对来说不敏感。一圈半的螺旋约为最佳。

本文利用HFSS构建模型,并进行仿真分析。构建的模型如图2所示。仿真的天线最终选定参数如下:r0=27.5cm,a=0.27,n=0.92。

图1 平面等角螺旋天线几何模型

图2 等角螺旋天线(a)斜视图(b)顶视图(c)侧

视图

3.仿真分析

3.1 S参数

图3所示为S

参数仿真结果,由

图可以看出,从442MHz~929MHz处,S参数都低于-10dB,说明此等角螺旋天线在次带宽内为通带。偏离450MHz~900MHz的原因,与馈电处的结构(r0主要决定天线的高频),天线的张角和天线的圈数(a和n控制天线的外径,外径主要决定天线的低频)都有关系。

图3 S参数仿真结果

3.2 方向图

图4、5、6分别为天线在450MHz,670MHz,900MHz处,E面和H面的方向图。由三图可以看出,等角螺旋天线在通带内,天线都是双向轴向辐射,具有良好的方向图不变性,即非频变特性。

由方向图看,天线的整体增益不理想,产生原因与馈电的关系较大,利用HFSS仿真是,端口阻抗设置为188.5Ω,这只是个理论值,实际的测试结果与此出入,可能使得天线的匹配欠佳,所以造成天线的增益下降。

图4 450MHz处方向图

图5 670MHz处方向图

图6 900MHz处方向图

3.3 轴比

图7所示为天线的轴比随频率变化特性。由图可以看出,天线的轴比在442MHz~929MHz大致小于5dB。可以看出,天线的圆极化特性差强人意,具体原因不清楚,可能跟馈电的结构和仿真采用的算法有关。快速法求解速度快,精度欠佳,离散法求解精度高,但耗时太多。

图7 轴比随频率变化的仿真结果

4.总结

本文先对等角螺旋天线进行了理论分析,得出了其单臂的相应表达式。接着在仿真软件HFSS中建模并仿真。经过结构优化,最终得到了在442MHz~929MHz内S参数小于-10dB,轴比小于-5dB的天线。并给出了3个频点上的方向图。另外,还针对每个图的结果分析了其存在的问题及可能的原因。由各结果可以看出,天线具有非频变特性的同时还具有较好的圆极化特性。

超宽带天线的研究与设计

超宽带天线的研究与设计 李庆娅李晰唐鸿燊 摘要:本文设计了一款差分微带超宽带天线,通过改变馈线和尺寸和接地板上缝隙的半径,优化了天线的性能,所实现的天线带宽为11.5 GHz,且有较好的辐射特性。在此基础上,通过在两贴片上对称地开槽,得到了在5 GHz处有陷波特性的超宽带天线。 关键词:超宽带天线;差分天线;带阻特性 Research and Design of Ultra-wideband Microstrip Antenna Li Qing-Ya, Li Xi, Tang Hong-Shen Abstract: In this paper, a differential microstrip ultra-wideband antenna is designed. It is optimized by changing dimensions of feeding line and radius of slot in the ground. The simulated and measured results show that the frequency bands of antenna is 11.5 GHz. Also, it has good radiation characteristics. Based on this, by etching the slot in the patch symmetrically, the ultra-wideband antenna with band-notch characteristics at 5 GHz is achieved. Key word s: Ultra-wideband antenna; differential antenna; band-notch characteristics 1 引言 近几年,随着超宽带(UWB)通信技术的快速发展,对应用于短距离无线通信系统中的天线提出了更高的要求,不仅要求天线尺寸小、剖面低、价格便宜,易于加工并可集成到无线电设备内部,同时,还要求天线阻抗带宽足够宽,以便覆盖整个UWB频段。美国联邦通信委员会(FCC)规定UWB信号的频段为3.1 GHz-10.6 GHz。这个通信频段中还存在划分给其他通信系统的频段,如5.15 GHz到5.35 GHz的IEEE802.11a 和5.75 GHz到5.85 GHz的Hiper-LAN/2。 在接地板上开缝是实现超宽带天线的方法之一,常见的缝隙形状如倒锥形[1]、矩形、半圆形、梯形[2]等。文献[2]中仿真优化并制作了一个小型化超宽带微带天线,在整个工作频段2.15-13.47 GHz内,该天线的回波损耗均在-10 dB以下,增益基本稳定在3~6 dB之间,并具有比较稳定的辐射特性。在超宽带天线的基础上通过在辐射贴片上开槽实现带阻特性,槽的形状有L形[3]、矩形[4]、E形[5]等,文献[5]提出了一种新型的具有双阻带特性的超宽带天线,制作出实物并验证了天线的超宽带和陷波特性,即在中心频率3.75 GHz和5.5 GHz附近的频带范围内具有良好的陷波特性。 本文首先设计了超宽带天线,研究了天线的回波损耗S11和辐射特性与天线环形接地板尺寸的关系,改善了天线的带宽。在此基础上,通过改变贴片和微带线的尺寸。并利用折合形开槽技术在贴片上开槽,有效实现阻带。 2 天线设计 本文设计天线结构如图1所示。图1(a)中天线的辐射贴片,位于介质基板的上表面,图1(b)是刻蚀了圆形缝隙的地,位于介质基板的下表面;天线采用介质为RogerS RT/duroid 6006,相对介电常数为6.15,厚为0.5mm的介质基板,尺寸为29.6 mm×33.6 mm;馈电部分为50欧的微带线。

一种小型平面螺旋天线概要

一种小型平面螺旋天线 龙小专1 袁飞2 (西南电子设备研究所,成都四川,610036) 摘要:平面阿基米德螺旋天线是一种宽频带天线,其尺寸由低端工作频率决定,在许多实际应用中常需对其进行小型化设计。本文通过末端离散电阻加载设计,实现了天线的小型化。本文结合设计的小型平面马欠德平衡器馈电装置,得到了一种小型平面阿基米德螺旋天线。 关键词:平面阿基米德螺旋天线,小型化,电阻加载,平面马欠德平衡器 A Miniaturized Planar Spiral Antenna Long Xiaozhuan 1 Yuan Fei 2 (Southwest Institute of Electric Equipment, Chengdu, Sichuan, 610036) Abstract: Planar Archimedean spiral antenna was a broadband antenna, whose dimension was determined by its lowest working frequency, and it’s necessary to do some miniaturization design in many practical applications. The miniaturization of the antenna was realized by discrete resistance loading in the end of antenna. A miniaturized planar Archimedean spiral antenna was achieved, integrated with the feeding device of a miniaturized planar Marchand balun designed in this article. Keywords: Planar Archimedean Spiral Antenna; Miniaturization; Resistance Loading; Planar Marchand Balun 1 引言 2 电阻加载 平面阿基米德螺旋天线是一种宽频带天线,因其具有结构紧凑、重量轻、输入阻抗恒定、相位中心固定、辐射圆极化波等特点,在诸多领域有着重要的应用[1]。随着系统的发展要求,天线的小型化成为天线设计中的重要发展方向。一般来说,圆形平面阿基米德螺旋天线的外径至少应大于最低工作频率的波长除以π。若需再扩展天线的低端工作频率,或减小天线的尺寸,则需对天线进行小型化设计。在众多的小型化技术中,电阻加载不仅可以减小天线的驻波比,还可以显著减小天线的轴比,其应用最为广泛[2]。本文采用这种技术,对平面阿基米德螺旋天线末端进行离散电阻加载,并应用所设计的小型平面马欠德平衡器,最终得到一个工作于2.5GHz~6GHz的平面螺旋天线,其总尺寸仅为Ф30mm×25mm。 平面阿基米德螺旋天线一般由辐射螺旋面、馈电平衡器和背腔三大部分构成。在天线的设计中,可先分别对三个部分进行设计,然后再进行综合设计。辐射螺旋面一般是在一块圆形的介质基板的一个面上印制两根或多根螺旋线,螺旋线的半径随角度变化而均匀的增加,其极坐标方程可表示为: r=r0+aφ (1)

一种超宽带天线的设计与研究毕业设计论文

摘要 超宽带天线广泛应用于如电视、调频广播、遥测技术、宇航和卫星通信等领域中。尤其是近年来兴起的超宽带无线通信技术,使此类天线成为当今通信领域的研究焦点。 本文设计并研究了两种类型的超宽带天线,一种是带两个对称臂的矩形平面单极子天线,另一种是弯折结构的平面单极子天线。 所研究的第一种天线实现了在工作频率范围内回波损耗都在-10dB以下,基本满足了超宽带通信的要求,天线的工作频带是 2.7-9GHz。回波损耗与频率的关系曲线产生两个低峰值,特别适合于双频带通信使用。文中研究了通过改变切口尺寸、介质损耗对低峰值频率位置的影响关系,还讨论了端口大小对仿真准确度的影响,得到系列结论。 所研究的第二种天线实现了真正意义上超宽带天线,天线结构简单,易于构建,小尺寸、低剖面,能够在回波损耗小于-10dB条件下有效地工作在2.8~9.5GHz的频率范围。 天线采用热转印法自制了实验模型,并通过矢量网络分析仪测量了回波损耗与频率的关系曲线,测量结果与仿真结构基本吻合。 两种天线的研究还包含了增益和方向图等,从而对天线性能进行了全面分析。 关键词: 超宽带天线;单极子天线;有限元法;电磁仿真;热转印法

Abstract UWB antenna is widely used in television, FM radio, telemetry, aerospace and satellite communications fields. In particular, with the rise of ultra-wideband wireless communications technology in recent years, making such antennas become the focus of communication research field. This paper studies two types of ultra-wideband antenna, one is a symmetric planar monopole antenna with two symmetrical rectangular incision, the other is bent planar monopole antenna structure. The first designed antenna can satisfy the demand of UWB communication that the Return Loss of the antenna in the scope of working frequency, which is between 2.7-9GHz, is below -10dB. Return loss vs. frequency curves generated two low peaks, which is particularly suitable for dual-band communications. A study of the incision by changing the size of the low dielectric loss peak frequency position of the relationship between port size also discussed the impact on simulation accuracy, get series conclusion. The study of the second antenna to achieve a truly ultra-wideband antenna, the antenna structure is simple, easy to build, small size, low profile, can be less than-10dB return loss under the conditions of effective work in the 2.8 ~ 9.5GHz frequency range. Antenna made by heat transfer method of the experimental model, and vector network analyzer by measuring the return loss versus frequency curve, the measurement results and simulation of structure of the basic agreement. thermal transfer printing technology The study also includes two antenna gain and pattern, etc., and thus a comprehensive analysis of antenna performance. Key words: UWB antenna; monopole antenna; finite element method; electromagnetic simulation

各种天线概念解析螺旋天线是一种具有螺旋形状的天线它由导电

各种天线概念解析 是一种具有螺旋形状的天线。它由导电性能良好的金属螺旋线组成,通常用同轴线馈电,同轴线的心线和螺旋线的一端相连接,同轴线的外导体则和接地的金属网(或板)相连接。螺旋天线的辐射方向与螺旋线圆周长有关。当螺旋线的圆周长比一个波长小很多时,辐射最强的方向垂直于螺旋轴;当螺旋线圆周长为一个波长的数量级时,最强辐射出现在螺旋 旋轴方向上。 全向天线,即在水平方向图上表现为360°都均匀辐射,也就是平常所说的无方向性,在垂直方向图上表现为有一定宽度的波束,一般情况下波瓣宽度越小,增益越大。全向天线在移动通信系统中一般应用与郊县大区制的站型,覆盖范围大。 所谓机械天线,即指使用机械调整下倾角度的移动天线。 所谓电调天线,即指使用电子调整下倾角度的移动天线。 移动基站BTS用的一种收发天线.也就是收发到用户(手机)的天线。 在各个方向上均匀辐射或接收电磁波的天线,称为不定向天线,如小型通信机用的鞭状 天线等。

是由彼此成一角度的两条导线组成,形状象英文字母V的一种天线。其结构如图4所示,它的终端可以开路,也可以接有电阻,其电阻的大小等于天线的特性阻抗。V形天线具有单向性,最大发射方向在分角线方向的垂直平面内。它的缺点是效率低、占地面积大。 介质天线是一根用低损耗高频介质材料(一般用聚苯乙烯)作成的圆棒,它的一端用同轴线或波导馈电。图15所示的天线是用同轴线馈电的棒状介质天线。图中1是介质棒;2是同轴线的内导体的延伸部分,形成一个振子,用以激发电磁波;3是同轴线;4是金属套筒。套筒的作用除夹住介质棒外,更主要的是反射电磁波,从而保证由同轴线的内导体 激励电磁波,并向介质棒的自由端传播。 介质天线的优点是体积小,方向性尖锐;缺点是介质有损耗,因而效率不高。 在一块大的金属板上开一个或几个狭窄的槽,用同轴线或波导馈电,这样构成的天线叫做开槽天线,也称裂缝天线。为了得到单向辐射,金属板的后面制成空腔,开槽直接由波导馈电。开槽天线结构简单,没有凸出部分,因此特别适合在高速飞机上使用。它的缺点 是调谐困难。 由喇叭及装在喇叭口径上的透镜组成,故称为喇叭透镜天线。透镜的原理参见透镜天线,这种天线具有相当宽的工作频带,而且比抛物面天线具有更高的防护度,它在波道数较多 的微波干线通信中用得很广泛。\ 待续 我也来说两句查看全部评论相关评论

螺旋天线综述

螺旋天线综述 1 引言 螺旋天线(helical antenna)是用导电性良好的的金属做成的具有螺旋形状的天线。螺旋天线具有圆极化,波束宽度宽的优点,因此被广泛在卫星通讯,个人移动通信中。 同轴线馈电是螺旋天线的常用馈电方式,可以采用底馈或者顶馈,此时同轴线的内导线和螺旋线的一端相连接,外导线则和接地板(金属圆盘或矩形板状等)相接,螺旋线的另一端是处于自由状态。 螺旋天线既可用做反射镜或透镜的辐射器,也可用做单独的天线(由一个或几个螺旋线组成)。 2 螺旋天线的发展 螺旋天线的辐射能力是美国科学家 JohnD.Kraus于1947年在实验中发现的,自此之后,螺旋天线以其在宽频带上具有近乎一致的电阻性输入阻抗和在同样的频带上按“超增益”端射阵的波瓣图工作特点很快在各领域得到了广泛的应用。许多学者对螺旋天线的辐射特性进行了研究,给出了螺旋天线辐射设计多经验公式。 20世纪70年代,苏联科学家尤尔采夫和鲁诺夫对各种形式的螺旋天线进行了比较系统的理论分析和设计研究。此后各国学者进行了这方面的研究,延伸出了很多变种,尤其是四臂螺旋天线因其高增益,方向性好,圆极化的特点,得到了深入的发展和实际应用,如图1所示。 2008年弗吉尼亚大学的Warren Stutzman教授制成了一种六臂螺旋天线,如图2所示。天线实现了几乎最优化的UWB性能,通过采用围绕一个金属中心核而卷绕的臂来维持与臂之间相对不变的距离,几乎完整的利用了天线罩内的整个三维空间。该天线具有10:1的瞬间带宽,它可以被用于频域、多带宽、多信道应用以及时域或脉冲应用。在低成本的应用中,该设计可以被蚀刻在天线罩的内部,或由曲线或曲管构建。

超宽带天线设计与研究详解

超宽带天线的研究与设计 中文摘要 近几年来,超宽带天线的研究已经成为热潮。本文的思想也是研究小型化超宽带平板天线,让其在生活中的硬件设计产品中满足超宽带天线的技术需要。因为超宽带天线在WiMAX和WLAN的窄带系统和装载切口天线设计结构上产生的影响。实现WiMAX和WLAN频带的双凹槽在超宽带天线结构设计。在设计过程中主要是使用HFSS软件进行天线结构的仿真优化。主要利用了HFSS软件仿真和天线结构的优化设计过程。我们针对其超宽带天线的性能参数,相应的提升平面单极子天线的基础研究。传统平面单极子天线与狭槽,狭槽装载方法的横截面,提出了几种平面单极子天线从频域和时域研究,从而从单极子天线的相关性能参数出发,研究平面单极子天线在频率范围为3.1GHZ-11GHZ,使超宽带天线能够达到市场对硬件方面的应用需求。 关键词:平面单极子天线;超宽带;HFSS仿真 I

Research and design of ultra-wideband antenna Abstract In recent years, the research of ultra-wideband antenna has become a boom. Thought of this paper is to study ultra-wideband planar antenna miniaturization, let the life in the hardware design of the product satisfy the need of ultra-wideband antenna. Because of ultra-wideband antenna in WLAN and WiMAX narrowband systems and the impact loading of incision on the antenna design. Both WiMAX and WLAN band grooves in the ultra-wideband antenna structure design. In the design process is mainly using HFSS software for simulation of antenna structure optimization. Mainly using HFSS software simulation and optimization of the antenna structure design process. We according to the performance of ultra-wideband antenna parameters, the corresponding increase of planar monopole antenna of basic research. Traditional planar monopole antenna and the slot, slot loading method of cross section, and puts forward several planar monopole antenna from frequency domain and time domain research, thus starting from the related performance parameters of monopole antenna, the planar monopole antenna in the frequency range of 3.1 GHZ - 11 GHZ, the ultra-wideband antenna can meet the market demand for hardware applications. Key words: Planar monopole antenna; Ultra-Wideband; HFSS simulation 目录 I

等角螺旋天线

等角螺旋天线仿真分析 Abstract:本文基于等角螺旋天线的基本原理,利用电磁让真软件HFSS构建并仿真分析了一个基本的等角螺旋天线。通过仿真结果,得到了一个频带为442MHz~929MHz,频带内S参数小于-10dB的天线,并分别给出450MHz,670MHz,900MHz处的E、H面方向图。关于结果的分析也列于最后。 1.引言 螺旋天线属于非频变天线,具有可观的带宽比,通常都具有圆极化特性,半功率带宽一般约为70°~90°。由于螺旋天线具有体积小,宽带宽的特性,因而广泛应用于国防,遥感等方面。螺旋天线阵列还用于1~18GHz的军用飞行器方面。 2.天线设计 本文仿真的等角螺旋天线如图1所示,可由4个公式表示定义每个支臂的内外半径 r1=r0e aφ(1) r2=r0e a(φ-δ)(2) r2=r0e a(φ-π)(3) r2=r0e a(φ-π-δ)(4) 式中r0为φ=0时的矢径,a为一个常数,用于控制螺旋的张率。用式(1)可以建立起图1所示的平面等角螺旋天线。当δ=π/2时,图1所示的结构是自补的,在这种情况下,方向图对称性最好。 自补天线有如下特性: Z金属=Z空气=η/2=188.5Ω(5) 这就要求在HFSS中仿真的时候馈电对口阻抗大致设为188.5Ω。 等角螺旋天线工作频带的上限f u 由亏点结构决定,最小半径r0在馈电区的周长2πr0=λu=c/f u。当然,螺旋在该店终止,连接到馈电传输线。下限频率通过天线整体半径R来限制,使其约为f L的1/4波长。 实验发现半圈到三圈的螺旋对参数a和δ相对来说不敏感。一圈半的螺旋约为最佳。 本文利用HFSS构建模型,并进行仿真分析。构建的模型如图2所示。仿真的天线最终选定参数如下:r0=27.5cm,a=0.27,n=0.92。 图1 平面等角螺旋天线几何模型 图2 等角螺旋天线(a)斜视图(b)顶视图(c)侧 视图 3.仿真分析 3.1 S参数 图3所示为S 参数仿真结果,由

螺旋天线设计

天线 ――螺旋天线物理尺寸对天线效率的影响 一、天线概览 绝大多数天线具有可逆性:即天线用作接收天线时的特性与其处于发射状态时的特性时相同的。 辐射方向图:表示给定距离下天线的辐射随角度的变化,辐射的强弱由离天线给定距离r处的功率密度S来评价。接收模式下,天线对于某方向来波的响应正比于辐射方向图上该方向的值。 方向系数:表示最大辐射强度于全空间均匀辐射时的平均辐射强度之比。 极化:描述了天线辐射时电场矢量的特征,瞬时电场矢量随时间的轨迹图决定波动的极化特性。 天线的输入阻抗:是天线终端电压与电流之比,通常的目的是使天线的输入阻抗与传输线的特征阻抗相匹配。 §天线分类 依据频率特性的不同,可以把天线分成四种基本类型。 ◎电小天线:天线的尺寸比一个波长l小很多。特征:很弱的方向性,低输入电阻,高输入电抗,低辐射效率。适合于VHF或更低的波段。如短振子,小环。 ◎谐振天线:在谐振频率点或某个窄频带内工作令人满意。特征:低或中等增益,实输入阻抗,带宽狭窄。主要用于HF到低于1GHz的频段。如半波振子,微带贴片,八木天线。 ◎宽带天线:在一个很宽的频率范围内,方向图、增益和阻抗几乎是常数,并且能够用有效辐射区的概念表述其特征,该区域在天线上的位置随频率的变化而变化。特征:低到中等增益,增益恒定,实输入阻抗,工作频带宽。主要用于VHF直至数个GHz的频段。如螺线天线,对数周期天线。 ◎口径天线:由一个供电磁波通过的开放的物理口径。特征:高增益,增益随频率增大,带宽中等。用于UHF和更高的频段。如喇叭天线,反射面天线。 §天线的电气特性 (1)方向特性――方向图(BW0.5,FSLL)、方向系数D、增益G。 (2)阻抗特性――输入阻抗Zin、效率 2 640 r h R l 骣 ÷ ? ?÷ ?÷ ?桫 A h,(辐射阻抗Z S) (3)带宽特性――带宽、上限频率f1,下限频率f2。(4)极化特性――极化、极化隔离度。

阿基米德螺旋天线

阿基米德螺旋天线小型化研究 电子与信息技术研究院:田塽指导教师:宋朝晖 摘要:本论文介绍的是利用一种特殊的曲折臂方法对阿基米德螺旋天线进行小型化,并且通过在天线的末端加载一个圆环来改善天线的圆极化特性。首先利用CST Microwave-studio软件对设计的小型化天线及超宽带馈电巴伦(balun)进行计算机仿真;之后,根据仿真结果,加工最佳结构的天线与巴伦,并进行了测量。测量结果表明本课题对天线小型化的整体分析与设计是合理、有效的。 关键词:阿基米德螺旋天线;超宽带巴伦;天线小型化 Abstract:This paper introduces a special zigzag-arm method for the miniaturization of the conventional Archimedean spiral antenna and improves the circular polarization characteristic of the miniaturization Archimedean spiral antenna by adding a loop on the back of printed circuit board which the antenna in etched on. Firstly, a great deal of simulation of the miniaturization antenna and balun is made using CST(Microwave-studio)software. Then, according to the simulated results, we process the embodiment with the optimum parameters and test it. The experimental results verify the effectiveness of this antenna design. Key words:Archimedean spiral antenna ultra wide-band balun antenna miniaturization 1引言 阿基米德螺旋:一动点沿一直线作等速移动的同时,该直线又绕线上一点O作等角速度旋转时,动点所走的轨迹就是阿基米德涡线。直线旋转一周时,动点在直线上移动的距离称为导程用字母S表示。 超宽带(Ultra Wide Band, UWB)天线技术是超宽带雷达和导弹制导系统中的关键技术之一。应用超宽带天线制导的导弹将具有很强的信号接收能力和抗干扰能力,从而可以达到精确制导的军事目的。因此,发展超宽带天线技术具有极其重要的军事意义和现实意义。阿基米德平面螺旋天线,作为超宽带天线的一种形式,可以做得尺寸很小,也较轻,而且可以齐平安装,属于低轮廓天线,因此在最近的二十多年里,阿基米德平面螺旋天线得到了飞速的发展,不仅在雷达、导弹制导等军事领域得到广泛应用,同时也在民用领域发挥巨大作用,如它可以同时为GSM系统和卫星通讯系统提供服务。本课题的研究和设计任务就是寻找一种能够使传统的阿基米德螺旋天线小型化的方法[1]。 2适合课题要求的天线及巴伦的设计 2.1 天线的设计 根据本设计的技术指标和实际要求,本文提出的设计思想是采用曲折臂的方法对阿基米德螺旋天线进行小型化设计。为了使小型化以后的天线的带宽、增益、轴比和半功率角宽度都能达到设计指标,要经过各种天线模型与天线参数的调整,再通过CST软件进行计算机仿真,根据合适的结果进行实际的设计、制作和测试。 首先利用CST仿真软件建模并仿真了传统的阿基米德螺旋天线,天线结构如图2-1所示。由于本课题所要设计的天线的工作频率范围为0.8GHz—4GHz,由此得外径R =75mm,内径r =9.375mm。经过对大量小型化天线模型的仿真,最后选择了如图2-2所示的曲折臂阿基米德螺旋天线的结构(其中黑色为金属良导体,即天线臂;蓝色为聚四氟乙烯敷铜板,厚2.5mm,介电常数2.32)。小型化

超宽带天线设计及其阵列研究概要

超宽带天线设计及其阵列研究 超宽带(UWB)技术是目前短距离高速无线通信系统实现的有力竞争方案,天线作为超宽带系统的关键部件,其性能好坏会直接影响通信质量。本文研究的内容主要是设计出可用于3.1~10.6GHz超宽带无线通信的超宽带天线,同时对超宽带天线阵的时域特性进行基本的研究。本文首先提炼出了衡量超宽带天线性能的参数,总结了超宽带天线时域特性研究的两种方法:频域传输函数法和时域直接测量法。在此基础上,设计和研究满足通信要求的超宽带天线。本文的主要贡献如下:在天线设计方面,将传统火山烟雾形天线的立体结构转化为平面结构,设计和研究了印刷火山烟雾形(volcano smoke)平面单极子超宽带天线;采用开槽、地板上加“L形”枝节以及加寄生单元三种方法,对微带馈电圆缝隙超宽带天线进行阻带特性的设计;改进了微带馈电圆缝隙超宽带天线的阻抗带宽,扩展了天线的应用范围;针对U形臂双面印刷偶极子超宽带天线的结构,在天线上加入“L形”枝节设计阻带特性取得较好效果。本文中采用电磁仿真软件CST 仿真和实验相结合的方法对天线进行设计和研究,除了研究天线的阻抗带宽、方向图和增益等基本参数外,还对天线的传输函数和时域特性进行研究,以探讨天线在超宽带系统中应用的特殊要求。在超宽带天线阵列的研究方面,从理论上建立了超宽带天线阵时域基本模型,提出了天线阵要实现指定波束指向设计时的一个重要参数,即总时延。研究了均匀直线阵和均匀圆形阵在等幅同相馈电时的时域特性,为实际中超宽带天线阵的设计提供理论指导。本文设计的超宽带天线均采用平面印刷结构,天线的体积小、易于和系统集成。本文所做工作,对丰富超宽带天线理论和技术有重要的意义。 【关键词相关文档搜索】:无线电物理; 超宽带天线; 单极子; 火山烟雾形 天线; 圆缝隙天线; 阻带特性; 时域特性; 偶极子; 天线阵 【作者相关信息搜索】:兰州大学;无线电物理;张金生;高国平;

基于hfss的超宽带天线的仿真设计

基于hfss的超宽带天线的仿真设计基于HFSS的超宽带天线的仿真设计 学生姓名: 学号: 学院(系): 2014年06月 基于HFSS的超宽带天线的仿真设计摘要:超宽带通信技术以其高速率、抗多径效应和低成本等一般窄带系统无法比拟的优势成为最具竞争力和发展前景的技术之一。作为系统的重要组成部分,超宽带天线的设计引起了越来越多的关注。与传统的宽带天线相比,超宽带天线的设计更具有挑战性,这是由于天线除了需要具有超宽的工作频带(3.1GHz-10.6GHz),还要能够保持尺寸的紧凑,价格的低廉,并且易于与平面大规模电路集成。同时,由于在超宽带频段中还存在着一些窄带通信系统是使用的频段,因此,这就要求尽量避免潜在的电磁干扰。本文主要基于HFSS仿真及分析超带宽天线。 关键词:HFSS 超宽带天线电磁干扰 1、超宽带天线的特点以及研究背景 无论是军事通信还是民用通信都对天线的宽频性提出了更高的要求,特别是UWB通信中,要求天线的带宽达3.1GHz-10.6GHz。在超宽带天线的应用中,要求天线具有尺寸小,便于集成等特性。因此,设计出能够与射频通信电路集成的平面微带天线就成为本文的主要研究目标。此外,在FCC规定的3.1GHz-10.6GHz频段中,还存在的IEEE 802.16 Wimax系统(3.3GHz-3.6GHz)、C波段卫星通信系统(3.7GHz-4.2GHz)、IEEE 802.11bWLAN/HIPERLAN系统(5.15GHz-5.825GHz)。因此,如何解决这些已经存在的系统与UWB 频段的电磁兼容问题,是本文研究的一

个重中之重。超宽带天线因为其频带特别宽,容易受到频带范围内其它窄带信号的干扰,如果窄带信号的所在的固定频率已知,那么可以用射频滤波技术来滤除这些干扰信号。假如一个超宽带接收机,同时兼有高功率的窄带系统,高功率的窄带信号就会对超宽带接收机的信号进行干扰。有时候希望把超宽带天线和具有高灵敏度的窄带接收机结合在一起,这样在一定环境里,超宽带系统就容易受到窄带接收机的干扰。有一些情况下,希望超宽带系统对需要的某个或几个窄带信号不灵敏,还有的情况就是想要滤除掉频带中的干扰信号。 在军事领域中,为了实现保密通信和清除干扰,多频段、多功能电台和宽带跳频电台被广泛的应用。跳频速率越来越高,跳频的范围也越来越广,原有的窄带天线己无法满足要求。另外,狭小的空间内分布多副天线,相互之间的干扰较为严重,并且影响通信质量。为了解决上述矛盾,最有效的解决办法就是研制高性能、宽频带、小型化天线,以减少载体上天线的数目。 在民用通信系统中,无线通信作为当今信息化社会的主要技术手段而显得尤为重要。信道容量不断扩充、传输速率不断提高、服务方式也日渐灵活。与此相对应的是通信设备日趋宽带化,台站设施也由最初的点对点或一点对多点发展到移动和全球漫游。天线作为移动通信系统的发射和接收部件,其宽带化的研究显然有着重要的现实意义。 2、天线的重要参数 2.1 辐射方向图 辐射方向图f (θ ,? ):以天线为中心,辐射功率密度随角坐标变化的特性。定向的单波束或者多波束用于点对点通信或者一点对多点通信;全向(在一个指定平面内有均匀辐射特性)波束用于广播电视等场合;赋形主波束用于卫星通信和电视覆盖特定区域的情况。在某一特定频率点上,天线的远区辐射场可以表示为: ,jkreE,,,,rkf,,,,,,,, (2-1) r

螺旋天线的分析

黄冈师范学院本科生毕业论文 题目:螺旋天线的分析 专业年级:电子信息工程(2008级)学号: 学生姓名: 指导教师: 论文完成日期2012 年 5 月

郑重声明 本人的毕业论文是在指导老师的指导下独立撰写并完成的。毕业论文没有剽窃、抄袭、造假等违反学术道德、学术规范和侵权行为,如果有此现象发生,本人愿意承担由此产生的各种后果,直至法律责任;并可通过网络接受公众的查询。特此郑重声明。 毕业论文作者(签名): ______年月日

目录 摘要..................................................................................................................................I ABSTRACT . (Ⅱ) 1、绪论 (1) 1.1螺旋天线的发展历史 (1) 1.2螺旋天线发展前景 (2) 2、螺旋天线的原理 (3) 2.1相关背景与技术 (3) 2.1.1 相似原理 (3) 2.1.2 非频变原理 (4) 2.1.3 螺旋天线工作原理 (4) 2.2螺旋天线的技术指标 (5) 2.3螺旋天线原理和相关计算 (8) 2.3.1 平面阿基米德螺旋天线的基本形式 (8) 2.3.2 螺旋天线辐射原理 (9) 2.3.3 螺旋天线的藕合原理 (10) 3.1HFSS简要介绍 (13) 3.2天线建模、仿真及结果分析 (13) 3.2.1 螺旋天线HFSS仿真流程图 (13) 3.2.2 天线仿真的参数结果和分析 (14) 结束语 (20) 参考文献 (21) 致谢 (23)

螺旋天线的分析

螺旋天线的分析

黄冈师范学院本科生毕业论文 题目:螺旋天线的分析 专业年级:电子信息工程(2008级)学号: 学生姓名: 指导教师: 论文完成日期2012 年 5 月

郑重声明 本人的毕业论文是在指导老师的指导下独立撰写并完成的。毕业论文没有剽窃、抄袭、造假等违反学术道德、学术规范和侵权行为,如果有此现象发生,本人愿意承担由此产生的各种后果,直至法律责任;并可通过网络接受公众的查询。特此郑重声明。 毕业论文作者(签名): ______年月日

目录 摘要........................................................................ I ABSTRACT .. (Ⅱ) 1、绪论 (1) 1.1螺旋天线的发展历史 (1) 1.2螺旋天线发展前景 (2) 2、螺旋天线的原理 (3) 2.1相关背景与技术 (3) 2.1.1 相似原理 (3) 2.1.2 非频变原理 (3) 2.1.3 螺旋天线工作原理 (4) 2.2螺旋天线的技术指标 (5) 2.3螺旋天线原理和相关计算 (7) 2.3.1 平面阿基米德螺旋天线的基本形式.. 8 2.3.2 螺旋天线辐射原理 (9) 2.3.3 螺旋天线的藕合原理 (10) 3.1HFSS简要介绍 (13) 3.2天线建模、仿真及结果分析 (13) 3.2.1 螺旋天线HFSS仿真流程图 (13) 3.2.2 天线仿真的参数结果和分析 (14) 结束语 (20) 参考文献 (21) 致谢 (25)

螺旋天线的分析 专业:电信班级:作者:指导老师: 摘要 本文对螺旋天线的发展历史和前景作了简要介绍,并对螺旋天线的工作原理和分析方法作了概述,包括对天线进行分析的主要指标、计算公式,螺旋天线的各项参数。针对平面阿基米德螺旋天线进行了详细分析和论述;同时针对该工作在2.4GHZ的阿基米德螺旋天线实体用ansoft hfss13.0软件进行仿真,探究了阿基米德螺旋天线参数对方向图、增益宽度、阻抗宽度、轴比宽度的影响,并且对仿真后的输入功率、净输入功率、辐射功率、辐射效率、方向性系数、最大增益、前后向比等进行分析。 关键词:螺旋天线阿基米德螺旋天线 hfss仿真功率辐射增益

相关文档
最新文档