分布式电源接入对电网的影响分析

分布式电源接入对电网的影响分析
分布式电源接入对电网的影响分析

风电接入电网技术规定(通用版)

风电接入电网技术规定(通用 版) Safety management refers to ensuring the smooth and effective progress of social and economic activities and production on the premise of ensuring social and personal safety. ( 安全管理) 单位:_______________________ 部门:_______________________ 日期:_______________________ 本文档文字可以自由修改

风电接入电网技术规定(通用版) 1.1基本要求 风电场具有功功率调节能力,并能根据电网调度部门指令控制其有功功率输出。为了实现对风电场有功功率的控制,风电场需安装有功功率控制系统,能够接收并自动执行调度部门远方发送的有功出力控制信号,确保风电场最大输出功率及功率变化率不超过电网调度部门的给定值。 1.2最大功率变化率 风电场应限制输出功率的变化率。最大功率变化率包括 1min功率变化率和10min功率变化率,具体限值可参照表1。 表1风电场最大功率变化率推荐值

风电场装机容量(MW) 10min最大变化量(MW) 1min最大变化量(MW) 150 100 30 在风电场并网以及风速增长过程中,风电场功率变化率应当满足此要求。这也适用于风电场的正常停机,但可以接受因风速降低(或超出最大风速)而引起的超出最大变化率的情况。风电场最大功率变化率的确定也可根据风电场所接入系统的状况、其他电源的调节特性、风电机组运行特性等,由电网运营企业和风电场开发运营企业共同确定。 1.3紧急控制 在电网紧急情况下,风电场应根据电网调度部门的指令来控制其输出的有功功率,并保证风电场有功控制系统的快速性和可靠性。

分布式能源与微电网技术

分布式能源与微电网技术 摘要:在现代城市化进程加快发展下,能源需求量逐渐增长。分布式能源和微 电网技术能促进城市的绿色化和清洁能源的应用,达到节能减排的目的,也能为 现代智能电网建设提供有效依据,保证电网的安全与稳定。 关键词:分布式;能源;微电网技术 在中国经济快速提升下,工业化和城镇化进程加快发展,其存在的能源安全 问题更为突出。尤其是二氧化碳带来的全球变暖问题,引起社会的关注。在该发 展背景下,对城市的建设思想和发展模式有序转变,加大力度引进风力发电、太 阳能发电模式等,促进整体的规模化发展。 一、分布式能源和微电网技术的研究意义 第一,加强对分布式能源和微电网技术的研究,能确保清洁能源的有效应用。基于太阳能、风能等多个形式清洁能源的应用,能保证能源的灵活接入和智能化 控制,将其应用到智能终端进行消费,促使低碳城市建设目标的实现。第二,加 强对分布式能源和微电网技术的研究,也能提升总体的供电可靠性。基于分布式 发电的投入以及微网的统一管理,在先进系统和设备下,为电网运行提供强大保障,促使电能质量更可靠。第三,分布式能源和微电网技术的研究,也能为其提 供双向互动用电服务模式。基于微网、智能家居和分布式发电,能为系统提供统 一接口,维护用户和电网之间的相互沟通和交流,也能使用户获得新的体验。加 强对分布式能源和微电网技术的研究,将其作为智能电网建设中的主要部分,是 新时期建设与发展下的主要模式,也承担者社会建设职责。其中的分布式能源, 在智能集成模式下,能保证接入系统的安全与可靠,也能确保微网更灵活。所以,加强对分布式能源和微电网技术的应用,是城市绿色、清洁能源推动和应用的主 要条件,在节能减排工作中,将其渗透到工作中,对电网的安全运行也具备十分 重要的作用[1]。 二、分布式能源和微电网技术的关键 (一)容量配置 清洁能源具备明显的间歇式能源特点,受到天气情况影响较大,电能的输出 波动大。基于对分布式能源和微电网技术的应用,能够在各个单位组成模式下, 对其容量有效配置,确保风能、太阳能相互应用,发电单位和储能单元之间也能 互补。在整个分布式能源和微电网中,结合时间功率,为其输出曲线,也能避对 电网产生的影响。通过对储能系统应用,对分布式能源和微电网技术有效调度, 以达到清洁能源的充分应用。比如:储能电池,能对分布式能源生产中存在的问 题有效解决,尤其是在较小负荷下,达到电能的储存目的。如果负荷较大,将释 放电能,保证系统的科学稳定运行。如:将储存电池和系统交流侧进行链接,基 于储能单元和发电单元的协调,为其提供对平滑分布式能源的波动,避免给电力 系统带来较大冲击,维护其稳定性。储能电池也能对当地的交流负荷需要无功功率、负荷电流谐波的获取,以免电压波动、闪变现象的发生,这样才能达到有效 的节能效率[2]。 (二)接入方式 结合当前的建设标准和规程,需要在谐波、电压波动和电压不平衡度上给予 全面控制和探讨,也要为分布式能源和微电网技术的应用提出合理对策。分布式 能源和微电网利用分布发电和集中并网接入方式来实现。集中并网多为直流母线 汇流、各个发电单元在电能控制模式下,将其转变为直流母线。基于逆变器,将

风电并网对电网的影响及其策略

风电并网对电网的影响及其策略-机电论文 风电并网对电网的影响及其策略 李梦云 (武汉理工大学自动化学院,湖北武汉430070) 【摘要】目前,中国风电已超核电成为第三大主力电源。但风力电场等分布式电源对电力网络的日益渗透的同时,给现代电力系统带来了很多方面的影响,比如改变了电力网络中能量传递的单向性,对现有配电网的稳定性产生较大的影响(尤其是对电网电压稳定性的影响)。因此,对风电并入配电网后产生的影响及其应对策略进行相关的研究是非常具有现实意义的。介绍了风力发电目前的发展状况和风电接入电网后对电力系统带来的影响,尤其是针对风电场并网后对电网的稳态电压的稳定性,以风速和风电机组的功率因数作为影响因素,从原理上,分别分析其对含风电场的电网的稳态电压的影响。最后在此基础上,提出初步的应对策略。 关键词风力发电;电网;稳态电压;影响;策略 0 前言 随着日益增长的电力负荷、能源的短缺、环境恶化的愈发严重,以及用户要求电能质量的提高,大家越来越关注DG(分布式发电)。研究表明,分布式发电的发展可以反映能源的综合运用、电力行业的服务程度和环境保护的提升。尤其是其中的风力资源,因为其是可再生能源、开发潜力大、环境和经济效益好,因此得到了广泛的应用,使风力发电成为分布式发电中重要的发展方向,同时也使其成为一种当今新型能源中发展迅速的发电方式。 1 风电并网对电力系统的影响

风电场并入配电网,使输电网对部分地区的电力输送压力得到缓解和电力系统的网损得到改善的同时,也对电力系统产生了许多不好的影响如电压波动、闪变等。 同时由于风具有随机性,其输入电网的有功和无功有很大的波动性。风速的不可预测这一特性,使我们不能对风电进行准确而又可靠地出力预测,我们需要更加注重负荷跟踪、备用容量等,提高了风电场的运行成本。 风电并网增加电力系统调峰调频的难度,不仅需要风电场容量,而且需要风电场快速响应负荷变化;风电机组并网时,会不可避免的对电网有冲击电流。风电场与电网的联络线的潮流的双向性,使并网后的电网的继电保护的保护配置提高了要求。 2 风电并网对电网电压的影响 配电网的电压分布情况由电力系统的潮流所决定,当电力网络中电源功率和负荷发生变化时,将会引发电力网络各个母线的节点产生变化。对风电并网的配电网来说,风电场的功率的波动会影响电网电压出现偏移。由于风电场接入配电网后,风电场的接入点的变化、有功功率和无功功率的不平衡等,会导致无功功率从无功源流向负荷。风电场的电压偏移会影响风电场的接入容量和风电并网后电力系统的安全运行。 2.1 风速变化对配电网电压的影响 将接入风电场的配电网系统的供电线路作等值电路,则风电场并网点至无限大系统两端的电压降落为: U1-U2=I(R1+R2+jX1+ jX2) (1) 上式中,U1为风电场的输出电压,U2为电网电压,R1、X1表示风电场的电

风电接入电网技术规定

风电场接入电网技术规定 1、风电场有功功率 1.1 基本要求 风电场具有功功率调节能力,并能根据电网调度部门指令控制其有功功率输出。为了实现对风电场有功功率的控制,风电场需安装有功功率控制系统,能够接收并自动执行调度部门远方发送的有功出力控制信号,确保风电场最大输出功率及功率变化率不超过电网调度部门的给定值。 1.2 最大功率变化率 风电场应限制输出功率的变化率。最大功率变化率包括1min功率变化率和10min功率变化率,具体限值可参照表1。 表1 风电场最大功率变化率推荐值 在风电场并网以及风速增长过程中,风电场功率变化率应当满足此要求。这也适用于风电场的正常停机,但可以接受因风速降低(或超出最大风速)而引起的超出最大变化率的情况。风电场最大功率变化率的确定也可根据风电场所接入系统的状况、其他电源的调节特性、风电机组运行特性等,由电网运营企业和风电场开发运营企业共同确定。 1.3 紧急控制 在电网紧急情况下,风电场应根据电网调度部门的指令来控制其输出的有功功率,并保证风电场有功控制系统的快速性和可靠性。 a) 电网故障或特殊运行方式下要求降低风电场有功功率,以防止输电设备

发生过载,确保电力系统稳定性。 b) 当电网频率高于50.5Hz时,依据电网调度部门指令降低风电场有功功率,严重情况下可以切除整个风电场。 c) 在事故情况下,若风电场的运行危及电网安全稳定,电网调度部门有权暂时将风电场解列。事故处理完毕,电网恢复正常运行状态后,应尽快恢复风电场的并网运行。 2、风电场无功功率 2.1 无功电源 a) 风电场应具备协调控制机组和无功补偿装置的能力,能够自动快速调整无功总功率。风电场的无功电源包括风电机组和风电场的无功补偿装置。首先充分利用风电机组的无功容量及其调节能力,仅靠风电机组的无功容量不能满足系统电压调节需要的,在风电场集中加装无功补偿装置。 b) 风电场无功补偿装置能够实现动态的连续调节以控制并网点电压,其调节速度应能满足电网电压调节的要求。 2.2 无功容量 a) 风电场在任何运行方式下,应保证其无功功率有一定的调节容量,该容量为风电场额定运行时功率因数0.98(超前)~0.98(滞后)所确定的无功功率容量范围,风电场的无功功率能实现动态连续调节,保证风电场具有在系统事故情况下能够调节并网点电压恢复至正常水平的足够无功容量。 b) 百万千瓦级及以上风电基地,其单个风电场无功功率调节容量为风电场额定运行时功率因数0.97(超前)~0.97(滞后)所确定的无功功率容量范围。 c) 通过风电汇集升压站接入公共电网的风电场,其配置的容性无功补偿容量能够补偿风电场满发时送出线路上的无功损耗;其配置的感性无功补偿容量能够补偿风电场空载时送出线路上的充电无功功率。 d) 风电场无功容量范围在满足上述要求下可结合每个风电场实际接入情况通过风电场接入电网专题研究来确定。 3、风电场电压范围

分布式电源接入管理规范

分布式电源接入管理规范 (讨论稿)

前言 为规范分布式电源接入管理,提高分布式电源接入运行管理水平,适应电网技术进步和当前管理工作的要求,特制定本规范。 本规范由*****提出并解释。 本规范由*****归口。 本规范主要起草单位:***** 本规范主要起草人:*****

目录 1 范围 (2) 2 规范性引用文件 (2) 3 术语和定义 (3) 4.总则 (4) 5前期管理(规划、设计) (4) 6 投产管理(调试、验收) (6) 7运行管理(正常、异常) (6)

1 范围 本规范规定了分布式电源接入配电网的运行控制管理规定和基本技术要求,适用于以同步电机、感应电机、变流器等形式接入35kV及以下电压等级配电网的分布式电源接入管理。 2 规范性引用文件 下列文件对于本规范的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本规范。凡是不注日期的引用文件,其最新版本(包括所有修改单)适用于本规范。 GB 2894 安全标志及其使用导则 GB/T 12325-2008 电能质量供电电压偏差 GB/T 12326-2008 电能质量电压波动和闪变 GB/T 14285-2006 继电保护和安全自动装置技术规程 GB/T 14549-1993 电能质量公用电网谐波 GB/T 15543-2008 电能质量三相电压不平衡 GB/T 15945-2008 电能质量电力系统频率偏差 GB/T 17883 0.2S和0.5S级静止式交流有功电度表 DL/T 584-2007 3kV~110kV电网继电保护装置运行整定规程 DL/T 1040 电网运行准则 DL/T 448 电能计量装置技术管理规定 DL/T 614 多功能电能表 DL/T 645 多功能电能表通信协议 DL/T 5202 电能量计量系统设计技术规程 DL/T 634.5101 远动设备及系统第5-101部分传输规约基本远动任务配套标准 DL/T 634.5104 远动设备及系统第5-104部分传输规约采用标准传输协议集的IEC60870-5-101网络访问

风力发电对电力系统的影响学习资料

风力发电对电力系统 的影响

风力发电对电力系统的影响 摘要 风力发电总是依赖于气象条件,并逐渐以大规模风电场的形式并入电网,给电网带来各种影响。因此,电网并未专门设计用来接入风电,如果要保持现有的电力供应标准,不可避免地需要进行一些相应的调整。本论文依据正常条例讨论了风电设计和设备网络的开发所遇到的一些问题和解决风电场并网时遇到的各种问题。由于风力发电具有大容量、动态和随机性的特性,它给电力系统的有功/无功潮流、电压、系统稳定性、电能质量、短路容量、频率和保护等方面带来影响,针对这些问题提出了相应的对策,以期待更好地利用风力发电。 关键词:风力发电;电力系统;影响;风电场 1. 引言 人们普遍接受,可再生能源发电是未来电力的供应。由于电力需求快速增长,对以化石燃料为基础的发电是不可持续的。相反的,风电作为一种有发展前景的可再生能源备受人们关注。当由于工业发展和世界大部分地区经济的增长而引起电力的需求稳步增长时,它有抑制排放和降低不可替代燃料储备消耗的潜力。 当大型风电场(几百兆瓦)成为一个主流时,风力发电越来越受欢迎。2006年间,包括世界上超过70个国家在内的风能发展,装机容量从2005年的59091兆瓦达到74223兆瓦。2006年的巨大增长表明,决策者们开始重视风能

发展能够带来的好处。由于到2020年12%的供电来于1250Gw的安装风电装机,将积累节约10771百万吨的二氧化碳,这个报道是人类减少温室气体排放的一个重要手段。 大型风电场的电力系统具有很高的容量、动态随机性能,这将会挑战系统的安全性和可靠性。而提供电力系统清洁能源的同时,风电场也会带来一些对电力系统不利的因素。随着风力发电的膨胀和风电在电力系统中比重的增加,影响将很可能成为风力集成的技术性壁垒。因此,应该探讨其影响并提出解决这些问题的对策。 风能已经从25年前的原型中走了很长的路,而且在未来的二十年里它也会继续前进。有一系列的问题与风电系统的运作和发展。虽然风力发电的渗透可能会取代传统的植物产生大量的能量,关注的重点是风力发电和电网之间的相互作用。本文提供了一个概述风力发电对电力系统的影响,并建议相应的对策来处理这些问题,以适应电力系统中的风力发电。 根据上述问题,本文从总体上讨论了风力发电项目开发过程中遇到的问题,以及在处理项目时,将风电场与电力系统相结合的问题。由于风力发电具有容量大、动态、随机性等特点,其影响主要包括有功、无功功率流、电压、系统稳定性、电能质量、短路容量、系统备用、频率和保护。针对这些问题,提出相应的对策建议,以适应电力系统的风力发电。 本文的组织如下。第2节给出了风力发电的发展情况。在第3节介绍了风力发电的特点。在4节中,详细讨论了风力发电对电力系统的影响。在第5节中,提出了减少风力发电的影响的对策。最后,第6节总结本文。

分布式发电与微电网

分布式发电与微电网 一、分布式发电 分布式发电技术是充分开发和利用可再生能源的理想发生,它具有投资小、清洁环保、供 电可靠和发电方式灵活等优点,可以对未来大电网提供有力补充和有效支撑,是未来电力 系统的重要发展趋势之一。 (一)分布式发电的基本概念 分布式发电目前尚未有统一定义,一般认为,分布式发电(Distributed Generation, DG)指为满足终端用户的特殊要求、接在用户侧附近大的小型发电系统。分布式电源(Distributed Resource, DG)指分布式发电与储能装置(Energy Storage,ES)的联合系统(DR=DG+ES)。它们规模一般不大,通常为几十千瓦至几十兆瓦,所用的能源包括天然气(含煤气层、沼气)、太阳能、生物质能、氢能、风能、小水电等洁净能源或可再生能源;而储能装置主要为蓄电池,还可能采用超级电容、飞轮储能等。此外,为了提高能源的利用效率,同时降低成本往往采用冷、热、电联供(Combined Cooling、Heat and Power, CCHP)的方式或热电联产(Combined Heat and Power, CHP 或Co-generation)的方式。因此,国内外也常常将冷、热、电等各种能源一起供应的系统称为分布式能源(Distributed Energy Resource, DER)系统,而将包含分布式能源在内是电力系统称为分布式能源电力系统。由于能够大幅提高能源利用效率、节能、多样化地利用各种清洁和可再生能源。未来分布式能源系统是应用将会越来越广泛。 分布式发电直接接入配电系统(380V或10kV配电系统,一般低于66kV电压等级)并网运行较为多见,但也有直接向负荷供电而不与电力系统相联,形成独立供电系统(Stand-alone System),或形成所谓的孤岛运行方式(Islanding Operation Mode)。采用并网方式运行,一般不需要储能系统,但采取独立(无电网孤岛)运行方式时,为保持小型供电系统的频率和电压稳定,储能系统往往是必不可少的。 由于这种发电技术正处于发展过程,因此在概念和名称术语是叙述和采用上尚未完全统一。CIGRE欧洲工作组WG37-33将分布式电源定义为:不受供电调度部门的控制、与77kV以下电压等级电网联网、容量在100MW以下的发电系统。英国则采用“嵌入式发电”(Embedded Generation)的术语,但文献中较少使用。此外,有的国外文献和教科书将容量更小、分布更为分散的(如小型用户屋顶光伏发电及小型户用燃料电池发电等)称为分散发电(Dispersed Generation)。本节所采用的DG和DR的术语,与

参考-风电接入电网技术规定

管理制度参考范本 参考-风电接入电网技术规定 撰写人:__________________ 部门:__________________ 时间:__________________

1.1基本要求风电场具有功功率调节能力,并能根据电网调度部 门指令控制其有功功率输出。为了实现对风电场有功功率的控制,风 电场需安装有功功率控制系统,能够接收并自动执行调度部门远方发 送的有功出力控制信号,确保风电场最大输出功率及功率变化率不超 过电网调度部门的给定值。1.2最大功率变化率风电场应限制输出功 率的变化率。最大功率变化率包括1min功率变化率和10min功率变化率,具体限值可参照表1。表1风电场最大功率变化率推荐值风电场装机容量(MW)10min最大变化量(MW)1min最大变化量(MW)3020630-150装机容量/1.5装机容量/515010030在风电场并网以 及风速增长过程中,风电场功率变化率应当满足此要求。这也适用于 风电场的正常停机,但可以接受因风速降低(或超出最大风速)而引 起的超出最大变化率的情况。风电场最大功率变化率的确定也可根据 风电场所接入系统的状况、其他电源的调节特性、风电机组运行特性等,由电网运营企业和风电场开发运营企业共同确定。1.3紧急控制在电网紧急情况下,风电场应根据电网调度部门的指令来控制其输出的 有功功率,并保证风电场有功控制系统的快速性和可靠性。a)电网故 障或特殊运行方式下要求降低风电场有功功率,以防止输电设备发生 过载,确保电力系统稳定性。b)当电网频率高于50.5Hz时,依据电网 调度部门指令降低风电场有功功率,严重情况下可以切除整个风电场。 c)在事故情况下,若风电场的运行危及电网安全稳定,电网调度部门 有权暂时将风电场解列。事故处理完毕,电网恢复正常运行状态后, 应尽快恢复风电场的并网运行。、风电场无功功率2.1无功电源a)风

风力发电对电力系统的影响

风力发电对电力系统的影响 摘要 风力发电总是依赖于气象条件,并逐渐以大规模风电场的形式并入电网,给电网带来各种影响。因此,电网并未专门设计用来接入风电,如果要保持现有的电力供应标准,不可避免地需要进行一些相应的调整。本论文依据正常条例讨论了风电设计和设备网络的开发所遇到的一些问题和解决风电场并网时遇到的各种问题。由于风力发电具有大容量、动态和随机性的特性,它给电力系统的有功/无功潮流、电压、系统稳定性、电能质量、短路容量、频率和保护等方面带来影响,针对这些问题提出了相应的对策,以期待更好地利用风力发电。 关键词:风力发电;电力系统;影响;风电场 1. 引言 人们普遍接受,可再生能源发电是未来电力的供应。由于电力需求快速增长,对以化石燃料为基础的发电是不可持续的。相反的,风电作为一种有发展前景的可再生能源备受人们关注。当由于工业发展和世界大部分地区经济的增长而引起电力的需求稳步增长时,它有抑制排放和降低不可替代燃料储备消耗的潜力。 当大型风电场(几百兆瓦)成为一个主流时,风力发电越来越受欢迎。2006年间,包括世界上超过70个国家在内的风能发展,装机容量从2005年的59091兆瓦达到74223兆瓦。2006年的巨大增长表明,决策者们开始重视风能发展能够带来的好处。由于到2020年12%的供电来于1250Gw的安装风电装机,将积累节约10771百万吨的二氧化碳,这个报道是人类减少温室气体排放的一个重要手段。 大型风电场的电力系统具有很高的容量、动态随机性能,这将会挑战系统的安全性和可靠性。而提供电力系统清洁能源的同时,风电场也会带来一些对电力系统不利的因素。随着风力发电的膨胀和风电在电力系统中比重的增加,影响将很可能成为风力集成的技术性壁垒。因此,应该探讨其影响并提出解决这些问题的对策。 风能已经从25年前的原型中走了很长的路,而且在未来的二十年里它也会继续前进。有一系列的问题与风电系统的运作和发展。虽然风力发电的渗透可能会取代传统的植物产生大量的能量,关注的重点是风力发电和电网之间的相互作用。本文提供了一个概述风力发电对电力系统的影响,并建议相应的对策来处理这些问题,以适应电力系统中的风力发电。 根据上述问题,本文从总体上讨论了风力发电项目开发过程中遇到的问题,以及在处理项目时,将风电场与电力系统相结合的问题。由于风力发电具有容量大、动态、随机性等特点,其影响主要包括有功、无功功率流、电压、系统稳定性、电能质量、短路容量、系统备用、频率和保护。针对这些问题,提出相应的对策建议,以适应电力系统的风力发电。 本文的组织如下。第2节给出了风力发电的发展情况。在第3节介绍了风力发电的特点。在4节中,详细讨论了风力发电对电力系统的影响。在第5节中,提出了减少风力发电的影响的对策。最后,第6节总结本文。

风电接入对电网的影响

风电的接入对电网的影响 1.对电网频率的影响 风电出力波动将会产生严重的有功功率平衡问题。风电比例大小对系统调频影响严重,当电力系统中风电装机容量达到一定规模时,风电功率波动或者风电场因故整体退出运行,可能会导致系统有功出力和负荷之间的动态不平衡,当电网其他发电机组不能够快速响应风电功率波动时,则有可能造成系统频率偏差,严重时可能导致系统频率越限,进而危及电网安全运行[1]。因此,始终保持电力系统频率在允许的很小范围内波动,是电力系统运行控制的最基本目标,也是电力调度自动化系统的最重要任务。电力系统正常运行时,频率始终保持在50Hz±0.2Hz 的范围内,当采用现代自动调频装置时,误差可以不超过0.05~0.15Hz。 2.对电网电压的影响 风电场并入电网后,由于风电具有间歇性和随机性的特点,使得当风电功率变化时,电网电压也将随之发生波动。随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将会超出安全范围,严重时会导致电压崩溃。影响电压波动有很多因素,例如风电机组类型、风况、所接入电网的状况和策略等,但最根本的原因是风速的波动带来的并网风电机组输出功率的变化。系统要求节点电压与额定值的偏差不允许超过一定的范围。因此,必须釆取适当的措施来防止偏差过大,维持系统的节点电压在限定的范围之内,防止与额定值的偏差超过允许范围。风电接入系统的所带来的电压与无功功率问题亟待解决。 综上所述,为保证大规模风电接入后电网的安全稳定运行,风电接入后的电网运行控制技术越来越重要,电网的稳定控制技术、运行控制技术、优化调度技术以及风电与电网的协调控制技术将成为风电并网控制技术中的关键技术[2,3]。 [1] 计崔. 大型风力发电场并网接入运行问题综述[J]. 华东电力, 2008, 36(10): 71-73. [2] 耿华, 杨耕, 马小亮. 并网型风力发电机组的控制技术综述[J]. 电力电子技术, 2007, 40(6): 33-36. [3] 王伟胜, 范高锋, 赵海翔. 风电场并网技术规定比较及其综合控制系统初探 [J]. 电网技术, 2007, 31(18): 73-77.

《分布式电源接入电网技术规定》

《分布式电源接入电网 技术规定》 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

分布式电源接入电网技术规定 (报批稿) 国家电网公司Q/GDW480—2010 1 范围 本规定适用于国家电网公司经营区域内以同步电机、感应电机、变流器等形式接入35kV及以下电压等级电网的分布式电源。 风力发电和太阳能光伏发电并网接入35kV及以下电网还应参照《国家电网公司风电场接入电网技术规定》和《国家电网公司光伏电站接入电网技术规定》执行。 本规定规定了新建和扩建分布式电源接入电网运行应遵循的一般原则和技术要求,改建分布式电源、分布式自备电源可参照本规定执行。 2规范性引用文件 下列文件中的条款通过本规定的引用而成为本规定的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规定,但鼓励根据本规定达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规定。 GB/T 12325—2008 电能质量供电电压偏差 GB/T 12326—2008 电能质量电压波动和闪变

GB/T 14549—1993 电能质量公用电网谐波 GB/T 15543—2008 电能质量三相电压不平衡 GB/T 15945—2008 电能质量电力系统频率偏差 GB 2894 安全标志及其使用导则 GB/T 14285—2006 继电保护和安全自动装置技术规程DL/T 584—2007 3kV~110kV电网继电保护装置运行整定规程 DL/T 1040 电网运行准则 DL/T 448 电能计量装置技术管理规定 IEC61000-4-30 电磁兼容第4-30部分试验和测量技术-电能质量测量方法 DL/T 远动设备及系统第5-101部分传输规约基本远动任务配套标准 DL/T 远动设备及系统第5-104部分传输规约采用标准传输协议集的IEC60870-5-101网络访问 Q/GDW 370-2009 城市配电网技术导则 Q/GDW 3382-2009 配电自动化技术导则 IEEE 1547 Standard for Interconnecting Distributed Resources with Electric Power Systems 3术语和定义 本规定采用了下列名词和术语。 分布式电源 distributed resources

智能微电网与分布式电源并入关键技术研究

智能微电网与分布式电源并入关键技术研究 摘要:我国可再生能源发展”十三五”规划指出,要通过不断完善可再生能源扶持 政策,创新可再生能源发展方式和优化发展布局,加快促进可再生能源技术进步 和成本降低,进一步扩大可再生能源应用规模,提高可再生能源在能源消费中的 比重,推动我国能源结构优化升级。但风能、太阳能等可再生能源发、用电存在 间歇性、波动性强,接入电网技术性能差和对电网注入谐波等一系列问题。大量 的分布式电源并入电网以后,改变了传统配电网潮流单向流动的现状,给配电网 带来了很多新的技术问题,如:(1)电网调整问题;(2)继电保护问题;(3)对短路电流水平的影响;(4)对配电网电能质量的影响。而智能微电网的深度 开发和建设则能够有效的解决以上技术问题。智能微电网能够使新能源发电真正 代替现有的火力发电,可以有效地应对未来的能源短缺、环境污染和气候变化问题。 关键词:智能微电网;分布式电源;储能技术;能源管理 一、引言 智能微电网是微网技术的智能化,通过采用先进的电力技术、通信技术、计 算机技术和控制技术将分布式电源、储能装置、能量转换装置、相关负荷和监控、保护装置汇集而成的小型发配电系统[1]。关键技术主要包括:能量优化调度技术、储能技术、保护控制技术、微电源运行模式的无缝切换技术。智能微电网的特点 主要体现在以下几个方面:(1)采用先进的量测、传感技术进行检测;(2)通 过模型仿真和潮流分析,合理预测和分配电力;(3)对监测状态进行有效控制;(4)接入分布式发电,自适应处理技术;(5)数据到信息的提升,优化运行方式。 二、研究内容 2.1能量优化调度技术 能量经济优化调度是微网研究的重要方面,对于这项技术,国际上很多国家 开展了对微网的研究,并提出了微网的概念和发展目标。近10多年来,微网在 理论和实际应用中均取得了丰硕的成果[2-4]。本研究将从负荷资源性质的角度寻 求优化微网运行的方案。微网中负荷按其可调度性大致可分为3类,即重要负荷,可调整负荷及可平移负荷。电力系统中存在着大量的能与电网友好合作的可平移 负荷,在微网调度中考虑可平移负荷的影响,有利于提高微网运行经济性。 (1)负荷平移 负荷平移流程图如图2-1所示,通过最小二乘法确定电力系统中的可平移负 荷单元数量,采集和分析可平移负荷基础数据,确定目标负荷曲线,建立目标函 数使平移后得到的负荷曲线和目标负荷曲线的吻合度最高,建立可平移负荷模型,利用内点法求解可平移负荷模型,最终得出负荷平移结果。 图2-1 负荷平移流程图 (2)可平移负荷模型求解 可平移负荷模型是一个典型线性约束二次规划问题。常规的二次规划算法有 有效集法、信赖域法和内点法。考虑到可平移负荷模型中优化变量个数较多,规 模较大,因此应采用内点法求解。 2.2储能技术 大容量储能装置在微电网中的作用:1、削峰填谷,减少负荷冲击;2、平抑、

分布式发电接入电力系统的问题分析 陈红

分布式发电接入电力系统的问题分析陈红 发表时间:2019-01-03T11:02:44.580Z 来源:《基层建设》2018年第32期作者:陈红吕峰邓鹏彭彦博 [导读] 摘要:随着能源的匮乏,新能源开发的重要性日益突显出来。 山西金鹤电力设计有限公司山西运城 044000 摘要:随着能源的匮乏,新能源开发的重要性日益突显出来。分布式发电技术能够满足“节能减排”的要求,并且属于可再生能源的开发,因此该项技术引起了国家足够的重视。分布式发电具有灵活性高、兼容性强的优点,因此在新型发电技术中使用较为广泛。随着分布式发电技术的普及,对我国电力系统的影响也越来越大,本文针对其影响进行问题分析及对策制定。 关键词:分布式发电;接入电力系统;问题分析 引言 分布式发电作为一种利用可再生能源发电的技术,符合节能减排的基本要求,具有兼容性强、灵活性高等优点,在电力系统中得到了广泛应用。但在实际应用过程中,分布式发电的接入会对电力系统的稳定性造成一定的影响,为实现分布式发电系统和传统发电系统的协调运行,对分布式发电系统进行了介绍,然后分析了分布式发电接入电力系统时的常见问题,最后提出了解决措施。 1发展分布式发电的优点及意义 分布式发电的发展在经济性、环保性、可靠性、风险性、安全性和灵活性六个方面都有相应的优点,并且其优点都具有其相应的应用和意义。与传统的发输配电设施相比,分布式发电的位置靠近负荷中心,并且更贴近用户,因此能够降低输电网的损耗。其发电所需要占用的土地面积和空间体积也较小,因此可以减少资金的投入,降低发电成本。分布式发电所利用的是清洁能源,因此能够减少污染物的排放。由于其输电的特殊性,不需要建设高压输电线路,因此能够减少电磁污染的产生,并且对输电周围的植被也不会造成破坏。分布式发电在并网后,其可靠性会得到大幅度提升。即使电网断电,分布式发电仍然能够借助其特殊的设计继续运行供电,从而保证供电的连续。与传统发输配电设施相比,分布式发电的建造周期短,投资风险小,并且其设备和技术的规模也较小,在运行过程中还能够根据负荷的增长进行扩建,从而降低了资金的投入,使其建设风险变小。分布式发电具有多元化的能源利用类型和供应渠道,因此在发电过程中能够有足够的能源支持,其发电能源供应还能够采用多样化的战略,保证能源的安全性,从而缓解能源危机。由于分布式发电的规模较小,并且相对分散,因此不容易造成意外事故或者灾害,相比较传统发电会具有更高的保障性。由于其系统采用的主要是非大型模块化设备,因此能够具有快捷的运行效率,其维修也较为容易。分布式发电方便控制,其电源各自独立,因此可以根据用电对象的要求制定不同的发电模式。 2分布式发电系统接入对电力系统产生的影响 2.1对系统电能质量和潮流产生的影响 分布式发电接入电力系统后,配电系统单向潮流结构发生了变化,潮流方向和潮流大小没有办法进行预测。根据分布式电力系统安装位置的不同,馈线段的潮流可能变少,也可能增加,一旦馈线上输出功率负荷超过实际需求,将会导致馈线段的所有潮流和某些段的方向完全相反,潮流发生变化会使原来电压调整设备的正常调节作用丧失。此外,大量风力发电接入带来的随机性会使用电功率出现变化,分布式发电系统的开启和关闭都会导致电压出现闪变和波动,传统旋转型的DG、基于逆变器的DG以及不同的联网方式都会引起谐波畸变,在一些特殊情况下会使电力系统出现电压降低或升高等问题。 2.2对电力系统规划产生的影响 在电力系统中接入分布式发电系统将导致电网负荷预测的不确定性变大,从而使配电系统规划无法准确地对负荷增长情况进行预测。电网的动态属性和维数有着密切的联系,由于配电网自身节点非常多,大量接入分布式发电系统会增加实现网络最优配置的难度。所以,系统运行规划人员需要对影响进行准确的评估,并找出合理的优化方法,然后给出接入分布式发电的最优容量和最优位置,以保证配电系统运行的经济性和安全性。需针对供电系统的不同类型,对混合电网建立相应的模型,并对各种电源类型进行合理的协调。当前,国家能源规划、能源政策对电力系统的规划决策也产生了比较大的影响。 2.3对系统安全性产生的影响 分布式发电接入电力系统后会对电力系统的安全性和可靠性产生比较大的影响。例如,配电系统为放射状时,会使电网结构发生变化,同时还会改变短路电流持续的时间以及短路电流的大小,使原来网络中的保护装置出现误动,并对设备之间的协调运行以及自动重合闸的动作产生影响,尤其是在原电力系统中断路器极限承载值小于短路电流时会直接导致设备损坏。当分布式发电接入电力系统并网运行时,为避免单相接地短路时非故障相电压过大,DG在并网运行时需进行接地处理。当DG和主网分离后,会继续向独立电网供电,此时会出现孤岛效应,不仅会对系统的稳定运行造成影响,还会造成谐振过电压,对用户设备造成损坏。另外,研究发现,系统受到外部干扰后,电子设备之间的转速偏差会变大,从而使振荡持续时间延长,进而对系统的暂态稳定性造成影响。 3分布式发电接入电力系统存在问题的对策 3.1故障分析 分布式电源的并网使得配电网拓扑结构和短路电流的各方面数据发生变化,从而使得配电网中保护设备的运行受到影响。由于不同的分布式电源类型的短路计算模型以及对短路电流水平造成不同程度的影响,因此其相应的解决措施与传统发电也有所差别。传统旋转式分布电源在接入电力系统后,其短路电流的配置与变电站基本一致,其产生的短路电流都较大。但运用逆变器的并网分布式电源有其独特的接口属性和控制策略,因此对发电机故障的相应特征也造成了很大的改变,产生的短路电流一般较小。在产生故障以后,分布式发电的故障定位与恢复方式和传统发电有所不同,因此传统的方法无法准确解决分布式发电的问题。为了准确实现分布式发电中的故障定位并且使其具有科学的恢复算法,可以采用具有多代理技术的故障恢复方法,该种方法相比较原有方法,能够具有更高的效率,并且能够很大程度上提高成功率。要适应分布式电网的配置保护,就需要制定合理的方案。就目前的保护方案中,常用的是在配电网中设置故障限流器,能够在发生故障以后将电流降低,从而不会对原有保护配置造成任何影响。在分布式电源接入电力系统前,要先改进原有的保护策略,并且根据具体情况创建新的保护方案。 3.2稳定性分析 稳定性分析主要适用的是输电网,一般不会涉及到配电网,但在分布式电源渗透容量增大的同时,电压以及频率的稳定性都会受到较

浅谈风力发电对电网的影响

浅谈风力发电对电网的影响 随着我国经济的发展,大规模企业越来越多,对能源的需求也在不断的增长。但是由于企业的增加对矿产资源的开采带来了很大的压力,矿产资源属于不可再生资源,因此,大规模的开采资源总有一天会被开采殆尽。为此,必须不断的加快新能源的开发与利用,以替代自然资源,文章通过介绍风力发电对电网的影响,更加清晰阐述了新能源的优势,表明了其在当今社会中的重要性。 标签:风力发电;发电机;电网;可持续发展 近年来,随着我国对矿产资源的不断开发利用,出现了资源匮乏的危机。相信许多仁人志士也已经意识到了这一点,寻找新能源,替代自然资源。已经成为了当代发展的目标。既能不污染环境,又能够实现可持续发展是当代的主题。风能完全符合这一主题,而且在我国风能资源十分丰富,蕴藏了巨大的能量。因此有效推动风力发电的进一步利用和发展尤为重要。以下就风力发电对电网的影响展开阐述。 1 风力发电机的类型 实现风电并网的前提是首先考虑风力发电机的类型,不同的类型发电机有不同的工作原理。因此其对电网产生的影响也不尽相同。目前我国的风力发电机有以下三种类型。现分述如下: 1.1 异步风力发电机 異步发电机是目前国内运用最多的发电机,其具有结构简单、运行可靠、价格实惠等优势。但是这种风力发电机的发电能力较新型的机组发电能力低。原因是其机组为定速恒频机组,运行转速基本稳定。不仅如此,在其运行的过程中还得从电力系统中吸收无功功率,才能正常运行。目前,为了满足该种发电机的使用,多数情况下是在其机端并联补偿电容器,以满足其工作的需求。 1.2 双馈异步风力发电机 此种发电机来自国外,价格昂贵。仅有少数在我国使用。但是该种发电机可在一定的范围内变速运行。通过调节器功率因数,不用再额外的吸收无功功率。例如其功率因数可以从领先的0.95~滞后的0.95。 1.3 直驱式交流永磁同步发电机 目前,我国有许多的大型风力发电机组,但是在实际的运用中,有一个共性,就是齿轮箱容易出故障,因为此减少了其自身的寿命。所以为了解决这一问题,人们研究了无齿轮箱发电机。便是直驱式交流永磁同步发电机。

论析微电网分布式电源的控制方案

论析微电网分布式电源的控制方案 论析微电网分布式电源的控制方案 摘要:微电网中的分布式电源控制是微电网研究中的关键问题之一。文章主要介绍了分布式电源的控制方式与实现机理,以及微电网能量控制的分类,分析了不同控制方式存在的优点与缺陷。阐述了微电网中分布式电源控制的研究方向,以期为进一步的研究提供参考。 关键词:微电网;分布式电源;能量管理 中图分类号:U665.12 文献标识码:A 文章编号: 一、前言 微电网是将分布式能源纳入中、低压配电网以解决未来能源问题及利用新能源、绿色能源的重要途径。分布式电源是分布式能源的主要实现形式。世界上很多国家都参与到微电网的研究和开发中,关于微电网的理论和试验研究已经取得了一定成果。微电网中的分布式电源与大电网概念下的分布式电源在单体的功率控制方法上是相同的,但是由于微电网中的分布式电源肩负着支撑微电网运行的责任,因而不能像大电网中的分布式电源那样一旦遇到大电网发生故障则退出运行。因此,对于微电网分布式电源控制的研究具有重要的意义。 二、分布式电源控制的类型 分布式电源是微电网主要的能量源,在目前的研究中分布式电源主要以通过电力电子逆变器的电气耦合方式为主。依据逆变器所控制电气参数的类型,逆变器的控制方式主要有: 1)电压控制方式;2)电压控制方式衍生出的间接功率控制方式;3)由电流控制方式。本文主要针对这三种方式进行论述: (1)电压控制方式,是指分布式电源的逆变器以输出参考电压波形为目标。如图 1 所示,通过对输出电压U(a,b,c)和参考电压U(a,b,c)(ref)进行dq变换,将三相对称正弦波形转换为dq 轴上的直流波形Ud 和Uq,通过 PI 控制器实现对参考电压的无差跟踪该方式的优点是孤岛运行时,分布式电源能够为微电网提供电压

分布式电源接入配电网运行控制规范

三、《分布式电源接入配电网运行控制规范》 目录 1 适用范围 (2) 2 规范性引用文件 (2) 3 术语和定义 (3) 4 一般性技术规定原则 (4) 5 功率控制和电压调节 (6) 5.1 控制方式 (6) 5.2 控制权归属 (6) 5.3 有功功率控制 (6) 5.3.1 控制目标 (6) 5.3.2频率异常响应特性 (6) 5.3.3孤岛运行方式 (6) 5.3.4孤岛运行方式 (6) 5.4 电压/无功调节 (6) 5.4.1 控制目标 (6) 5.4.2 运行要求 (6) 5.4.3 电压调节 (6) 6 继电保护与安全控制 (6) 6.1 基本要求 (8) 6.2 过流与短路保护 (8) 6.3 防孤岛保护 (8) 6.4 逆功率保护 (8) 6.5 恢复并网 (8) 7 自动化与通信 (8) 7.1监测 (8) 7.2控制 (10) 7.3通讯 (10) 8启停 (10) 8.1 启动 (10) 8.2 停机 (11) 9 防雷与接地 (11)

1 范围 本标准规定了分布式电源接入配电网的运行控制应遵循的技术原则和要求。本标准适用于国家电网公司经营区域内以同步电机、感应电机、变流器等形式接入35kV及以下电压等级配电网的分布式电源。 侧重于对公共联接点的控制 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有修改单)适用于本文件。 GB 2894 安全标志及其使用导则 GB/T 12325-2008 电能质量供电电压偏差 GB/T 12326-2008 电能质量电压波动和闪变 GB/T 14285-2006 继电保护和安全自动装置技术规程 GB/T 14549-1993 电能质量公用电网谐波 GB/T 15543-2008 电能质量三相电压不平衡 GB/T 15945-2008 电能质量电力系统频率偏差 GB/T 17883 0.2S和0.5S级静止式交流有功电度表 DL/T 584-2007 3kV~110kV电网继电保护装置运行整定规程 DL/T 1040 电网运行准则 DL/T 448 电能计量装置技术管理规定 DL/T 614 多功能电能表 DL/T 645 多功能电能表通信协议 DL/T 5202 电能量计量系统设计技术规程 DL/T 634.5101 远动设备及系统第5-101部分传输规约基本远动任务配套标准 DL/T 634.5104 远动设备及系统第5-104部分传输规约采用标准传输协议集的IEC60870-5-101网络访问

相关文档
最新文档